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Deep Transfer Low-Rank Coding
for Cross-Domain Learning

Zhengming Ding , Member, IEEE, and Yun Fu, Senior Member, IEEE

Abstract— Transfer learning has attracted great attention to
facilitate the sparsely labeled or unlabeled target learning by
leveraging previously well-established source domain through
knowledge transfer. Recent activities on transfer learning attempt
to build deep architectures to better fight off cross-domain diver-
gences by extracting more effective features. However, its gener-
alizability would decrease greatly due to the domain mismatch
enlarges, particularly at the top layers. In this paper, we develop a
novel deep transfer low-rank coding based on deep convolutional
neural networks, where we investigate multilayer low-rank coding
at the top task-specific layers. Specifically, multilayer common
dictionaries shared across two domains are obtained to bridge
the domain gap such that more enriched domain-invariant
knowledge can be captured through a layerwise fashion. With
rank minimization on the new codings, our model manages to
preserve the global structures across source and target, and
thus, similar samples of two domains tend to gather together
for effective knowledge transfer. Furthermore, domain/classwise
adaption terms are integrated to guide the effective coding
optimization in a semisupervised manner, so the marginal and
conditional disparities of two domains will be alleviated. Exper-
imental results on three visual domain adaptation benchmarks
verify the effectiveness of our proposed approach on boosting the
recognition performance for the target domain, by comparing it
with other state-of-the-art deep transfer learning.

Index Terms— Deep learning, low-rank coding, transfer
learning.

I. INTRODUCTION

IN REALITY, there is always a situation that we can be
accessible to the abundant unlabeled data while sparsely

to labeled or no labeled data in the target domain. How-
ever, it is very time consuming and expensive to manually
annotate the data. Transfer learning [1], [2] has achieved
appealing performance in fighting off such a challenge through
knowledge adaptation from an auxiliary well-labeled source
domain, but with a different distribution [3]–[16]. Recently,
hundreds of transfer learning techniques have been proposed,
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e.g., domain-invariant feature learning and classifier adapta-
tion. Specifically, it is the most popular strategy to extract
new valid features for the data from two domains with domain
mismatch mitigated. Along this line, transfer sparse coding
and low-rank coding manage to seek effective and domain-
invariant representations for two domains to solve the domain
shift [17]–[19]. Transfer subspace learning is also widely
adopted to both handle the curse of dimensionality and domain
mismatch [20]–[22]. Moreover, dictionary learning is one
promising technique to extract effective representations from
the original data, which has been widely adopted in transfer
learning [3], [17], [23], [24]. However, the current dictionary-
based transfer learning either builds a common dictionary
in a latent space [3], [17], [25] or constructs a series of
dictionaries [23] to bridge the source and target domains.
They all deploy shallow structures, which are difficult to
find common information across two domains, since they are
unable to uncover the complex yet rich knowledge behind the
data.

Recent research efforts have revealed that deep structure
learning is able to generate more domain-invariant features
for knowledge transfer with promising performance on exist-
ing cross-domain benchmarks [26]–[28]. Specifically, deep
structure learning manages to unfold exploratory factors of
variations within the data, and cluster representations layer
by layer according to their similarity [29]. However, feature
transferability will drop significantly in the top task-specific
layers with domain discrepancy enlarged [7]–[9]. That is to
say, the features extracted in the top task-specific layers will
highly depend on the specific domains, which are not valid
when facing novel domains.

Most recently, deep transfer learning aims to unify knowl-
edge transfer and deep feature extraction into one training
procedure [7]–[9], [30]–[32]. Thus, the classifier could be
obtained with domain-invariant and informative representa-
tions. Thus, the learned feed-forward networks can be gen-
eralized to the unlabeled target by removing the distribution
gap. However, these algorithms only consider the marginal
distribution divergence across two domains, while ignoring the
classwise intrinsic information of two domains. Furthermore,
most existing transfer learning manages to assign each target
sample with one hard pseudolabel to mitigate the classwise
distribution mismatch [33], which may harm the knowledge
adaptation if the target sample is annotated incorrectly. When
data samples of two classes have distribution overlap, hard
label assignment would destroy the intrinsic data structure.
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Fig. 1. Framework of our end-to-end DTLC: 1) convolutional layers are general and shared by two domains and 2) fully connected layers are task specific;
hence, they are not transferable and should be adapted with multilayer low-rank coding. Specifically, multilayer dictionaries Di (i = 1, . . . , k) are built to
bridge the domain shift. The i th layer low-rank coding Zi = [Zs,i , Zt,i ] would further generate a common dictionary Di+1 and new low-rank coding
Zi+1 = [Zs,i+1, Zt,i+1]. With multilayer factorization, the distribution divergence across two domains tends to be reduced, and thus more well-labeled
source knowledge could be transferred to the target. Furthermore, we develop a domain/classwise adaptation to guide the low-rank coding learning in a
semisupervised manner.

In this paper, we present a novel deep transfer low-rank
coding (DTLC) framework (Fig. 1) based on convolutional
neural networks (CNNs), whose core idea is to build multilayer
collective dictionaries to generate more discriminative domain-
free low-rank coding to alleviate the target learning with
the knowledge of the labeled source. Specifically, we extend
the traditional low-rank coding with one common dictionary
to multilayer dictionaries. To our best knowledge, we are
the first to joint multiple latent dictionaries and low-rank
coding to guide knowledge transfer for cross-domain learn-
ing. To sum up, we highlight our threefold contributions as
follows.

1) Deep structures based on CNNs are constructed to
extract more effective features from source and target
through multilayer latent dictionaries along with the
task-specific layers. In this way, we could learn more
discriminative domain-invariant low-rank coding in a
layerwise scheme to capture more complex information
across two domains.

2) Rank minimization is exploited to guide the mul-
tilayer representations of two domains. With deeper
structures, the low-rank constraint would cluster sim-
ilar samples across two domains together. Therefore,
the underlying intrinsic structures of two domains
would be well matched for effective knowledge
transfer.

