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Ensemble Clustering (EC) is an important topic for data cluster analysis. It targets to integrate multiple Basic

Partitions (BPs) of a particular dataset into a consensus partition. Among previous works, one promising

and effective way is to transform EC as a graph partitioning problem on the co-association matrix, which

is a pair-wise similarity matrix summarized by all the BPs in essence. However, most existing EC methods

directly utilize the co-association matrix, yet without considering various noises (e.g., the disagreement be-

tween different BPs and the outliers) that may exist in it. These noises can impair the cluster structure of

a co-association matrix, and thus mislead the final graph partitioning process. To address this challenge,

we propose a novel Robust Spectral Ensemble Clustering (RSEC) algorithm in this article. Specifically, we

learn low-rank representation (LRR) for the co-association matrix to uncover its cluster structure and han-

dle the noises, and meanwhile, we perform spectral clustering with the learned representation to seek for

a consensus partition. These two steps are jointly proceeded within a unified optimization framework. In

particular, during the optimizing process, we leverage consensus partition to iteratively enhance the block-

diagonal structure of LRR, in order to assist the graph partitioning. To solve RSEC, we first formulate it

by using nuclear norm as a convex proxy to the rank function. Then, motivated by the recent advances in

non-convex rank minimization, we further develop a non-convex model for RSEC and provide it a solution

by the majorization–minimization Augmented Lagrange Multiplier algorithm. Experiments on 18 real-world

datasets demonstrate the effectiveness of our algorithm compared with state-of-the-art methods. Moreover,

several impact factors on the clustering performance of our approach are also explored extensively.
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1 INTRODUCTION

Data clustering is a core technique for data analysis, the objective of which is to partition a set
of unlabeled patterns, points, or objects into natural groups or clusters (Jain 2010). It has been
attracting a lot of attention throughout the fields of data mining, machine learning, information
retrieval, biology and computer vision. In general, numerous clustering algorithms are based on
different assumptions, such as connectivity, centroid, distribution, density and subspace, leading to
the fact that they usually generate different clustering results. Thus, it is difficult to employ a single
method to handle various cluster structures in real-world datasets, and even hard to decide which
one to use for a particular dataset. In light of this, Ensemble Clustering (EC) comes into being
(Strehl and Ghosh 2003; Fred and Jain 2005), which is also known as consensus clustering (Topchy
et al. 2005) or clustering aggregation (Gionis et al. 2007).

EC emerges as a powerful alternative to the traditional clustering method, which has the ability
of boosting clustering performance, improving robustness and stability, discovering novel clusters,
and fusing multi-source information (Wu et al. 2015). It takes as input a set of Basic Partitions (BPs)
and targets to integrate them into a consensus one. Hence, BPs generation and aggregation are two
fundamental steps for developing an EC system. According to Topchy et al. (2005), BPs could be
generated by three common strategies as follows: (1) running different clustering algorithms on
the same dataset (Fern and Brodley 2004; Yi et al. 2012); (2) generating BPs with random sam-
pling (Minaei-Bidgoli et al. 2004); (3) performing the same clustering method with various settings
(e.g., different parameters or initialization), such as the Random Parameter Selection (RPS) strat-
egy (Fred and Jain 2005; Wu et al. 2015), which obtains BPs by running K-means algorithm with
different cluster numbers. RPS is one of the most successful BPs generation strategies (Kuncheva
and Vetrov 2006; Iam-on et al. 2011), as it provides a highly efficient way to generate diverse clus-
tering results for uncovering arbitrary cluster structures (Fred and Jain 2005). In this article, we
mainly adopt the RPS strategy and focus on the BPs integration.

In terms of BPs aggregation manner, EC methods can be roughly divided into two classes, first,
the utility function based methods and, second, the co-association matrix based ones. The first
class (Topchy et al. 2003, 2005; Wu et al. 2015) usually employs a utility function to measure the
similarity between consensus partition and multiple BPs, and then achieves ensemble by solving
a maximization problem. The second class (Fred and Jain 2005; Zheng et al. 2014; Liu et al. 2015a)
generally summarizes BPs as a co-association matrix, and transforms EC into a graph partitioning
problem. The co-association matrix is actually a pair-wise similarity matrix on an instance-level.
It calculates the times of any two instances being divided into the same cluster upon the categor-
ical data provided by BPs. Among previous works, co-association matrix is of particular interest,
as it allows to solve EC problem with an easy and effective way, i.e., by conducting any graph
partitioning algorithms, such as agglomerative clustering (Fred and Jain 2005), hierarchical clus-
tering (Zheng et al. 2014), and spectral clustering (Liu et al. 2015a).

