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Hierarchical Tracking by Reinforcement
Learning-Based Searching and
Coarse-to-Fine Verifying

Bineng Zhong™~, Bing Bai, Jun Li

Abstract— A class-agnostic tracker typically consists of three
key components, i.e., its motion model, its target appear-
ance model, and its updating strategy. However, most recent
top-performing trackers mainly focus on constructing compli-
cated appearance models and updating strategies, while using
comparatively simple and heuristic motion models that may
result in an inefficient search and degrade the tracking per-
formance. To address this issue, we propose a hierarchical
tracker that learns to move and track based on the combination
of data-driven search at the coarse level and coarse-to-fine
verification at the fine level. At the coarse level, a data-driven
motion model learned from deep recurrent reinforcement learn-
ing provides our tracker with coarse localization of an object.
By formulating motion search as an action-decision problem in
reinforcement learning, our tracker utilizes a recurrent convolu-
tional neural network-based deep Q-network to effectively learn
data-driven searching policies. The learned motion model can not
only significantly reduce the search space but also provide more
reliable interested regions for further verifying. At the fine level,
a kernelized correlation filter (KCF)-based appearance model is
adopted to densely yet efficiently verify a local region centered
on the predicted location from the motion model. Through use
of circulant matrices and fast Fourier transformation, a large
number of candidate samples in the local region can be effi-
ciently and effectively evaluated by the KCF-based appearance
model. Finally, a simple yet robust estimator is designed to
analyze possible tracking failure. The experiments on OTB50 and
OTB100 illustrate that our tracker achieves better performance
than the state-of-the-art trackers.

Index Terms— Visual tracking, motion model, reinforcement
learning, coarse-to-fine verification, correlation filter.

I. INTRODUCTION

ISUAL tracking is one of the fundamental compo-
nents in video understanding, and thus has various
applications in surveillance, robotics, and autonomous driving.
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Typically, there are three key components in a class-agnostic
tracker [1]-[6], i.e., its motion model, its target appearance
model, and its updating strategy. Given the initial states of an
object, a tracker firstly utilizes a motion model to search the
likely states of an object. Then, based on its target appearance
model, it calculates all candidate scores for the likely states,
and thus derives the optimal target state. Finally, the target
appearance model should be adaptively updated to capture
complex time-varying appearances caused by occlusion, scale
variations, non-rigid deformations, background clutters, and
similar distractors.

Over the past decades, there have been various attempts to
build a robust and real-time tracker from the three compo-
nents put forth above. Interestingly, despite the vast progress
driven by the OTBS50 [1], OTB100 [2], and VOT [3] chal-
lenges, most state-of-the-art trackers focus on constructing
more and more complicated appearance models to improve
their discriminative power, and model updating strategies to
alleviate the drifting problem. Representative trackers include
conventional tracking-by-detection based trackers [1]-[6], cor-
relation filter based trackers [7]-[17], and deep learning based
trackers [18]-[32]. However, they neglect the third key com-
ponent and use simple motion models which are brute-force,
heuristic, hand-engineered, and independent of the video con-
tent to search the interested regions, such as, exhaustive or
sliding windows based local search [1]-[6], mean shift based
gradient search [33], and particle filtering based sampling
search [34]. Consequently, the motion models may weaken
the effectiveness of an elaborate appearance model and an
updating strategy.

In this paper, inspired by how the human visual
perception [35], [36] employs a hierarchical attention mech-
anism to immediately discard irrelevant input and actively
focus on some fractions of interested regions, we propose a
hierarchical tracker by reinforcement learning based searching
and coarse-to-fine verifying. At the coarse level, a data-driven
motion model learned from a deep recurrent reinforcement
learning algorithm is used to estimate the translations and
scale changes of the object, while discarding the majority of
background. Some examples of the dynamic searching process
of our data-driven model are illustrated in Fig.1. In contrast to
brute-force or heuristic motion models, its goal is to leverage
knowledge from large collections of training episodes to learn
the policies on how objects are likely to move over time.
Consequently, it can choose the optimal actions to significantly
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Fig. 1. Our deep recurrent reinforcement learning based data-driven motion
model takes a sequence of actions to find the the translations and scale changes
of an object in successive frames. In each frame, our motion model iteratively
takes a candidate image patch centered at the previous estimated positions as
input, and generates the probabilities of each action as the output. In each
iteration, an optimal action is selected to move the target bounding box.

