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Discerning Feature Supported Encoder
for Image Representation

Shuyang Wang , Zhengming Ding , Member, IEEE, and Yun Fu, Fellow, IEEE

Abstract— Inspired by the recent successes of deep
architecture, the auto-encoder and its variants have been
intensively explored on image clustering and classification tasks
by learning effective feature representations. Conventional
auto-encoder attempts to uncover the data’s intrinsic structure,
by constraining the output to be as much identical to the input
as possible, which denotes that the hidden representation could
faithfully reconstruct the input data. One issue that arises,
however, is that such representations might not be optimized for
specific tasks, e.g., image classification and clustering, since it
compresses not only the discriminative information but also a lot
of redundant or even noise within data. In other words, not all
hidden units would benefit the specific tasks, while partial units
are mainly used to represent the task-irrelevant patterns. In this
paper, a general framework named discerning feature supported
encoder (DFSE) is proposed, which integrates the auto-encoder
and feature selection together into a unified model. Specifically,
the feature selection is adapted to learned hidden-layer features
to capture the task-relevant ones from the task-irrelevant ones.
Meanwhile, the selected hidden units could in turn encode more
discriminability only on the selected task-relevant units. To this
end, our proposed algorithm can generate more effective image
representation by distinguishing the task-relevant features from
the task-irrelevant ones. Two scenarios of the experiments on
image classification and clustering are conducted to evaluate our
algorithm. The experiments on several benchmarks demonstrate
that our method can achieve better performance over the
state-of-the-art approaches in two scenarios.

Index Terms— Image representation, feature extraction, learn-
ing systems.

I. INTRODUCTION

THE real-world image data are commonly in very high
dimensions, which leads to the considerable escalation of

the computational time and space. Even though a number of
studies in the literature have examined strategies to deal with
high-dimensional data, it is still a crucial difficulty associated
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with many practical image learning problems caused by the
curse of dimensionality [1]. On the other hand, dealing with a
large number of features will often deteriorate the performance
due to the large noise and irrelevant sensory patterns contained
in the image data. Practically, not all features are equally dis-
criminative and important to image classification or clustering
tasks, as most of them are often highly correlated to each
other or even redundant [2]. Consequently, it is necessary to
learn a low-dimensional image representation to preserve its
inherent information.

Dimensionality reduction is the common approach to deal
with the curse of dimensionality, which can be categorized
into two fashions: (1) feature selection [2], [3], which selects
a subset of most representative or discriminative features from
the input feature set and (2) feature extraction (or subspace
learning) [4], [5], which transforms the original input features
to a lower dimensional subspace. A lot of research activities
have exploited on jointly feature selection and feature extrac-
tion to benefit from each other. Zou et al. [6] proposed sparse
subspace learning methods and attempted to solve this problem
based on l2-norm and l1-norm regularization. Gu et al. [7]
developed a joint framework to integrate subspace learning
and feature selection via l2,1-norm to achieve a row-sparse
linear projection. These methods all adopt sparse constraint to
implement the feature selection and they all employ shallow
structures to seek linear projection. Therefore, these methods
cannot uncover the rich hierarchical information within the
complex data.

As a method of nonlinear dimensionality reduction,
the auto-encoder and its variants have attracted increasing
attention recently [8]–[10], and achieve better results on a
series of tasks [11], [12]. The conventional auto-encoder train
the network to seek a compressed approximation by forcing
the output to be as much close to the target as possible.
However, one problem will be brought up by this scheme
that the major part of the high-level feature units could
blindly contribute to represent the patterns unrelated with
later classification or clustering tasks. Although the effort
to incorporate supervision [13] has been deployed in recent
literature, there is still an absence of works which separately
consider high-level features relevant or irrelevant in term of
the task. It is inappropriate to endow the discriminability to
those hidden units which primarily used to reconstruct the
distracting or noisy patterns of the input.

To address this issue, we propose to integrate auto-
encoder and feature selection into a unified model (Fig.1) to
seek effective image representation. Intuitively, the feature
selection is adapted to learned high-level features to capture
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Fig. 1. The framework of our proposed algorithm. The hidden layer is learned
with the constraint of feature selection criterion to separate task-irrelevant
units from discerning ones, while those selected units are encoded to compress
more important patterns. All of the units contribute to reconstruct the input,
while only selected ones are used for later tasks. The left column images are
the input sample from YaleB and ARface datasets, while the right column
images indicate the region where its reconstruction involves more of learned
discerning feature.

the discriminative ones from the task-irrelevant units. In the
meanwhile, those selected high-level features are enforced to
be trained to compress more discriminate patterns. Therefore,
the proposed framework not only functions dynamic feature
selection on learned hidden units (i.e., high-level features),
but also compress the important information mainly on
task-relevant hidden units, while ignoring the irrelevant
patterns or noise into deserted units. We emphasize our major
contributions in three folds as follows:

• We propose Discerning Features Supported Encoder
(DFSE) for image representation, which selects the dis-
cerning high-level features and, furthermore, enhances the
discriminative ability on the selected units.