Most existing EC methods directly utilize the co-association matrix, yet without considering
various noises from BPs. These noises are induced by disagreement among multiple BPs or caused
by the outlier ones, which can severely undermine the structure of a co-association matrix, mislead
the graph partitioning process, and hence degrade the clustering performance. Unfortunately, this
issue is still under explored. Only a few research efforts (Yi et al. 2012; Zhou et al. 2015) have been
made to address it. For example, Yi et al. (2012) recovered the co-association matrix as a low-rank
one by using matrix completion, where the disagreement between BPs was treated as uncertain
data pairs and labeled as missing values. For another example, Zhou et al. (2015) captured the out-
liers from BPs by minimizing the Kullback–Leibler (KL) divergence between co-association matrix
and each BP with a low-rank constraint. It is worth noting that, although these two reasonable
methods improve the robustness of a co-association matrix, they both take more attention on a
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denoising task, rather than enhancing the cluster structure inside co-association matrix. Moreover,
their model is learned away from consensus clustering, which lacks the guidance of consensus par-
tition and neglects to provide a unified framework.

In this article, we propose a novel Robust Spectral Ensemble Clustering (RSEC) approach to
address the above challenges. We aim to learn a robust co-association matrix and find the consen-
sus partition simultaneously. Previous research efforts (Liu et al. 2013; Yin et al. 2016; Li and Fu
2014) have shown that Low-Rank Representation (LRR) can handle various noises and uncover the
membership between data points with a block-diagonal form. This nice property naturally enables
RSEC to learn a robust representation for co-association matrix by leveraging LRR, which could
reveal the cluster structure and facilitate the graph partitioning process. Moreover, ensemble clus-
tering is seamlessly incorporated into our learning process. Specifically, we obtain the consensus
partition by running spectral clustering on the learned LRR codes with a trace minimization form.
By this means, our optimization framework jointly performs LRR learning and ensemble clustering
task. In particular, since the consensus partition usually exhibits a high clustering performance,
we employ it to iteratively enhance the block-diagonal structure of the learned representation.
To solve RSEC, we formulate it by using nuclear norm as a convex proxy to the rank function.
However, since the nuclear norm works as the �1 norm of singular values, it may give a biased
estimation to the matrix rank (Wang et al. 2013; Lu et al. 2014; Peng et al. 2015). To alleviate
this problem, we further develop a non-convex model for RSEC and provide a solution with the
majorization–minimization Augmented Lagrange Multiplier (MM-ALM) method. The contribu-
tions of this article are summarized as the following four-folds:

—We propose a unified optimization framework (see Figure 1) to simultaneously learn a ro-
bust representation for the co-association matrix and find the final consensus partition.

—The spectral graph on a co-association matrix is constructed by its LRR along with the
consensus partition. By this means, we introduce an interaction between representation
learning and ensemble clustering. The block-diagonal structure of the learned representa-
tion is iteratively enhanced by consensus partition during the optimization process, which
better uncovers the cluster structure of a co-association matrix.

—Two effective solutions are provided for RSEC, where we adopt two strategies to address
the rank minimization problem, i.e., a convex formulation and a non-convex one. Empirical
evidence shows the non-convex RSEC exhibits more robustness.

—Experiments conducted on 18 real-world datasets demonstrate the effectiveness of our ap-
proach over the state-of-the-art EC methods. Moreover, we also explore several impact fac-
tors that may affect the final clustering performance, including BPs number, incomplete BPs
and different BPs generation strategy.

This article is an extension to our previous work (Tao et al. 2016). Compared with Tao et al.
(2016), we propose a general model to our approach, and provide a non-convex alternative formu-
lation, as well as more theoretical analysis, model discussion and experimental evaluations.

The remainder of this article is organized as follows. In Section 2, we give a brief introduction
to ensemble clustering and low-rank matrix analysis. In Section 3, we present the proposed RSEC
model and provide a solution to its convex formulation. In Section 4, we propose a non-convex
relaxation to our model and develop the MM-ALM algorithm to solve it. Extensive experimental
results and discussions are reported in Section 5, followed by a final conclusion in Section 6.

Notations. A vector (matrix) is denoted by a lowercase (uppercase) letter in boldface. Given a
matrix U, UT, U−1, rank(U) and tr(U) represent its transpose, inverse, rank, and trace, respectively.
Let Ui be the ith column of U and Ui j the jth element in Ui , then we have the definitions of ma-
trix norms as the following. ‖U‖0, ‖U‖1, ‖U‖F, and ‖U‖∗ stand for the �0 norm (number of all the
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Fig. 1. Illustration of the proposed RSEC, where we jointly learn low-rank representation Z for the co-

association matrix S and find consensus partition H by running spectral clustering with Lz . We employ

Z to reveal the cluster structure of S, and capture the noises inside S with a sparse error matrix E. During

the learning process, H is used to iteratively enhance the block-diagonal structure of Z. The final clustering

result could be obtained either from H or Z.

non-zero entries), �1 norm (
∑

i, j |Ui, j |), Frobenius norm (
√∑

i, j U2
i, j ) and nuclear norm (sum of all

the singular values of U), respectively. Besides, ‖U‖2,0 represents the �2,0 norm (#{i :
∑

j U2
i, j � 0})

and ‖U‖2,1 denotes the �2,1 norm (
∑

i

√∑
j U2

i, j ). 〈U,V〉 is the inner product of two matrices with ap-

propriate dimensions, which is equal to tr(UTV). Moreover, diag(·) is the diagonalization operator
that converts a vector into a diagonal matrix, and I is the identity matrix with compatible size.

