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Abstract— Instance transfer approaches consider source and
target data together during the training process, and bor-
row examples from the source domain to augment the train-
ing data, when there is limited or no label in the target
domain. Among them, boosting-based transfer learning methods
(e.g., TrAdaBoost) are most widely used. When dealing with more
complex data, we may consider the more complex hypotheses
(e.g., a decision tree with deeper layers). However, with the
fixed and high complexity of the hypotheses, TrAdaBoost and its
variants may face the overfitting problems. Even worse, in the
transfer learning scenario, a decision tree with deep layers may
overfit different distribution data in the source domain. In this
paper, we propose a new instance transfer learning method,
i.e., Deep Decision Tree Transfer Boosting (DTrBoost), whose
weights are learned and assigned to base learners by minimizing
the data-dependent learning bounds across both source and
target domains in terms of the Rademacher complexities. This
guarantees that we can learn decision trees with deep layers
without overfitting. The theorem proof and experimental results
indicate the effectiveness of our proposed method.

Index Terms—Decision tree, deep boosting (DeepBoost),
instance transfer learning, transfer boosting.

I. INTRODUCTION

RANSFER learning is a hot research topic in neural net-

works and learning systems, which shows effective per-
formance in visual categorization, face recognition, saliency
detection, and so on [1]-[7]. Usually, the prediction perfor-
mance of a learned model degrades if the number of training
data is very limited. Transfer learning algorithms target at
extracting the knowledge from one or more source domains
and applying the knowledge to a target domain [1], [8]-[10].
Although the training data are more or less out-dated or in a
different domain, some parts of the data could still be reused.
For instance transfer approaches, both source and target data
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are considered during the training process [11]-[13]. A small
amount of labeled same-distributed training data in the target
domain are applied to vote the usefulness of each instance of
the source domain. Since some of the source-domain training
data might be under a different distribution from the target
domain, they are called diff-distributed training data.

One major challenge of transfer learning lies in formulating
an approach that makes full use of the available source-domain
data. Instance transfer learning algorithms address this chal-
lenge by identifying the relevant instances that would be
useful in learning a tuned classifier that classifies target data
points correctly [14]-[18]. It is widely used in pedestrian
detector [19], head pose classification [20], facial expression
recognition [21], and so on. Among them, TrAdaBoost [14] is
the most widely used method. In TrAdaBoost, AdaBoost [22]
is applied to same-distributed training data to learn the base
classifiers of the model. The weights of diff-distributed train-
ing instances, which are wrongly predicted due to the dissim-
ilarity to the same-distributed instances, would be decreased
to weaken their impacts.

However, for some difficult tasks in computer vision or
image processing, simple boost stumps (e.g., one layer deci-
sion tree) may be not sufficient to model the data distrib-
ution to achieve high accuracy. Then, it attempts to apply
a more complex hypothesis set, for example, decision trees
with deep layers. However, in transfer learning scenario,
it might not work, which is mainly because target-domain
and source-domain samples are from different distributions.
Directly adapting more complex base learners in TrAdaBoost,
for example, the ensemble of deep layer decision trees with the
same depth, may result in overfitting because it probably will
overfit some diff-distributed data in the source domain. For
example, gradient boosting methods [23] try to compute the
optimal gradient direction to fit the training data to minimize
the loss function. However, in transfer learning scenario,
the optimal gradient directions of source- and target-domain
data are different if their distributions are different. If we
directly train a gradient tree with high depth to fit the whole
data (i.e., both source- and target-domain data), the gradient
tree may overfit some source-domain data with different
distributions as the target-domain data.

To address the above-mentioned challenge, we propose a
Deep Decision Tree Transfer Boosting (DTrBoost) approach,
which is enlightened by DeepBoost [24], to improve the
instance transfer learning when facing more complex data.
DeepBoost proposes the learning bounds for convex ensem-
bles of the base classifier set formulated in terms of the
Rademacher complexities [25]. Like Vapnik—Chervonenkis
(VC)-dimension, Rademacher complexity is a data-dependent
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Fig. 1. Tllustration of DTrBoost depicting the first three boost iterations.

The scenario shows the source-domain data (circle points in red) transferring
to target-domain data (square points in blue). The class label of each point
is shown as (+/—). The size of the point indicates the weight of the
instance. The dashed line indicates the hypothesis hj;, j € [1,---, N].
{hy, -~ hj,---,hy} is a set of different hypotheses, where N = 2 in this
example. H is composed by the union of p disjoint families Hy,---, H)p
ordered by an increasing complexity. In this example, h; € Hj and
hy € Hy. DTrBoost updates the weights of all i; denoted as a; ; at each
iteration ¢. After each iteration, DTrBoost increases the weights of wrongly
classified target-domain data and decreases the weights of wrongly classified
source-domain data.

estimate of complexity of the function class. It quantifies how
much half of the samples can be representative of the other
half, also quantifies the extent to which some functions in
the function class could be correlated with a noise sequence.
The penalty term guarantees that we can select base learners
without overfitting. DTrBoost ensembles different complexity
hypotheses families learning from both source-domain data
and target-domain data at different iterations, and allocates
more weights on hypotheses drawn from less complexity
hypotheses families to avoid overfitting. We minimize the
difference between the derivatives of loss functions of gra-
dient boost in whole data and target-domain data, with the
penalty on the complex term to avoid overfitting. Through
different iterations during optimization, as shown in Fig. 1,
DTrBoost gradually updates the weights of diff-distributed
samples in the source domain and also updates the weights
of all different hypotheses {h1,--- ,hj,---,hy}. After all T
iterations, DTrBoost ensembles the N (0 < N < T) different
hypotheses with the weights learned from [T/2+ 1, T'] as the
final classifier. Finally, we summarize the contributions and
novelties of our paper as follows.

1) We propose a novel DTrBoost for the transfer learn-
ing scenario. Compared with existing boosting-based
transfer learning methods in terms of complexity-fixed
hypotheses (e.g., fixed number of decision tree depth),
DTrBoost adds the complexity penalty on the hypothe-
ses, which helps to avoid overfitting when applying more
complex hypotheses (e.g., a deeper decision tree) to deal
with more complex cases.

2) We analyze our framework theoretically in terms of
the convergence property. We prove that the derivative
difference of gradient trees between whole data and
target-domain data will be small enough after 7/2
iterations.
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II. RELATED WORK

In this section, we first briefly describe the related works of
ensemble learning methods. Second, we introduce the related
works of transfer learning methods, especially the instance
transfer learning ones.

A. Ensemble Learning

Ensemble learning methods (e.g., boosting, bagging,
Bayesian averaging, and stacking) combine several learn-
ing algorithms to create one with higher prediction
accuracy [22], [26]-[28].

Ensemble methods are widely applied, in practice, due to the
significant improvement in terms of performance [29]-[32].
Ditzler et al. [29] developed an ensemble of online linear
models using bagging and boosting for online feature selec-
tion. Li et al. [30] integrated L ,-norm into the bag scores to
localize the witness instances for multiinstance classification.
Ensemble algorithms have also been introduced in semisu-
pervised classification (SSC) with improved generalization
performance when compared to single classifiers. For example,
Soares et al. [31] proposed a cluster-based boosting method
for multiclass SSC. They integrated cluster-based regulariza-
tion into boosting to avoid generating decision boundaries in
high-density regions [31]. Zhang et al. [32] proposed a multi-
objective deep belief networks ensemble method for estimating
the remaining useful life.