• The framework can be easily extended to both classi-
fication or clustering scenarios, by simply shifting the
feature selection criterion (Fisher score and Laplacian
score in this paper) on the hidden layer. Both supervised
and unsupervised version are demonstrated.

• The proposed DFSE can be easily adopt to form
a stacked deep network. We evaluate the proposed
DSFE method through both classification and clustering
schemes, as well as visualization tasks to intuitively
demonstrate the effectiveness of our proposed framework.

The rest of the paper is organized as follows. We first briefly
introduce the related works in Section II. Our new proposed
algorithm along with its optimization solution, differences
with other methods and stacked version are introduced in
Section III. Section IV shows the experimental results and
analysis, following with our conclusions in Section V.

II. RELATED WORK

In this section, we introduce the related works from two
lines, one is feature selection and the other is auto-encoder.
Generally, both belong to feature learning. Feature selection

aims to select features in the original space, while auto-
encoder targets at transforming the original features to a new
hidden space.

Feature selection approaches can be roughly classified into
filters, wrappers, and embedded methods. In the filter based
methods, a subset of features are selected through ranking the
features based on some well-defined performance criterion.
The poorly informative features tend to be filtered out prior to
the learning algorithm. In other words, the filter methods are
classifier-independent and only based on the intrinsic struc-
tures of the data. Wrapper approaches adopt the classification
performance itself as the evaluation criterion to search for a
good subset of features. Compared to filter methods, wrappers
are classifier-specific and the feature selection is wrapped
in the learning algorithm that will ultimately be employed.
Embedded methods perform feature selection as part of the
learning procedure. In contrast with filter methods, wrapper
and embedded methods usually achieve better results because
they are tightly related to the in-built specific classifiers.
However, it in turn restrains their generality and causes more
computational cost. In this paper, we focus on incorporating
the filter-based methods to the auto-encoder framework.

The past decade has witnessed a number of criteria proposed
for filter based feature selection, such as Fisher score [14],
Relief [15], Laplacian score [16], Hilbert Schmidt Indepen-
dence Criterion (HSIC) [17], Information Gain and Trace
Ratio criterion [18]. It is often prohibitively expensive in
computational cost to search a subset of feature combination
from original space to maximize the criterion. Accordingly,
the conventional feature-level selection algorithms, instead of
selecting at subset-level, calculate the score of each feature
independently at first then select the top-ranking features.
Those features selected one by one are yet suboptimal, since
the subset-level score are neglected, which leads to either
discard good combination of features or preserve redundant
features. To address this issue, a globally optimal solution
were proposed by Gu et al. [14] and Nie et al. [18] based
on Trace Ratio criterion and Fisher score respectively.

Auto-encoder (AE) was proposed as an efficient tech-
nique for dimensionality reduction and deep structures pre-
training [8], which has drawn increasing attentions in computer
vision fields in recent years. Variations of AE variants have
been proposed most recently to handle different learning tasks,
e.g., domain generalization [19], multi-view learning [21] and
transfer learning [20]. Yu et al. [10] proposed an embedding
with auto-encoder regularization (EAER) framework, which
utilize graph embedding structure to guide the auto-encoder
reconstruction. However, learning is still challenging when the
data contains lots of irrelevant patterns. There is still lack of
auto-encoder based method that considers two parts of the
hidden unites separably, which are task-relevant ones and -
irrelevant ones. In our proposed framework, feature selection
is applied on the hidden units of auto-encoder in order to guide
the encoder to compress task-relevant and -irrelevant patterns
into two groups of high-level features.

This paper is the extension of our previous conference
work [22]. Our previous work proposed an auto-encoder
guided with feature selection in a supervised fashion, where we
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explored a Fisher score to select the hidden units under the
label information. Thus, our model can only work for the
classification problem. In this extension, we naturally extend
our model to make it more general to handle both supervised
learning and unsupervised learning. We can easily shift the
feature selection criterion according to different scenarios.
More specifically, we can adopt Fisher score as our supervised
feature selection method for classification, while Laplacian
score as the unsupervised feature selection method for clus-
tering. In this way, our model can deal with more real-world
problems based on the availability of label information. To this
end, we evaluate on more benchmarks in both classification
and clustering tasks, which demonstrate our model works in
both scenarios compared with other algorithms.