reduce the searching steps. At the fine level, we focus on
densely yet efficiently evaluating a local region centered on
the predicted location from the data-driven motion model.
Since there are a large number of candidate samples existing
in the local region, we use a kernelized correlation filter (KCF)
based appearance model to efficiently and effectively verify the
candidate samples by using circulant matrices and fast Fourier
transformation. Finally, based on peak-to-sidelobe ratio (PSR)
and median statistics, we design a simple yet robust estimator
to analyze possible tracking failure. To sum up, the main
contributions of this work are three-folds:

o We propose a robust hierarchical tracker that combines
reinforcement learning based search and coarse-to-fine
verification by naturally accentuating the advantages of
each.

e Our tracker learns to move by a deep recurrent rein-
forcement learning algorithm which incorporates long
short-term memory (LSTM) into a deep Q-network
to fully exploiting the long-range time dependencies
amongst states and actions. The learned motion model
cannot only significantly reduce the search space, but
also provide more reliable interested regions for further
verifying.

o We design a simple yet robust estimator to provide
supervision to an analysis of possible tracking failure and
the adaption of a KCF based appearance model.

The rest of the paper is organized as follows: a brief
overview of the related work is given in section II. Section III
introduces our deep recurrent reinforcement learning based
data-driven motion model. In section IV, our hierarchical
tracker is described in detail. The experimental results are
provided In section V. Finally, the paper is concluded in
section VI.

II. RELATED WORK

There is a huge amount of work on visual tracking which
has been surveyed in [1]-[6] and [37]. This section provides
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a brief overview of some of the related trackers that are based
on correlation filters and deep reinforcement learning.

A. Trackers Based on Correlation Filters

The trackers based on correlation filters (CF) [38] mainly
focus on constructing a robust yet efficient appearance model
by using the fast Fourier transform and circulant matrix.
Since the pioneering work using the Minimum Output
Sum of Squared Error (MOSSE) filter [7], the tracking
performance of CF-based trackers has been persistently
improved via a variety of extensions. Representative
CF-based trackers include kernelized correlation filters [8],
multi-channel features [8], [9], adaptive scale estimation [10],
fusion of complementary learners [11], re-detection [13],
long-term memory [14], multiple kernels [15], part-based
representation [16] spatial regularization [39], [40], support
vector machine [41], sparse coding [42], context and
background-aware learning [12], [43]. However, one of the
main limitations is that the above trackers use hand-crafted
features to construct a shallow CF based appearance model.
Consequently, they may fail in a complex scene.

Recently, to effectively use hierarchical and deep feature
representations, a number of authors have successfully com-
bined convolutional neural networks (CNNs) and CF for
robust tracking. The trackers integrating CNN and CF can
be roughly categorized into two classes: (1) the CF based
trackers using pre-trained CNNs, and (2) the CF based trackers
using end-to-end training with CNNs. The CF based trackers
using pre-trained CNNs typically build CF based appear-
ance models upon pre-trained CNN features from large-scale
offline training data. Representative trackers include hier-
archical CNN features [18], adaptive Hedge algorithm [19],
DeepSRDCF [20], continuous convolution [44], multi-task
correlation particle filter [17], and parallel tracking and
verifying [24]. However, most of their trackers rely on the
CNN features that are either empirically chosen or inde-
pendently trained for a different task (e.g., image classi-
fication). In contrast, some authors explore the CF based
trackers using end-to-end training with CNNs. Representative
trackers include convolutional residual learning [21], end-to-
end trained network for correlation filter (CFNet) [22], dis-
criminant correlation filter based network (DCFNet) [23], and
dynamic siamese network [45].

Instead of using CF, there are trackers that solely rely
on CNNs. In [25] and [26], the CNN features are adap-
tively selected and sequentially updated to capture the tar-
get appearance variations at test time, respectively. In [27]
and [28], based on the pre-trained CNN features, a dual
network and a per-object classifier are online constructed for
visual tracking, respectively. However, online updating the
pre-trained CNN features is not only time-consuming, but also
deteriorates tracking performance due to lack of online train-
ing data. To improve the processing speed, Held et al. [29],
Bertinetto et al. [30], Gordon et al. [31], and Tao et al. [32]
utilize Siamese networks for visual tracking, in which a
generic tracker is constructed by using solely large-scale
off-line training data and online update is not required.
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However, the above trackers mainly focus on construct a dis-
criminative and robust target appearance model. Consequently,
they may neglect the importance of motion models, and thus
use brute-force and heuristic motion models to provide the
interested regions.

B. Trackers Based on Deep Reinforcement Learning

The essence of reinforcement learning (RL) [46] is learning
good policies through trial-and-error interaction. Recently,
with the rise of deep learning, deep reinforcement learning
(DRL) [47] has gained considerable attention and been suc-
cessfully applied to a variety of applications, e.g. visual seman-
tic planning [48], object detection [49], the games of Atari and
Go [50]-[52] etc. Inspired by the success of DRL, several
works have viewed visual tracking as a decision-making
process to address the three key components of a tracker from
different aspects.