3) Domain/classwise adaption scheme is investigated to
further guide the deep low-rank coding learning in a
semisupervised fashion, which substantially enhances
the adaptation ability. To be specific, we assign each
target sample to multiple classes with different prob-
abilities, and then we design a novel loss function to
effectively transfer well-labeled source knowledge.

II. RELATED WORK

In this section, we briefly review three lines of works,
i.e., sparse/low-rank coding, transfer learning, and further deep
transfer learning.

A. Sparse/Low-Rank Coding

Given a data matrix X = [x1, . . . , xm] ∈ R
d×m , with m

data samples lying in the feature space with dimensionality d .
Consider D = [d1, . . . , dn] ∈ R

d×n as the dictionary in which
di denotes a basis vector. Z = [z1, . . . , zm] ∈ R

n×m means
the representation matrix, in which each zi is the new feature
representation for xi .

The aim of sparse/low-rank coding is to seek a dictio-
nary and its corresponding coefficients, and thus, the orig-
inal data could be efficiently approximated [34]. Generally,
the reconstruction error is used to approximate any given data
samples X with the dictionary D and new codes Z , shown as
follows:

min
D,Z

N (Z) + λ‖X − DZ‖2
F

s.t. ‖di‖2
2 ≤ 1 ∀i = 1, . . . , n (1)

where N (·) denotes different kinds of constraints, e.g., Frobe-
nius norm (‖ · ‖F), sparse constraints (e.g., l1, l2,1-norm [17]),
and nuclear norm (‖ · ‖∗) [25], [35]. ‖di‖2

2 ≤ 1 is used
to control the complexity of the dictionary model. D and
Z could be optimized alternatively by fixing one variable and
optimizing the other variable until it converges.

B. Transfer Learning

Transfer learning has been treated as an appealing approach
for lots of real-world problems with a limited labeled
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data challenge. In general, transfer learning is proposed to
handle this challenge by borrowing knowledge from other
external well-labeled data [1], [2]. The key in transfer learning
is to deal with the domain mismatch to benefit from the
labeled source knowledge [3], [18], [36]. So far, there are
plentiful transfer learning models proposed, including domain-
invariant feature learning [3], [23] and classifier parameter
adaptation [19], [37]–[40].

Specifically, domain-invariant feature learning is one of the
most popular strategies, which attempts to learn a common
feature space in which the domain shift is mitigated. Fol-
lowing this, there are several techniques well explored to
align two different domains, e.g., subspace learning, nonlinear
projections, and dictionary learning. Among them, dictio-
nary learning scheme manages to construct a single shared
dictionary or multiple common dictionaries to further seek
domain-invariant new representation [3], [23]. Various kinds
of regularizers are investigated on the new representation
to preserve specific properties, e.g., sparse constraint, rank
constraint, or locality constraint. Along this line, the previ-
ous cross-domain learning explored the low-rank constraint
to capture the shared information across different tasks.
Yang et al. [41] proposed multiple feature selection functions
across different tasks and adopted a low-rank constraint to
seek the common structure from different related tasks. In this
paper, we explore dictionary learning through the low-rank
constraint. Different from previous work, we propose to seek
multilayer latent shared dictionaries by further factorizing low-
rank codings so that more shared knowledge could be uncov-
ered. Through deep structures based on CNNs, more complex
abstraction of two domains could be captured to handle the
marginal and conditional distributions of two domains.

C. Deep Transfer Learning

Most recently, deep transfer learning has been widely
explored to unify the deep structure learning and knowledge
transfer into one framework [7]–[9], [31]. The idea behind is
to incorporate domain alignment strategies at the top layers to
explicitly solve the enlarged domain discrepancy resulted from
traditional deep learning models. Generally, maximum mean
discrepancy (MMD) loss or revised MMD loss [7], [42] and
adversarial loss [8] are two kinds of popular strategies to align
different domains during deep structure learning. However,
current deep domain adaptation algorithms mainly explore
to couple two domains, each as a whole, and thus ignore
the conditional distribution divergence across two domains.
Therefore, it is more appropriate to incorporate classwise
alignment for effective feature learning.

Differently, our work investigates multilayer dictionaries
both in linear version and nonlinear version to build deep
structures for effective domain-invariant feature learning. This
paper is the extension of our previous conference [18]. The
major difference is that we jointly learn multilayer dictionaries
to achieve the final low-rank coding. Our previous work [18]
exploits a stacked strategy to construct a hierarchical structure,
where the output low-rank coding of the previous layer would
be as the input of the next layer. In this way, the low-
rank coding is built in a stacked-layer fashion so that they

are not jointly optimized. In our extended version, we adapt
our multilayer dictionary decomposition to CNN architecture.
Besides, our classwise adaptation plays the same role as the
iterative structure term in our previous work [18] as both aim
to mitigate the conditional distribution differences across two
domains in a semisupervised fashion. Specifically, the soft
labels of the target would be optimized iteratively so that
it could boost the discriminative low-rank coding learning.
In this extension, we explore the nonlinear version of deep
low-rank coding in order to capture more shared knowledge
across two domains.

III. DEEP TRANSFER LOW-RANK CODING

In this section, we first provide preliminary knowledge and
motivation, then present the developed deep low-rank coding
for knowledge transfer through multilayer latent dictionaries
in two versions. Finally, we provide analysis and discussion
for better understanding the proposed model. Note that we use
upper case character to denote the matrix, e.g., A, lower case
character to represent the scale, e.g., a, and bold lower case
character means the vector, e.g., a.

A. Preliminaries and Motivation

For transfer learning, given the unlabeled target domain T
with a set of mt data points Xt = {xt,1, . . . , xt,mt } and
the labeled source domain S with a set of ms data points
{Xs, Ys} = {(xs,1, ys,1), . . . , (xs,ms , ys,ms )}. In this paper,
we consider the source and target data are from C classes.
X is the concatenate of source and target, i.e., X = [Xs, Xt ] ∈
R

d×m , in which m = ms +mt is the total size of two domains.
The new representation Z = [Zs, Zt ] is also for source and
target [17]. Suppose source and target tend to be characterized
by probability distributions p and q , respectively, and we
manage to seek domain-invariant features to mitigate the cross-
domain gap, then train a classifier y = �(x), which is able
to reduce the target risk εt (�) = Pr(x,y)∼q[�(x) �= y].

