
0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2894137, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Heterogeneous Recommendation via Deep
Low-rank Sparse Collective Factorization

Shuhui Jiang, Zhengming Ding Member, IEEE , and Yun Fu, Senior Member, IEEE

Abstract—Real-world recommender usually makes use of heterogeneous types of user feedbacks—for example, binary ratings such
as likes and dislikes and numerical rating such as 5-star grades. In this work, we focus on transferring knowledge from binary ratings to
numerical ratings, facing more serious data sparsity problem. Conventional Collective Factorization methods usually assume that
multiple domains share some common latent information across users and items. However, related domains may also share some
knowledge of rating patterns. Furthermore, existing works may also fail to consider the hierarchical structures (i.e., genre, sub genre,
detailed-category) in heterogeneous recommendation scenario. To address these challenges, in this paper, we propose a novel Deep
Low-rank Sparse Collective Factorization (DLSCF) to facilitate the cross-domain recommendation. Specifically, the low-rank sparse
decomposition is adopted to capture the shared rating patterns in multiple domains while splitting the domain-specific patterns. We
also factorize the model in multiple layers to capture the affiliation relation between latent categories and latent sub-categories. We
propose both batch and Stochastic Gradient Descent (SGD) based optimization algorithms for solving DLSCF. Experimental results on
MoviePilot, Netfilx, Flixter, MovieLens10M and MovieLens20M datasets demonstrate the effectiveness of our proposed algorithms, by
comparing them with several state-of-the-art batch and SGD based approaches.

Index Terms—Recommendation, cross-domain, heterogeneous, collaborative factorization, low-rank

F

1 INTRODUCTION

In real-world recommender, usually heterogeneous types
of user feedbacks are applied. For example, binary ratings

such as likes & dislikes and numerical ratings such as 5-
star grades. For binary ratings, users are willing to provide
feedbacks for the easy operation in which they only need to
click like or dislike button. Compared to binary ratings, 5-
star ratings not only provide the like or dislike information,
but also provide information of how much the customer
likes or dislikes it, which should be more comprehensive to
reflect the users’ preference. However, in real world rating
system, users may only rate a very limited number of items,
especially 5-star ratings, while the item space is often very
huge, which causes the data sparsity problem. Take Amazon
product ratings as an example. A set of users may give
binary ratings to product set B and 5-star ratings to product
set C. B and C have a very small or no overlap. In this
paper, we want to predict the 5-star ratings of product set
B by transferring the rating knowledge from binary ratings.
Although the scale of 0/1 ratings and 1-5 ratings are dif-
ferent, users’ preferences towards categories are consistent
across two rating strategies.

Cross-domain collaborative filtering (CDCF) is a pow-
erful tool to address the data sparsity problem, which
manages to adopt useful knowledge from other related

• S. Jiang, is with the Department of Electrical and Computer Engi-
neering, Northeastern University, Boston, MA 02115 USA (e-mail:
shjiang@ece.neu.edu)

• Z. M. Ding is with the Department of Computer, Information and Tech-
nology, Indiana University-Purdue University Indianapolis, Indianapolis,
IN 46202, USA. (e-mail: zd2@iu.edu).

• Y. Fu is with the Department of Electrical and Computer Engineer-
ing,College of Engineering, and College of Computer and Information
Science, Northeastern University, Boston, MA 02115 USA (e-mail:
yunfu@ece.neu.edu).

1 3 ? ? 2 ?
? 2 4 5 5 ?
4 ? ? 3 ? 2
2 3 2 ? ? 3
? 2 4 ? ? ?

0 1 0 ? 0 1
1 0 ? 1 1 0
1 ? 0 1 0 0
0 1 0 0 1 1
1 0 1 ? 1 0

×

  R

 V T
 V T

 R

 U

 B   B

  E E

××

×

 D  D

 U

Figure 1. Illustration of the Low-rank Sparse Collective Factorization
Model. R is a numerical rating matrix in the target domain and R̃ is
a binary rating matrix in the auxiliary domain. U and V are user and
item latent interests. Assume that two rating patterns B and B̃ share a
common patternsD with low-rank constrains and also preserve domain-
specific patterns E and Ẽ with column sparse constraints.

domains [1], [2], [3], [4], [5]. In this paper, we solve the
sparsity problem of numerical ratings (e.g., 5-star grades)
through transferring binary rating (i.e., likes/dislikes) from
auxiliary domain to numerical rating in target domain. Only
a few previous works have exploited on this scenario: using
“whether rate” data [1], [6] or “whether purchased” [7] to
improve the numerical ratings prediction. Among the pre-
vious works, Liu et al. [1] paved the way of integrating the
“whether rate” data to numerical form rating by investiga-
tion the cross domain collective matrix factorization (CMF)
approach [8]. Pan at el. presented a framework named as
Transfer by Collective Factorization (TCF) [2], [9] to transfer
the shared latent user and item latent factors in both two
domains. However, TCF neglects the shared knowledge
in rating patterns. Recently cross-domain recommendation
methods also work on transferring knowledge of similar rat-



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

(c) p layers matrix(a) hierarchical category

  R ∈n×m

   U1 ∈
n×d1

   B1 ∈
d1×d1

   V1 ∈
m×d1

  R ∈n×m

   U1 ∈
n×d1

   B1 ∈
d1×d1

   V1 ∈
m×d1

   B2 ∈
d2×d2

   U2 ∈
d1×d2

   V2 ∈
d1×d2

…

   
Vp ∈

dp−1×dp

   
U p ∈

dp−1×dp

  
Bp ∈

dp×dp

(a) 1 layer (b) p layers (c) hierarchical category

…

[Movie]

[Sport][Horror] [Romance]

[Auto-Racing][Extreme Motor] [Car Culture]

[Motorsport][Snow&Ice] [Water sport]

U1

U1

V1

V1

B1

U2

… …

V2VpUp Bp

  R ∈n×m

   U1 ∈
n×d1

   B1 ∈
d1×d1

   V1 ∈
m×d1

  R ∈n×m

   U1 ∈
n×d1

   B1 ∈
d1×d1

   V1 ∈
m×d1

   B2 ∈
d2×d2

   U2 ∈
d1×d2

   V2 ∈
d1×d2

�

   
Vp ∈

dp−1×dp

   
U p ∈

dp−1×dp

  
Bp ∈

dp×dp

(a) 1 layer� (b) p layers� (c) hierarchical category�

�

Movie�

Sport�Horror� Romance�

Motorsport�Snow&Ice� Water sport�

Auto-Racing� Car Culture�Extreme Motor�

(b) 1 layer matrix

(d) p layers tri-factorizing
Figure 2. Implicit Hierarchical Structures via Deeply Tri-Factorizing the Rating Pattern Matrix of Target Domain. Figure (a) illustrates an example of
the hierarchical structure in the movie recommendation system. We illustrate the matrix after tri-factorizing R in the first layer into U1, B1 and V1 in
figure (b), and p layer matrix U1...Up, V1...Vp and Bp in figure (c). The tri-factorization process is shown in figure (d), in which the rating patten Bi

is further tri-factorized into Ui+1, Bi+1 and Vi+1 until the p-th layer. d1 ≥ d2... ≥ ... ≥ ...dp.

ing patterns, which have demonstrated that related domains
do share a certain part of rating patterns [10], [11], [12], [13],
[14], [15]. For example, Gao et al. [12] proposed a cluster-
level latent feature model to learn the shared part of rating
patterns of user groups.

Furthermore, previous works in cross-domain recom-
mendation scenarios did not explore the hierarchical struc-
tures in the real-word recommendation system. For exam-
ple, in Netflix DVD rental page, a hierarchical structure
is applied to categorize movies as genre → sub-genre →
detailed-category1. Based on the hierarchical structure in
real-word recommendation system, exploiting the hierarchi-
cal latent factors of items or users attracted a lot of attentions
by researchers recently [16], [17], and the hierarchical struc-
ture has demonstrated its effectiveness. Later, [18] formu-
lated and optimized a deep version for matrix factorization.
However, these works only focused on the single domain
recommendation, instead of the cross-domain scenario. In
cross-domain scenario, mostly, users’ preferences are also
presented a hierarchical structure. For example, if a user like
sub-genres of Classical Music & Musicals genre, he/she may
also like the sub-genres of Classical Movie in movie genres.
How to learn the shared knowledge through the hierarchical
structures in cross-domain scenario is a challenging but
practical problem.

To address the above problems, in this paper, we pro-
pose a novel Deep Low-rank Sparse Collective Factorization
(DLSCF) framework to enhance the cross-domain recom-
mendation. We work on the same scenario as TCF [2], [9],
where the auxiliary data is binary rating, e.g., like/dislike,
while the target is numerical rating, e.g., 5-star gradings.
First, in each single layer LSCF, as shown in Figure 1,
we jointly factorize the rating matrices R and R̃ in target
and auxiliary domain into three parts: a user-specific latent
feature matrix U , an item-specific latent feature matrix V
and two rating patterns B and B̃ in target and auxiliary
domain respectively. To effectively uncover the common
information shared by them, we propose to adopt the low-
rank sparse decomposition to further decompose B and B̃.
As shown in Figure 1, we assume that two rating patterns B
and B̃ share a common patternD and also preserve domain-
specific patterns E and Ẽ, respectively. Intuitively, the low-

1. http://dvd.netflix.com/AllGenresList

rank structure of D is to drive the similar rating patterns of
users in one group (i.e., users have similar preferences). The
column sparsity constraint is to learn the domain-specific
pattern E and Ẽ. Although the scale of 0/1 ratings and 1-5
ratings are different, users’ preferences towards categories
do not change much.

Secondly, according to the hierarchical structures in real-
word recommender, we further tri-factorize the rating pat-
tern matrices to obtain the user and item latent category
affiliation matrices through the multi-layer implicit hierar-
chical structures (Figure 2). The latent category affiliation
matrix indicates the affiliation relation between latent cate-
gories and latent sub-categories.

We provide both batch based and Stochastic Gradient
Descent (SGD) based optimization algorithms for DLSCF,
and named as DLSCF-B and DLSCF-S respectively. Batch
based optimization algorithms such as PMF [19] and TCF
[9] are more widely used in this problem. It updates model
parameters only once after scanning the whole data. How-
ever, in real-world recommendation task, there are two main
challenges. First, the number of users, items, and ratings are
very large. Batch based methods update all the user and
item factors together, which may take a lot memory. Second,
batch based methods are hard to deal with upcoming new
users and items. SGD based methods are widely used in
large-scale data problem such as deep learning methods and
recommendation methods as regularized singular value de-
composition (RSVD) [20] and collective matrix factorization
(CMF) [8]. They usually randomly update sample by sam-
ple. In this way, we address these two challenges through a
SGD based optimization algorithm. Extensive experiments
on five real-world datasets show that our proposed model
with both batch and SGD based optimization algorithms
outperforms the state-of-the-art methods for transferring
auxiliary like/dislike domain to the numerical rating do-
main for heterogeneous recommendation.

This paper is an extension of our previous conference
work [21]. There are three major differences compared to the
conference version. First, we propose a SGD based solution
of DLSCF (DLSCF-S) to reduce the memory of the computa-
tional cost compared to the batch based solution (DLSCF-
B) for real world large-scale data. Compared to DLSCF-
B, DLSCF-S is able to do recommendation for the con-
tinuously arrived new users. Second, we add experiments



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2894137, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

of comparing DLSCF-S with existing SGD based collec-
tive factorization methods and DLSCF-S outperforms these
methods. Third we add three more large-scale benchmarks
Flixter, ML10M and ML20M to evaluate the performance of
compared methods.