The first family of DRL based trackers focus on constructing
the target appearance models. Choi ef al. [53] use a DRL
algorithm for constructing a template based appearance model,
in which suitable templates are adaptively selected for tracking
a given frame. Zhang et al. [54] focus on constructing a
target appearance model by using a recurrent convolutional
neural network (R-CNN) which can encode both spatial and
temporal constraints. To address the real-time requirement
without losing accuracy in a deep learning based tracker,
Huang et al. [55] use a decision-making process to formulate
the adaptive tracking problem, in which DRL is used to
learn an early-stopping decision policy for speeding up a
siamese network based tracker [30]. Although the proposed
early-stopping tracker drastically reduce the computation cost,
the early layers in the feature cascade still have to be applied
exhaustively over all image regions. In other words, they
still adopt a brute-force motion model to provide candidate
regions. In [56], visual tracking is formulated as a partially
observable decision-making process, in which a policy is
learned from interactive streaming videos to decide where to
look in an incoming frame, when to update a target appearance
model, and when to re-initialize it. Though such decisions
are learned with DRL, they ignore the long-range temporal
information. Moreover, their approach requires a complex
streaming interactive training mechanism.

The most similar work to ours is the work of Yun et al. [57].
They propose a tracker which actively searches an object
via a sequence of actions controlled by an Action-Decision
network (ADNet). The ADNet is not only offline pre-trained,
but also updated in an online manner which significantly
increases the calculational cost during the tracking process.
In contrast, our data-driven motion model can take full advan-
tage of the long-range temporal information by incorporating
LSTM into our deep current reinforcement learning algo-
rithm. Moreover, our data-driven motion model is not online
updated, which significantly reduces the calculational cost.
More importantly, our hierarchical tracker can take full advan-
tage of the reinforcement learning based search and coarse-
to-fine verification by naturally accentuating the advantages
of each.
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III. OUR DATA-DRIVEN MOTION MODEL

In this section, we firstly formulate a motion prediction
problem in visual tracking as a deep reinforcement learning
problem. Then, we design our recurrent CNN based deep
Q-network for learning policies. Next, we describe how to
train the model in details.

A. Problem Formulation and Learning Setting

As shown in Fig.l, our goal is to find a sequence of
actions that progressively moves a tracker from its current state
(i.e., locations and scales) to localize a target object at each
frame. We develop a DRL model that takes as input a candidate
image patch centered at the estimated positions of the current
state. The output of the DRL model is the probabilities of
each action, such as horizontal moves (e.g., left or right),
vertical moves (e.g., up or down), scale changes (e.g., bigger,
smaller, or invariance), and stop. According to the predicted
action, the tracker is moved to a newly state. Then, the tracker
decides how to choose next action from the newly state. The
searching procedure iteratively continues until the target object
is localized.

More specifically, we formulate the problem of motion
prediction as a Markov decision process (MDP) in a general
RL setting, which can be specified by several key components:
action space A, state space S, and a reward function R. Let
fef{l,....,F} and t € {l,...,Tf } denote the number
of frames in a video and the number of iterated time steps
at the f" frame, respectively. Given an observation image
Iy and current state s, r € S at ™" time step, an agent
performs an action a,, y € A, which is determined by a policy
function 7 : § — A. The action a; s can be chosen via a
deterministic or stochastic manner. After taking the action a,, 7,
the agent observes the next state s;11 7, and thus receives
a scalar reward r,  reflecting how well the next state (i.e.,
the estimated bounding box) covers the target object. The
iterative process continues until the agent reaches a terminal
state. By maximizing the discounted sum of expected future
rewards, the agent learns the best policy # to take actions,
and thus can effectively search the target object in an efficient
manner. In the following sections, we omit the subscript f for
more clear descriptions on the MDP at each frame.

1) Action Space: As shown in Fig.1, we consider eight types
of actions in our action set A: two horizontal moves (e.g., left
or right), two vertical moves (e.g., up or down), three scale
changes (e.g., bigger, smaller, or invariance), and one stopping
action to terminate search. Each action is represented by an 8-
dimensional one-hot vector, where the value corresponding to
the taken action is set as 1, and other ones are zero. Inspired
by Caicedo and Lazebnik [49], any of these actions makes
a combined horizontal, vertical and diagonal change to the
bounding box by a factor of 0.2 relative to its current size.
The aspect ratio of the target object is maintained when the
scaling actions are performed.