In traditional transfer sparse/low-rank coding, such one
single common dictionary shared by source and target is
built to achieve new representations for two domains through
mean embedding matching [17], [25]. However, such a single-
layer sparse/low-rank coding cannot always exploit enough
common knowledge across two domains to alleviate the target
learning. In many scenarios, the data we desire to analyze
are often complex and involve various factors, e.g., pose
variance, illuminations, and low resolution. Recent research
efforts on deep structure learning have witnessed to show
promising performance in cross-domain learning [8], [18],
[31], [43]–[45]. Inspired by this, we desire to embed knowl-
edge transfer through multilayer common dictionaries during
deep feature learning. Hence, a series of common dictionaries
would be built to further decompose the previous learned low-
rank coding and generate new low-rank coding. To this end,
multilayer common dictionaries are able to consolidate the
transferability from the complicated data structure of source
and target domains.

Moreover, MMD [46] is a very popular strategy to mea-
sure the domain difference of both marginal and conditional
distributions [21], [33], [47] by involving the pseudolabels of



DING AND FU: DTLC FOR CROSS-DOMAIN LEARNING 1771

the target data. Current domain adaptation approaches attempt
to predict pseudolabels of the target data iteratively through
some specific classifiers, and then feedback to refine the
classwise MMD. Unfortunately, it would bring some problems
if we only assign every target sample to one specific class
label (named as “hard label”). For example, if a target sample
was predicted with a wrong label, and the classifier would be
trained problematically. On the other hand, the hard label could
destroy the data structure when some classes are overlapped in
the feature space. Another phenomenon in deep model training
is that the recognition performance would be increased with
more iterations’ optimization. Thus, the probability of the true
class label for unlabeled target data will increase to a higher
value.

Considering these reasons, we assume every target sample
to be annotated with all the categories in different probabilities,
named as “soft label” [8]. That is to say, an incorrectly
labeled data instance could still contribute to the classifier
learning, since its probability for the true label does not
equal to zero in most cases. To further build effective deep
features, we proposed a novel classwise adaptation formula
to supervise the knowledge transfer by utilizing the target
soft labels. On the other hand, the classifier would be more
discriminative with more domain-invariant features across two
domains. These two strategies would trigger each other and
benefit both.

B. Deep Transfer Low-Rank Coding

As we mentioned before, the dictionary learning technique
manages to seek one common dictionary or a series of dictio-
naries to mitigate the distribution differences across the source
and target domains [3], [17], [23], [25]. With different strate-
gies, e.g., maximum marginal distribution, the newly learned
representations Zs and Zt should have similar distributions.
Specifically, Xs ≈ DZs and Xt ≈ DZt , which is X ≈ DZ ,
where Z = [Zs, Zt ]. Generally, Xs and Xt have different
distributions; therefore, such new codings Zs , Zt through a
common dictionary D may still have distribution mismatch,
especially when the original source and target are in largely
different distributions.

Fortunately, the new learned codings Zs and Zt should have
more similar distribution than Xs and Xt [17], [25]. Therefore,
we aim to exploit multilayer dictionaries and codings learning
to uncover more shared information across two domains. The
multilayer matrix factorization is expressed as

X ≈ D1 Z1

X ≈ D1 D2 Z2
...

X ≈ D1 D2 . . . Dk Zk (2)

where Di (1 ≤ i < k) ∈ R
di−1×di (d0 = d) and each new

representation Zi (1 ≤ i < k) ∈ R
di×m across two domains is

employed to build a new common dictionary then more similar
representation of two domains would be generated. Note that
we have the decomposition constraint as Zk−1 = Dk Zk .

To this end, we propose our DTLC framework with a scale
constraint on the dictionary atoms as follows:

min
D1,...,Dk,Zk

rank(Zk) + λ‖X − D1 D2 . . . Dk Zk‖2
F

s.t.
∥
∥d j

i

∥
∥2

2 ≤ 1 ∀i, j (3)

where d j
i is the j th atom of Di , rank(·) is the rank operator of

a matrix, and λ is the tradeoff parameter between two terms.
Remark: With a low-rank constraint on the last layer

coding Zk , we could achieve that the latent intermediate
codings Zi are all low rank. Since we have Zk−1 = Dk Zk ,
we could observe that rank(Zk−1) = rank(Dk Zk). As we
know that rank(Dk Zk) ≤ min

(

rank(Zk), rank(Dk)
)

, and
thus rank(Zk−1) ≤ rank(Zk). Hence, we could deduct that
rank(Z1) ≤ rank(Z2) ≤ · · · ≤ rank(Zk). That is, our low-rank
constraint on the last layer Zk would preserve the low-rank
property on the coding of each layer. In this way, low-rank
coding in each layer would uncover the global structure of
two domains.

Our hypothesis is that by further learning common latent
dictionaries and low-rank codings, we can build a deep struc-
ture model, which could first automatically uncover the latent
hierarchical shared knowledge across two domains; second,
more effective representations of the data would be learned to
better mitigate the distribution divergence of two domains in
a layerwise fashion so that the final layer coding would have
lower variability to two domains. Using low-rank constraint for
cross-domain learning has been explored in previous works,
e.g., feature selection in the multimedia analysis by capturing
common information across different tasks. The advantage of
our model is we explore a multilayer scheme to uncover more
classwise structure across two domains.

1) Semisupervised Knowledge Adaptation: To make low-
rank coding robust to various probability distributions,
we would expect that the dictionary is able to capture the
commonality within the labeled source and unlabeled target.
However, although we have extracted the k-layer low-rank
coding, the disparity of two domains may still not be well tack-
led without any supervised guidance during model training.