2 RELATED WORK

Cross-domain recommendation systems exploit knowledge
(e.g., user preferences) from auxiliary/source domains to
facilitate the personalized recommendations in a target do-
main. Cross-domain recommendation consists of two main
categories: one is to aggregate knowledge from source domains
to provide recommendations in a target domain. The other
is to link or transfer knowledge between source and target
domains and facilitate the target domain recommendation.

Generally, the knowledge aggregation methods have
three strategies: the first is to merge user preferences [22];
the second is to mediate several user modeling data in
various recommendation systems, e.g., user similarities and
user neighborhoods [23] and the third is to combine sin-
gle domain recommendations. For example, combining the
single domain rating probability distributions [24] and the
rating estimations.

The knowledge linkage and transfer methods also have
three strategies: the first is to link domains according com-
mon information, which includes but not limited to seman-
tic networks, item attributes, inter-domain correlations and
item attributes [25], [26]; the second is to share the use
or item latent features which could link source and target
domains knowledge [2], [9], [27], [28], [29], [30]; the third
is to explicitly or implicitly recover the common rating
patterns in source and target domain [12], [13], [14], [15].

Among them, Li et al. used a latent feature space to
capture the comment rating patterns of user ratings [10],
[11]. However, Geo et al. pointed out that in practice, some-
times there may not always be a common rating pattern
across the related domains [12]. Moreover, the effectiveness
of the common rating pattern may be degraded by the di-
versity and specific features among different domains. They
proposed latent feature model in cluster-level to learn the
shared part of rating patterns of user groups to enhance the
cross-domain recommendation. However, such works may
only consider the shared rating patterns while ignoring the
shared information in users and items. How to transfer both
the latent user and item feature and user rating patterns
remains a problem and few work has explored it, especially
in the scenario of transferring knowledge in binary ratings
to numerical ratings.

Most recently, among knowledge linkage and transfer
methods, cross-domain recommendation models based on
latent factor [31], [32] have attracted a lot of attentions.
Because the domain relations of different domains could be
automatically discovered and exploited. In order to capture
the heterogeneous structures of user feedbacks, Pan et al. in-
vestigated a series of models where the matrix factorization
is regularized by transferring the source domain knowledge
in forms of latent features to the target domain [2], [9],
[30]. Specifically, they proposed a Transfer by Collective
Factorization (TCF) framework for jointly modeling the

target domain numerical ratings with the source domain
binary ratings.

TCF is the most related work to ours. However, there
are two main differences between our work and TCF. First,
we collectively learn rating patterns through a further low-
rank sparse decomposition, which is different from TCF that
learns rating patterns of each domain separately. In this way,
we could uncover more shared rating patterns across two
domains and integrate the domain-specific rating patterns
into a group sparsity. The other difference is that we explore
the hierarchical structure in real-word recommendation sys-
tem to uncover more effective knowledge.

3 THE PROPOSED ALGORITHM

In this section, first we provide the problem definition of
our cross-domain recommendation scenario. Second, we
introduce the preliminary knowledge. Third, we present
the single-layer building block Low-rank Sparse Collective
Factorization (LSCF) of our framework. Fourth, we extend
the one layer model into deep structure according to the hi-
erarchical structure of real-world recommendation system.

3.1 Problem Definition
In the target data, assume that there are n users and
m items and q observed ratings. R = [r(u,i)]n×m ∈
{1, 2, 3, 4, 5, ?}n×m denotes a 5-star numerical rating matrix.
Note that in real-world application, the observed rating val-
ues inR can be any real numbers. The question mark “?” de-
notes the unobserved value in {1, 2, 3, 4, 5} scales. A mask
matrix Y = [y(u,i)]n×m ∈ {0, 1}n×m is observed or not. The
auxiliary domain rating as R̃ = [r̃(u,i)]n×m ∈ {0, 1, ?}n×m
is in binary rating form and each observed rating is shown
as 1 and 0 presenting whether the user likes or dislikes
this item respectively. Similarly, the question mark denoted
the missing observation, which is in {0, 1}. The proportion
of missing value in auxiliary domain is usually smaller
than or equivalent to target domain. The mask matrix in
source domain is denoted as Ỹ = [ỹ(u,i)]n×m ∈ {0, 1}n×m.
Our task is to recover the missing values in R from the
knowledge of observed rating values in R and R̃. We could
also recover the missing values in R̃, but it is out of the
scope of this task.

3.2 Preliminary
PMF: Probabilistic Matrix Factorization (PMF) [19] models
the preference data via two latent feature matrices,

R ∼ UV >, (1)

where the target numerical rating matrix R is factorized into
a user-specific latent feature matrix U ∈ Rn×d and an item-
specific latent feature matrix V ∈ Rm×d. Once we have ob-
tained the latent feature matrices, we can predict the rating
located at (u, i) via r̂ui = U(u·)V

>
(i·), where U(u·) ∈ R1×d and

V(i·) ∈ R1×d are user u’s and item i’s latent feature vectors,
respectively. However, PMF does not deal with the cross-
domain recommendation problem, and doesn’t make use of
auxiliary data.

CMF: Collective Matrix Factorization (CMF) [8] uses
item-side auxiliary data via sharing the same item-specific



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2894137, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

latent features. We use matrix notations to illustrate its idea
on knowledge sharing,

R ∼ UV >, R̃ ∼WV >, (2)

where the auxiliary binary rating matrix R̃ is decomposed
into a user-specific latent feature matrix W ∈ Rn×d and an
item-specific latent feature matrix V ∈ Rm×d. The knowl-
edge encoded in the item-specific latent feature matrix V
is shared in two factorization systems, and the two user-
specific latent feature matrices W and U aren’t shared.
However, CMF only makes use of item-side auxiliary data.

TCF: Different from PMF and CMF, TCF [2], [9] adopts
matrix tri-factorization model and decomposes the rating
matrix into user and item latent factors and ratting patterns.
TCF constrains the user and item preference terms as the
same for two domains and we achieve that:

min
U,V,B,B̃

1

2
‖Y � (R− UBV >)‖2F +

λ

2
‖Ỹ � (R̃− UB̃V >)‖2F

s.t. U>U = I, V >V = I,
(3)

where U and V are user and item latent factors, which is
shared by source and target domain. The B and B̃ present
the rating patterns in source and target domain respectively,
which contains the domain specific knowledge. I is the
identity matrix. ‖ · ‖F is the Frobenius norm. � is the dot
production. However, model (3) would neglect the shared
information between rating pattern B and B̃, since B and
B̃ are two bases of two datasets, which should share partial
information [10], [11], [12].

3.3 Low-rank Sparse Collective Factorization (LSCF)
To effectively capture the common information shared by
them, we propose to adopt low-rank sparse decomposition
to further decompose B and B̃ [33], [34], [35], [36]. As
shown in Figure 1, we assume the two rating patternsB and
B̃ share a common patterns D and also preserve domain-
specific patterns E and Ẽ [37]. We assume D is constrained
to be low-rank. It is enlighten by Geo et al.’s finding that
cluster-level based user groups share the rating pattern in
two domains [12]. Intuitively, the low-rank structure of D is
to drive the rating patterns of users in one group (i.e., users
have similar preferences) similar. We also assume that the
domain-specific patterns E and Ẽ are with column sparsity
constraints. The column sparsity constraint is to learn the
domain-specific pattern E and Ẽ.

To this end, we propose to minimize the following
objective function f as:

f =
1

2
‖Y � (R− UBV >)‖2F + β1(‖E‖2,1 + ‖Ẽ‖2,1)

+
λ

2
||Ỹ � (R̃− UB̃V >)||2F + rank(D)+

β2

2
(‖B −D − E‖2F + ‖B̃ −D − Ẽ‖2F )

s.t. U>U = I, V >V = I,
(4)

where D is the common part and rank(·) is the rank oper-
ator of a matrix. E and Ẽ are two sparse individual parts,
which are constrained with l2,1 to be column sparse.

Compared to TCF based methods [2], [9] which only as-
sume the shared knowledge in user and item latent feature,

LSCF also explores the shared knowledge in rating pattern
by decomposing B and B̃ into a common low-rank matrix
D and the domain-specificE and Ẽ. To this end, LSCF could
uncover more shared information between B and B̃.

3.4 Deep Low-rank Sparse Collective Factorization
(DLSCF)
Deep and hierarchical structures have demonstrated its
effectiveness in many real-word applications, such as rec-
ommendation system [16], [38], image recognition and clas-
sification [39], [40]. In recommendation system, for example,
in Netflix DVD rental page, movies are usually catego-
rized as a hierarchical structure as genre → sub-genre →
detailed-category. As shown in Figure 2 (a), in the genre
layer, movies are divided to different kinds of genres, such
as Horror, Romance and Sports & Fitness. Under Sports
& Fitness genre, movies are further split into sub-genres,
such as Motorsports, Snow & Ice Sports, and Water Sports.
Under the sub-genre Motorsports, movies could be further
categorized into several classes, such as Auto Racing, Car
Culture and Extreme Motorsports. Users’ preferences also
have hierarchical structures as items. For example, under the
Music & Musicals genre, a user may have more specifically
preference of Classical Music.

To capture the hierarchical structures in real-world rec-
ommendation system, recently, exploring the hierarchical
items or users latent factors attracted a lot of attentions [16],
[17], [41]. For example, assuming there are p layers, in [16],
they explored a hierarchical structure of R ≈ UV > through
factorizing user latent feature U and item latent feature V :

R ≈ U1U2 · · ·Ui · · ·UpV
>
p · · ·Vi · · ·V >1 . (5)

They achieve this hierarchical structure through factorizing
U as U ≈ U1U2 · · ·Up−1Up and factorizing V as V ≈
V1V2 · · ·Vp−1Vp, where Ui and Vi (i ∈ {1, 2, · · · , p}). Note
that in their work, they assume Ui and Vi (i ∈ {1, 2, · · · , p})
are non-negative.

However, few work has explored the hierarchical struc-
tures in the cross-domain scenario. Although the model (3)
achieved attractive performance in one singe domain, in
the cross-domain scenario, it is improper to only explore
the hierarchical structures through factorizing U and V as
[16] for two main reasons. First at all, similar to [2], [9],
[30], we tri-factorize R ≈ UBV >, and do not constrain
U and V to be nonnegative. We constrain U and V using
UU> = I, V V > = I . Thus, we cannot directly factorize
U ≈ U1U2 or V ≈ V1V2. Another challenge is that our
cross-domain scenario is not only to uncover the shared
latent user and item feature in sub-category layers, but to
uncover the sub-category rating patterns in two domains.
To address these challenges, we propose the Deep Low-rank
Sparse Collective Factorization (DLSCF) by extending the
one layer LSCF model in this subsection.

First, we introduce how to factorize target domain rat-
ing matrix R and auxiliary domain rating matrix R̃. We
introduce how to explore the hierarchical structures in target
domain first. As shown in Figure 2 (b), in the first layer, we
tri-factorize the rating matrix R ∈ Rn×m to three matrices:
R ≈ U1B1V

>
1 , where U1 ∈ Rn×d1 , B1 ∈ Rd1×d1 and

V1 ∈ Rm×d1 . The item latent feature matrix V1 indicates



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2894137, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

the affiliation of m items to d1 latent detailed categories.
The user latent feature matrix U1 indicates the affiliation
of n users to d1 latent detailed categories. Note that the
number of categories in the first layer is much larger than
the number of categories in deeper layers.