In particular, AdaBoost, short for Adaptive Boosting
is based on a rich theoretical analysis, which guarantees
the performance in terms of the margins of the training
samples [33], [34]. AdaBoost and its variants have been
widely applied to regression and classification problems.
Bjurgert ef al. [35] used AdaBoot to estimate dynamical sys-
tems and explored the connection between AdaBoost and
system identification. Qi et al. [36] applied ensemble learn-
ing strategy for the learning problem with label propor-
tions (LLPs). They proposed an Adaboost-based loss function
according to different weights for LLP and named as
Adaboost-LLP. Adaboost-LLP exploits extra weight informa-
tion and ensembles multiple weak classifiers into a strong one.

However, AdaBoost and its variants [16], [37] may face
the overfitting problem with more complex data. Deep boost-
ing (DeepBoost) decomposes a set of base classifiers into sub-
families according to, for example, the depth of the decision
tree. It adopts new data-dependent learning bounds for convex
ensemble expressed in terms of the Rademacher complexities
of the subfamilies [24].

B. Transfer Learning

In recent years, transfer learning is widely used in
neural networks and learning systems [1]-[7]. For example,
Zhang et al. [3] applied a deep learning model with deep
intersaliency mining and intrasaliency prior transfer for cos-
aliency detection among multiple related images. Sequence
transfer learning methods have also attracted a lot of attentions
due to the large amounts of text and video data from social
media such as Twitter and Facebook [6].
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Transfer learning approaches fall into three categories:
inductive, transductive, and unsupervised transfer learning [8].

Inductive transfer learning focuses on the scenario that
the target task is different from the source task, while two
domains can be either the same or not. The tasks of source
and target domain of the transductive transfer learning are
the same while two domains are different. In unsupervised
transfer learning approaches, the target-domain learning tasks
are unsupervised, such as dimensionality reduction, clustering,
and density estimation.

Instance transfer learning belongs to the transductive trans-
fer learning setting. Instance transfer approaches take both
source and target data into consideration during the train-
ing process [8]. TrAdaBoost [14] paved the way of instance
transfer learning, which adopts AdaBoost [22] algorithm as a
best-fit instance transfer learner. We will provide more detailed
introduction of TrAdaBoost in Section III-B. TrAdaBoost is
extended to many transfer learning tasks such as regression
transfer [37] and multisource learning [17], [38]. For example,
TransferBoost [17] calculates the error difference between
only the target task or the integrate of the target and each
source task as the aggregate transfer term for each source
task. The weights of instances that belong to a positive trans-
ferable source task to the target task are boosted. Recently,
Huang et al. [39] proposed a topic-related TrAdaBoost for
cross-domain sentiment classification. They first extracted the
topic distribution for each document. Then, they constructed
the new representation for each document by appending the
topic distribution to the original model.

A few efforts have been done to improve the perfor-
mance of TrAdaBoost by modifying the weight updating strat-
egy. For example, in cost-sensitive boosting approaches [17],
a fixed cost is incorporated, via AdaCost [15], to the source
weight updating strategy. We precalculated the distributions
between source- and target-domain distributions with prob-
ability estimates as the cost. Recently, Ryu et al. [40] also
applied the cost-sensitive boosting approach to predict the
cross-project defect. In dynamic-TrAdaBoost, a dynamic fac-
tor was incorporated to meet the intended design of both
AdaBoost and the “weighted majority algorithm” [16]. How-
ever, none of them focused on the overfitting problems when
the hypotheses become more complex, for example, deeper
decision trees. TrAdaBoost and the extension methods are
with complexity-fixed hypotheses, which may bring overfitting
problems when facing more complex data.

Recently, deep transfer learning algorithms generalize deep
structures into the transfer learning scenario, in order to reduce
the domain discrepancy and improve the transferability of fea-
ture representation [41]-[47]. For example, Zhou et al. [46]
proposed a deep learning transfer hashing framework that
incorporates transfer learning and hashing to address the data
sparsity problem in hashing. Ding and Fu [47] investigated
low-rank coding at top task-specific layers and proposed a
deep transfer low-rank coding neural network framework.
However, although those works can mitigate the marginal dis-
tribution divergence between the target and the source domain,
they may fail to uncover the intrinsic classwise structure of
two domains. Meanwhile, a huge number of labeled data

are usually needed to estimate a mass of parameters in deep
convolutional neural network framework.

Specifically, our method is in the line of instance trans-
fer learning. Compared with TrAdaBoost and the extension
methods with complexity-fixed hypotheses, DTrBoost adds the
complexity penalty on the hypotheses. It means a hypothesis
with the higher complexity (e.g., a deeper decision tree) is
penalized and allocated lower weights. DTrBoost ensembles
different complexity hypotheses families learning from both
source-domain data and target-domain data, and allocates
more weights on hypotheses from less complexity hypotheses
families to avoid overfitting.

II1. PROPOSED METHOD

In this section, first we give the problem formula-
tion. Second, we introduce the preliminary knowledge:
Boosting-based transfer learning (i.e., TrAdaBoost) [14] and
DeepBoost [24]. Third, we describe our DTrBoost algorithm
in detail. The theorem proof of the convergence property is
also provided.

A. Problem Formulation

For the instance transfer learning scenario, let X = X;U Xy
be the instance space, where X is the target-domain instance
space and X, is the source-domain instance space, which
is with different distributions as the target domain. ¥ =
{1, —1} denotes the set of category labels. A concept is a
Boolean function ¢, mapping from X to Y. The test data set
is with the same distribution as the target domain, denoted
as U. We partition the training data set L C {X x Y} into
two labeled sets Ly and L. Ly denotes the diff-distributed
training data that Ly = {(xld,c(xid))}, where xlfi € Xq( =
1,---,n). Ly denotes the same-distributed training data that
Ly = {(x;,c(x;))}, where x% € X, = 1,---,m). L =

J
{(xi, c(x;))}, where x; is defined as

xlz_xl’ i:l)...,n
X}, i=n+1,...,n+m.

The problem is that, given a small number of labeled
target-domain training data Ly and a large number of labeled
source-domain training data Ly, we aim to learn a Boolean
function ¢ from X to Y to minimize the prediction error on
the unlabeled test data U.

B. Boosting-Based Transfer Learning

In this section, we briefly describe the algorithm of
TrAdaBoost [14]. TrAdaBoost paved the way of boosting-
based transfer learning algorithms [15], [37], [38], [48], and
it is one of the most representative methods in the transfer
learning scenario [8].

The input of TrAdaBoost consists of labeled source- and
target-domain training data Ly and Lg; a base “learner” such
as a decision tree with one or two stumps; the maximum num-
ber of iterations 7. TrAdaBoost iteratively trains a set of base
classifiers based on the weighted target and source training
samples. At the end of each boosting iteration, we increase
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the weights of misclassified target instances and decrease
the weights of misclassified source instances. The weights of
correctly classified instances are unchanged. The weight of
each hypothesis depends on the training error of the target
domain in each iteration. Thus, the impacts of diff-distributed
instances in the source domain gradually decrease. After all
T iterations, TrAdaBoost ensembles the weighted hypotheses
learned from [T /2+ 1, T] as the final classifier. This updating
mechanism is adapted from the AdaBoost [22] algorithm. The
algorithm of TrAdaboost is given in Algorithm 1 and more
detailed descriptions could be referred in [14].