III. THE PROPOSED ALGORITHM

We will first give the preliminary in this section and
followed by emphasizing our motivation. The detailed model
introduction and optimization are provided by jointly selecting
features and training auto-encoder, including supervised ver-
sion and unsupervised one. Then, the discussion of two most
relevant algorithms will be given as well.

A. Preliminary and Motivations

Assume X ∈ R
d×n is the training data with n samples

and xi ∈ R
d represents the i -th sample. A single layer auto-

encoder [8] usually contains two parts, which are encoder and
decoder. The input xi will be first map to a hidden represen-
tations by the encoder, denoted as f , and then reconstructed
back to the itself with the decoder, denoted as g. A typical
objective function with square loss can be formulated as:

min
W1,b1,W2,b2

n∑

i=1

∥∥xi − g( f (xi ))
∥∥2

2, (1)

where {W1 ∈ R
r×d , b1 ∈ R

r }, {W2 ∈ R
d×r , b2 ∈ R

d} are
learned parameter sets include weighted matrices and offset
vectors. Specifically, we have f (xi ) = ϕ(W1xi + b1) and
g( f (xi )) = ϕ(W2 f (xi ) + b2), where ϕ(·) is an non-linear
activation function, such as the tanh function or the sigmoid.

As mentioned previously, data reconstruction requires all
hidden units to be conducive to capturing the intrinsic infor-
mation of input data. Actually, not all hidden-layer features
are equally important for our classification task. For instance,
those units play a key role to compress the background
information in an object image should help a little in later
object recognition task. These units are considered as task-
irrelevant ones in our framework, which are unwanted in the
final feature set.

Thus, two conclusions could be drawn from the aforemen-
tioned discussion: 1) it is inappropriate and counterproductive
to endow the entire hidden units with discriminative ability,
the discerning information should be only encoded into the
selected task-relevant features; and 2) feature selection could
be conducive to distinguishing discerning units out of task-
irrelevant units. Based on above assumption, we propose our
discerning feature selection supported auto-encoder model
through a joint learning scheme.

B. Discerning Feature Supported Encoder

In this section, the proposed Discerning Feature Supported
Encoder (DFSE) is introduced by integrating feature selection
on the hidden layer of auto-encoder as a joint learning frame-
work. Suppose training data X ∈ R

d×n has visual descriptor
dimensionality d and number of data samples n. Our proposed
framework is formulated as:

min
W1,W2,b1,b2,P

1

2
‖X − g( f (X))‖2

F + λ

2
C(P, f (X)) (2)

where f (X) = σ(W1 X + B1), g( f (X)) = σ(W2 f (X) + B2),
B1, B2 are the n-repeated column copy of b1, b2, respectively.
C(P, f (X)) is the feature selecting criterion with a selection
matrix P performs as the regularization term on hidden units
f (X). In detail, i -th column vector in P denoted by pi ∈ R

z

has the form,

pi = [0, · · · , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
z− j

]�. (3)

where z denotes the number of hidden units and j represents
that the j -th units is selected into the subset of new features
y ∈ R

m by this column vector pi . Therefore the procedure
of feature selection can be formalize as finding a selection
matrix P to select a feature subset Y = P� f (X) from original
feature f (X), so that the appropriate criterion C(P, f (X)) is
optimized.

Regularly, depends on the usage of label information in
the training procedure, feature selection can be roughly split
into unsupervised models, e.g., Laplacian score [16], and
supervised models, e.g., Fisher score [14]. In order to deal
with different scenarios in real world, we formulate the feature
selection criterion C(P, f (X)) into the following regularizer
as:

C(P, f (X)) = tr(P� f (X)Lw f �(X)P)

tr(P� f (X)Lb f �(X)P)
, (4)

which provides a general graph framework for feature
selection. Different ways of constructing the weight matrices
Lw and Lb will bring about different unsupervised, semi-
supervised or supervised feature selection models. We will
discuss more in the later section. The task of feature selection
is to seek the feature selection with the minimum score by
solving the following optimization problem:

P = arg min
P

tr(P� f (X)Lw f �(X)P)

tr(P� f (X)Lb f �(X)P)
, (5)

Unfortunately, due to the nonexistent of closed-form solu-
tion, a straightforward issue to optimize this equation is not
available. Therefore, instead of dealing with the above trace-
ratio problem directly, many works trying to achieve a globally
optimal solution by transforming it to an equivalent trace-
difference problem [18], [23].