In transfer learning, it is very important to mitigate the dis-
tribution difference and a natural way is to pull the probability
distributions of two domains close to each other in the learned
new low-rank space. In other words, for the extracted low-rank
features Zk = [Zs

k, Zt
k] (Zs

k for source and Zt
k for the target)

from original X , the probability distributions of source and
target samples should be as close as possible.

a) Domainwise Adaptation: Since it is nontrivial to
directly estimate probability densities, we explore the pop-
ular strategy, empirical MMD [7] to measure the distance.
Specifically, MMD compares different distributions through
the distance between the sample centers of two domains in
the dk-dimensional low-rank feature space, namely,

M(Zk) =
∥
∥
∥
∥
∥
∥

1

ms

ms∑

i=1

zk,i − 1

mt

m
∑

j=ms+1

zk, j

∥
∥
∥
∥
∥
∥

2

2

=
m

∑

i=1

m
∑

j=1

z

k,i zk, j Wi j = tr

(

ZkW Z

k

)

(4)



1772 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 6, JUNE 2019

in which zk,i/j is the i/j th column of Zk and tr(·) is the trace
operator of a matrix while W is the MMD matrix, whose
element is calculated as follows:

Wij =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

m2
s
, if xi , x j ∈ S

1

m2
t
, if xi , x j ∈ T

−1

msmt
, otherwise.

b) Semisupervised Classwise Adaptation: Previous
MMD (4) only reduces the disparity in the marginal
distributions cannot guarantee to well fight off the conditional
distribution divergence of two domains. Actually, it is
essential to mitigate the conditional distribution difference
across different domains for effective knowledge transfer.
Unfortunately, the target data are totally unlabeled or limited
labeled, so that it is nontrivial to align the conditional
distributions. However, we adopt the soft labels of target data
by annotating each target instance to multiple classes with
various weights.

Suppose p j ∈ R
C is the soft label for the j th target

instance, where each element pc, j denotes the probability of
the j th unlabeled target sample to be annotated to the cth class
(pc, j ≥ 0 and

∑C
c=1 pc, j = 1). In other word, we can consider

that each target partially contributes to different classes during
knowledge transfer. To this end, we propose a semisupervised
classwise adaptation term with soft labels to align source
and target domains, which minimizes the classwise centers
across the source and target domains. Since target data are
unlabeled, and thus we do not hope to constrain one target
sample to be close to one source class center with the same
label [33], [48]. Instead, we aim to enforce one target instance
to be close to multiple source class centers with various
probabilities (obtained from the Softmax output), which would
preserve a good target structure during adaptation and avoid
an invalid alignment across the source and target domains.
From another view, we aim to use the cross-domain center
reconstruction loss to guide the unlabeled target samples’ label
output, similar to Softmax loss for labeled source data.

To enhance the adaptation ability iteratively, we should
update the probabilistic label of each target instance. Hope-
fully, the probability for the true label would be close to 1.
To this end, we can deal with the conditional distribution
divergences across source and target by designing a novel
classwise adaption loss as follows:

C(Zk) =
C

∑

c=1

∥
∥
∥
∥
∥
∥

1

mc
s

mc
s∑

i=1

zs
k,i − 1

mc
t

mt∑

j=1

pc, j zt
k, j

∥
∥
∥
∥
∥
∥

2

2

(5)

where mc
s means the source class size of the cth class. mc

t
represents the target class size of the cth class, which is not
an integer and not directly given, since we cannot get the true
target class size per class. Hence, we can calculate mc

t in this
way, i.e., mc

t = ∑mt
j=1 pc, j . Hence, we can deduct that

C(Zk) =
C

∑

c=1

tr
(

ZkW (c) Z

k

)

(6)

where W (c) is the revised MMD matrix for class c, which is
defined in the following way:

W (c)
i j =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

m(c)
s m(c)

s

, if xi , x j ∈ S(c)

pc, j pc,i

m(c)
t m(c)

t

, if xi , x j ∈ T
−pc, j/ i

m(c)
s m(c)

t

, if xi/j ∈ S(c), x j/ i ∈ T

0, otherwise

where S(c) is the source domain for class c.
To build an end-to-end deep architecture, we adopt the

Softmax classifier loss as the final layer

J (Zk,�, Y ) = − 1

m

m
∑

i=1

C
∑

c=1

yc,i log
eθ


c zk,i

∑C
u=1 eθ


u zk,i

where yc,i is the label probability the sample zk,i was assigned
to class c. Specifically, yc,i for source part is fixed and for
target part is iteratively updated during model training.

Thus, we formalize our final objective function L with the
constraint (‖d j

i ‖2
2 ≤ 1,∀i, j) as

L = J (Zk,�, Y ) + λ‖X − D1 D2 . . . Dk Zk‖2
F

+ α

C
∑

c=0

tr
(

Zk W (c) Z

k

) + β‖Zk − AB‖2
F (7)

where we further achieve W (0) = W when substituting
m(0)

s = ms , m(0)
t = mt ,S(0) = S,T (0) = T . α and β are the

balanced parameters. Moreover, rank minimization is an non-
deterministic polynomial-time-hard problem and nuclear norm
is a good alter-native [18], [35], which, however, is very time
consuming. Motivated by recent work [49], the incorporation
of explicit rank control would result in a more efficient
optimization algorithm. Actually, we hope samples from the
same class ideally tend to be spanned by only one basis. Since
we have access to the true rank of Zk , i.e., the class size C ,
and thus, we have Zk ≈ AB to replace the rank minimization
(the forth term), where A ∈ R

dk×C and B ∈ R
C×n .

As we mentioned before, soft labels are optimized itera-
tively when we achieve low-rank coding Zk and a classifier
parameter. Here, we have pc, j = ((eθ


c zt
k, j )/(

∑C
u=1 eθ


u zt
k, j )),

where θc is the cth column of � and zt
k, j is the j th column

of coding Zt
k for the target domain.