C. Deep Boosting

Our work is enlightened by DeepBoost [24]. Here,
we briefly introduce the basic idea and the objective function
of DeepBoost.

Assume that p disjoint families H1, ..., H, are decomposed
from a set of base classifiers H, mapping from X to R, ordered
by an increasing complexity. Each family Hy, k € [1, p] can
be a set of functions based on monomials of degree k or a set
of decision trees of depth k.

The core of the DeepBoost is a capacity-conscious cri-
terion for the hypotheses h; selection. A learning bound
for the convex ensembles formulated using the Rademacher
complexities [25] of the subfamilies, and the weights are
assigned to each subfamily. It is beneficial and guaranteed that
DeepBoost seeks « to minimize the learning bound, which is

m T

1 4
Gle) = Z 21: 1Yi ST ahi(xi)<p + ; leatrt 0
i= t=
where x; denotes the target domain instance, i € {1, ..., m}.

yi denotes the label of x;. T denotes the number of iterations.
h; denotes the selected hypothesis at zth iteration. a; denotes
the weight assigned to the corresponding /,. Let p > 0 while
Zthl ahy(x;) < p is the p-margin error, and r; = R, (Hy(n,))
is the standard Rademacher complexity. d(h;) is an index
function that maps A, to its hypotheses subfamily Hy. More
descriptions of DeepBoost could be referred to [24].

D. Deep Decision Tree Transfer Boosting

TrAdaBoost and its variants may face overfitting problem
when it comes to more complex data. In the transfer learning
scenario, even worse, a more complex hypothesis set is likely
to not only overfit the target-domain training samples but
also the useless source-domain training samples, which are
lying in different distributions. In order to solve this problem,
we propose a DTrBoost algorithm.

We first introduce the hypotheses generation using deci-
sion tree. It is treated as a process of parameter estimation.
We mainly follow the idea of the gradient boost tree to learn
the parameters of hypotheses [23]. The objective function of
gradient boost [23] of both the target domain and the source
domain is as

n—+m

Z O(1 - y; Za,h (xi, ar)) )

min
ou>0n+m

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Algorithm 1 TrAdaBoost [14]

INPUT: The labeled data set Ly, L. A base learning algo-
rithm learner. The maximum number of iterations 7.

1: Initialize the source domain sample and target domain
sample weight w!.

2: for 1=1,2,....,T do

3 Set p' = wt/(z:”rlm w!)

4:  Call learner and get hypothesis h; : X — Y based on
both source domain samples and target domain samples.

5:  Calculate the error &, of i, on target domain data.
Set f; = ¢;/(1—¢;) and f = 1/(1+2Inn/N1/?)). Note
that, ¢; is required to be less than 1/2.

7. Update the new weight vector:

zﬁ\h,(x,) el 1 <i<n.

wt+
w' B V(37— c(x,)\, n+1<i<n+m.

8: end for
ONPUT: the hypothesis

—1/2

= Hz [7/2] By

0, otherwise.

[hf(x) =1, Hr [7/2] ﬁ_h’

where x; denotes the input instance and i € {I,---,
n,---,n + m}. y; denotes the label of x;. r € {I,2,
, T} denotes the index of iteration. T denotes the total
number of iterations. A, (x;, a;) denotes the hypothesis in the
iteration ¢, where a; is the model parameters of /;. a; denotes
the weight of h,. Let ® be a nonincreasing convex function.
For example, in AdaBoost, @ is selected as the exponential
function.
In rth iteration, gradient boosting chooses a new function
hi(xi,a;) to be the most parallel to the negative gradient
{d (x;)}"!" along the observed data

0D (y, f(x))
of (x)

where f; < fi—1+a:h;(x, a;). Here, d}” denotes the gradient
calculated with both source and target domains. w notifies
whole data including the source domain and the target domain.

However, as discussed above, in the source domain, some
data are useless and with different distributions as the target
domain. Thus, the gradient directions are different between
whole data and data in the target domain. We could not
directly apply the hypotheses learned in the whole data for
target-domain classification.

Our main idea is to decrease the weights of the
diff-distributed samples in the source domain, so that the gradi-
ent direction would become very close when the weighted data
in two domains are from the same distribution. Meanwhile,
we consider the complexity penalty enlightened by DeepBoost
to avoid overfitting.

Suppose H = {h1,---,hj,---,hy} are N different
hypotheses. ¢; is the direction of the jth hypothesis. F,, is the
loss function of gradient boosting of data in both the source

df(x) = [ 3)

:|f(xz‘)—ft1 (xi)
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and the target domain, and Fj is the loss function of gradient
boosting of data in the target domain as

= ZCD(I—yl Zat jhj(xi,aj))

Jj=l

+Z (re+Bas,j )

Jj=l

Z@(l—ylzat,h (xi, a)))

j=l1

+Z (re+Bas,j )

=

where @, ; denotes the weight of hypothesis j in the th iter-
ation. The second part in (4) and (5) is the regularization of
the hypothesis Rademacher complexity, where A and S are
the parameters. r; = R, (Hy(p,)) is the standard Rademacher
complexity. This term is introduced in DeepBoost but not for
transfer learning scenario [24]. d(h;) denotes the index of the
hypothesis set which /4, belong to, and that is i, € Hy,).

Our objective function is to minimize the derivative of
F! and F} in direction e; is as

w

min G = mm}F (ar—1,j,€j) — Fs/'(a,,l,j,ej)’ (6)

ar,j o

where F;f(a,_l,j, e;) and FS/’ (as—1,j, ;) are the derivative of
Fl and F! in direction e;, respectively. By minimizing the
derivative of F! and F!, the weights of the diff-distributed
samples in the source domain would be deceased at each
iteration. Thus, the distributions of the weighted samples in
source and target domain gradually get similar to each other.
When learning the weights of hypotheses, by adding the
complexity penalty, the objective function can punish more
of complex hypotheses. Thus, the hypotheses families with
less complexity would be allocated more weights to avoid
overfitting.

E. Optimization

Our optimization mainly consists of three parts. The first
is to learn a series of hypotheses with different complex-
ities (e.g., decision trees with different depths) on both
target-domain data and source-domain data. The second is
to select the local best hypothesis from different complexity
hypotheses families only based on target-domain data, and
update the weights of the best hypothesis set. The third is
to update weights of both source and target domains.

1) Learning Hypothesis: We apply both n source-domain
data Ly and m target-domain data Lg to learn hypothesis
as (4). We take the derivative of (4) in direction e; in iteration ¢
toward all the weighted samples according to [24]

’
df; = Fy(0-1,j,ej)

n—+m

= Zy,h D (1= yi fim1 (60) + a1, A

n+m
= > yihi()DP @S + a1 AP
n+m =
w
= (26,“’)]- — 1) + ar—1,j A/ 1)

where d“’j is the derlvatlve of F, toward direction e; in the
tth iteration. A, is calculated as A; = Ary + f. Ary + f is the
complexity penalty in (4). S;° is the normalizer of the weights
of Ly and Ly in 1terat10n t [24]. D;°(i) denotes the sample
weight of each x;. €. denotes the estimated error.