In the second layer, we keep U1 and V1 unchanged and
further tri-factorize B1 to U2B2V

>
2 , where U2 ∈ Rd1×d2 ,

B2 ∈ Rd2×d2 and V2 ∈ Rd1×d2 . d2 is the number of latent
sub-categories. The latent category affiliation matrix of user
and item latent features in the second layer are denoted as
U2 and V2 respectively. They capture the affiliation relation
between detailed categories and latent sub-categories in the
first and second layer. Thus, we have:

R ≈ U1U2B2V
>
2 V >1 . (6)

In the p-layer, as shown in Figure 2 (c) and (d), we keep
U1, · · · , Up−1 and V1, · · · , Vp−1, and tri-factorize Bp−1 to
UpBpV

>
p . The category number in the p-th layer is denoted

as dp. Similar as U2 and V2 in the second layer, Up and
Vp capture the affiliation relation between categories in the
(p− 1)-th and p-th layer. And we have

R = U1U2 · · ·UpBpV
>
p · · ·V >2 V >1 . (7)

In the auxiliary domain, we also factorize the rating ma-
trix through progressively tri-factorizing B̃i−1 into B̃i−1 =
UiB̃iV

>
i . In the p-th layer, we get the deep factorization of

R̃ as:
R̃ = U1U2 · · ·UpB̃pV

>
p · · ·V >2 V >1 . (8)

In transfer learning scenario, we jointly learn user/item
latent feature U1/V1 and the latent category affiliation ma-
trix Ui and Vi i ∈ {2, 3, · · · , p}, with constraint of sharing
user/item latent feature and the latent category affiliation
matrix in two domains. Also, similar to one layer model,
we also assume that two ratting patterns Bp and B̃p share a
part of common low-rank pattern D and also have domain-
specific patterns E and Ẽ respectively. To this end, we
extend the one layer objective function in Eq. (25) into the
following p layer deep structure objective function fp as:

fp =
1

2
‖Y � (R− U1...UpBpV

>
p ...V

>
1 )‖2F

+
λ

2
||Ỹ � (R̃− U1...UpB̃pV

>
p ...V

>
1 )|2F +

β2

2
(‖Bp −D − E‖2F + ‖B̃p −D − Ẽ‖2F )

+rank(D) + β1(‖E‖2,1 + ‖Ẽ‖2,1)
s.t. U>i Ui = I, V >i Vi = I, i ∈ {1, · · · , p}.

(9)

4 BATCH BASED SOLUTION (DLSCF-B)
We first provide batch based solutions of how to optimize
the proposed DLSCF model and named as DLSCF-B. The
optimization algorithm mainly consists of two steps. First,
both the target numerical rating matrix and the auxiliary
binary rating matrix are factorized, with the user-specific
constraint and the item-specific constraint. Second, we learn
the rating patterns in each domain with the low-rank con-
straint on the common part and group sparse constraints on
the domain-specific part.

Since there are more than one variables to be optimized,
it is hard to update them jointly [35], [36]. However, we

could solve the variables one by one, meaning we optimize
one variable by fixing others.
Updating Ui

We follow the same strategy in [9] to learn Ui and Vi.
Note that the constraints of Ui and Vi are the same in [9]
and ours. First, we remove the constraints in Eq. (9) since
they do not contain Ui. Eq. (9) could be rewritten as:

fp =
1

2
‖Y�(R−AiUiHi)‖2F +

λ

2
||Ỹ�(R̃−AiUiH̃i)‖2F , (10)

where Ai, Hi and H̃i, 1 ≤ i ≤ p, are defined as:

Ai =

{
U1U2 · · ·Ui−1, if i 6= 1,
I, if i = 1.

(11)

And

Hi =

{
Ui+1 · · ·UpBpV

>
p · · ·V >1 , if i 6= p,

BpV
>
p · · ·V >1 , if i = p.

(12)

And

H̃i =

{
Ui+1 · · ·UpB̃pV

>
p · · ·V >1 , if i 6= p,

B̃pV
>
p · · ·V >1 , if i = p.

(13)

We have the gradients as

∂fp
∂Ui

= A>i (Y � (AiUiHi −R))H>i

+λA>i (Ỹ � (AiUiH̃i − R̃))H̃>i .
(14)

Then the variable Ui can be learned via a gradient
descent algorithm on the Grassmann manifold,

Ui ← Ui − γ(I − UiU
>
i )

∂fp
∂Ui

= Ui − γUi
∇Ui

, (15)

where we further define t1 = Y � (R − AiUiHi), t̃1 = Ỹ �
(R̃−AiUiH̃i), t2 = Y�(Ai∇UiHi) and t̃2 = Ỹ�(Ai∇UiH̃i).

Then, the learning rate γUi
=
−tr(t>1 t2)− λtr(t̃>1 t̃2)

tr(t>2 t2) + λtr(t̃>2 t̃2)
, where

tr(·) is the trace operator of a matrix.
Updating Vi

The update rule for Vi is similar as Ui. The other vari-
ables except Vi are fixed. The optimization problem for Vi
could be rewriten as follows, when removing terms that are
irrelevant to Vi:

fp =
1

2
‖Y �(R−CiViFi)‖2F +

λ

2
||Ỹ �(R̃−C̃iViFi)|2F , (16)

where Fi, Ci and C̃i, 1 ≤ i ≤ p, are defined as:

Fi =

{
Vi−1Vi−2 · · ·V1, if i 6= 1,
I, if i = 1.

(17)

And

Ci =

{
U1 · · ·UpBpV

>
p · · ·V >i+1, if i 6= p,

Ui · · ·UpBp, if i = p.
(18)

And

C̃i =

{
U1 · · ·UpB̃pV

>
p · · ·V >i+1, if i 6= p,

Ui · · ·UpB̃p, if i = p.
(19)

We have the gradients as

∂fp
∂Vi

= C>i (Y�(CiViFi−R))F>i +λC>i (Ỹ�(CiViF̃i−R̃))F̃>i .

(20)



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2894137, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Then the variable Vi can be also learned via the gradient
descent algorithm on the Grassmann manifold,

Vi ← Vi − γ(I − ViV >i )
∂fp
∂Vi

= Vi − γVi
∇Vi

, (21)

where γVi
could be learned in the same way as γUi

.
Updating Bp and B̃p

The rule for updating Bp and B̃p are similar. Take
updating Bp as an example. We remove other irrelevant
parts to Bp as:

min
Bp

1

2
‖Y � (R− UBpV

>)‖2F +
β2

2
‖Bp −D − E‖2F , (22)

whereU = U1 · · ·Up and V = V1 · · ·Vp.Bp can be estimated
exactly through a corresponding least square SVM problem.
We define % = vec(Bp) = [B>1,1, · · · , B>1,d]> ∈ Rd2×1 is a
big vector concatenated from the columns of matrix Bp, and
ρ = vec(D + E) = vec(D̄) = [D̄>1 , · · · , D̄>d ]> ∈ Rd2×1. The
instances can be constructed as {(ϑu,i, ru,i)} with yu,i = 1.
θu,i = vec(U (u)>V (i)) ∈ Rd2×1, where U (u) is the u-th row
of U and V (i) is the i-th row of V . Hence, we obtain the
following least-square SVM problem:

% = arg min
%

1

2
‖r −Θ%‖22 +

β2

2
‖%− ρ‖22

= (Θ>Θ + βI)−1(Θ>r + βρ),
(23)

where I is the identity matrix. Note that we could apply
the existing off-the-shelf tools to solve Bp or ρ efficiently by
considering it as a linear compact operator. Similarly B̃p can
be solved in this way.
Updating D:
We remove other irrelevant parts to D as:

D = arg min
D

‖D‖∗

+
β2

2
(‖Bp −D − E‖2F + ‖B̃p −D − Ẽ‖2F )

= arg min
D

1

β2
‖D‖∗ +

1

2
(‖D − (Bp − E + B̃p − Ẽ)

2
‖2F ),

(24)
where the rank minimization problem is replaced with
minimizing the nuclear norm problem [33], [35], [36]. And
problem (24) can be effectively solved by the singular value
thresholding (SVT) operator [42].
Updating E and Ẽ

E = arg min
E

β1‖E‖2,1 +
β2

2
(‖Bp −D − E‖2F )

= arg min
E

β1

β2
‖E‖2,1 +

1

2
(‖E − (Bp −D)‖2F ),

(25)

which can be solved by the shrinkage operator [43]. While
Ẽ can also be addressed in the same way.

To this end, we optimize each variable iteratively until
convergence for our DLSCF-B.

4.1 Complexity Analysis of Batch based Solution
There are three main time-consuming operators in our algo-
rithm: (1) updating Ui and Vi (i = 1, · · · , p), (2) updating
Bp and B̃p, (3) updating D. The time complexity of the
first two steps is similar to [9], but [9] only focused on
the situation of one layer structure. In our deep structure,

we sum up the time complexity of updating Ui and Vi,
i ∈ {1, ..., p}. The complexity of the first two steps is
O
(
K(max(q, q̃)d3

1 +
∑p

i=2 di−1di + d6
p)
)
. K is denoted as

the number of iterations which needed by the algorithm
to converge. q, q̃(q, q̃ > n,m) is the number of observed
ratings in R and R̃ respectively. n is number of all the users
and m is the number of all the items. di is the number
of latent features. The third step is time-consuming to the
full SVD operator on each iterative optimization for nuclear
norm [33], [36]. Since D ∈ Rdp×dp , the SVD costs O(Kd3

p)
for K iterations. To sum up, our algorithm takes about
O
(
K(max(q, q̃)d3

1 +
∑p

i=2 di−1di + d6
p + d3

p)
)
. As we can

observe, the first two steps are much more time-consuming
compared to our low-rank part. Meanwhile, our low-rank
constraint really helps a lot in the predictions, which will be
shown in the experiments.

The time complexity of compared methods are: PMF
is O(Kqd2 + K max(n,m)d3), cPMF is O(Kqc̃d2 +
K max(n,m)d3) [19] and TCF is O(K max(q, q̃)d3 + Kd6)
[9]. The time complexity of our proposed method is com-
parable to TCF. Although the time complexity of ours will
be higher especially when the hierarchical structure is very
deep, from our analysis, two layers would be enough to
obtain the state-of-the-art performance.

5 STOCHASTIC GRADIENT DESCENT (SGD)
BASED SOLUTION (DLSCF-S)

Batch based algorithms such as PMF [19] and TCF [9] up-
date model parameters only once after scanning the whole
data, which might not be applicable for real world large
data for two reasons. First, updating all the user and item
factors may take a lot memory for large number of users
and items. Second, batch based methods are hard to deal
with upcoming new users and items.

Stochastic methods such as regularized singular value
decomposition (RSVD) [20] and collective matrix factoriza-
tion (CMF) [8] are empirically much more efficient than
alternative batch-style algorithms. However, the prediction
accuracy of RSVD and CMF might not be adequate when
compared with batch based methods such as TCF, especially
when the users’ feedback are heterogeneous. There are also
some efficient distributed or online collaborative filtering
algorithms such as distributed stochastic gradient descent
[44] and online multitask collaborative filtering [45], but
they’re designed for homogeneous user feedback instead of
the heterogenous ones studied in this article.