From Eq.(4), we have the global minimum γ ∗ of the subset-
level criterion score C(P, f (X)) satisfying,

γ ∗ = arg min
tr(P� f (X)Lw f �(X)P)

tr(P� f (X)Lb f �(X)P)
,
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that is to say,

tr(P� f (X)Lw f �(X)P)

tr(P� f (X)Lb f �(X)P)
≥ γ ∗, ∀�(P)

⇒ tr(P� f (X)(Lw − γ ∗Lb) f �(X)P) ≥ 0, ∀�(P)

⇒ min
�(P)

tr(P� f (X)(Lw − γ ∗Lb) f �(X)P) = 0. (6)

Then, we can derive the function of the global optimal γ
while considering others as constant so that:

r(γ ) = arg min
�(P)

tr(P� f (X)(Lw − γ Lb) f �(X)P). (7)

Note that the above function is monotonically increas-
ing [18]. Accordingly, we can convert the finding of global
optimal γ to a trace-difference problem by solving Eq.(7).
After the above trace-difference regularization is applied on
the hidden layer to constrain the auto-encoder optimization,
our final objective function is reformulated as:

min
W1,W2,b1,b2,P

L = 1

2
‖X − g( f (X))‖2

F

+ λ

2
tr(P� f (X)(Lw − γ Lb) f �(X)P), (8)

where the parameter λ works as a balance between
auto-encoder and feature selection regularizer. γ =
tr(P� f (X)Lw f �(X)P)

tr(P� f (X)Lb f �(X)P)
obtained with P in previous trace-

ratio problem is the optimized score for feature selection
criterion.

C. Optimization

We consider solving the proposed objective function in
Eq.(8) by alternating optimization approach, due to the com-
plex non-linearity of the encoder and decoder, to iteratively
update the auto-encoder parameters W1, W2, b1, b2 and feature
selection variable P as well as γ . The first sub-problem is
feature selection score learning and then the learned feature
selection matrix and score are used in the regularized auto-
encoder optimization.

1) Feature Selection Score Learning: In the first sub-
problem, assume that the other parameters from auto-encoder
are constant, we follow the traditional trace-ratio strategy to
optimize the feature selection matrix P and the score γ .
Specifically, the trace-difference equation has the following
form:

P = arg min
P

tr(P� f (X)(Lw − γ Lb) f �(X)P), (9)

Suppose Pt is the optimal result in t-th optimization itera-
tion, thus γt is calculated by

γt = tr(P�
t f (X)Lw f �(X)Pt )

tr(P�
t f (X)Lb f �(X)Pt )

, (10)

Therefore, we can obtain r(γt ) as

r(γt ) = tr(P�
t+1 f (X)(Lw − γt Lb) f �(X)Pt+1), (11)

where Pt+1 can be efficiently calculated according to the rank
of scores for each single feature. Note that r(γ ) is piecewise

Algorithm 1 Feature Selection Score Optimization

linear since P is not fixed w.r.t γ , and the slope of r(γ ) at
point γt is,

r ′(γt ) = −tr(P�
t+1 f (X)Lb f �(X)Pt+1), (12)

We use a linear function q(γ ) to approximate the piecewise
linear function r(γ ) at point γt such that,

q(γ ) = r ′(γt )(γ − γt ) + g(γt )

= tr(P�
t+1 f (X)(Lw − γ Lb) f �(X)Pt+1). (13)

Let q(γt+1) = 0, we have

γt+1 = tr(P�
t+1 f (X)Lw f �(X)Pt+1)

tr(P�
t+1 f (X)Lb f �(X)Pt+1)

. (14)

Since q(γ ) approximates r(γ ), γt+1 in Eq.(14) is an approx-
imation to the root of equation r(γ ) = 0. Updating γt by
γt+1, we can obtain an iterative procedure to find the root
of equation r(γ ) = 0 and thus the learned feature selection
matrix P in Eq.(5). One thing to be noted that γ is a fixed
parameter passed to the following auto-encoder optimization
as a learned global optimal score for the feature selection
criterion. Algorithm 1 summarizes the learning procedure.
More details on globally optimal solution and its proof for
above trace-ratio problem could be referred to [18].