After calculatlng ‘the gradient d}" Iz gradient boost tree
chooses the new function h;(x;,a ]) 1ncrementally to be the
most correlated with —dt“”j

n+m
aj = argmln Z dw(xl — hj(x;, aj)]z. ®)
Thus, we obtain the hypothes1s set H ={hy,---,hj,---,hy}

after ¢-iterations, N <t < T.

2) Search and Update Local Best Hypothesis: In order to
minimize the derivative of F,, and Fy, after getting H =
{h1,---,hj,--- ,hy}, we find and update the local best
hypothesis 4 among H in each iteration.

First, we calculate the derivative of Fy in each direction e;
of h; toward weighted target-domain samples with the same
strategy as (7) as

d’ —F/'(a e
tj = Ls —1,j>€j)

1 m
- Zyihj(xl')@/(l = Yifi—1(xi) + o1, A}

| — :
= = D i) DI)S] + o A
i=1
s

where ds . is the derlvatlve of Fy toward direction e; in the
tth 1terat10r1 Similar as (7), S} is the normalizer of the weights
of Ly in iteration . D] (i) denotes the sample weight. €
denotes the estimated error. 4 is the complexity penalty.

Then, we choose /; with the largest d; ) as the local best
learner, denoted as hk In this way, we find the direction e; g
that is most parallel to the gradients of F; of the weighted
target-domain samples.

The basic idea of updating the weights of hypothesis is that,
in each iteration ¢, we only update the weight a; x of local best
hypothesis 4 and keeps other o, ; (j # k) unchanged. This
idea could be formalized as o; = a;_1 + 5rex, where o is
the set of a; j, &y = {a1,,...,an,}. er denotes that direction
of hi. n; could be calculated as [24].

3) Update Weights of Training Samples: We introduce
the strategy of updating the weights of both target-domain
training samples L; and source-domain training samples L.
Target-domain training data L are updated according to the
derivative of target-domain data [24]

(I_YI Zj_l Ot ]h (xl))

S
St+1

+05t71,j1\f ©)

2]

D}, (i) < n+l<i<n+m.

(10)
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The source-domain training data L, are updated as

D (i) < D)y Er st etl -y <j<p (11
where y = exp [—0.5 x log(1 + 2Inn/T1/?)] and c(x;) is
the class label of x; [14].

4) Ensemble Local Best Hypotheses: After T iterations,
DTrBoost ensembles all the N local best hypotheses together
as f = Z?’:l (ar,j —ary,j)h;j. f is the final output of the
algorithm. The weight of the rth hypothesis is (ar,; —ar/2,;),
meaning we only consider the weight a; j, t € [2/T +1,T].
We exclude the weights learned from the first 7/2 iterations.
Because in the first certain number of iterations (i.e., 7/2),
the weights of diff-distributed data in the source domain have
not been decreased to a very small number. It will largely hold
back learning the same gradient direction comparing to the
gradient direction only learning from the target domain. In the
theoretical analysis, we will prove that after 7 /2 iterations,
the differences of the gradient direction in the whole data and
the target-domain data would be a very small number.

Algorithm 2 DTrBoost

INPUT:

(1) Source and target domain data Ly, Lg,
(2) Maximum depth of decision tree,

(3) Maximum number of iterations 7',

1: Initialize the weights of source domain samples D¢, and
target domain samples Dy.
2:forr=1,2,---,T do

3: Calculate the derlvatlve d, ‘“. as Eq. (7) and learn A;.
4:  Calculate the number of dlfferent hypotheses N.

5. for j=1,2,---,N do

6: Calculate the derivate df, i of Eq. (9).

7:  end for

8: k = argmax |d5| LN

9:  Update o; by oct = o1 + 1nsek.

10:  Update target domain data weight D? o as Eq. (10).
11:  Update source domain data weight Dt +1 as Eq. (11).
12: end for

ONPUT: f = > (ar,; — arp.j)h;

Algorithm 2 presents the algorithm of DTrBoost. The
inputs of the algorithm are the labeled source-domain (diff-
distributed) training data L, and labeled target-domain (same-
distributed) training data L. The output of DTrBoost is f =
Z?’:l (ar,j —ars2,j)hj, where N is the number of different
hypotheses, N < T.

5) Discussion: Here, we analyze the relationship between
our DTrBoost and TrAdaBoost. When 4 = 0 and £ = 0, the
complexity term of the bound of DTrBoost and the control of
the sum of the mixture weights are ignored. It coincides with
TrAdaBoost with precisely the same direction.

IV. THEORETICAL ANALYSIS OF DTRBOOST

In this section, we theoretically analyze our framework in
terms of the convergence property. We prove that after several
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iterations, the difference between F,! and F,' in (6) is within
a certain small number.

Lemmal: In the source domain Ve, 3Ty, t > T, S,d <
exp(—(1 — y)1), where 1 is a small number and convergent
after ( > Tp). We follow [14] and set Ty as 7'/2. y is a weight
updated root and y = exp(—0.5 x log(1 + (21nn/T){1/?).

Theorem2: 3Ty, t > Ty, |F1;§(a,,1,j, ej)—FS/t(a;,Lj, ej)| <
Qe NS /m) = Qe Hexp(=(1=p))/m),  where
F;ﬁ (ai—1,j,€j) is the derivative of the loss function toward
the jth direction on whole data in the rth iteration, and
FS/’ (at—1,j,€j) is the derivative of the loss function toward
the jth direction on target-domain data in the fth iteration.
(ZEts’j)(exp(—(l — y)1)/m) is a certain small number.

Theorem 2 substantiates that after 7'/2 iterations, the deriva-
tive of the loss function between whole data and target-domain
data toward the same direction is within a certain small value.
As described above, the difference of the derivative is mainly
caused by the difference of the distribution of source and
target-domain data. During the optimization, the weights of the
diff-distributed source-domain data are gradually decreasing
and loosing impact. After 7 /2 iterations, the difference of
the derivative is within a certain small number. It shows that
DTrBoost is able to decrease the impact of diff-distributed
source-domain data, and augment the knowledge learning from
same-distributed source-domain data.

The proof of Lemma 1 and Theorem 2 could be found in
the Appendix.

V. EXPERIMENT

In this section, first at all, we introduce the data set and
experimental settings. Second, we present the experimental
results of both our method and the state-of-the-art methods.
Third, we discuss the impact of the depth of the decision tree
and the overfitting problem.

A. Data Sets

To evaluate the effectiveness of DTrBoost, we conduct the
experiments on seven data sets, including three image data
sets and four UCI data sets,! following the data sets used by
our comparison methods. Table I summarizes the description
of seven data sets.