To address these challenges, in this section, we introduce
the Stochastic Gradient Descent (SGD) based optimization
algorithm and name it as (DLSCF-S).

First, we obtain the following equivalent minimization
problem for DLSCF as Eq. (9). Here we make the problem
easier, since generally only U1 and V1 would be huge ma-
trices when R and R̃ are large-scale. Thus, we only update
U1 and V1 in a Stochastic Gradient Descent method. And
further, we release the orthogonal constraints on U1 and V1

to a l2 regularizer on them.



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2894137, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

minΦ

n∑
u=1

m∑
v=1

y(uv)[
1

2
‖r(uv) − U (u·)

1 ...U
(u·)
p BpV

(v·)>
p ...V

(v·)>
1 ‖2F

+
αu

2
‖U (u·)

1 ‖2 +
αv

2
‖V (v·)

1 ‖2]

+λ
n∑

u=1

m∑
v=1

ỹ(uv)[
1

2
‖r̃(uv) − U (u·)

1 ...U
(u·)
p B̃pV

(v·)>
p ...V

(v·)>
1 ‖2F

+
αu

2
‖U (u·)

1 ‖2 +
αv

2
‖V (v·)

1 ‖2]

+
β2

2
(‖Bp −D − E‖2F + ‖B̃p −D − Ẽ‖2F )

+rank(D) + β1(‖E‖2,1 + ‖Ẽ‖2,1)
s.t. U>i Ui = I, V >i Vi = I, i ∈ {2, · · · , p}

Φ = {Ui, Vi, i ∈ {1, · · · , p}, Bp, B̃p, D,E, Ẽ}.
(26)

Note that we do not directly apply a stochastic update
rules on Eq. (9) because of the orthonormal constraints on
user-specific and item-specific latent feature matrices in the
adopted matrix trifactorization model.

In Eq. (26), we could see that only the size of U1 and V1

are effected by the number of users and items and could be
very large. The sizes of Ui, Vi, i ∈ {2, · · · , p}, Bp, B̃p, D,
E, Ẽ are predefined and are not very large. Thus, in our
algorithm, we only update U1 and V1 in the SGD way, and
update other items in the same way as batch based methods.
Updating U1:

Let
fu =

m∑
i=1

y(uv)[
1

2
‖r(uv) − U (u·)

1 ...U
(u·)
p BpV

(v·)>
p ...V

(v·)>
1 ‖2F +

αu

2
‖U (u·)

1 ‖2 +
αv

2
‖V (v·)

1 ‖2] +
m∑
i=1

ỹ(uv)[
λ

2
‖r̃(uv) −

U
(u·)
1 ...U

(u·)
p B̃pV

(v·)>
p ...V

(v·)>
1 ‖2F +

αu

2
‖U (u·)

1 ‖2+ αv

2
‖V (v·)

1 ‖2]+
β2
2
(‖Bp−D−E‖2F +‖B̃p−D− Ẽ‖2F )+rank(D)+β1(‖E‖2,1+

‖Ẽ‖2,1).
By defining U

(u·)
2 ...U

(u·)
p BpV

(v·)>
p ...V

(v·)>
1 = A and

U
(u·)
2 ...U

(u·)
p B̃pV

(v·)>
p ...V

(v·)>
1 = Ã, we have:

∂fu

∂U
(u·)
1

=

m∑
v=1

y(uv)[(−r(uv) + U
(u·)
1 ·A)A> + αuU

(u·)
1 ]

+
m∑

v=1

ỹ(uv)[(−r̃(uv) + U
(u·)
1 ·A)A> + αuU

(u·)
1 ]

= −
m∑

v=1

(y(uv)r(uv)A> + λỹ(uv)r̃(uv)Ã>)

+αuU
(u·)
1

m∑
v=1

(y(uv) + λỹ(uv))

+U
(u·)
1

m∑
v=1

(y(uv)AA> + λỹ(uv)ÃÃ>).

(27)

Setting
∂fu

∂U
(u·)
1

= 0, we have the update rule for each U (u·)
1 ,

U
(u·)
1 = b(u)(G(u))−1, (28)

where G(u) =
m∑

v=1

(y(uv)AA> + λỹ(uv)ÃÃ>) + α(u)
m∑

v=1

(y(uv) +

λỹ(uv))I , and b(u) =
m∑

v=1

(y(uv)r(uv)A> + λỹ(uv)r̃(uv)Ã>).

We can see that U (u·)
1 in Eq. (28) is independent of all other

users’ latent features given B and V , thus we can obtain the
user-specific latent feature matrix U1 analytically.

Updating V1:
Similarly, given B, U1, ..., Up, V2, ..., Vp the latent fea-
ture vector V

(v·)
1 of each item v can be estimated in a

closed form. Let U (u·)
1 ...U

(u·)
p BpV

(v·)>
p ...V

(v·)>
2 = A and let

U
(u·)
1 ...U

(u·)
p B̃pV

(v·)>
p ...V

(v·)>
2 = Ã, and thus the whole item-

specific latent feature matrix V1 can be obtained analytically.

V
(v·)
1 = b(v)(G(v))−1, (29)

where G(v) =
n∑

u=1

(y(uv)A>A + λỹ(uv)Ã>Ã) + αv

n∑
u=1

(y(uv) +

λỹ(uv))I , and b(v) =
n∑

u=1

(y(uv)r(uv)A+ λỹ(uv)r̃(uv)Ã).

To this end, we optimize each variable iteratively until
convergence for our DLSCF-S. First, different from DLSCF-B
which initializes U1 and V1 by factorizing rating matrix by
SVD, DLSCF-S initializes U1 and V1 randomly. In this way, we
could avoid SVD operation on large matrix. Meanwhile, for
upcoming new users or items, we just need to initialize its latent
factors and update the parameters. There is no need to form a
new rating matrix and re-train the model from the beginning.
The initialization of other parameters is the same as DLSCF-B.
After initialization, since there are more than one variables to
be optimized, we also solve the variables one by one, which
is optimizing one variable by fixing others. For each iteration,
instead of updating U1 or V1 as a whole matrix, we only update
one row U

(u·)
1 or V (v·)

1 each time. Other parts of the DLSCF-S
are the same as DLSCF-B.

6 EXPERIMENT
In this section, we first the describe of the datasets, evaluation
metrics and comparison methods. The we present the evalu-
ation results on both accuracy and memory aspect. Then, we
evaluate the influence of parameters.

6.1 Datasets and Settings
We evaluate our proposed method on five benchmark rec-
ommendation datasets collected from real-world, (1) Moviepi-
lot, (2) Netflix, (3) Flixter, (4) MovieLens10M and (5) Movie-
Lens20M. Since these is no existing dataset designed for the
same scenario as ours (i.e., one numerical and one binary), we
follow existing works [9], [46] for the experimental setting. We
describe the way to generate target and auxiliary domain data
in Moviepilot in detail, and describe other four datasets briefly
as they are generated in the similar way.

The Moviepilot rating data contain more than 4.5 × 106

ratings, given by more than 1.0× 105 users on around 2.5× 104

movies. We first randomly extract a 2, 000× 2, 000 dense rating
matrix R from the Moviepilot data. We randomly split R into
training and test sets, TR, TE , with 50% ratings, respectively. TR,
TE ⊂ (u, i, ru,i) ∈ N ×N × [1, 5]|1 ≤ u ≤ n, 1 ≤ i ≤ m. TE is
kept unchanged, while different (average) number of observed
ratings for each user, 4, 8, 12, 16, are randomly sampled from TR

for training, with different sparsity (u, i, yu,i, yu,i/n/m) levels
of 0.2%, 0.4%, 0.6% and 0.8% correspondingly. The sparsity
means the average rated items by user dividing the number
of all the items. For example, the sparsity 0.2% means one user
has rated 0.2% items. If there are 1000 items, one user has only
rated 2 items by average. It demonstrates that we are working
on a very sparse situation. We randomly pick 40 observed
ratings on average from TR for each user to construct the
auxiliary data matrix R̃. Thus, the sparsity of auxiliary data is
2%. We extracted the second dataset Netflix in the same way as
oviepilot. The size of rating matrix R in Netflix is 5, 000×5, 000.
By default, we apply the sparsity levels at 0.8% following [46]
for these two datasets.

To simulate heterogeneous auxiliary and target data, we
adopt a pre-processing approach on R̃, by relabeling ratings



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2894137, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

Table 1
Previous usage and statistic of datasets Netflix, MoviePilot, Flixter, MovieLens10M and MovieLens20M. We show the number of users (#user),
items (#item) and ratings on target (# target rating), auxiliary(#aux rating), and test data(#test rating). We also show the sparsity of ratings on

target (# target rating), auxiliary(#aux rating), and test data(#test rating). The sparsity means the average rated items by user dividing the number
of all the items.

previous
usage

#user #item # target
rating

target
sparsity

#aux
rating

aux
sparsity

#test
rating

test
sparsity

Netflix both 5,000 5,000 45,000 ≤ 1% 500,000 2% 2,824,204 11.27%
MoviePilot Batch 2,000 2,000 30,000 ≤ 1% 101,572 2% 454,710 11.37%
Flixter SGD 147,612 48,794 3,278,431 0.046% 3,278,431 0.046% 1,639,215 0.023%
MovieLens10M SGD 71,567 10,681 4,000,022 0.52% 4,000,022 0.52% 2,000,010 0.26%
MovieLens20M / 138,493 26,744 8,000,106 0.22% 8,000,105 0.22% 4,000,219 0.11%

with value ru,i ≤ 3 in R̃ as 0 (dislike), and then ratings
with value rui ≥ 3 as 1 (like). The overlap between R̃ and
R(u, i, yu,i, ỹu,i/n/m) is 0.026%, 0.062%, 0.096% and 0.13% cor-
respondingly. The overlap between R̃ and R is 0.035%, 0.070%,
0.10% and 0.14% respectively. This pre-processing follows the
common sense that if a user gives a high rating to an item, he
or she likes the item and vice-versa.

We extracted the third dataset from Flixter2 following the
same setting in [46]. This data contain 8.2 × 106 ratings given
by 1.5 × 105 users on 4.9 × 104 products. The range of ratings
is {0.5, 1, 1.5,...,5}. The data contains five copies of target,
auxiliary, and test data. For each copy of auxiliary data, we
convert ratings smaller than 4 to “dislike” and ratings larger
than 4 to “like”, to simulate the binary feedback.

We extracted the fourth dataset from MovieLens10M3 in the
same way as [46]. This data contains 10 × 106 ratings given by
7.1 × 104 users on 1.1 × 104 products. The range of ratings
is {0.5, 1, 1.5,...,5}. We preprocess the MovieLens10M rating
data similar as that of the Flixter data to generate five copies of
target, auxiliary, and test data.

We build the fifth dataset from MovieLens20M4 in the same
way as MovieLens10M. This data contains 20 × 106 ratings
given by 1.4 × 105 users on 2.7 × 104 products. The range of
ratings is {0.5, 1, 1.5,...,5}.

Table 1 summarizes the usage of the five datasets in pre-
vious works and the statistics of number of users, items and
ratings on target, auxiliary, and test data. Previously, batch
based methods [9], [21] evaluate the performance on Netflix
and MoviePilot. SGD based methods [46] evaluate the per-
formance only on Netflix, Filxter and MovieLens10M dataset.
MovieLens20M has not been applied on this problem yet.