2) Nonlinear Extension: By learning multilayer linear dic-
tionaries from the original data with complex distributions,
we may fail to illustrate the nonlinear structures efficiently,
which happen in the latent common knowledge shared by two
domains. Inspired by the nonlinear activations in neural net-
works, we could also introduce nonlinear activations between
any two layers. This practice enables us to extract more
efficient low-rank codings that are nonlinearly separable in
the original input space.

From neurophysiology paradigms, the theoretical and exper-
imental evidence indicates that the human visual system has a
hierarchical and rather nonlinear scheme [50] in the processing
data structure, where neurons become selective to process
progressively more complex features of the data structure.
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Furthermore, Malo et al. [51] argued that employing an
adaptive nonlinear data representation algorithm would lead
to a reduction of the statistical and the perceptual redundancy
amongst the representation elements.

From the view of mathematical point, we can adopt non-
linear functions f (·) to guide every implicit low-rank coding
Z1, . . . , Zk−1. In this way, we could better approximate the
nonlinear intrinsic manifold structure of the original data
matrix X . In other words, we could improve the expressibility
of our framework and allow for a better reconstruction of
the original data through nonlinear activations. This has been
verified by the Stone–Weierstrass theorem [52].

To incorporate nonlinearities to our framework, we modify
the i th low-rank codings Zi , by setting

Zi ≈ f (Di+1 Zi+1) (8)

which in turn converts the final objective function (3) of the
model L with the constraint (‖d j

i ‖2
2 ≤ 1,∀i, j) as

L = J (Zk,�, Y ) + λ‖X − D1 f (D2 f (· · · f (Dk Zk)))‖2
F

+ α

C
∑

c=0

tr
(

ZkW (c) Z

k

) + β‖Zk − AB‖2
F (9)

where we adopt the ReLU activation function for nonlinear
version, following most deep learning works for better con-
vergence [7], [9], [45]. Note that the low-rank property cannot
preserve when we adopt nonlinear activation functions, e.g.,
Sigmoid, TanHyperbolic, and ReLU. It would be an open
problem to discuss the rank property for nonlinear activation
functions. In this paper, we mainly focus on the low-rank
property transit for linear version, and nonlinear version is
just the generalization to linear version. Furthermore, our goal
is to explore linear/nonlinear mappings to guide the feature
learning and we focus on achieving low-rank coding in the
final-layer representation, and therefore, we did not pay more
attention to the low-rank property of each layer.

3) Model Training: Targeting at expediting the convergence
of the multiple dictionaries and low-rank coding for our model,
we first pretrain each layer to obtain initial approximations
for Di , Zi . This strategy would greatly cut down the com-
putational cost in the training stage. This is a tactic, which
has successfully used in deep autoencoder networks [53].
Specifically, for a pretraining step, we first learn the dictio-
nary D1 and low-rank coding Z1 from the initial data matrix X
via (1). Following this, we further learn dictionary D2 and
low-rank coding Z2 from the first-layer low-rank codings Z1,
keeping doing so until we have pretrained all dictionaries and
low-rank coding. Furthermore, to initialize each dictionary,
we exploit the K-SVD method to achieve an effective initial-
ization [54], that is, the initial subdictionary D j

i for class j is
obtained. The input dictionary Di is pretrained on the source
domain Zi−1 by integrating all subdictionaries for each class,
i.e., Di = [D1

i , D2
i , . . . , DC

i ] (C is the class number).
Moreover, as we mentioned before, the target data are

unlabeled and assigned with soft labels pc, j for classwise
adaptation. We use the pretrain multilayer structure to achieve
the soft labels of the target data. Furthermore, we propose
to address the problem in two subproblems. First of all, we

fix p j , mc
t , and W (c), then optimize multiple dictionaries Di ,

the low-rank coding Zk , and the classifier parameters �.
Second, we update the soft label of target data p j as well
as the new target class size mc

t and W (c), then feedback to
optimize the model parameters. To achieve better soft labels,
we update the second step after a specific iteration of the
first step. In this way, we could iteratively solve two sub-
problems until the optimization converges. In general, better
feature representations would generate more accurate p j , mc

t ,
and W (c). On the other hand, more accurate p j , mc

t , and W (c)

would trigger the training of networks. These two subproblems
converge well and we show the convergence curves in the
experiments.

For the first subproblem, we propose an alternating opti-
mization approach to iteratively learn the low-rank codings
Zk , A, and B , and dictionaries Di and �. Here, we take the
nonlinear version as an example, since the linear version is
its special case when f (·) is an identity function. It is easy
to notice that (7) is smooth and twice-differentiable. Hence,
we can still explore a stochastic gradient descent to solve this
unconstrained optimization problem.

a) Multilayer Dictionary Learning: In order to obtain the
derivative for the i th dictionary (1 < i ≤ k), we exploit the
chain rule and have

∂L
∂ Di

= ∂L
∂(Di Zi )

Z

i =

[
∂L

∂ f (Di Zi )
� ∇ f (Di Zi )

]

Z

i

=
[

∂L
∂ Zi−1

� ∇ f (Di Zi )

]

Z

i (10)

where � is the elementwise multiplication and ∇ f (Di Zi )
is the first derivative of function f (·) with respect to Di Zi .
Specifically, the derivation of the first dictionary D1 is then
identical to the version of the framework with one layer as

∂L
∂ D1

= λ

2
(X − D1 Z1)Z


1 . (11)

For the optimization of the dictionaries, we add a normal-
ization per atom in the dictionary to constrain its scale [17].

b) Low-Rank Coding Learning: While the derivative for
the i th low-rank codings (1 < i < k), we get

∂L
∂ Zi

= D

i

∂L
∂(Di Zi )

= D

i

[
∂L

∂ f (Di Zi )
� ∇ f (Di Zi )

]

= D

i

[
∂L

∂ Zi−1
� ∇ f (Di Zi )

]

(12)

and specifically for the first and last layers, we have

∂L
∂ Z1

= λ

2
D


1

(

X − D1 Z1
)