Office+Caltech and CMU PIE are the two benchmark
transfer learning data sets. Office+Caltech has four domains:
Caltech-256 (C), Amazon (A), Webcam (W), and digital
single-lens reflex camera (DSLR) (D). It is released in [49].
The office data set contains 4,652 images, 31 categories
and three domains, Amazon, Webcam, and DSLR. Caltech-
256 contains 30607 images and 256 categories. It is a stan-
dard object recognition database. For Office+Caltech data
set, we apply two kinds of feature representations to con-
duct the experiments: speeded-up robust features (SURF)
and convolution neural network (CNN). For better compar-
ison with previously reported performance, we first use the
SURF descriptors provided in [49]. SURF descriptors are
encoded with the codebook which is from a subset of Amazon

lhttps://archive.ics.uci.edu/ml/daLtaL sets.html
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TABLE I

DATA SET DESCRIPTION. WE SHOW THE TYPE OF THE TASK (TYPE),
NUMBER OF SAMPLES (#SAMPLE), FEATURE DESCRIPTOR
(DESCRIPTOR), FEATURE DIMENSIONS
(#FEATURE) OF EACH DATA SET

Dataset | Type ‘ #Sample | Descriptor | #Feature

Office Object 2,533 SURF 800

+Caltech CNN 4,096

PIE Face 11,554 Raw pixel 1,024

VLCSI Object 18,070 CNN 4,096
Mushroom Life 8,416 Attributes 22
OCR Computer 5,620 Attributes 64
Ionosphere Physical 351 Attributes 34
BreastCancer Life 699 Attributes 10

images. The histograms are with 800-bin and standardized
by z-score. Following [50], we also apply DeCaf® features.
DeCaf is a convolutional network framework which is trained
on imageNet [51], [52]. DeCaf® features are the activations
of the sixth fully connected layer of the network and with
4096-dimension features.

PIE, which stands for “Pose, Illumination, Expression,” is a
benchmark face database. Each subset of PIE is with different
poses and we follow [53] and choose PIEOS (left pose), PIEO7
(upward pose), PIE09 (downward pose), PIE27 (frontal pose),
and PIE29 (right pose) as five domains in the experiments.
In each domain, face images are taken with different illu-
minations and expression conditions. In CMU PIE, the faces
are cropped into the size of 32x32 and adopt the gray-scale
raw pixel value as the input, which leads to 1024-dimension
features.

In the experiments, we pick one domain as the target
domain, the others as the source domain. In CUM PIE,
the PIEO5S means we take PIEOS5 as the target domain and
combine the rest as the source domain. As we deal with the
binary classification problem, we average the pairwise binary
classification accuracy.

VLCSI [54], [55] consists of 18070 images from PASCAL
VOC2007 (V), LabelMe (L), Caltech-101 (C), SUNO9 (S), and
ImageNet (I) data sets, each of which represents one domain.
C and I are the object-centric data sets, while V, L, and S are
scene-centric. The five domains share five object categories:
“bird,” “car,” “chair,” “dog,” and “person.”

For four UCI data sets, we apply the original attributes of
the data as feature representation. As these four UCI data sets
are not originally used for transfer learning purpose, we follow
TrAdaboost [14] to use KL-divergence (Kullback and Leibler,
1951) as the criterion to separate the data set into two domains
of different distributions. For example, for Mushroom data
set, we split the data set based on the feature “stalk-shape”
following TrAdaboost. Table II summarizes the KL-divergence
and size of source-domain training data L4, and target-domain
training and test data Ly U U.

B. Compared Methods

We compare our method with three state-of-the-art instance
transfer learning methods: boosting for transfer learning

TABLE II

DESCRIPTION OF UCI DATA SETS MUSHROOM, OCR17, OCR49,
IONOSPHERE, AND BREAST CANCER. FOR EACH DATA
SET, WE PRESENT THE KL-DIVERGENCE AND THE
SIZE OF SOURCE-DOMAIN TRAINING DATA L,
AND TARGET-DOMAIN TRAINING
AND TEST DATA Ly UU

Dataset KL-divergence Size
[La|  |Ls VU]
Mushroom 0.5086 4,864 3,552
OCR17 23.01 776 358
OCR49 24.88 362 769
Ionosphere 16.36 204 147
BreastCancer 5.808 292 407

(TrAdaBoost), cost-sensitive boosting (Cost-TrAdaBoost),
adaptive boosting for transfer learning using dynamic updates
(Dynamic-TrAdaBoost). Although there are other state-of-the-
art related works [4], [37]-[39], they are not working on the
same scenario as ours.

In order to show the effectiveness of transfer learning,
we also compare boosting based methods but without transfer
learning: AdaBoost and DeepAdaBoost (i.e., the AdaBoost
setting for DeepBoost). For transfer learning methods, both
the target- and source-domain training data are used. For these
two nontransfer learning methods, only target-domain training
data are used.

The brief
follows.

1) TrAdaBoost [14]: TrAdaBoost is the most popu-
lar boosting-based transfer learning algorithm, which
extends boosting-based learning algorithms [22] to
the transfer learning scenario. The description of
TrAdaBoost is presented in Section III-B “boosting-
based transfer learning.”

2) Cost-TrAdaBoost [15]: Ashok et al. extended the
cost-sensitive boosting method [48] to transfer learning
scenario for concept drift. In Cost-TrAdaBoost, a fixed
cost is incorporated into the source-domain weight
updating strategy. This cost is precalculated according
to the relevance between source and target distributions
by probability estimates. Recently, Ryu ef al [40]
also applied the cost-sensitive boosting approach for
cross-project defect prediction.

3) Dynamic-TrAdaBoost [16]: Al-Stouhi and Reddy [16]
extended TrAdaBoost by incorporating a dynamic factor
in order to meet the intended design of both AdaBoost
and the “weighted majority algorithm.”

4) AdaBoost [22]: AdaBoost ensembles a base classifier
hypothesis set. In each iteration, Adaboost increases the
weight of wrongly classified samples and decreases the
weight for correctly classified samples.

5) DeepAdaBoost [24]: DeepBoost investigates a capacity-
conscious criterion for the hypotheses selection. A com-
plexity penalty is added to prevent overfitting. In this
paper, we adopt the exponential function-based Deep-
Boost and name it as DeepAdaBoost.

introduction of five methods is listed as
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TABLE III
ERROR RATES UNDER OFFICE+CALTECH-256 DATA SET USING SURF DESCRIPTORS AND CMU PIE DATA SET USING THE RAW PIXEL

DESCRIPTOR UNDER THE RATIO OF 0.05. H| AND Hy DENOTE H|

stumps stumps

AND H2 , RESPECTIVELY. THE BEST AND

SECOND BEST PERFORMANCES ARE WITH BOLD FONTS AND UNDERLINE, RESPECTIVELY

AdaBoost Deep TrAdaBoost Cost-TrAdaBoost | Dynamic-TrAdaBoost
Dataset Ours
Hq H> AdaBoost Hq H»> Hq H> Hy Ho>
C,D,W->A | 0.1824 | 0.2340 0.1622 0.1482 | 0.1527 | 0.1436 | 0.1448 | 0.1743 0.2100 0.1366
A,D,W->C | 0.3200 | 0.3462 0.3143 0.3123 | 0.3018 | 0.3123 | 0.3018 | 0.3123 0.3123 0.2942
A,C,W->D | 0.2431 | 0.2333 0.2235 0.2152 | 0.2064 | 0.2011 | 0.1972 | 0.2023 0.1988 0.1924
A,C.D->W | 0.2846 | 0.2982 0.2755 0.1850 | 0.1750 | 0.1850 | 0.1750 | 0.1850 0.1750 0.1635
PIEOS 0.2875 | 0.3214 0.3040 0.1279 | 0.1326 | 0.1135 | 0.1287 | 0.1224 0.1326 0.1048
PIE27 0.2832 | 0.2945 0.2384 0.1357 | 0.1542 | 0.1224 | 0.1233 | 0.1246 0.1183 0.0781
TABLE IV
ERROR RATES UNDER MUSHROOM, OCR17& 19, IONOSPHERE, AND BREAST CANCER DATA SETS UNDER THE RATIO OF 0.1.
Hy AND Hy DENOTE HlStumps AND stmmps, RESPECTIVELY. THE BEST AND SECOND BEST PERFORMANCES