6.2 Evaluation Metrics
We follow [9], [21], [46] and adopt the Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) as evaluation
metrics as:

MAE =
∑

(u,i,ru,i)∈TE

|ru,i − r̂u,i|/|TE |, (30)

RMSE =

√ ∑
(u,i,ru,i)∈TE

(ru,i − r̂u,i)2/|TE |, (31)

where ru,i and r̂u,i are the ground truth and predicted ratings,
respectively. And |TE | is the number of test ratings.

Same as [9], in all experiments, the required numbers of ob-
served ratings are generated from TR randomly, and averaged
by 3 trials.

6.3 Compared Methods
We compare our batch and SGD based DLSCF with the state-
of-the-art batch and SGD based collective filtering methods.

2. www.cs.ubc.ca/ jamalim/datasets
3. www.grouplens.org/node/73/
4. https://grouplens.org/datasets/movielens/20m/

6.3.1 Batch based Methods

We compare batch based DLSCF with four batch based transfer
learning methods:

cPMF [19]: Constrained Probabilistic Matrix Factorization
(PMF). PMF models the preference data via two latent feature
matrices, user-specific latent feature matrix and item-specific
latent feature matrix, as shown in Eq. (1). [9] integrated the
auxiliary data of PMF in their experiments.

CMF-link [8]: CMF with logistic link function. CMF [8]
is proposed for jointly factorizing two matrices with the con-
straints of sharing item-specific latent features, as shown in
2. However, in this problem setting, both users and items are
aligned. To alleviate the data heterogeneity in CMF, [9] embed
a logistic link function in the auxiliary data matrix factorization
in their experiments.

TCF(CMTF), TCF(CSVD) [2], [9]: Transfer by Collective
Factorization (TCF) constructs a shared latent space collec-
tively and learns the data-dependent effect separately. It is
able to capture the data dependent effect when sharing the
data-independent knowledge. Two variants with different con-
straints on user and item latent features are named as CMTF
and CSVD.

More detailed descriptions for the compared methods could
be found in [9]. We strictly follow the settings of [9].

In order to evaluate the effectiveness of the hierarchical
structure and the low-rank sparse decomposition, we also com-
pare with two baseline methods: DCSVD and LSCF. We named
the batch and SGD based DCSVD as DCSVD-B and DCSVD-S
respectively, and the batch and SGD based LSCF as LSCF-B and
LSCF-S.

DCSVD-B [21] (conference): We keep the deep structure
of DLSCF, but remove the low-rank sparse constraint and set
β1 = β2 = 0. The objective function is shown as following. This
method could also be regarded as a deep version of CSVD.

LSCF-B [21] (conference): The method is the one layer
structure of DLSCF as introduced in Section 3.3.

DLSCF-B [21] (conference): It is the batch based solution
of DLSCF. It is our previous conference version of this journal
extension.

6.3.2 SGD based Methods

We study the effectiveness of our SGD based DLSCF, DLSCF-
S, with some state-of-the-art methods, including regularized
singular value decomposition (RSVD) [20], collective matrix
factorization (CMF) [8] and interaction-rich transfer by collec-
tive factorization (iTCF) [46].

RSVD [20]: RSVD approximates an observed target grade
score via learning some latent variables of the corresponding
user and item, which works well for data of grade scores.

CMF [8]: CMF extends RSVD via sharing items’ latent
variables for the target grade scores and the auxiliary binary
ratings.

iTCF [46]: iTCF further extends CMF via introducing inter-
actions between users’ latent variables, which was reported to
be more accurate than CMF.



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2894137, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Table 2
Compared performance of both batch and SGD algorithms on

MoviePilot dataset. Bold and underline denote the best and second
best performance.

Algorithm MAE RMSE Memory

batch

cPMF [19] 0.7462 0.9599 1.92
CMF-link [8] 0.6905 0.9072 2.40

TCF(CMTF) [9] 0.6776 0.8875 1.92
TCF(CSVD) [9] 0.6612 0.8744 2.40

DCSVD-B [21](conference) 0.6590 0.8733 2.88
LSCF-B [21](conference) 0.6530 0.8644 2.40

DLSCF-B [21](conference) 0.6504 0.8626 2.88

SGD

RSVD [20] 0.7081 0.9043 1.76
CMF [8] 0.6843 0.8954 1.76
iTCF [46] 0.6700 0.8832 1.76

DCSVD-S (baseline1) 0.6601 0.8711 1.76
LSCF-S (baseline2) 0.6474 0.8599 1.68

DLSCF-S (ours) 0.6460 0.8549 1.76

Table 3
Compared performance of both batch and SGD algorithms on Netflix

dataset. Bold and underline denote the best and second best
performance.

Algorithm MAE RMSE Memory

batch

cPMF [19] 0.7642 0.9691 2.50
CMF-link [8] 0.7295 0.9277 2.78

TCF(CMTF) [9] 0.6962 0.8884 2.50
TCF(CSVD) [9] 0.6877 0.8809 2.78

DCSVD-B [21](conference) 0.6862 0.8793 2.78
LSCF-B [21](conference) 0.6870 0.8780 2.78

DLSCF-B [21](conference) 0.6854 0.8775 2.83

SGD

RSVD [20] 0.7236 0.9201 1.54
CMF [8] 0.7054 0.9020 1.54
iTCF [46] 0.7014 0.8966 1.54

DCSVD-S (baseline1) 0.6912 0.8936 1.68
LSCF-S (baseline2) 0.6838 0.8762 1.54

DLSCF-S (ours) 0.6828 0.8749 1.68

Table 4
Compared performance of both batch and SGD algorithms on Flixter

dataset. Bold and underline denote the best and second best
performance.

Algorithm MAE RMSE Memory

batch

cPMF [19] 0.6479 0.8768 4.69
CMF-link [8] 0.6456 0.8745 4.69

TCF(CMTF) [9] 0.6394 0.8696 4.99
TCF(CSVD) [9] 0.6347 0.8632 5.32

DCSVD-B [21](conference) 0.6342 0.8624 5.51
LSCF-B [21](conference) 0.6348 0.8625 5.32

DLSCF-B [21](conference) 0.6331 0.8621 5.51

SGD

RSVD [20] 0.6561 0.8814 3.94
CMF [8] 0.6423 0.8710 3.91
iTCF [46] 0.6373 0.8636 3.93

DCSVD-S (baseline1) 0.6381 0.8631 3.95
LSCF-S (baseline2) 0.6352 0.8623 3.86

DLSCF-S (ours) 0.6347 0.8619 3.95

We also implement SGD based DCSVD-S and LSCF-S for
two reasons. First, we evaluate the effectiveness of the hierar-
chical structure and the low-rank sparse decomposition in SGD
based optimization algorithm. Second, we compare the SGD
and batch based variants of DLSCF.

DCSVD-S: This method is the SGD based solution of
DCSVD. We remove the low-rank sparse constraint and set
β1 = β2 = 0 in DLSCF-S.

LSCF-S: This method is the SGD based solution of LSCF. It
would be easily implemented when we set p = 1 in Eq. (26) in
DLSCF-S.

DLSCF-S: It is the SGD based solution of DLSCF as shown
in Algorithm 2.

Table 5
Compared performance of both batch and SGD algorithms on

MovieLens10M dataset. Bold and underline denote the best and
second best performance.

Algorithm MAE RMSE Memory

batch

cPMF [19] 0.6531 0.8354 4.75
CMF-link [8] 0.6413 0.8326 4.75

TCF(CMTF) [9] 0.6241 0.8213 4.75
TCF(CSVD) [9] 0.6217 0.8153 4.99

DCSVD-B [21](conference) 0.6212 0.8212 5.51
LSCF-B [21](conference) 0.6154 0.8123 4.90

DLSCF-B [21](conference) 0.6041 0.8094 5.51

SGD

RSVD [20] 0.6438 0.8364 3.24
CMF [8] 0.6334 0.8273 3.08
iTCF [46] 0.6197 0.8091 3.11

DCSVD-S (baseline1) 0.6159 0.8133 3.15
LSCF-S (baseline2) 0.6133 0.8093 3.08

DLSCF-S (ours) 0.6121 0.8088 3.15

Table 6
Compared performance of both batch and SGD algorithms on

MovieLens20M dataset. Bold and underline denote the best and
second best performance.

Algorithm MAE RMSE Memory

batch

cPMF [19] 0.6532 0.9039 5.52
CMF-link [8] 0.6511 0.8932 5.52

TCF(CMTF) [9] 0.6432 0.8812 5.13
TCF(CSVD) [9] 0.6445 0.8715 7.09

DCSVD-B [21](conference) 0.6364 0.8624 7.09
LSCF-B [21](conference) 0.6345 0.8594 7.09

DLSCF-B [21](conference) 0.6315 0.8535 7.09

SGD

RSVD [20] 0.6572 0.9064 4.34
CMF [8] 0.6492 0.8717 4.51
iTCF [46] 0.6415 0.8627 4.51

DCSVD-S (baseline1) 0.6382 0.8572 4.59
LSCF-S (baseline2) 0.6331 0.8511 4.53

DLSCF-S (ours) 0.6260 0.8419 4.59

Table 7
Compared performance of transferring numerical to numerical of both

batch and SGD algorithms on Netflix dataset. Bold and underline
denote the best and second best performance.

Algorithm MAE RMSE Memory

batch

cPMF [19] 0.7094 0.9185 2.65
CMF-link [8] 0.7084 0.9034 2.83

TCF(CMTF) [9] 0.6946 0.8945 2.78
TCF(CSVD) [9] 0.6877 0.8808 2.83

DCSVD-B [21](conference) 0.6854 0.8793 2.83
LSCF-B [21](conference) 0.6833 0.8750 2.83

DLSCF-B [21](conference) 0.6714 0.8638 2.97

SGD

RSVD [20] 0.7167 0.9157 1.54
CMF [8] 0.7037 0.8985 1.54
iTCF [46] 0.6984 0.8895 1.54

DCSVD-S (baseline1) 0.6913 0.8837 1.72
LSCF-S (baseline2) 0.6870 0.8747 1.68

DLSCF-S (ours) 0.6711 0.8662 1.86

6.4 Experimental Results

The results on test data for both batch and SGD based methods
are reported in Tables 2, 3, 4, 5 and 6. We report the MAE, RMSE
and memory for each method.

Different trade-off parameters λ ∈ [0.1, 5], β1 ∈ [0, 1],
β2 ∈ [0, 1] are tried. For DCSVD and DLSCF, different layers
p ∈ {1, 2, 3, 4, 5} are tried. In DLSCF-S, we have tried αu and
αv from 0.1 to 5, and set αu = 1 and αv = 1. The parameters
and convergence condition are set through cross-validation,
which randomly samples n ratings from training data TR. We
found DLSCF usually achieves better performance when p=2
or 3, which agrees with the real-world category structure. From
Tables 2 to 6, we could observe that:



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2894137, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

Table 8
p values of t-test of comparison methods under RMSE metric.