(13)

and

∂L
∂ Zk

= D

k

[
∂L

∂ Zk−1
� ∇ f (Dk Zk)

]

+ 2α

C
∑

c=0

Zk W (c)

+ ∂J (Zk,�, Y )

∂ Zk
+ β(Zk − AB) (14)

where ((∂J (Zk,�, Y ))/∂ Zk) is a dk × m matrix with the
i th column vector as −(1/m)(

∑C
c=1(θc − ((

∑C
u=1 θueθ


u zk,i )/
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(
∑C

u=1 eθ

u zk,i )))). For A

∂L
∂ A

= Zk B
 − AB B
 = 0, ⇒ A = Zk B
(B B
)† (15)

while for B

∂L
∂ B

= A
 AB − A
Zk = 0, ⇒ B = (AA
)† A
Zk (16)

where † is the Moore–Penrose pseudoinverse.
c) Classifier Parameter Training: Since we adopt a stan-

dard Softmax loss with the input of low-rank coding Zk ,
we could calculate the gradient descent of � as

∂L
∂θc

= ∂J (Zk,�, Y )

∂θc
= − 1

m

m
∑

i=1

	i z

k,i (17)

where 	i = ∑C
c=1 yc,i (1 − ((eθ


c zk,i )/(
∑C

u=1 eθ

u zk,i ))).

C. Deep Transferable Networks

In this section, we propose to jointly learn our multilayer
low-rank coding and CNNs parameters in an end-to-end
manner.

In our DTLC architecture, the partial derivatives with
respect to Di , Zk, A, B , and � are defined in Sections III-A
and III-B. We could further calculate the partial derivatives
with respect to X as

∂L
∂ X

= 2λ(X − R(D1, D2, . . . , Zk)) (18)

where R(D1, D2, . . . , Zk) = D1 D2 . . . Dk Zk for the linear
version and R(D1, D2, . . . , Zk) = D1 f (D2 f (. . . f (Dk Zk)))
for the nonlinear version. Once we obtain (∂L/∂ X), we then
are able to perform the standard back propagation [55] to
update the CNN parameters with input source and target
images as well as source one-hot labels.

To train a powerful deep CNN model, the key challenge is
that the target domain has no or just sparsely labeled samples,
and hence, it is impossible to directly adapt CNN to the target
domain via fine-tuning. In this way, we follow the previous
deep transfer learning [7]–[9] to initialize the CNN parameters
with some pretrained networks, e.g., AlexNet [26].

D. Model Comparison

There are related state-of-the-art deep transfer works to our
proposed model, i.e., simultaneous deep transfer (SDT) [8],
deep adaptation network (DAN) [7], reverse gradient
(RevGrad) [9], D-COREL [31], and deep hashing network
(DHN) [56]. Interestingly, SDT also proposed soft label of the
target data to optimize the model training, which is similar
to our idea by annotating each target instance to multiple
classes with different probabilities. However, SDT neglected
the conditional distribution differences between two domains,
since it only used single-layer domain confusion to mitigate
the marginal disparity of two domains. Although DAN adopted
multilayer adaption through the multikernel strategy, it also
only considered the domainwise mean embedding match-
ing while ignoring the conditional distribution difference.
DHN adopts the same structure and adaptation strategy

to DAN. The key difference is DHN explores the hash coding
in the final layer. RevGrad developed a novel gradient reversal
layer, which ensured that the feature distributions across
two domains are constrained to be similar, resulting in the
domain-invariant features. However, RevGrad did not involve
the conditional distribution into the gradient reversal layer.
D-COREL adapts the COREL loss [10] to guide the deep
knowledge transfer. To explore more discriminative knowledge
across source and target domains, we tend to assign each
target sample to multiple classes with different probabilities.
In this way, we could build a novel classwise mean embedding
matching as well as multilayer common dictionaries to transfer
more well-labeled source knowledge during deep structure
learning.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate on three cross-domain bench-
marks to testify our designed model. First, we list the bench-
marks description and experimental setup. Then, we compare
our proposed model with several state-of-the-art domain adap-
tation and deep learning algorithms.

A. Data Sets and Experimental Setting

1) Data Sets Description: Office-311 [57] is a well-
known cross-domain benchmark, which includes 4652 samples
of 31 different objects from three various domains, i.e.,
Amazon (A), Webcam (W), and digital single lens reflex
(DSLR) (D). To be specific, samples of Amazon are collected
from www.amazon.com, while image samples of Webcam and
DSLR are taken with a web camera and a digital single lens
reflex camera under office environments, respectively. The
major difference of Webcam and DSLR is the resolution gap.
We perform six cross-domain tasks by randomly selecting two
as a combination.

Office-10 + Caltech-10 [58] contains the 10 common
objects shared across the Office-31 and Caltech-256 (C)2 data
sets. This data set has been widely used in the current domain
adaptation methods [7], [18]. We can build 12 transfer tasks
to evaluate our proposed algorithm. With more cross-domain
learning tasks, we target an unbiased look over the domain
bias.

Office + Home3 [56] is a most recent cross-domain bench-
mark with more samples and objects. In total, there are
65 objects shared by four domains with about 15 500 image
samples. Specifically, four domains are Art (artistic drawing
objects), Clipart (images collected from www.clipart.com),
Product (samples similar to Amazon almost with clean back-
ground), and Real-World (object images taken with regular
cameras).

2) Comparisons: We experiment with the following state-
of-the-art domain adaptation methods.

1) CORAL [10] is a “frustratingly easy” unsupervised
domain adaptation approach that couples the second-
order statistics across two domains’ distributions with
a linear projection.