2) State Space: At 1" time step, the state s, € R224*224X3 ig
an observed image patch, which is associated with a bounding
box and localized by the coordinates of its upper left and lower
right corners: o, € %t*. Based on o;, the observed image patch
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Fig. 2. The architecture of our deep recurrent reinforcement learning based deep Q-network for motion prediction. As shown in the figure, the tracker decides

which action is to choose and controls the tracker to move.

is cropped, and then resized to match the input size of our
DRL network (i.e., 224 x 224)

3) Reward Function: The reward function R reflects the
tracking accuracy improvement by taking an action a; under a
state s;. In this paper, we adopt a simple yet effective function
to measure the accuracy, i.e., the Intersection-over-Union (IoU)
between the predicted bounding box o, and ground-truth
bounding box g;: ToU = area(o; N g;)/area(o; U g;). Then,
the reward function R is defined by the followings:

1 I
R:[-I-OU oU >p o

—IoU IoU < p,

where p is an IoU threshold. The '+ or '—’ ToU reward
implicitly encourages a better action or penalizes a large
number of actions by avoiding the agent being trapped in the
endless refinement of a single step and promoting the search
for new directions.

B. Our DRL Model for Learning Policy

In this subsection, we describe how to learn the optimal
policy function = S — A to select actions via DRL.
Typically, based on Bellman equations, a state-action value
function Q7 (s, ay) is recursively defined to return an expected
future reward for each action a;:

0" (sr,a1) = R(s;) +y maxg, . O” (St41, ar+1), (2)

where Q7 (s;41, ar+1) and y € [0, 1] are the future reward and
the discount factor, respectively. In the traditional RL methods,
the optimal state-action value function Q" can be iteratively
learned via Q-learning and the optimal action to take can be
estimated from the followings:

af = argmax, Q" (s¢, a). 3)

In this paper, based on deep Q-learning [50], we design
a new recurrent CNN based deep Q-network (DQN) as a
non-linear function approximator for 7. The detailed structure
of our recurrent CNN based DQN is shown in Fig.2. As shown
in Fig.2, the policy 7 is learned by our recurrent CNN
based DQN, which takes the current state representation s,
as input and generates the probabilities of each action a;

as the output. The network consists of four convolutional
layers, four fully- connected layers, and one LSTM layer. Each
convolutional layer is followed by a max-pooling layer. The
first two fully-connected layers are followed by ReLU and BN
regularization. The last two fully-connected layers predict the
probabilities of each action and confidence score of the current
state, respectively. The filter sizes in the four convolutional
layers are set as 7 %7, 5% 5, 3 %3, and 3 * 3, respectively.
Meanwhile, the strides in the four convolutional layers are set
as 2. Please note that, we incorporate the LSTM layer to fully
capture the long-range history information after the first fully
connected layer. Such design enables long-range knowledge
transfer across states and actions, and therefore allows the
model to learn to remember, forget, and ignore information
about the appearance and motion of an object.

C. Training Our DRL Model

To effectively pre-train our recurrent CNN based DQN,
we collect training episodes from the VOT-2016 data set [3]
which has 60 short video sequences containing various objects
in challenging scenes. Please note that the video sequences
overlapping with OTBS50 [1] and OTB100 [2] are excluded in
the training episodes. There are 10,000 epochs in our training
setting and each epoch contains 100 episodes. Each episode
is a randomly sampled video clip with length of 200 from
the VOT-2016 data set. In this paper, we adopt a variant
of policy-based RL method to train our model [58] since it
has better convergence properties and capability of learning
stochastic policies.

The parameters 6 of our recurrent CNN based DQN are
randomly initialized. At an iterated training stage, a state
representation s; from the current frame is firstly fed into our
recurrent CNN based DQN. Then, our recurrent CNN based
DQN calculates the probabilities p(a|s;; @) of each action.
Furthermore, we adopt a € — greedy strategy to choose the
current action via the following equation:

1 —¢

* [a, = argmaxqp(als:; 0) (4)

a, =
t . .
Random choose an action in (A —a;) €.

The optimal action estimated by our model is selected by
probability 1 — €, while one of the resting actions is selected
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by probability €. This could make all the actions have an
opportunity to be chosen. Consequently, there is a different
path to get the optimal policy in each iteration. Based on
the selected action, the newly positions and scales of the
target are estimated. Meanwhile, the corresponding reward r;
is computed using the Eq.(1). This tracking simulation process
is iterated until the end of the training episode. Finally, by
maximizing the discounted sum of expected future rewards,
the parameters # of our recurrent CNN based DQN are
updated by a stochastic gradient descent algorithm [58] as the
followings,
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IV. OUR HIERARCHICAL TRACKER

In this section, we present our hierarchical tracker based
on the combination of data-driven search and coarse-to-fine
verification. The basic idea is to firstly employ a data-driven
motion model to immediately discard irrelevant backgrounds,
and then densely yet efficiently evaluate on some fractions
of interested regions by a KCF based appearance model.
The workflow of our tracker is illustrated in Fig.3. In the
followings, we will briefly explain our framework. Then,
we describe the details for each component in our framework.