ARE SHOWN WITH BOLD FONTS AND UNDERLINE, RESPECTIVELY

AdaBoost Deep

Dataset

TrAdaBoost

Cost-TrAdaBoost | Dynamic-TrAdaBoost

Ours

H, Ho AdaBoost Hy

Hy

H1 H2 H1 H2

0.0071 | 0.0071
0.0513 | 0.0613
0.0642 | 0.0636
0.3912 | 0.2800
0.1476 | 0.1360

0.0091
0.0267
0.0451
0.3520
0.1148

0.0044
0.0247
0.0447
0.2400
0.1060

Mushroom
OCR17
OCR49

Ionosphere

BreastCancer

0.0087
0.0253
0.0451
0.3520
0.1152

0.0044 | 0.0076
0.0238 | 0.0267
0.0447 | 0.0451
0.2268 | 0.2132
0.1060 | 0.1246

0.0037
0.0187
0.0327
0.2075
0.0960

0.0049 0.0041
0.0247 0.0453
0.0447 0.0562
0.1925 0.2631
0.1100 0.1589

TABLE V

stumps

ERROR RATES UNDER OFFICE+CALTECH-256 DATA SET USING CNN DESCRIPTORS UNDER THE RATIO OF 0.05. H] AND H, DENOTE H; AND

stumps

H,

, RESPECTIVELY. THE BEST AND SECOND BEST PERFORMANCES ARE SHOWN WITH BOLD FONTS AND UNDERLINE, RESPECTIVELY

AdaBoost Deep TrAdaBoost

Dataset

Cost-TrAdaBoost | Dynamic-TrAdaBoost

DAN Ours

H, H> AdaBoost H, H,

Hl H2 H1 H2

C.D,W->A
A D,W->C
A,C,W->D
A,C.D->W

0.0724 | 0.0711
0.1558 | 0.1632
0.0421 | 0.0313
0.0331 | 0.0331

0.0545
0.1346
0.0316
0.0274

0.0614 | 0.0526
0.0847 | 0.0831
0.0286 | 0.0274
0.0258 | 0.0234

0.0614 | 0.0614
0.0851 | 0.0847
0.0254 | 0.0241
0.0232 | 0.0232

0.0614 0.0526
0.0847 0.0845
0.0245 0.0245
0.0252 0.0243

0.0441
0.0823
0.0223
0.0252

0.0418
0.0786
0.0165
0.0192

6) DTrAdaBoost(Ours): This method contains the
full pipeline of our method. We adopt the
exponential function-based DTrBoost and name it
as DeepTrAdaBoost.

C. Experimental Settings

We use decision tree as the basic learner for all the
methods. As AdaBoost, TrAdaBoost, Cost-TrAdaBoost, and
Dynamic-TrAdaBoost are with the fixed depth of decision tree,
we follow the depth setting (i.e., 1 or 2 depth) in this paper for
better comparison, named HlS Wmps o nd stmmps. Note that in
existing instance transfer learning approaches, deep decision
tree is not considered.

To fairly compare our method (depth adaptive) and
existing instance transfer learning methods (depth fixed),
in Tables III and IV, we set the maximum depth as 2. We aim
at evaluating whether our method could adaptively select the
depth between 1 and 2, and outperform existing methods under
their depth settings. Then, in Section V-E, we discuss each

method under deeper layer settings and show the effectiveness
of our method toward the overfitting problem.

We set the number of iterations as 100 and the loss of boost-
ing with the exponential function for all the methods. We test
the ratio of the number of target- and source-domain training
data from 0.01 to 0.5 as [14]. We conduct the experiments
under each setting for 10 times and report and averaged error
rates.

D. Experimental Result

We compare our method with both nontransfer learning
methods, AdaBoost and DeepAdaBoost, and instance trans-
fer learning methods, TrAdaBoost, Cost-TrAdaBoost, and
Dynamic-TrAdaBoost. In Section V-D1, we show results
based on low-level feature under Office+Caltech-256 and
CMU PIE data sets given in Table III and under Mushroom,
OCR17&19, Tonosphere, and Breast Cancer data sets given
in Table IV. In Section V-D2, we show the results based on
deep learning-based feature. We show the results based on
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Fig. 2. Accuracy of classification results by three methods “target
only,” “DAN [44],” and “ours.” “Target only” means we only apply the
target-domain data. The x-axis presents the name of the target domain. For
example, “V” presents that “V” is the target domain. The rest “C,” “L,” “S,”
and “I” are combined as the source domain. The y-axis presents the accuracy
of each method.

TABLE VI

ERROR RATES UNDER THE DEPTH OF DECISION TREE FROM 1 TO 5
IN PIEO5 DATA SET AT THE RATIO OF 0.05

Deph | 1 | 2 | 3 | 4 | 5 |
DT 0.4052 [ 0.3612 | 0.3892 [ 0.4038 | 0.4037
AdaBoost | 0.2875 | 0.3214 | 0.3214 | 0.3216 | 0.3216
DeepAdaBoost | 0.3045 | 0.3040 | 0.3040 | 0.3035 | 0.3035
TrAdaBoost | 0.1279 | 0.1326 | 0.1336 | 0.1340 | 0.1345
Cost 0.1135 | 0.1287 | 0.1283 | 0.1293 | 0.1290
Dynamic | 0.1224 | 0.1326 | 0.1324 | 0.1326 | 0.1328
Ours 0.1228 | 0.1048 | 0.1045 | 0.1043 | 0.1042

CNN feature under Office+Caltech-256 given in Table IV and
under VLCSI data set [54], [55] in Fig. 2. We further compare
with one typical deep transfer learning method, i.e., deep
adaptation networks (DAN) [44] in Office+Caltech-256 and
VLCSI data set.

For four nondeep methods, AdaBoost, TrAdaBoost, Cost-
TrAdaBoost, and Dynamic-TrAdaBoost, we present the results
under the depth of decision tree as 1 (H ls tump *yand 2 (H ls tump *).
As discussed in experimental settings, in order to fairly com-
pare the performance of deep and nondeep methods, we set
the maximum depth of decision tree of DeepAdaBoost and
our method as 2.

The ratio of the number of training samples in the target
and the source domain given in Tables III and V and Fig. 2
is 0.05 and in Table IV is 0.1. 4 and S in (4) and (5) are set
in the range of A € {107/ :i =0,---,7}and p e {27 :i =
0,---, 13} according to cross validation.

1) Low-Level Feature-Based Results: Tables III and IV
show the error rate of each method using low-level or raw
feature descriptors. First, we could see that transfer learning
methods achieve a much higher performance than nontransfer
learning methods. In all the data sets, TrAdaBoost gets the
lower error rate than AdaBoost, and DTrAdaBoost (ours) gets
lower error rate than DeepAdaBoost. It shows the effectiveness
of transfer learning methods compared to nontransfer learning
methods with limited target-domain training data.