1https://people.eecs.berkeley.edu/~jhoffman/domainadapt/#data sets_code
2http://authors.library.caltech.edu/7694/
3https://hemanthdv.github.io/officehome-dataset/
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TABLE I

AVERAGE RECOGNITION RATE (%) FOR UNSUPERVISED ADAPTATION ON OFFICE-31 DATA SET WITH
FULL-SAMPLING PROTOCOL, WHERE A = AMAZON, D = DSLR, AND W = WEBCAM

TABLE II

AVERAGE RECOGNITION ACCURACY (%) ON OFFICE-31 DATA SET WITH STANDARD SEMISUPERVISED

ADAPTATION PROTOCOL [57], WHERE A = AMAZON, D = DSLR, AND W = WEBCAM

2) Deep CORAL [31] adapts CORAL loss [10] to couple
the correlations between top layer’s activations of a deep
structure.

3) CNN [26] is a well-known framework to learn generic
features. Here, we use the ImageNet to train the model.

4) Deep domain confusion (DDC) [45] is the first to
incorporate domain confusion loss (linear-kernel MMD)
to the top of AlexNet to mitigate the domain shift.

5) DAN [7] learns more transferable features by aligning
three fully connected layers with multikernel MMD.

6) RevGrad [9] boosts domain adaptation using an adver-
sarial loss (binary domain classifier) instead of MMD
in DAN [7].

7) SDT [8] jointly seeks domain-invariant features and
explores a soft label distribution matching to assist
knowledge transfer. However, it needs some labeled
target data during model training.

8) DHN [56] aims to seek informative hash coding by
incorporating deep structure learning and domain align-
ment together.

For baseline comparisons, we adopt the standard procedures
for model selection as described in their respective works.
For our proposed model, we have two versions, i.e., linear
one (DTLCL) and nonlinear one (DTLCN ) and we conduct
fivefold cross-valuation on the labeled data to choose candi-
date parameters. To be specific, we search parameters λ, α,
and β in the range from 0.01 to 100. To suppress noisy
predictions at the early stage of the whole training procedure,
we set parameters α and β as zero within 1000 minibatch
iterations. We implement our models using TensorFlow and
train using Stochastic Gradient Descent with momentum. The
initial learning rate is set as 10−3, weight decay is 10−3, and
momentum is 0.9. Since the classifier is trained from scratch,

we choose its learning rate 10 times than that of the lower lay-
ers. Moreover, we exploit minibatch with a batch size of 256,
and generally 20 000 iterations are required and we observe
the loss lower than 10−1. We train on GPU with NVIDIA
GeForce GTX TITAN X and generally it costs several hours
to train the model, which is comparable with other deep
transfer competitors. Specifically, we adopt the CNN structure
of AlexNet [26]. Actually, our model can easily adopt other
CNN structures, e.g., VGG, ResNet, and GoogleNet. Deeper
CNN structures would improve the performance somehow.
Since we are focusing on the specific layers, we only evaluate
the AlexNet structure in this paper.

We follow standard evaluation protocols to validate all the
algorithms in unsupervised/semisupervised domain adaptation
settings. In unsupervised setting, we adopt the full-sampling
protocol [7] that uses all labeled source samples while all
unlabeled samples in the target domain are used to train the
models. In semisupervised setting, three target samples are
labeled. We adopt DeCAF7 [59] features for shallow transfer
methods and our conference version, DLRC [18], and original
images for CNN-based deep transfer methods. We report the
average classification performance in terms of top1 accuracy
for each comparison over five random evaluations, also the
standard deviation of the top1 accuracies by different evalua-
tions on the same cross-domain task.

B. Comparison Results

The unsupervised/semisupervised adaptation results over the
six learning tasks on Office-31 are listed in Tables I and II,
the unsupervised adaptation results on 12 Office-10 +
Caltech-10 cross-domain tasks are presented in Table III, and
the unsupervised adaptation results on 12 Office + Home
transfer tasks are reported in Table IV. Note that partial
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TABLE III

AVERAGE RECOGNITION RATE (%)± STANDARD VARIATION OF 10 ALGORITHMS ON OFFICE + CALTECH-256 WITH FULL-SAMPLING
PROTOCOL [7], WHERE A = AMAZON, D = DSLR, C = CALTECH-256, AND W = WEBCAM

TABLE IV

RECOGNITION ACCURACIES (%) FOR DOMAIN ADAPTATION EXPERIMENTS ON THE OFFICE + HOME DATA SET,
WHERE ART (AR), CLIPART (CL), PRODUCT (PR), AND REAL-WORLD (RW)

results are directly from [7]–[9], [31], and [56]. From the
comparison results over different benchmarks, we can achieve
the following observations.

First of all, traditional deep learning models (e.g., CNN)
achieve comparable performance with conventional shallow
transfer learning approaches over deep DeCAF7 features as
input (e.g., COREL). We could notice that the only difference
between two lines of algorithms is COREL which could
benefit from further feature adaptation over generic deep
representations, while CNN could obtain gains over supervised
fine-tuning on the labeled source data. This observation keeps
pace with the recent discovery on deep neural networks,
which are able to capture abstract features, but still leave
domain mismatch there [43]. However, we could find that
our DLRC still enhances the performance over deep generic
features through multilayer strategy, although the improvement
is limited.

Second, deep CNN-based transfer learning algorithms
(e.g., DAN, RevGrad, SDT, D-COREL, and DHN) are capa-
ble of reducing the domain gap through domain alignment
strategies and thus substantially outperform standard deep
learning methods (CNN). This demonstrates that unifying
domain alignment constraints over deep neural networks can
assist unlabeled target learning. From the comparison of DDC
and DAN, we could conclude that multilayer adaptation in
the task-specific layers benefits a lot in knowledge transfer.

RevGrad and SDT introduce the domain confusion into the
deep structure learning, and therefore, they achieve compara-
ble performance with DAN. Specifically, SDT incorporates the
soft labels of target data during model training, which verifies
such knowledge can benefit the classifier learning. However,
they ignore the conditional distribution divergence across two
domains. DHN adopts the same adaptation strategy with DAN
but with hash coding as the last layer. Thus, DHN achieves
the similar performance with DAN. However, DHN performs
well in large-scale data set, i.e., Office + Home, which benefits
from hash coding.