More specifically, our hierarchical tracker works as follows:
given a new frame, a context image patch centered on the
previous target state is firstly cropped. Then, based on the
image patch and our data-driven motion model, a coarse state
of the target object is estimated by taking a sequence of actions
to find the translation and scale changes of an object in current
frame. Furthermore, through using of circulant matrices and
fast Fourier transformation, a KCF based appearance model
is used to densely yet efficiently verify a large number of
candidate samples in a local region centered on the coarse
localization of the object. Based on the confidence map
generated by the KCF based appearance model, a simple
yet robust estimator is used to analyze possible tracking
failure. If the tracking failure is not detected by the estimator,
the optimal target state is determined by finding the maximum
position in the response map. Meanwhile, the KCF based
target appearance model is updated to effectively capture target
appearance changes. Otherwise, a re-detection mechanism is
performed to search the missing object. The tracking process
is repeated until the end of the video.
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A. A KCF Based Appearance Model

We choose the HCF tracker [18] as a basic appearance
model of our tracker. To simultaneously use semantic infor-
mation and low-level details for constructing an appearance
model, HCF [18] firstly apply KCF [8] to each convolutional
layer from a pre-trained VGG network. Then, a coarse-to-fine
searching schema is used to fuse the three KCF response maps.

In the standard KCF [8], the goal is to find the classifier
g8(z) = (w, ®(z)) trained on the feature ®D(x,, ,) of each
training image patch x, , and the expected response y. ,
which is a Gaussian function peaked at the center. The desired
filter @ can be obtained by optimizing the following Ridge
regression loss function:

min D (® (), @) = ymn) + Alol, ©)
m,n

where ®@(x) is the mapping to a kernel space, and 4 > 0
is the regularization parameter which controls overfitting and
simplifies the model. After a nonlinear transform, the classifier
can be denoted by other form g(z) = Zmn amn K (Xm o, 2),
where K (-,-) is a kernel function and a,, , is the variables
under optimization. The solution is derived as:

@ = (kM 4 )71y, ©)

where * denotes the discrete Fourier transform, KFLIRLL s the
first row of the kernel matrix K = C(k*.1*1.1), and C(-) is a
circulant matrix.

During the tracking phase, we firstly crop a search patch z
in the incoming frame. Then, the translation can be estimated
by searching the maximum value of the correlation response

map g(2):
@) =G6"¢@k)=6"k"0a), (8)

where X denotes the current target appearance. Given the
newly state of the target object, the KCF based appearance
model can be adaptively updated as follows if necessary:

a' =1 —ma"+na, 9)

where 7 is a learning rate. Please refer to [8] and [18] for
more details.

B. A Simple Yet Robust Estimator for Failure Detection

To effectively capture complicated appearance variations
while activating a re-detection mechanism after occlusion, we
propose a simple yet robust estimator for tracking failure
detection. Specifically, we forecast the existence of tracking
failure based on the correlation response maps. Firstly, given
the KCF response map ¢; at time ¢, we use a peak absolute
value v(c;) and the peak-to-sidelobe ratio (PSR) [7] p(c;) to
jointly measure its tracking confidence:

i =v(cr) - pley).

Then, we calculate the median ;" of {,[)’i}ﬁ;tN over the recent
N confidently tracked frames. Finally, our estimator is defined
as the ratio between ;" and f;:

E = " /Br.

(10)

(1)
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Fig. 4. The curve of the proposed estimator E for the Jogging sequence.
The values above a predefined threshold indicate the possible tracking failure
caused by occlusion or dramatic appearance variations.

If the ratio E is large than a threshold 7, our tracker is consid-
ered to fail in current frame and a corresponding re-detection
mechanism is activated. In Fig.4, it can be seen that the
proposed estimator E is an efficient confidence metric. The
value of the proposed estimator £ becomes large when a target
object is occluded.

C. A Re-Detection Mechanism

A re-detection mechanism is activated to search the missed
target object once the tracking failure is detected. The main
idea is to use our data-driven motion model as a generic yet
effective detector which is pre-trained from the offline training
episodes. This allows our tracker to not only limit the drift-
ing problem, but also keep adaptive to appearance changes.
Specifically, we firstly generate a set of random samples with
a Normal distribution whose mean value is the predicted
position of the KCF based appearance model. Then, we use
our deep recurrent reinforcement learning based data-driven
motion model to calculate the confidence scores of the random
samples. Finally, a sample with the maximum confidence score
is selected to be the re-detected target position.