Dataset MoviePilot Netflix Flixter MovieLens10 MovieLens20M
DLSCF-B vs CMTF 2.27 ×10−5 4.52×10−4 6.32 ×10−4 3.37 ×10−5 7.76 ×10−5

DLSCF-B vs CSVD 3.74 ×10−5 4.65 ×10−4 8.43 ×10−4 2.96 ×10−4 3.23 ×10−4

DLSCF-B vs DCSVD-B 1.09 ×10−4 0.0021 6.32×10−4 7.32 ×10−4 2.64 ×10−4

DLSCF-B vs LSCF-B 0.0063 0.0346 0.0074 0.0023 0.0027
DLSCF-S vs CMF 3.24 ×10−4 4.32 ×10−4 0.0032 3.74 ×10−5 0.0064
DLSCF-S vs iTCF 3.85 ×10−4 0.0023 0.0085 8.832 ×10−4 8.32 ×10−5

DLSCF-S vs DCSVD-S 7.23 ×10−5 7.42 ×10−4 8.32 ×10−4 3.75 ×10−4 0.0047
DLSCF-S vs LSCF-S 0.0023 0.0075 7.45 ×10−4 9.75 ×10−4 4.32 ×10−4

Table 9
Discussion of performance of compared methods under different sparsity levels of target domain on Netflix. Bold and underline denote the best

and second best performance.

Sparsity 0.2% 0.4% 0.6% 0.8%
Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE

non-transfer

PMF [19] 0.8879 1.0779 0.8467 1.0473 0.8087 1.0205 0.7642 0.9691
SVD [47] 0.8055 1.0202 0.7846 0.9906 0.7757 0.9798 0.7711 0.9741

OptSpace [48] 0.8276 1.0676 0.7812 1.0089 0.7572 0.9750 0.7418 0.9543

transfer(batch)

cPMF 0.8491 1.0606 0.8147 1.0125 0.8122 1.0066 0.7864 0.9930
CMF-link [8] 0.7994 1.0204 0.7508 0.9552 0.7365 0.9369 0.7295 0.9277

TCF(CMTF) [9] 0.7589 0.9653 0.7195 0.9171 0.7031 0.8971 0.6962 0.8884
TCF(CSVD) [9] 0.7405 0.9502 0.7080 0.9074 0.6948 0.8903 0.6877 0.8809

DCSVD-B( [21](conference) 0.7379 0.9466 0.7076 0.9067 0.6942 0.8892 0.6862 0.8793
LSCF-B( [21](conference) 0.7380 0.9470 0.7069 0.9062 0.6937 0.8890 0.6870 0.8780

DLSCF-B( [21](conference) 0.7369 0.9460 0.7060 0.9054 0.6929 0.8883 0.6854 0.8775

transfer(SGD)

RSVD [20] 0.7854 0.9857 0.7528 0.9564 0.7452 0.9486 0.7236 0.9201
CMF [8] 0.7791 0.9735 0.7396 0.9472 0.7456 0.9232 0.7054 0.9020
iTCF [46] 0.7583 0.9599 0.7236 0.9211 0.7208 0.9086 0.7014 0.8966

DCSVD-S (baseline1) 0.7421 0.9473 0.7081 0.9049 0.6932 0.8874 0.6912 0.8936
LSCF-S (baseline2) 0.7403 0.9442 0.7074 0.9047 0.6922 0.8866 0.6838 0.8762

DLSCF-S (ours) 0.7376 0.9413 0.7067 0.9028 0.6908 0.8854 0.6828 0.8749

Table 10
Discussion of performance of compared methods under different sparsity levels of target domain on MovieLens10M. Bold and underline denote

the best and second best performance.

Sparsity 0.2% 0.4% 0.6% 0.8%
Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE

non-transfer

PMF [19] 0.8064 0.9373 0.7368 0.9168 0.7046 0.8736 0.6943 0.8532
SVD [47] 0.7943 0.9225 0.7143 0.8953 0.6825 0.8621 0.6835 0.8434

OptSpace [48] 0.7891 0.9286 0.7153 0.8986 0.6799 0.8539 0.6713 0.8428

transfer(batch)

cPMF 0.7585 0.9077 0.6883 0.8698 0.6474 0.8304 0.6432 0.8275
CMF-link [8] 0.7456 0.9054 0.6843 0.8685 0.6411 0.8321 0.6325 0.8236

TCF(CMTF) [9] 0.7386 0.8965 0.6754 0.8574 0.6224 0.8184 0.6145 0.8143
TCF(CSVD) [9] 0.7335 0.8964 0.6743 0.8534 0.6203 0.8151 0.6136 0.8147

DCSVD-B( [21](conference) 0.7254 0.8843 0.6636 0.8343 0.6142 0.8146 0.6014 0.8122
LSCF-B( [21](conference) 0.7012 0.8662 0.6546 0.8435 0.6121 0.8103 0.6032 0.8137

DLSCF-B( [21](conference) 0.6886 0.8485 0.6453 0.8224 0.6011 0.8065 0.5972 0.7911

transfer(SGD)

RSVD [20] 0.7496 0.9183 0.6864 0.8754 0.6430 0.8315 0.6267 0.8212
CMF [8] 0.7278 0.9036 0.6785 0.8657 0.6258 0.8187 0.6193 0.8087
iTCF [46] 0.7134 0.9076 0.6643 0.8584 0.6168 0.8046 0.6023 0.8027

DCSVD-S (baseline1) 0.7143 0.8924 0.6639 0.8524 0.6144 0.8057 0.6035 0.8099
LSCF-S (baseline2) 0.7024 0.8742 0.6524 0.8482 0.6122 0.8048 0.6036 0.8196

DLSCF-S (ours) 0.6925 0.8446 0.6356 0.8256 0.6035 0.8012 0.5943 0.7962

6.4.1 Results of accuracy

(1) Among all the batch based methods, our conference DLSCF-
B achieves the lowest error under MAE and RMSE metric,
including the state-of-the-art batch based method TCF(CSVD)
and our two baseline methods DCSVD-B and LSCF-B.

(2) Among all the SGD based methods, our proposed
method DLSCF-S in this journal extension achieves the lowest
error, comparing to the state-of-the-art SGD based method iTCF
and our two baseline methods DCSVD-S and LSCF-S.

We conduct t-test to evaluate whether the improvement is

significant. The lower the significance level, which is presented
with p value, the more confident the difference between com-
parison methods. Table 8 presents p values of t-test between
our methods and comparison methods under all the datasets.
We run each method for 5 times. Table 8 demonstrates the
significance of the improvements (i.e., p <0.05) of both DLSCF-
B and DLSCF-S.

(3) When comparing batch and SGD based solution of
DLSCF, we could see that DLSCF-S is comparable or outper-
forms DLSCF-B. In MoviePilot, Netflix and MovieLens20M,



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2894137, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

DLSCF-S achieves the lowest MAE and RMSE. In Flixter and
MovieLens10, they are comparable. Similar observation could
be achieved when comparing LSCF-B with LSCF-S, and com-
paring DCSVD-B with DCSVD-S. It demonstrates that, with
lower memory usage, the proposed SGD could still achieve
effective performance.

(4) To evaluate the effectiveness of the low-rank sparsity
constraint, we compare DLSCF with DCSVD and LSCF with
CSVD in both batch and SGD based solution. Both DLSCF
and DCSVD adopt the multi-layer structure, while both LSCF
and CSVD adopt one-layer structure. Thus, the difference is
mainly caused by the ways of sharing information between
two domains. DCSVD and CSVD assume that each domain
has a specific rating pattern matrix, while DLSCF and LSCF
apply the low-rank sparse constraint on the rating patterns
of two domains. In both SGD and batch based methods,
DLSCF outperforms DCSVD and LSCF outperforms CSVD,
which demonstrates the effectiveness of the proposed low-rank
sparsity constraint.

(5) To evaluate the effectiveness of the multi-layer structure,
we also compare DLSCF with LSCF and DCSVD with CSVD in
both batch and SGD based solution. DLSCF is the multi-layer
version LSCF and DCSVD is the multi-layer version CSVD.
In both SGD and batch based methods, DLSCF outperforms
LSCF and DCSVD outperforms CSVD. Thus, we could safely
consider that the multi-layer structure plays a major role of
achieving better performance.

In order to evaluate the effectiveness of our method on the
data which are not simulated, we have added another setting
that both target and auxiliary domains are not re-scaled, mean-
ing both domains are numerical. Actually, our model not only
could be used for transferring binary data to numerical, but
also for more general transfer learning problems, for example,
transferring numerical rating to numerical rating. We evaluate
our model on Netfilx dataset, and make both target and axillary
domain numerical (5 stars). In this way, the axillary domain is
not simulated. We show the experimental results in Table 7.

From Table 7, we can see that when both source and
auxiliary domain data are numerical and not simulated, our
batch or SGD methods, DLSCF-B and DLSCF-S, still achieve the
best and second best performance. In terms of computational
cost, SGD-based methods apply about 60% memory than batch
based method, which is very similar as transferring binary data
to numerical data in Netflix dataset in Table 3.

6.4.2 Results of memory

We conduct the experiments on a computer with 48GiB mem-
ory, Intel i7 CPU with 3.50 GHz. We have reported the memory
usage of the comparison methods on each dataset in Table 2 to
Table 6.

We could see that all the SGD based methods generally take
less memory than batch based methods. The difference among
SGD or batch based methods are not large.

When we compare DLSCF-S with DLSCF-B, DLSCF-S
takes less memory (about 60%) than DLSCF-B on all the
datasets. Same phenomenon would be observed when compar-
ing DCSVD-B with DCSVD-S, LSCF-B with LSCF-S. We could
see the advantage of SDG solution on the memory aspect facing
same/similar model.

We would like to note that although the size of these
benchmarks are already the top largest, in real world industry
recommender such as Amazon.com, the number of users and
items are considerably larger than these benchmarks. It may be
even hard to load all the data into the memory at one time.
Thus, we may face out of memory issue when using batch
based methods. With SGD based method, we are able to save
large memory (about 40%) and make the method computable.

6.5 Discussion
6.5.1 Discussion of sparsity
We follow [9], [21] to discuss the effectiveness of solving data
sparsity problem of proposed DLSCF and comparison methods.

Firstly, we randomly sample training set from TR, with
sparsity levels at 0.2%, 0.4%, 0.6% and 0.8% in target domain
respectively. In Table 9 and 10, we report the performance of
non-transfer learning methods, batch based transfer learning
methods and SGD based transfer learning methods, under
dataset Netflix and MovieLens10M. Three non-transfer learning
methods as [9]: PMF [19], SVD [47] and OptSpace [48] are
included to evaluate the performance of transfer learning based
methods. The sparsity of auxiliary data R̃ is shown as Table 1,
which is 2% of Netflix and 0.52% of MovieLens10M dataset.
In Table 9, the results of non-transfer learning methods, batch
based transfer learning methods are copied from [9], [21].

First, from Tables 9 and 10, we could observe that in both
Netflix and MovieLens10M datasets, under different sparsity
levels, DLSCF-B and DLSCF-S achieve the best and second
best performance. When comparing DLSCF-S and DLSCF-B,
in Netflix dataset under sparsity level 0.6% and 0.8%, DLSCF-
S outperforms DLSCF-B under both MAE and RMSE. Under
sparsity level 0.2% and 0.4%, and under all the sparsity level
in MovieLens10M dataset, the performances of DLSCF-S and
DLSCF-B are comparable.

Second, Tables 9 and 10 show that almost all the transfer
learning methods outperform the non-transfer ones. The trans-
fer learning method CMTF-link already works better than PMF,
SVD and OptSpace. It demonstrates that the transfer learning
method is effective to solve the sparsity problem in this task.