2) Regularized Auto-Encoder Optimization: as the feature
selection matrix P and score γ are learned from above,
the stochastic sub-gradient descent method can be employed to
obtain the parameters W1, b1, W2 and b2. The gradients of L
in Eq.(8) with respect to the decoding parameters are derived
as follows:

∂L
∂W2

= (X − g( f (X))) 
 ∂g( f (X))

∂W2
f �(X), (15)

∂L
∂ B2

= (X − g( f (X))) 
 ∂g( f (X))

∂W2
= L2, (16)

∂L
∂W1

= (W�
2 L2 + λP P� f (X)(Lw − γ Lb)) 
 ∂ f (X)

∂W2
X�,

(17)
∂L
∂ B1

= (W�
2 L2+λP P� f (X)(Lw−γ Lb)) 
 ∂ f (X)

∂W2
. (18)
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Algorithm 2 Alternating Solve Eq.(8)

Then, W1, W2 and b1, b2 can be updated by using the
gradient descent algorithm as follows:

W1 = W1 − η
∂L
∂W1

, b1 = b1 − η
∂L
∂b1

,

W2 = W2 − η
∂L
∂W2

, b2 = b2 − η
∂L
∂b2

, (19)

where η is the learning rate.
∂L
∂b1

and
∂L
∂b2

are the column

mean of
∂L
∂ B1

and
∂L
∂ B2

, accordingly. Algorithm 2 summarizes

the details of the iteratively updating of the above two sub-
problems.

D. Examples of Supervised and Unsupervised Scenarios

Previous model is a more general one, which can fit to
different scenarios by adapting Lw and Lb according to the
real situation. In this paper, we adopt Fisher score [14], [18]
as the supervised feature selection criterion for classifica-
tion, while Laplacian score [16] as the unsupervised feature
selection method for clustering task. Note that there is no
restriction about which method could be integrated in, either
Fisher score [14] or other criterions are all suitable. We choose
Fisher and Laplacian score here due to their good reported
performance and wide usage.

In general, Fisher and Laplacian score could be inter-
graded into graph embedding framework. For Fisher score,
we construct two weighted undirected graphs Gw and Gb

on given data (the original input data X is used in this
paper to preserve the geometric structure during selecting
features), which respectively reflect the within- and between-
class affinity relationship [24]. Correspondingly, two weighted
matrices Sw and Sb are produced to characterize two graphs
respectively. Therefore, the Laplacian matrix defined as Lw =
Dw − Sw is obtained, where Dw is the diagonal matrix of Sw ,
similar for Lb and Sb.

Laplacian Score is essentially based on Laplacian
Eigenmaps [25]. For each feature, the Laplacian score is
computed to reflect its locality preserving ability. We construct
a nearest neighbor graph G in order to model the local
geometric structure. The weighted matrix S is constructed
by putting Si j = e−‖xi−x j ‖2/τ between k nearest neighbors
notes pair xi and x j , while setting as 0 otherwise, where τ is

a suitable constant. Then, the graph Laplacian matrix L is
calculated as L = D − S, where D is the diagonal matrix
of S. Similar as Fisher score, the task now is to seek the
feature selection matrix P with the minimum Laplacian score.
Therefore, we can easily set Lw = L and Lb = D to build an
unsupervised feature selection guided auto-encoder framework
for clustering.

E. Relations to Existing Methods

The proposed algorithm aims to jointly select most impor-
tant features through the non-linear dimensionality reduction.
Here we elaborate a few connections with existing methods,
and therefore highlight the advantage of our model.

1) Sparse AE: Sparse Auto-Encoders (SAE) aims to select a
small set of hidden units to reconstruct the input by enforcing
the activation of the majority hidden units to be close to 0 [26].
In a different manner, the proposed DSFE framework desires
to seek a small set of hidden units which preserve most dis-
cerning information for later classification or clustering tasks,
while other hidden units would be still used for reconstruction.
In other words, the important discerning hidden units and task-
irrelevant units are treated separately. The key idea in our
methods is that, we need to endow the specific hidden units
with more discriminative ability while not all of the units, and
left the others only focus on reconstruction.

2) Embedding With AE Regularization: Yu et al. [10] pro-
posed an embedding with auto-encoder regularization (EAER)
framework, whose idea is to utilize graph embedding structure
to guide the auto-encoder reconstruction. Specifically, they
want to use graph regularization to preserve more neigh-
borhood relationships between the data in the input space
during the non-linear dimensionality reduction. Although our
proposed DSFE framework also adopts graph regularizer,
the idea of ours is to preserve the geometric structure of the
data during the feature selection on hidden units, which is
jointly optimized with the non-linear dimensionality reduction.