V. EXPERIMENTS

In this section, we firstly present the experimental settings.
Secondly, we compare our hierarchical tracker with other
trackers on OTB50 [1] and OTB100 [2], respectively. More-
over, we perform an ablation study on several components
of our hierarchical tracker. Finally, we evaluate how the
parameter variations affect our tracker.

A. The Experimental Settings

We have implemented our hierarchical tracker in Tensorflow
on a computer with a GTX-1060 GPU. The running speed of
our hierarchical tracker is 6.3 fps. Empirically, the parameters
of the IoU threshold p, discount factor y, and € are set to 0.5,
0.95 and 0.01, respectively. For the KCF based appearance
model, we use the same parameters as the authors have given
in their paper [18] for all of the experiments. The learning
rate 7 in the KCF based appearance model is set to 0.01.
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TABLE I
THE PARAMETER VALUES OF OUR HIERARCHICAL TRACKER

P 2l € T n
0.5 ] 095 | 001 | 26 | 0.01

To train our DRL model, the number of epochs is set to 30.
The learning rate in training DRL model is initially set to
0.001, while its decay is set to 0.1 times every 10 epochs.
For the re-detection, the threshold ¢ for the ratio E is set to
2.6, and we draw 128 random samples centered around the
predicted position of the KCF based appearance model. The
ratio of the frames activating the re-detection mechanism to
the all frames is around 7.6%. The corresponding parameters
are shown in TABLE L.

Datasets: The OTBS50 [1] data set contains 50 image
sequences which are annotated with eleven attributes, includ-
ing background clutter, scale variation, pose change, partial
occlusion and so on. The OTB100 [2] data set has 100 image
sequences and is the extension of the OTB50. Both OTB50 and
OTB100 adopt precision and success metrics to evaluate
tracking performances, i.e., center location error and bound-
ing box overlap ratio. Specifically, the precision metrics are
measured as the center location errors between ground-truth
bounding boxes and predicted ones. In the precision plots, the
x-axis denotes the distance thresholds on center location error,
while the y-axis denotes the percentages of correctly predicted
frames per threshold. The trackers are typically ranked by the
precision under a distance threshold of 20 pixels. On the other
hand, the success metrics measure the IoU of ground-truth
bounding boxes and predicted ones. In the success plots,
the x-axis denotes the overlapping thresholds, while the y-axis
denotes the percentages of correctly predicted frames per
threshold. The area under the curve (AUC) is used to rank
the trackers.

B. Comparative Validation on OTB50 and OTB100

1) Quantitative Results: Based on the evaluation protocol of
the OTB50 and OTB100, we compare our hierarchical tracker
with fifteen state-of-the-art trackers which can be roughly
categorized into three types: (I) The KCF based trackers
without deep features, e.g., spatially regularized discriminative
correlation filter with decontamination (SRDCFdecon) [40],
channel and spatial reliability based discriminative cor-
relation filter (CSRDCF) [9], kernelized correlation filter
(KCF) [8], and sum of template and pixel-wise learners
(Staple) [11]; (II) The deep learning based trackers, e.g.,
convolutional residual learning based tracker (CREST) [21],
hierarchical convolutional feature based tracker (HCF) [18],
hedged deep tracker (HDT) [19], fully convolutional net-
work based tracker (FCNT) [25], fully-convolutional siamese
network based tracker (SiamFC) [30], Multi-task correla-
tion particle filter based tracker (MCPF) [17], and spatially
regularized discriminative correlation filters with Convolu-
tional features (DeepSRDCF) [20]; (III) The reinforcement
learning based trackers, e.g., action-decision network based
tracker (ADNet) [57], deep reinforcement learning based
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TABLE II

THE QUANTITATIVE COMPARISON RESULTS ON OTB50 [1] OBTAINED BY
OUR HIERARCHICAL TRACKER AND OTHER REINFORCEMENT
LEARNING BASED TRACKERS

Tracker AUC | Precision | Speed (fps) Device
DRLT [54] | 0.543 0.664 45 GTX 1080
RDT [53] 0.654 — 43 GTX TITAN X
EAST [55] 0.638 —_— 23 GPU Unkonwn
ADNet [57] | 0.659 0.903 2.9 GTX TITAN X

Ours 0.681 0.921 6.3 GTX 1060

tracker (DRLT) [54], reinforced decision making based tracker
(RDT) [53], and early-stopping tracker (EAST) [55].