We also discuss the effectiveness of DLSCF in different
sparsity levels in auxiliary domain data in at 1%, 2% and 3%.
Figure 5 shows the MAE and RMSE of DLSCF-B on MoviePilot
as an example. We have the same observation as [16], which
shows the effectiveness of method of selective transferring via
noise reduction.

6.5.2 Discussion of λ, β1, β2 in DLSCF-B
In this section, we discuss the impact of settings of parameter
λ, β1, β2 in DLSCF-B. Figure 3 shows an example in MoviePilot
dataset when the sparsity level of target domain data is 0.6 %,
p=1, and d1=10.

In Figure 3 (a), we could notice that RMSE achieves the
lowest result when λ = 0.3. Around 0.3, when λ = 0.35, RMSE
is 0.8645. When λ = 0.25, RMSE is 0.8648. MAE achieves the
lowest result when λ = 0.25, 0.3 and 0.35. Both RMSE and
MAE increase gradually when λ is far away from 0.3. When
λ = 0.4, RMSE is 0.865 and MAE is 0.6546. When λ = 0.2,
RMSE is 0.8658 and MAE is 0.6558. When λ = 0, meaning
‖Ỹ � (R̃ − UB̃V >)‖2F term looses the impact, RMSE is 0.9003
and MAE is 0.6839.

In Figure 3 (b), we could see that DLSCF-B achieves lower
RMSE and MAE when β1 is from 3×10−5 to 6×10−5. It achieves
lowest RMSE = 0.8642 and MAE = 0.6530 when β1 = 5× 10−5.
When β1 is far away from 0.005, RMSE and MAE increase
gradually.

In Figure 3 (c), we could see that both RMSE and MAE
achieve the lowest result when β2 = 0.005, and we have RMSE
= 0.8642 and MAE = 0.6530. Both RMSE and MAE increase
sharply when β2 is bigger than 0.02.

6.5.3 Discussion of λ, β1, β2 in DLSCF-S
In this section, we discuss the impact of settings of parameter
λ, β1, β2 of DLSCF-S. Figure 4 shows an example in MoviePilot
dataset when the sparsity level of target domain data is 0.6 %,
p=1, and d1=10. We have tried αu and αv from 0.1 to 5, and
fixed αu = 1 and αv = 1.

In Figure 4 (a), we notice that both MAE and RMSE achieve
the lower error when λ is from 0.3 to 1, which shows that



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2894137, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

(a) (b)

2 4 6 8 10

1 10-4

0.6

0.7

0.8

0.9

1

1.1

1.2
RMSE
MAE

0.01 0.02 0.03 0.04 0.05

2

0.6

0.7

0.8

0.9

1
RMSE
MAE

(c)

0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

1
RMSE
MAE

Figure 3. Parameter analysis of DLSCF-B. In figure (a), we fix β1 = 0.005, β2 = 0.00005 and show the RMSE and MAE when λ from 0.05 to 1. In
figure (b), we fix λ = 0.3, β2 = 0.00005, and show the RMSE and MAE when β1 from 1× 10−6 to 0.001. In figure (c), we fix λ = 0.3, β3 = 0.005,
and show the RMSE and MAE when β2 from 5× 10−4 to 0.05.

1 2 3 4 5
0.6

0.7

0.8

0.9

1
RMSE
MAE

(a)

0.05 0.1 0.15 0.2

1

0.6

0.7

0.8

0.9

1
RMSE
MAE

(b)

0.5 1 1.5 2

2

0.6

0.7

0.8

0.9

1
RMSE
MAE

(c)

Figure 4. Parameter analysis of DLSCF-S. In figure (a), we fix β1 = 0.05, β2 = 1 and show the RMSE and MAE when λ from 0.1 to 5. In figure (b),
we fix λ = 0.8, β2 = 0.05, and show the RMSE and MAE when β1 from 0.005 to 0.2. In figure (c), we fix λ = 0.8, β3 = 1, and show the RMSE and
MAE when β2 from 0.1 to 2.

0.2 0.3 0.4 0.5 0.6 0.7 0.80.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

Sparsity (%)

M
AE

 

 

Aux: 1%
Aux: 2%
Aux: 3%

0.2 0.3 0.4 0.5 0.6 0.7 0.80.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Sparstiy (%)

R
M

SE

 

 

Aux: 1%
Aux: 2%
Aux: 3%

Figure 5. Prediction error of DLSCF-B on MoviePilot at different sparsity
levels with auxiliary domain data.

0 200 400 600 800 10000.6502

0.6504

0.6506

0.6508

0.651

0.6512

0.6514

dimension

M
AE

0 200 400 600 800 1000
0.8624

0.8626

0.8628

0.863

0.8632

0.8634

dimension

R
M
SE

Figure 6. Prediction error of DLSCF-B on MoviePilot at different dimen-
sions of layer.

the performance is not sensitive to the parameter. We achieve
the lowest RMSE = 0.8740 at λ = 0.9 to 1, and lowest MAE
= 0.6645 at λ = 0.7. Similar as in DLSCF-B, when λ is too
small, the performance is not good. It is because very limited
knowledge is borrowed from auxiliary domain, and the model
is degraded to non-transfer learning model. When λ is very
large, the impact of target domain data is decreased and the
error gradually increases.

In Figure 4 (b), we could witness that both RMSE and MAE
achieve the lower error when λ is from 0.03 to 0.07. RMSE and
MAE increase gradually when β1 is far way from 0.05.

2 5 7 10 15 20 30 50
layer size of first layer

0.6

0.7

0.8

0.9

1

1.1

1.2

M
AE

2 5 7 10 15 20 30 50
layer size of first layer

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

R
M

SE

(a) Prediction error in the first layer

2 5 7 10 15 20
layer size of second layer

0.64

0.645

0.65

0.655

0.66

0.665

0.67

M
AE

2 5 7 10 15 20
layer size of second layer

0.85

0.855

0.86

0.865

0.87

0.875

0.88

R
M

SE

(b) Prediction error in the second layer

Figure 7. Prediction error of DLSCF-S on MoviePilot at different dimen-
sions of first and second layer.

In Figure 4 (c), we could witness that both RMSE and MAE
are not sensitive to β2. We achieve the lowest RMSE = 0.8743
and MAE = 0.6648 when β2 = 1. RMSE and MAE increase
gradually when β2 is far way from 1. When β2 = 0.3, we have
RMSE = 0.8757 and MAE = 0.6655. When β2 = 2, we have
RMSE = 0.8748 and MAE = 0.6658.

6.5.4 Discussion of layer size in DLSCF-B
In this section, we discuss the impact of settings of layer
size. Figure 6 shows the performance under settings of dif-
ferent layer sizes of DLSCF in MoviePilot dataset at sparsity



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2894137, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

level 0.8%. We set the number of layers p at 2 and dis-
cuss the impact of layer size d1 by fixing the number of d2
as [16]. We set d2 = 10 and vary the value of d1 within
{50, 100, 150, 200, 300, 400, 500, 1000}. As shown in the Figure
6, under both MAE and RMSE, DLSCF-B achieves better per-
formance when d1 is around 200 to 400.

6.5.5 Discussion of layer size in DLSCF-S
In this section, we discuss the impact of settings of layer size in
SGD based model DLSCF-S in Figure 7.

We start from discussing the layer size in one-layer DLSCF-
S model (same as LSCF-S) in Figure 7 (a). Figure 7 (a) shows the
performance under settings of different layer sizes of DLSCF in
MoviePilot dataset at sparsity level 0.6%. We only use one layer
(p = 1) and discuss the impact of layer size d1. We vary the
value of d1 from 3 to 10. We could see that under both MAE
and RMSE, our method achieves better performance when d1
is around 5 to 10. The lowest MAE is 0.6599 and the lowest
RMSE is 0.8714 when d1 = 5.

Second, we discuss the layer size in two-layer DLSCF-S
model (p = 1). We fix the d1 = 30 and vary the value of d2
within {2, 5, 7, 10, 15, 20}. When we only use one layer model
and set d1 = 30 as shown in Figure 7 (a), MAE = 0.8361, RMSE
= 1.0578. When we use two layer model, the lowest MAE is
0.6537 when d2 = 10 and the lowest RMSE is 0.8651 when
d2 = 7. When comparing the MAE and RMSE with the same
layer size in Figure 7 (a) and (b), all the MAE and RMSE in
(b) are lower than in (a), which shows the effectiveness of the
multilayer structure.

7 CONCLUSIONS

In this paper, we presented a novel transfer learning framework
for heterogeneous recommendation, named as Deep Low-rank
Sparse Collective Factorization (DLSCF), to transfer knowledge
from binary ratings data. With a low-rank constraint on the
common part and a group sparsity constraint on the domain-
specific part, we could capture more shared patterns across two
domains to transfer more knowledge from auxiliary domain
to target domain. In addition, according to the hierarchical
structure of the real-world recommendation system, we further
explored the deep structure based on the one layer Low-rank
Sparse Collective Factorization model. We provided both batch
and SGD based optimization algorithms. Experiments on five
datasets showed effectiveness of proposed algorithms.

ACKNOWLEDGMENT

This work is supported in part by the NSF IIS award 1651902
and U.S. Army Research Office Young Investigator Award
W911NF-14-1-0218.

REFERENCES

[1] N. N. Liu, E. W. Xiang, M. Zhao, and Q. Yang, “Unifying explicit
and implicit feedback for collaborative filtering,” in Proceedings of
the 19th ACM international conference on Information and knowledge
management, 2010.

[2] W. Pan, N. N. Liu, E. W. Xiang, and Q. Yang, “Transfer learning
to predict missing ratings via heterogeneous user feedbacks,” in
IJCAI Proceedings-International Joint Conference on Artificial Intelli-
gence, vol. 22, no. 3, 2011, p. 2318.

[3] S. Sahebi and P. Brusilovsky, “It takes two to tango: An exploration
of domain pairs for cross-domain collaborative filtering,” in Pro-
ceedings of the 9th ACM Conference on Recommender Systems. ACM,
2015, pp. 131–138.

[4] X. Xin, Z. Liu, C.-Y. Lin, H. Huang, X. Wei, and P. Guo, “Cross-
domain collaborative filtering with review text.” in IJCAI, 2015,
pp. 1827–1834.

[5] Y.-F. Liu, C.-Y. Hsu, and S.-H. Wu, “Non-linear cross-domain
collaborative filtering via hyper-structure transfer.” in ICML, 2015,
pp. 1190–1198.

[6] Y. Koren, “Factor in the neighbors: Scalable and accurate collab-
orative filtering,” ACM Transactions on Knowledge Discovery from
Data (TKDD), vol. 4, no. 1, p. 1, 2010.

[7] Y. Zhang and J. Nie, “Probabilistic latent relational model for inte-
grating heterogeneous information for recommendation,” Techni-
cal report, School of Engineering, UCSC, Tech. Rep., 2010.

[8] A. P. Singh and G. J. Gordon, “Relational learning via collective
matrix factorization,” in Proceedings of the 14th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining. ACM,
2008, pp. 650–658.

[9] W. Pan and Q. Yang, “Transfer learning in heterogeneous collabo-
rative filtering domains,” Artificial intelligence, vol. 197, pp. 39–55,
2013.

[10] B. Li, Q. Yang, and X. Xue, “Can movies and books collaborate?
cross-domain collaborative filtering for sparsity reduction.” in
IJCAI, vol. 9, 2009, pp. 2052–2057.