Second, when comparing DTrAdaBoost (ours) with other
three instance transfer learning methods, in Table III,
DTrAdaBoost achieves the lowest error rate on all data sets of
both H ls tWmps o nd stmmp *In Table IV, DTrAdaBoost achieves
the lowest error rate on all the settings, except for Inonosphere
data set where our performance achieves the second best,
which 1.5% higher error rate than Dynamic-TrAdaBoost with
base hypotheses H;mmps. We analyze that it is mainly because
the overfitting problem in the transfer scenario in Ionosphere
is not serious under stmmps. We could see that in three
transfer learning methods TrAdaBoost, Cost-TrAdaBoost, and
Dynamic-TrAdaBoost, the error rates under H;tumps are
all lower than H f tumps, Thus, the DTrAdaBoost does not
show significant advantages on preventing the overfitting in
this setting. Furthermore, the Dynamic-TrAdaBoost does show

effective performance under Ionosphere data set.
We could also observe in Tables III and IV that stmmp s

. . stumps
does not necessarily achieve the lower error rate than H| S

which demonstrates that with fixed depth, a deeper hypoth-
esis may perform worse than a lower hypothesis, which
may be caused by overfitting. However, as DeepAdaBoost
and DTrAdaBoost (ours) could adaptively adjust the depth
of hypotheses while training, DeepAdaBoost achieves better
performances than AdaBoost and our method achieves better
performances than other three boosting-based transfer learning

methods of both HlStump * and stmmp S,
2) Deep Learning-Based Results: We also conduct experi-

ments based on the deep learning feature descriptor. We adopt
the CNN DeCAF® features as inputs, with the represen-
tations’ dimensionality of 4096. We further compare with
one typical deep transfer learning method, i.e., DAN [44] in
Office+Caltech-256 and VLCSI data set [54], [55], and given
in Table V and Fig. 2. Since DAN is an 560 end-to-end deep
model, we directly train on the raw images.

Table V shows the error rate of nontransfer learning
methods, AdaBoost and DeepAdaBoost, and instance-based
transfer learning methods, TrAdaBoost, Cost-TrAdaBoost, and
Dynamic-TrAdaBoost, ours using CNN feature descriptor,
and deep transfer learning model DAN. First, the results
show that transfer learning-based models (TrAdaBoost, Cost-
TrAdaBoost, Dynamic-TrAdaBoost, DAN, and ours) achieve
lower error rates than nontransfer learning-based methods
(AdaBoost and DeepAdaBoost). Second, the results demon-
strate that our method achieves the lowest error rate among all
the instance transfer learning methods. These two observations
are the same as in Tables III and IV, which are based on low-
level-based feature descriptors. Third, when comparing with
DAN, our method outperforms DAN over all the four sce-
narios, which further shows the effectiveness of our method.
Fourth, when comparing results given in Tables III and V,
CNN feature-based results outperform SURF based results,
which show the effectiveness of applying deep learning-based
features.

Fig. 2 shows the accuracy of classification results by “target
only,” “DAN [44],” and “Ours.” Specifically, “target only”
means we only apply labeled target-domain data to recognize
the test target data. The x-axis presents the name of the target
domain, and the rest four domains are combined as the source
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TABLE VII

ERROR RATES UNDER THE DEPTH OF DECISION TREE FROM 1 TO 5
IN OFFICE+CALTECH-256 DATA SET A,D,W—C SCENARIO USING
CNN FEATURES AT THE RATIO OF 0.05
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TABLE IX

AVERAGE DEPTH AND AVERAGE NUMBER OF THE FINAL
HYPOTHESES AFTER 100 ITERATIONS

Max. depth =2 Max. depth =3

Depth | 1 ‘ 2 l 3 | 4 | 5 Avg. depth  Avg.no. | Avg. depth  Avg. no.
DT 0.4324 | 0.4168 | 0.4264 | 0.4278 | 0.4276 Mushroom 1.278 35 2352 42
AdaBoost 0.3140 | 0.3140 | 0.3145 | 0.3267 | 0.3215 OCR17 1.537 48 2467 45
DeepAdaBoost | 0.3154 | 0.3096 | 0.3075 | 0.3063 | 0.3065 OCR49 1.367 38 2327 37
TrAdaBoost | 0.3060 | 0.3011 | 0.3068 | 0.3116 | 0.3115 Ionosphere 1.342 32 2316 42
Cost 0.3012 | 0.3012 | 0.3022 | 0.3107 | 0.3108 BreastCancer 1.325 42 2.341 44
Dynamic 0.3042 | 0.3052 | 0.3050 | 0.3068 | 0.3066 CD,W—A 1.532 46 2437 42
Ours 0.2984 | 0.2832 | 0.2829 | 0.2827 | 0.2827 A,D,W—C 1.487 38 2.735 44
A,C,W—D 1.668 49 2.652 47
TABLE VIII A,C,D—)W 1.527 41 2.742 45
ERROR RATES UNDER THE DEPTH OF DECISION TREE FROM 1 TO 5 PIEOS 1.728 37 2.643 43
IN MUSHROOM DATA SET AT THE RATIO OF 0.1 PIE27 1.634 43 2.631 44

Depth 1 ] 2 | 3 | 4 | 5 |
DT 0.2059 | 0.0900 | 0.0423 [ 0.0294 | 0.0313
AdaBoost 0.0071 | 0.0071 | 0.0061 | 0.0064 | 0.0064
TrAdaBoost | 0.0091 | 0.0044 | 0.0048 | 0.0055 | 0.0770
Cost 0.0087 | 0.0044 | 0.0050 | 0.0057 | 0.0067
Dynamic 0.0076 | 0.0049 | 0.0049 | 0.0055 | 0.0063
DeepAdaBoost | 0.0044 | 0.0041 | 0.0054 | 0.0059 | 0.0042
Ours 0.0072 | 0.0037 | 0.0037 | 0.0037 | 0.0034

domain. We average the pairwise binary classification accuracy
as the results and show them in Fig. 2. We observe from the
results that our model could beat DAN for all the cases, which
demonstrate the effectiveness of our model. The observation
also demonstrates that an end-to-end deep model is not always
a good strategy for transfer learning, since a pretrained deep
model already conducts some transferability.

E. Discussion of Depth and Overfitting

In this section, we discuss the performance under different
depth settings and the overfitting problem. First, we show
the performance of different methods under depth from
1 to 5 to demonstrate the overfitting problem of depth-fixed
methods (i.e., TrAdaBoost, Cost-TrAdaBoost, and Dynamic-
TrAdaBoost), and the advantage that our method could avoid
overfitting. Second, we present the average depth (avg. depth)
and average number (avg. no) of the final hypotheses after
100 iterations.

Tables VI-VIII present the error rates of all comparisons
under PIEO5, Office+Caltech-256, and Mushroom data sets,
under the settings that “Depth” equals 1-5. For depth-fixed
methods (i.e., AdaBoost, TrAdaBoost, Cost-TrAdaBoost, and
Dynamic-TrAdaBoost), “Depth” means the layers of the deci-
sion tree. For depth-adaptive methods (i.e., DeepAdaBoost
and DTrBoost), “Depth” means the maximum layers of the
decision tree. Note that the actual depth of depth-adaptive
methods is learned adaptively, and usually smaller than the
maximum number.

We could see that the error rate of the depth-fixed methods
increases when the “Depth” increases. It shows that when

directly using a more complex basic learner (i.e., a deeper
layer decision tree) to fit the training data, the model is easily
getting overfitting. It is corresponding to our motivation to
solve the overfitting problem when using a deeper decision
tree in the transfer learning scenario.