Besides, comparing with Office-31 and Office-10 +
Caltech-10, Office + Home is more challenging, since it
contains more categories, while other two have less categories.
Another thing is four data sets in Office + Home have
larger distribution divergence. Thus, all the algorithms cannot
achieve promising performance. We could notice that our
proposed model obtains better performance in most cases.
Especially, in Office + Home data set, our model can achieve
better performance than other comparisons, e.g., DAN.

Particularly, DTLCN consistently enhances the classification
performance on some challenging cross-domain tasks, e.g.,
A → W and A → D, in which the distribution divergences
across source and target are substantially large. It also obtains
comparable classification performance over some easy cross-
domain tasks, e.g., D → W and W → D, in which source and
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Fig. 2. (a) Recognition accuracy for different variants of our nonlinear model across three tasks. (b) A-distance of three algorithms on two tasks in
Office-31 using unsupervised domain adaptation protocol [7]. (c) Convergence curves of our model on three cases.

Fig. 3. (a) Influence of parameter λ and (b) impact of layer size with different values of k on three tasks across three cross-domain benchmarks for our
nonlinear version, i.e., DTLCN .

target only have the resolution difference. Size normalization
used in CNN can further mitigate the resolution shift. The
encouraging outputs suggest that our DTLCN is capable of
seeking more domain invariant features and effective classi-
fiers to facilitate the unlabeled target labeling. Different from
conventional deep transfer learning approaches, our proposed
architecture aims to mitigate the domain mismatch through
multilayer dictionary decomposition, and furthermore, the low-
rank constraint is also involved to uncover more classwise
information. The novel designed classwise adaptation in the
semisupervised scheme also contributes to reduce the condi-
tional distribution divergence. We will discuss this phenom-
enon in Section IV-C.

C. Properties Analysis

In this section, we evaluate several properties of the pro-
posed DTLCN , i.e., convergence analysis, evaluation on vari-
ants, and so on.

1) Self-Evaluation: To dive deeper to the efficacy of our
proposed model, we evaluate several variants of DTLCN as
follows.

1) DTLCC
N means DTLCN without classwise adaptation,

i.e., (6).
2) DTLCD

N represents DTLCN without adaptation on Zk

including both domainwise and classwise adaptations,
i.e., α = 0 in (7).

3) DTLCR
N denotes the DTLCN by removing the low-rank

constraint on Zk , i.e., β = 0.
4) DTLCM

N is the DTLCN by setting both α and β to 0.
5) DTLCH

N is the variant of DTLCN by replacing the soft
label with the hard label of predicted target data, which
is similar to the strategy of joint domain adaptation [48].

We experiment on three cases per data set using the
unsupervised full-sampling protocol in [7]. From the result
in Fig. 2(a), we could observe that the performance would drop
when we remove the semisupervised classwise adaptation and
further decrease by removing both two adaptations (domain-
wise and classwise terms). This verifies that our designed
adaptation term can facilitate the knowledge transfer during
model training. Besides, the rank constraint helps a little, seen
from DTLCR

N and DTLCN . We also find the performance of
DTLCM

N hurts a lot by removing both the terms. Furthermore,
the performance drops a lot when we remove all the knowl-
edge transfer part and only remain the multilayer dictionary
decomposition.

2) Convergence: There are two subproblems in our opti-
mization, one is deep convolution neural networks and the
other is parameters updating (i.e., probability label and
classwise adaptation matrix). Therefore, it is challenging to
theoretically verify its convergence. In this way, we fol-
low researchers to empirically show the convergence of our
model. Actually, we notice that our proposed model has
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a good convergence property for all the cases and here
we show some cross-domain tasks, i.e., {A, D} → W of
Office-31, {A, C, W} → D of Office-10 + Caltech-10, and
{Ar, Pr, Cl} → Rw of Office-Home data set in Fig. 2(c).

3) Distribution Discrepancy: The theory of domain adap-
tation [60] considers A-distance [defined as dA = 2(1 − 2ε)]
as a way to measure the cross-domain discrepancy, where ε
denotes the generalization error of a domain classifier trained
over the two-class problem to identify source and target data
(the similar to adversarial loss [8]). Fig. 2(b) reports dA over
two cross-domain tasks, i.e., A → W and W → D using the
features obtained from CNN, DAN, and DTLCN . From the
results, we notice that dA of our DTLCN is smaller than that
of CNN and DAN, which indicates that DTLCN carries more
transferable knowledge. Moreover, dA of cross-domain task
W → D is smaller than that of A → W , since the mismatch
of W and D is not large. That is why, W → D shows very
promising recognition performance.

4) Parameter Analysis: There exist two key parameters in
our model, e.g., λ to balance to rank term and reconstruction
term, k layer size for the deep structure. Thus, we evaluate λ
and the layer size across three data sets for our nonlinear
version. For the influence of λ, we evaluate three tasks by
grid searching from 0.01 to 100, whose results are shown
in Fig. 3(a). We found that, usually, we could get better perfor-
mance when λ is around 0.1. For the layer size, we experiment
on different layer sizes k to see the impact of different values.
Generally, we notice that k = 3 could generate better results
from Fig. 3(b). A deeper structure may not contribute to the
performance, which should depend on different architectures,
e.g., AlexNet, VGG, and GoogLeNet. In this section, we only
explore AlexNet architecture.

V. CONCLUSION

In this paper, we designed a novel DTLC framework,
which jointed multilayer common dictionaries, low-rank cod-
ing, and CNN architecture into a unified optimization pro-
cedure. Specifically, common knowledge across two domains
was exploited by multiple dictionaries in a layerwise fash-
ion. Therefore, the learned low-rank coding could uncover
more shared information of two domains to bridge the gap
across two domains. Furthermore, the deep low-rank coding
was guided with domain/classwise adaption terms, aiming to
minimize the marginal and conditional distribution difference
of two domains, so that the learned low-rank coding of two
domains could be aligned well. Experimental results on three
cross-domain benchmarks verified that our proposed model
could outperform other comparisons by uncovering more
shared knowledge of two domains.
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