IV. EXPERIMENTS

In this section, we evaluate the proposed DSFE method
through both classification and clustering schemes. For classi-
fication problem, we adopt two benchmark datasets, including
one object dataset (COIL100 [38]) and one face dataset
(CMU-PIE [39]). The clustering experiments are performed
on 9 real-world image datasets (Table.III summarizes some
important characteristics). We first introduce the compared
algorithms, experimental setting, then showcase the effective-
ness of our DSFE on object classification, face recognition
and image clustering. Note that our DSFE model with
Fisher score regularizer (DSFEF ) is evaluated in supervised
classification, while the one with Laplacian score regularizer
(DSFEL) is tested in unsupervised clustering. Experimental
results will be presented with analysis in this section. What’s
more, visualization tasks are also deployed to intuitively
demonstrate our method’s ability to extract discerning units.

3) Comparative Algorithms for Classification: Several
manifold learning methods: LDA [4], LRC [27], SRRS [28],
LCLRD [29]; and four auto-encoder based methods: sparse
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TABLE I

AVERAGE RECOGNITION RATE(%) WITH STANDARD DEVIATIONS OF DIFFERENT METHODS ON COIL-100 DATABASE
WITH DIFFERENT NUMBER OF CLASSES. BOLD DENOTES THE BEST RESULTS

auto-encoder (SAE) [26], marginalized denoising auto-
encoders (mDAE) [36], graph regularized auto-encoder
(GAE) [10] and marginalized graph auto-encoder
(mGAE) [37] are used as baseline algorithms. What’s more,
for verifying the advantage of joint learning, we propose
a simple combination framework as comparison, named as
AE+FS, which first uses a traditional auto-encoder to learn a
new representation, then the same trace-ratio feature selection
procedure is applied on the obtained hidden layer to produce
a subset of features. In other words, it is a separate learning
version of our algorithm. Besides above baseline methods,
several different state-of-the-art algorithms are compared in
each dataset to show our advantage. Note that the layer-size
setting for those AE based methods are all the same and they
only differ in the regularizer.

4) Comparative Algorithms for Clustering: Except
K-means and sparse auto-encoder (SAE) [26] are adopted
as baseline methods, the simple combination framework
AE+FS is also used as comparison. What’s more, to validate
the effectiveness of our model, we compare with several
state-of-the-art methods in terms of ensemble clustering
methods (e.g., EAC [40], SEC [41]), and deep clustering
(e.g., MAEC [36], GEncoder [42], and DLC [43]). Note that
the deep clustering methods are set with 5 layers.

5) Parameter Selection: In addition to the parameter of
auto-encoder (layer-size setting), there are two more parame-
ters in the objective function (Eq.(8)), which are the feature
selection ratio (m/z) and the balance parameter λ. One thing
to be noted that γ is automatically learned as global optimal
score in feature selection step. The selected feature size is set
to 50% of the original hidden layer size for all the experiments,
and we will analyze the impact of selection ratio. λ balances
the feature selection regularization and the loss function of
AE, we empirically set it in our experiments and will give
analysis in following sections. Specifically, λ is set as 2×10−3

for COIL100, 3 × 10−3 for CMU-PIE and 2 × 10−3 for all
datasets in clustering experiments. For construction of the

nearest neighbor graph in DSFEL, the number of nearest
neighbor nodes k is set to 5 for all datasets.

A. Classification

COIL100 consists 100 objects each has 72 color images
(totally 7,200 images) with different lighting conditions. Each
object was collected in equally spaced views at every 5 degrees
of rotation. The images are converted to gray scale, and
normalized to 32 × 32. Each object is randomly selected
10 images to form the training set while the rest consist
the testing. The random training and test split is repeated
20 times. We separately deploy experiments on subset of 20,
40, 60, 80 and 100 objects to evaluate the scalability of
the testing methods. Several subspace methods and latest
DL based classification methods i.e. NPE [30], LSDA [31],
FDDL [32], DLRD [33], D2L2R2 [34], and DPL [35] are
compared in this dataset. Each compared method is either
tuned to achieve their best performance or directly copied from
the original papers under same experimental setting. We set
the layer as [300, 200, 100] for all all AE based methods, and
report the results on the feature with three layer stack together.