[11] ——, “Transfer learning for collaborative filtering via a rating-
matrix generative model,” in Proceedings of the 26th Annual Inter-
national Conference on Machine Learning. ACM, 2009, pp. 617–624.

[12] S. Gao, H. Luo, D. Chen, S. Li, P. Gallinari, and J. Guo, “Cross-
domain recommendation via cluster-level latent factor model,” in
Machine Learning and Knowledge Discovery in Databases. Springer,
2013, pp. 161–176.

[13] O. Moreno, B. Shapira, L. Rokach, and G. Shani, “Talmud: transfer
learning for multiple domains,” in Proceedings of the 21st ACM
international conference on Information and knowledge management.
ACM, 2012, pp. 425–434.

[14] P. Cremonesi and M. Quadrana, “Cross-domain recommendations
without overlapping data: myth or reality?” in Proceedings of the 8th
ACM Conference on Recommender systems. ACM, 2014, pp. 297–300.

[15] C.-H. Lee, Y.-H. Kim, and P.-K. Rhee, “Web personalization expert
with combining collaborative filtering and association rule mining
technique,” Expert Systems with Applications, vol. 21, no. 3, pp. 131–
137, 2001.

[16] S. Wang, J. Tang, Y. Wang, and H. Liu, “Exploring implicit hierar-
chical structures for recommender systems,” in Proceedings of 24th
International Joint Conference on Artificial Intelligence, 2015.

[17] K. Lu, G. Zhang, R. Li, S. Zhang, and B. Wang, “Exploiting and
exploring hierarchical structure in music recommendation,” in
Information Retrieval Technology. Springer, 2012, pp. 211–225.

[18] G. Trigeorgis, K. Bousmalis, S. Zafeiriou, and B. Schuller, “A
deep semi-nmf model for learning hidden representations,” in
Proceedings of the 31st International Conference on Machine Learning
(ICML-14), 2014, pp. 1692–1700.

[19] A. Mnih and R. Salakhutdinov, “Probabilistic matrix factoriza-
tion,” in Advances in neural information processing systems, 2007, pp.
1257–1264.

[20] Y. Koren, “Factorization meets the neighborhood: a multifaceted
collaborative filtering model,” in Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2008, pp. 426–434.

[21] S. Jiang, Z. Ding, and Y. Fu, “Deep low-rank sparse collective
factorization for cross-domain recommendation,” in Proceedings
of the 2017 ACM on Multimedia Conference, MM 2017, Mountain
View, CA, USA, October 23-27, 2017, 2017, pp. 163–171. [Online].
Available: http://doi.acm.org/10.1145/3123266.3123361

[22] F. Abel, E. Herder, G.-J. Houben, N. Henze, and D. Krause, “Cross-
system user modeling and personalization on the social web,”
User Modeling and User-Adapted Interaction, vol. 23, no. 2-3, pp.
169–209, 2013.

[23] B. Shapira, L. Rokach, and S. Freilikhman, “Facebook single and
cross domain data for recommendation systems,” User Modeling
and User-Adapted Interaction, vol. 23, no. 2-3, 2013.

[24] S. Berkovsky, T. Kuflik, and F. Ricci, “Mediation of user models for
enhanced personalization in recommender systems,” User Model-
ing and User-Adapted Interaction, vol. 18, no. 3, pp. 245–286, 2008.

[25] P. Cremonesi, A. Tripodi, and R. Turrin, “Cross-domain recom-
mender systems,” in 11th International Conference on Data Mining
Workshops. IEEE, 2011, pp. 496–503.

[26] A. Tiroshi, S. Berkovsky, M. A. Kaafar, T. Chen, and T. Kuflik,
“Cross social networks interests predictions based ongraph fea-
tures,” in Proceedings of the 7th ACM conference on Recommender
systems. ACM, 2013, pp. 319–322.



0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2894137, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[27] M. Enrich, M. Braunhofer, and F. Ricci, “Cold-start management
with cross-domain collaborative filtering and tags,” in E-Commerce
and Web Technologies, 2013.

[28] I. Fernández-Tobı́as and I. Cantador, “Exploiting social tags in ma-
trix factorization models for cross-domain collaborative filtering,”
in Proceedings of the 1st Workshop on New Trends in Content-based
Recommender Systems, Foster City, California, USA, 2014, pp. 34–41.

[29] L. Hu, J. Cao, G. Xu, L. Cao, Z. Gu, and C. Zhu, “Personal-
ized recommendation via cross-domain triadic factorization,” in
Proceedings of the 22nd international conference on World Wide Web.
International World Wide Web Conferences Steering Committee,
2013, pp. 595–606.

[30] W. Pan, E. W. Xiang, N. N. Liu, and Q. Yang, “Transfer learning
in collaborative filtering for sparsity reduction.” in AAAI, vol. 10,
2010, pp. 230–235.

[31] Y. Zhang, B. Cao, and D.-Y. Yeung, “Multi-domain collaborative
filtering,” arXiv preprint arXiv:1203.3535, 2012.

[32] B. Cao, N. N. Liu, and Q. Yang, “Transfer learning for collective
link prediction in multiple heterogenous domains,” in Proceedings
of the 27th International Conference on Machine Learning (ICML-10),
2010, pp. 159–166.

[33] Z. Ding, M. Shao, and Y. Fu, “Deep robust encoder through
locality preserving low-rank dictionary,” in European Conference on
Computer Vision. Springer, 2016, pp. 567–582.

[34] G. Liu, Z. Lin, and Y. Yu, “Robust subspace segmentation by
low-rank representation,” in Proceedings of the 27th international
conference on machine learning (ICML-10), 2010, pp. 663–670.

[35] Z. Ding, M. Shao, and Y. Fu, “Latent low-rank transfer subspace
learning for missing modality recognition,” in Twenty-Eighth AAAI
Conference on Artificial Intelligence, 2014, pp. 1192–1198.

[36] Z. Ding and Y. Fu, “Low-rank common subspace for multi-view
learning,” in IEEE International Conference on Data Mining. IEEE,
2014, pp. 110–119.

[37] Z. Wang, S. Chang, Y. Yang, D. Liu, and T. S. Huang, “Study-
ing very low resolution recognition using deep networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 4792–4800.

[38] S. Jiang, Y. Wu, and Y. Fu, “Deep bi-directional cross-triplet em-
bedding for cross-domain clothing retrieval,” in Proceedings of the
2016 ACM on Multimedia Conference. ACM, 2016, pp. 52–56.

[39] Y. Wu, J. Li, Y. Kong, and Y. Fu, “Deep convolutional neural net-
work with independent softmax for large scale face recognition,”
in Proceedings of the 2016 ACM on Multimedia Conference. ACM,
2016, pp. 1063–1067.

[40] S. Jiang, M. Shao, C. Jia, and Y. Fu, “Consensus style centralizing
auto-encoder for weak style classification.” in AAAI, 2016, pp.
1223–1229.

[41] M. Maleszka, B. Mianowska, and N. T. Nguyen, “A method
for collaborative recommendation using knowledge integration
tools and hierarchical structure of user profiles,” Knowledge-Based
Systems, vol. 47, pp. 1–13, 2013.

[42] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM Journal on Optimization,
vol. 20, no. 4, pp. 1956–1982, 2010.

[43] J. Yang, W. Yin, Y. Zhang, and Y. Wang, “A fast algorithm for edge-
preserving variational multichannel image restoration,” SIAM
Journal on Imaging Sciences, vol. 2, no. 2, pp. 569–592, 2009.

[44] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale
matrix factorization with distributed stochastic gradient descent,”
in Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2011, pp. 69–77.

[45] J. Wang, S. C. Hoi, P. Zhao, and Z.-Y. Liu, “Online multi-task
collaborative filtering for on-the-fly recommender systems,” in
Proceedings of the 7th ACM conference on Recommender systems.
ACM, 2013, pp. 237–244.

[46] W. Pan and Z. Ming, “Interaction-rich transfer learning for collabo-
rative filtering with heterogeneous user feedback,” IEEE Intelligent
Systems, vol. 29, no. 6, pp. 48–54, 2014.

[47] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Application of
dimensionality reduction in recommender system-a case study,”
DTIC Document, Tech. Rep., 2000.

[48] R. Keshavan, A. Montanari, and S. Oh, “Matrix completion from
noisy entries,” in Advances in Neural Information Processing Systems,
2009, pp. 952–960.

Shuhui Jiang received the B.S. and M.S. de-
grees in Xi’an Jiaotong University, Xi’an, China,
in 2007 and 2011, respectively. She is now pur-
suing her PHD degree in School of Electrical
and Computer Engineering, Northeastern Uni-
versity (Boston, USA). She was the recipient of
the Dean’s Fellowship of Northeastern University
from 2014. She is interested in machine learn-
ing, multimedia and computer vision. She has
served as the reviewers for IEEE journals: IEEE
Transactions on Neural Networks and Learning

Systems etc. She was a research intern with Adobe research lab, San
Jose, US, in summer 2016.

Zhengming Ding (S’14-M’18) received the
B.Eng. degree in information security and the
M.Eng. degree in computer software and the-
ory from University of Electronic Science and
Technology of China (UESTC), China, in 2010
and 2013, respectively. He received the Ph.D.
degree from the Department of Electrical and
Computer Engineering, Northeastern University,
USA in 2018. He is a faculty member affiliated
with Department of Computer, Information and
Technology, Indiana University-Purdue Univer-

sity Indianapolis since 2018. His research interests include machine
learning and computer vision. Specifically, he devotes himself to develop
scalable algorithms for challenging problems in transfer learning and
deep learning scenario. He received the National Institute of Justice
Fellowship during 2016-2018. He was the recipients of the best paper
award (SPIE 2016) and best paper candidate (ACM MM 2017). He is
currently an Associate Editor of the Journal of Electronic Imaging (JEI).
He is a member of IEEE.

Yun Fu (S’07-M’08-SM’11) received the B.Eng.
degree in information engineering and the
M.Eng. degree in pattern recognition and in-
telligence systems from Xi’an Jiaotong Univer-
sity, China, respectively, and the M.S. degree
in statistics and the Ph.D. degree in electrical
and computer engineering from the University of
Illinois at Urbana-Champaign, respectively. He
is an interdisciplinary faculty member affiliated
with College of Engineering and the College of
Computer and Information Science at Northeast-

ern University since 2012. His research interests are Machine Learn-
ing, Computational Intelligence, Big Data Mining, Computer Vision,
Pattern Recognition, and Cyber-Physical Systems. He has extensive
publications in leading journals, books/book chapters and international
conferences/workshops. He serves as associate editor, chairs, PC
member and reviewer of many top journals and international confer-
ences/workshops. He received seven Prestigious Young Investigator
Awards from NAE, ONR, ARO, IEEE, INNS, UIUC, Grainger Foundation;
nine Best Paper Awards from IEEE, IAPR, SPIE, SIAM; many major
Industrial Research Awards from Google, Samsung, and Adobe, etc.
He is currently an Associate Editor of the IEEE Transactions on Neural
Networks and Leaning Systems (TNNLS). He is fellow of IAPR, OSA
and SPIE, a Lifetime Distinguished Member of ACM, Lifetime Member
of AAAI and Institute of Mathematical Statistics, member of ACM Fu-
ture of Computing Academy, Global Young Academy, AAAS, INNS and
Beckman Graduate Fellow during 2007-2008.