However, for depth-adaptive methods (i.e., DeepAdaBoost
and Ours), when the “Depth” increases, the error rate keeps
decreasing, meaning facing a less serious overfitting problem.
We analyze that it is because the model could penalize the
complexity of the decision tree in the objective function. Thus,
the actual layers of the decision tree are learned adaptively to
avoid the model to be too complex and overfitting.

Table IX shows the average depth (avg. depth) and the
average number (avg. no) of the final hypotheses after 100 iter-
ations. Note that SURF feature is used in this table for
Office+Caltech-256 data set. For methods with fixed depth
and the fixed number of trees (i.e., AdaBoost, TrAdaBoost,
Cost-TrAdaBoost, and Dynamic-TrAdaBoost), the depth is
set as the maximum depth shown as “Max. depth,” and the
number of trees is set as the number of iterations, which is
100. It demonstrates that our method could adaptively adjust
the depth of the hypothesis. It also demonstrates that instead
of adding a new hypothesis in each iteration, our method
compares the newly learned hypothesis with all the previously
learned hypotheses, and increases the weight for the hypothesis
with the largest gradient.

F. Discussion of the Ratio in Transfer Learning

In this section, we discuss the impact of the ratio of
number of target-domain samples to source-domain samples.
We compare both nontransfer learning methods Adaboost
and DeepAdaBoost, and instance transfer learning meth-
ods TrAdaboost, Cost-TrAdaBoost, Dynamic-TrAdaBoost
with our method. AdaBoost, TrAdaBoost, Cost-TrAdaBoost,
Dynamic-TrAdaBoost are with base hypotheses H;tumps.

Fig. 3 shows the curves of error rates under the ratio from
0.01 to 0.1 in Mushroom and Ionosphere data sets. AdaBoost,
TrAdaBoost, Cost-TrAdaBoost, Dynamic-TrAdaBoost are

with stmmp ®. We also conduct experiments with the ratio from
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(@) (b)
Fig. 3.  Error rates under the ratio from 0.01 to 0.1 in (a) Mushroom and

(b) ionosphere data sets. The ratio means the ratio of target-domain training
data to source-domain training data. The legend in (b) is the same as (a).

0.2 to 0.5 and we observe that there is no significant difference
between transfer methods under the ratio from 0.2 to 0.5.

First, we could see that when the ratio is very small such
as 0.01, all the transfer learning methods are with the lower
error rates compared to nontransfer learning methods. It shows
that with limited number of training data, nontransfer learning
methods are failed to learn good hypotheses, which is known
as the data sparsity problem.

Second, when the ratio increases, the error rates of all the
methods decrease. Meanwhile, the difference of the error rate
between transfer and nontransfer learning methods decreases.
When the ratio is 0.1, the difference between transfer and
nontransfer learning methods is very small. We also conduct
experiments with the ratio from 0.2 to 0.5 and we observe
that the difference between transfer methods is not significant
under the ratio from 0.2 to 0.5. This phenomenon is similar
as the observation in [14].

Third, in Fig. 3, we could see that under the ratio from
0.01 to 0.1, our method achieves the lowest error rate of
all the instance transfer learning methods, and DeepAdaBoost
performs better than AdaBoost. It shows the effectiveness of
the “deep” strategy in both transfer and nontransfer learning
tasks.

VI. CONCLUSION

In this paper, we proposed a novel instance transfer learning
method, DTrBoost. Compared with existing boosting-based
transfer learning methods of complexity-fixed hypotheses,
DTrBoost ensembled different complexity hypotheses fami-
lies and added the complexity penalty on the hypotheses.
It allocated larger weights to the hypotheses drawn from less
complexity families and smaller weights to the hypotheses
drawn from higher complexity families. In this way, DTrBoost
could avoid overfitting when applying more complex hypothe-
ses (e.g., deep decision tree) to deal with more complex
cases such as computer vision data. In each iteration, a depth
adaptive hypothesis was learned with the complexity penalty
from both the source-domain and the target-domain data and
then DTrBoost choose the direction with the largest gradient
to optimize the objective function. We theoretically analyzed
our algorithm in terms of the convergence property. Experi-
mental results demonstrated the effectiveness of our method.
In the future, we plan to extend DTrBoost to multisource and
multiclass scenarios.
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APPENDIX A
PROOF OF LEMMA 1 AND THEOREM 2

A. Proof of Lemma 1

Lemma 1 could be proved according to Lemma 1 in
Adaboost [22] and Theorem 2 in TrAdaboost [14]. It means
that after ¢ iterations (r > Tp), the normalizer of the source
domain becomes a very small number. We follow [14] and set
Ty as T /2. The proof of Lemma 1 is as following.

Proof:

As shown in Lemma 1 in Adaboost [22], for any sequence

of loss vectors £!,..., ¢!, in each iteration ¢, we have

S <exp(—(L—p) >0 20 pf - €F)

where S¢ denotes the normalizer of the source domain in
the rth iteration. £7 denotes the loss of the training instance
x; in the tth iteration and p! denotes the weight of x;. y
denotes a weight updated root and y = exp(—0.5 x log(1 +
(2Inn/T)/? and n denotes the number of source-domain
data.

According to Theorem 2 in TrAdaboost [14]

M7 oo (372 20 PL-1D/(T = [T/2]) =0

which means that after ¢+ > T, iteration (Ty as T/2),
> > pf-¢€f is convergent. Thus, we have s¢ <
exp(—(1 — y)1), where 1 is a small number and convergent
after (+ > Tp). To this end, we have proved the Lemma 1.

B. Proof of Theorem 2

Here, we provide the groof of Theorem 2 that, 3Ty,
t > To, |F(ar—1,j,ej) — F'(ar—1,j,¢j)| < (ZE,s,j)(S,d/m) <
263 ) (exp(—(1= 7)) /m).

F(a;1.j,e;) and F,'(a,—1j,e;) have been described
in (7) and (9) in Section III-E. To simplify, we write
|F;§(a,_1,j, ej) — Fs/’(a,_l,j,ej)| as |F,—F/|. The proof of
Theorem 2 is as.

Proof:

We could easily calculate | F,, — F/| according to (7) and (9)

as

m—+n

D yihi ()@ (1 = yi fi1(x:))

i=1

1
o= |
m+n
1 m+n

- D ik (1= yi i1 ()]

S5+ 8¢
m+n

S

|(2g}‘jj -1 (ng,j — l)fn—’ (12)
where m and n denote the number of target- and
source-domain data. y; denotes the label of x;. S¢ and S¢
denote the normalizer of target- and source-domain data,
respectively. ef, j and e;‘jj denote the training error of
target-domain data and whole data in the rth iteration and
jth direction, respectively.

With the increase in iterations, the weights of the wrongly
classified source-domain data are gradually decreased.
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When ¢ > Ty, we have S,def’j < S,Sefj. Then, we have

S S S oS
Sie, ;+Sie

S oS d .d
_ Sie  +Sie 1j

el < <2e .. (13)
" Sy + 8¢ S;+ S "
Thus, (14) would be written as
S$ +Sd S
F=F = [t = )L sy - )Y
S 488 S3
< e, - LN - e - Y
YRS
e s

Since m « n, S < n, S,d < n, and according to the
Lemma 1, we have

|Fy,

4
_Fs| E

Sd
(28;] - 1) (j) + 2£fjj
)eXp(—(l — 7))
m

<|@e ;-1 (15)

)
t,j + 2gf,j

To this end, we have proved the Theorem 2.
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