Table.I summarizes the average recognition rates of all
compared algorithms. The results show a large improvement
by our algorithm. Fig.2 shows the analysis of DSFEF with
different values of selected feature ratio and layer-size setting,
respectively. It can be seen from Fig.2(a) that the highest
recognition rate appears mostly when the selected feature
number is 30%∼50% of original feature size. For this reason,
the ratio is set to 0.5 in all of our experiments for simplicity.
We use different layer of a stacked DSFEF to test recognition
rate in Fig.2(b). Four layers of DSFEF are set with layer-
size [300, 200, 100, 50]. It can be observe from the figure that
layer 2 itself or all layers stacked together perform the best.
The reason could be higher layer has the input with more
discerning units selected, and the encoder could focus more
on representing the task-relevant information. The drops at
layer 3 and 4 are probably due to the too few units to capture
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Fig. 2. (a) Recognition rates with different subset of COIL-100 in terms of feature selection ratio (m/z). The highest results appear mostly at 0.3∼0.5.
(b) Recognition rates with different layer combination used on COIL-100. (c) Impact of feature selection ratio (m/z) and λ on COIL-100.

TABLE II

AVERAGE RECOGNITION RATE(%) WITH STANDARD DEVIATIONS OF DIFFERENT METHODS ON CMU PIE DATABASE

WITH DIFFERENT NUMBER OF TRAINING SAMPLES EACH CLASSES. BOLD DENOTES THE BEST RESULTS

Fig. 3. The optimization process of DSFEF on the COIL100 dataset with
60 objects.

sufficient information. The performance along with both fea-
ture ratio and λ is evaluated in Fig.2(c). The convergence test
of our proposed algorithm is also provided in Fig.3.

CMU-PIE is a widely used dataset which contains a total
of 41,368 images of 68 subjects, each person has 13 different
poses, 43 different illumination conditions, and 4 different
expressions. From all the 13 different poses, a subset of five
near frontal poses (C05, C07, C09, C27, C29) are selected,
with all the faces under different illuminations and expres-
sions. In this way, a subset with 11,554 images is used
in our experiment and each person has about 170 images.
We repeat each experiment 20 times with random training
and test split. Table. II summarizes the recognition rates
with different numbers of training samples selected from per

person. All images are normalized to 32×32 and the model is
single-layer with dimension of 1500. The result indicates our
method can not only work on object categorization but also
on face recognition. Besides, the impact of feature selection
ration and λ are reported in Fig.5. The highest result is given
when selection ratio = 0.55 and λ = 3 × 10−3.

B. Clustering

In order to demonstrate the effectiveness of our DSFEL
model, the evaluated datasets are selected with different levels
of features, types of data, numbers of feature and instances.
As shown in Table III, the first dataset is low-level feature
for character1, the middle ones are the object2 and digit
datasets3 with Surf and raw pixel features. The last two
datasets are objects with deep learning features4,5. Fig. 4
shows some sample images from these datasets. The compared
ensemble clustering methods and deep clustering methods are
summarized as follow:

• EAC [40] is an evidence accumulation-based clustering
algorithm which applies hierarchical agglomerative clus-
tering on the co-association matrix.

1http://archive.ics.uci.edu/ml/
2https://people.eecs.berkeley.edu/~jhoffman/domainadapt/
3http://www.cad.zju.edu.cn/home/dengcai/
4http://www.cs.dartmouth.edu/~chenfang/
5http://groups.csail.mit.edu/vision/SUN/
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Fig. 4. Sample Images. (a) The USPS is a 0-9 handwritten digits database in grey level, (b) DSLR contains office environment images taken with varying
lighting and pose changes using a dslr camera, and (c) SUN09 is a five categories subset from SUN dataset which covering a large variety of scenes, places
and the objects within. Here we show some samples in category ‘cars’.

Fig. 5. Impact of feature selection ratio (m/z) and λ on the 10 train CMU
PIE dataset in terms of classification accuracy.

TABLE III

EXPERIMENTAL DATA SETS FOR CLUSTERING

• SEC [41] finds the consensus partition by employing
spectral clustering on co-association matrix. It equiva-
lently results in weighted K-means clustering.

• MAEC [36] applies marginalized denoising auto-
encoders (mDAE) on the Laplacian graph as the new
input representations and gets the partition with K-means.

• GEncoder [42] feeds the graph Laplacian matrix in the
sparse auto-encoder to get the graph representations.

• DLC [43] is short for deep linear coding, which jointly
learns a linear transform and discriminative codings at
the same time in a deep structure.