Fig.5 shows the precision and success plots on OTB50 and
OTB100. Please note that there are some different compared
trackers in OTB50 and OTB100 due to the raw results of
some trackers are unavailable for both OTB50 and OTB100.
Compared with HCF [18] that only uses the basic KFC based
appearance model, we observe improvements of +3% and
+7.6% in the precision and AUC on OTBS50, respectively.
Meanwhile, we also observe improvements of +5.7% and
4+9.1% in the precision and AUC on OTB100, respectively.
These results indicate that our learned data-driven motion
model can provide more reliable interested regions for coarse-
to-fine verifying using the basic KFC based appearance model.
Compared with ADNet [57] that only uses reinforcement
learning for motion prediction, our hierarchical tracker outper-
forms ADNet by 1.8% and 2.2% in the precision and AUC
on OTB50, respectively. On OTB100, our hierarchical tracker
achieves 89.4% and 65.1% in the precision and AUC, respec-
tively. ADNet [57] achieves 88.1% and 64.6% in the precision
and AUC on OTB100, respectively. HCF [18] achieves 83.7%
and 56.0% in the precision and AUC on OTB100, respec-
tively. Compared to the results of ADNet [57] and HCF [18],
we also observe significant improvements on OTB100. These
results are consistent with our expectation that reinforcement
learning based search and coarse-to-fine verification can be
effectively combined in a hierarchical manner by naturally
accentuating the advantages of each. Compared to other
top-performing trackers with deep features (e.g., CREST [21],
MCEPF [17], and DeepSRDCF [20]), our hierarchical tracker
achieves promising results. The reason may be these trackers
mainly focus on constructing complicated appearance models
with, while use relatively simple motion models to search the
interested regions.

In Table II, we additionally compare with other four
reinforcement learning based trackers (e.g., DRLT [54],
RDT [53], EAST [55], and ADNet [57].) according to the
tracking results reported in their papers. Our tracker outper-
forms these trackers because they either focus on constructing
appearance models or motion model. The robustness of our
tracker lies in the systematically fusion of three key com-
ponents (i.e., a reinforcement learning based motion model,
a KCF based target appearance model, and an estimator based
updating strategy) in a hierarchical manner.

2) Attribute-Based Evaluation: Although our hierarchical
tracker achieves promising tracking performance in most
scenarios, we further analyze its performance under eleven
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Fig. 5. The precision and success plots on OTB50 [1] and OTB100 [2] using
one-pass evaluation (OPE).

attributes annotated in OTB50 [1]. We only show the results on
six attributions in Fig.6 due to the space limitation. As shown
in Fig.6, our hierarchical tracker is good at handling most
attributes. On the attribute of motion blur, Our tracker and
ADNet [57] achieve the first and second best performance,
respectively. The reason is that the motion model is explic-
itly constructed by reinforcement learning in the two track-
ers. On the attribute of occlusion, we observe improvement
of 2.3%, 3.4%, and 5.2% in the precision compared with
CREST [21], HCF [18], ADNet [57], respectively. The benefit
of our tracker comes from the robust estimator designed to
analyze possible tracking failure.

3) Qualitative Results: Fig.7 shows the qualitative compar-
ison results on six challenging sequences (i.e., motorrolling,
walking2, skiing, lemming, ironman, and singer2) which con-
tain fast motion, occlusion, illumination changes, pose and
scale variations. For example, the lemming sequence on the
forth row contains occlusion. The serious occlusion results
in the failure of most compared trackers. In contrast, our
hierarchical tracker can accurately locate the target object
due to a re-detection mechanism is activated to search the
missed target object once the tracking failure is detected.
Moreover, the ironman sequence on the firth row suffers from
significant illumination variations and the abrupt movement of
a target object. Our tracker can satisfactorily handle such large
sudden changes due to it effectively adopt a coarse-to-fine
verification. According to the overall results, our hierarchical
tracker exhibits robustness in challenging sequences which
contains fast motion, occlusion, and scale variation.

C. Diagnostic Analyses of Our DRRL Tracker

In this subsection, we provide an ablation study on our
hierarchical tracker. Firstly, we show how much the specific
algorithmic components contribute to the overall tracking
performance. Secondly, we investigate the effectiveness of
sequential actions learned by our hierarchical tracker.
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Fig. 6. The precision plots for six different tracking attributes: motion blur,
background clutter, scale variation, occlusion, in-plane rotation, and out-of-
view. Our hierarchical tracker shows better performance.

Fig. 7.

Qualitative comparison on six image sequences from OTBS50 [1],
i.e., motorrolling, walking2, skiing, lemming, ironman, and singer2.

1) The  Contributions  From  Specific — Algorithmic
Components: There are several important components
in our hierarchical tracker, i.e., a deep recurrent reinforcement
learning (DRL) based motion model with LSTM (denoted
as DRL+LSTM), an HCF based appearance model (denoted
as HCF), and a re-detection mechanism (denoted as
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Fig. 8. The precision and success plots on OTB50 [1] for different variants
of our hierarchical tracker.

Re-detection). To gauge their contributions to the proposed
hierarchical tracker, we evaluate six variants of our hierarchical
tracker by gradually removing each component and validate
their performance on OTB50. The first degraded tracker is
denoted as DRL+LSTM+HCE, in which the Re-detection is
removed from our hierarchical tracker. The second degraded
tracker is denoted as DRL+LSTM, in which both the HCF
and Re-detection are removed from our hierarchical tracker.
The third degraded tracker is denoted as DRL, in which
the LSTM, HCF and Re-detection are removed from our
hierarchical tracker. The fourth degraded tracker is denoted as
HCF+Re-detection, in which the DRL4+LSTM are removed
from our hierarchical tracker. The fifth and sixth degraded
tracker is composed of DRL+HCF and HCF, respectively.
As shown in Fig.8, the tracking performance gradually
decreases when we remove the Re-detection, HCF, and
LSTM from our tracker step by step. In addition, one major
advantage of our hierarchical tracker is the ability to address
the long-range information aggregation by incorporating
LSTM in a deep reinforcement learning based motion model.
According to Fig.8, the degraded trackers without LSTM is
worse than the trackers with LSTM. In other words, DRL
is worse than DRL+LSTM while DRL+HCF is worse than
DRLALSTM+HCF. The compared results clearly verify the
advantage that the LSTM make the most contributions to our
tracker. This is because that our tracker can effectively use
LSTM to remember and utilize the historical information to
encode the motion model. Finally, our tracker is better than
the degraded trackers (i.e., HCF and HCF+Re-detection)
without the data-driven search at the coarse level. This clearly
verifies the advantage of coarse-to-fine verification.

2) The Effectiveness of Sequential Actions: In this sub-
section, we show how the sequential actions learned by
our hierarchical tracker are effectively used to improve the
tracking performance. In Fig.9, we visualize some represen-
tative actions and their probabilities that are provided by
our tracker from the carScale sequence. As expected, though
the motion variations are challenging, we can predict the
most likely actions. Moreover, this case study also shows our
tracker is robust to scale variations. Furthermore, compared
with brute-force or heuristic searching strategies (e.g., sliding
window methods), most of the frames requires only 3 or
4 actions to pursue a target object in each frame. It shows that
our tracker achieves fast and coarse localization of a target
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Fig. 9. Illustration of the action selection process on the carScale sequence

from OTBS50 [1]. Red indicates the highest probability of the optimal action
in one iteration.

TABLE III

PRECISION UNDER DIFFERENT PARAMETER VALUES FOR THE OTBS50.
WHILE ONE PARAMETER IS VARIED, OTHER PARAMETERS
ARE KEPT FIXED AT THE VALUES GIVEN IN TABLE I

p 0.3 0.4 0.5 0.6 0.7
Precisionf  0.871 0.898 0.921 0.909 0.882

¥y 0.940 0.945 0.950 0.955 0.960
Precision?  0.912 0.917 0.921 0.918 0.910

T 2.0 2.5 2.6 2.7 2.8
Precision?  0.883 0.916 0.921 0.919 0.899

object. The percentage of the frames requiring more than five
actions is only around 3.6%. In conclusion, our tracker can
learn an efficient data-driven motion model to improve the
performance.

D. Sensitivity to Parameters

Due to the proposed hierarchical tracker contains some para-
meters, there naturally arises the following questions: (1) how
to choose the parameters; and (2) how the small changes of the
parameter values will affect the performance of the proposed
hierarchical tracker. To answer the questions, we check the
precision for different parameter settings. We only change
one parameter at a time due to relatively many combinations.
Table III shows the experimental results from OTBS50. It is
obvious that, for all parameters, a good value can be chosen
across a wide range of values. This property also show that
a good set of parameter values is easily obtained. Moreover,
the experiments have illustrated that the good parameters for
an image sequence often work well also for other image
sequences (see Fig.5, Fig.6 and Fig.7).

VI. CONCLUSION

In this paper, we have proposed a hierarchical tracker
that learns to move and track based on the combination of
data-driven search and coarse-to-fine verification. The main
contributions are made by the work: (1) We have developed
a novel solution which integrates motion, appearance, and
re-detection in a hierarchical fashion by naturally accentuating
the advantages of each; (2) By incorporating LSTM into
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a deep recurrent reinforcement learning algorithm, we have
developed a fully trainable data-driven motion model that
cannot only significantly reduce the search space, but also
provide more reliable interested regions for further verifying;
(3) We have designed a simple yet robust estimator to analyze
possible tracking failure and uncertainty. Encouraging results
on OTB50 and OTB100 demonstrate the effectiveness and
efficiency of our hierarchical tracker.
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