Validation Metric: We introduce five external metrics to
measure the performance, which are accuracy, the normal-
ized Mutual Information (MIn), the normalized Variation of
Information (VIn), the normalized van Dongen criterion (VDn)

and the normalized Rand statistic (Rn). Note that accuracy,
MIn and Rn are positive measurements (the larger, the better),
while VIn and VDn are negative measurements (the smaller,
the better). The computation details for these metrics can be
found in [44]. The comparative results are reported in accuracy
and MIn , while the Rn , VIn and VDn are further used in
parameter analysis.

Tables. IV and V show the performance of different clus-
tering algorithms measured by accuracy and MIn respectively.
Note that each method is tested with 20 times random K-means
initialization and the average performance is reported. ‘N/A’
means MAEC and GEncoder can’t handle large-scale datasets
due to the high computational cost. Our method gets the best
results on most of 9 datasets, even outperforms the stat-of-the-
art ensemble clustering methods. It is worth to mention that the
improvements are nearly 15% on Amazon, Dslr, and Webcam
datasets. Fig.6 shows the analysis of one layer DSFEL with
different values of selected feature ratio on Amazon, Caltech,
Dslr and Webcam datasets in terms of five metrics.

C. Visualization

In addition, we provide feature embedding visualization in a
two-dimensional space by applying the t-SNE algorithm [45].
Two widely-used datasets, i.e., VOC2007 and ImageNet, are
used for visualization. We apply the same VOC2007 dataset
as in clustering experiment, and the subset of ImageNet we
use here contains 7,341 samples in 5 categories with 4096-dim
features. Half of the dataset is used to train our DSFEF model
and applied on another half test data. The learned features
of test data is then mapped to a two-dimensional space with
t-sne. The results in Fig. 7 validate that comparing to the
mapping of original data, by applying our model we can obtain
more discerning features. Another visualization result could be
found in Fig. 1. The left column images are the input sample
from YaleB and ARface datasets, while the right column
images indicate the region where its reconstruction involves
more of our learned discerning feature. In other words, those
highlighted regions are concerned as more useful on future
classification tasks, as they are coded more on the selected
task-relevant features. As we can observe, the eyes, nose,
mouth, face contour, beard are the most focused regions on
the first two rows images. For the lower two rows, the mouth
region is been neglected since the mouth movement in the
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TABLE IV

CLUSTERING PERFORMANCE OF DIFFERENT ALGORITHMS MEASURED BY ACCURACY. BOLD DENOTES THE BEST RESULTS

TABLE V

CLUSTERING PERFORMANCE OF DIFFERENT ALGORITHMS MEASURED BY MIn . BOLD DENOTES THE BEST RESULTS

Fig. 6. Impact of feature selection ratio (m/z) on Amazon, Caltech, Dslr and Webcam datasets in terms of five measurements. The first row are measured
by accuracy, Rn and MIn which are positive measurements while the second row are VIn and VDn , which are negative measurements. Each measurement’s
baseline is produced with directly K-means.

ARface dataset works as a variable factors which might
mislead the classification.

More reconstruction results with selected features are
reported in Fig. 8. We show two identities’ samples from

ARface dataset, each has four input samples list in left column
with expressions and different lighting conditions. The middle
images are reconstructed from all hidden units which has good
reconstruction for each correspondence factors. While the right
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Fig. 7. Visualization of features learned from our model of the VOC2007 and ImageNet datasets by t-SNE. From left to right, the corresponding figures are
for (a) original data, (b) learned features from VOC2007 dataset, and (c) original data, (d) learned features from the subset of ImageNet dataset. Different
colors represent different categories.

Fig. 8. Visualization of the reconstruct image with different hidden-layer
units on ARface dataset. There are samples for two identities, each has
four input samples in left column. The middle and right columns are the
reconstructed output with whole hidden units and only use selected discerning
units respectively.

columns images are reconstructed from only those selected
discerning units, which we can observe that the reconstructed
images are more consistency and have eliminated the task-
irrelevant factors, i.e., expression and lighting conditions.

V. CONCLUSION

In this work, a unified framework was introduced to
jointly train non-linear transformation and select high-
level informative features targeting both supervised and
unsupervised schemes. Instead of endowing all the hidden
units with discriminative ability like other existing graph
based auto-encoder, we distinguish the hidden units contain
discerning information from those task-irrelevant ones. The
regularizer applied on the selected hidden layer features in
turn compresses the discriminative information only on the
selected task-relevant units. As a general framework, different
feature selection criterions are fitted into our DSFE model
and evaluated on different tasks. The supervised recognition
results on three benchmark datasets and the evaluation on
unsupervised clustering tasks both indicated the effectiveness
of the proposed DSFE framework.
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