2 RELATED WORK

In general, our approach improves the robustness of ensemble clustering by learning a robust
representation for co-association matrix through low-rank constraint. In this section, we give a
brief introduction to ensemble clustering and low-rank matrix analysis, respectively.

2.1 Ensemble Clustering

Ensemble clustering has attracted a lot of research efforts, which can be roughly divided into two
categories, such as the utility function based methods and co-association matrix based ones.

The utility function based methods compute the similarity between consensus partition and
multiple BPs by an explicit objective function. They usually obtain the final clustering result by
solving a maximization problem. For instance, Topchy et al. (2003) proposed a quadratic mu-
tual information based objective function for consensus clustering, which actually employed
the category utility function (Mirkin 2001) and found a solution by using K-means clustering.
This idea was further extended in their work (Topchy et al. 2004, 2005), where they solved en-
semble clustering by using expectation-maximization (EM) algorithm with a finite mixture of
multinomial distributions. Along this line, Wu et al. (2015) transferred the ensemble cluster-
ing into a K-means clustering problem with KCC utility functions and gave the necessary and
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sufficient conditions of using them. In addition, there are some other interesting objective func-
tions for ensemble clustering, such as the ones based on non-negative matrix factorization (Li et al.
2007), simulated annealing (Lu et al. 2008), and kernel-based methods (Vega-Pons et al. 2010).

The co-association matrix based methods summarize the categorical data of BPs into a pair-
wise similarity matrix, which counts the times of any two instances being divided into the same
cluster. The co-association matrix actually represents the membership of all the data points in
a partition space. Thus, any graph partitioning algorithms can be conducted on it to obtain the
final clustering result. Strehl and Ghosh (2003) developed three graph-based algorithms for con-
sensus clustering (i.e., cluster-based similarity graph partitioning, hyper-graph partitioning and
meta-clustering algorithm) and returned the best result according to the normalized mutual infor-
mation measurement. Following this line, Fern and Brodley (2004) built a bipartite graph to further
improve the clustering quality. These two representative works both involved a pairwise similarity
matrix computed by BPs. To our best knowledge, the definition of co-association matrix was first
introduced by Fred and Jain (2005), where they applied the agglomerative hierarchical clustering
to find consensus partition. After that, a fully discussion about hierarchical ensemble clustering
was given by Zheng et al. (2014). Recently, Liu et al. (2015a) proposed a spectral ensemble clus-
tering method, which ran spectral clustering on the co-association matrix and transformed it as a
weighted K-means problem to achieve high efficiency. Other methods include genetic algorithm
based methods (Yoon et al. 2006), relabeling and voting (Ayad and Kamel 2008), locally adaptive
cluster based methods (Domeniconi and Al-Razgan 2009), simultaneous clustering and ensem-
ble (Tao et al. 2017a), multi-view ensemble clustering (Tao et al. 2017b), and infinite ensemble (Liu
et al. 2016, 2018).

Most existing ensemble clustering methods directly integrate BPs without considering the detri-
mental effect of noises. A few efforts (Yi et al. 2012; Zhou et al. 2015) have been made to improve
the robustness of co-association matrix. They mainly target at a denoising task by using low-rank
matrix recovery. In contrast, our approach learns a LRR for the co-association matrix, which not
only reduces its noises, but also highlight its block-diagonal structure. Moreover, we find the con-
sensus partition within a unified optimization framework.

2.2 Low-Rank Matrix Analysis

Low-rank matrix analysis has been widely used in the fields of machine learning, data mining and
computer vision, such as matrix completion (Wright et al. 2009; Candès et al. 2011), subspace learn-
ing (Liu and Yan 2011; Liu et al. 2013; Li and Fu 2014, 2016; Li et al. 2018a), transfer learning (Shao
et al. 2014; Ding and Fu 2014; Ding et al. 2015), multi-view learning (Li et al. 2017a, 2018b), and
image segmentation (Cheng et al. 2011; Cao et al. 2014; Li et al. 2016a). It aims to recover clean
data from the samples containing various noises. Generally speaking, it has two representative
forms as Robust PCA (Wright et al. 2009; Candès et al. 2011) and LRR (Liu et al. 2010, 2013). Given
an observed data matrix X = [x1, . . . , xn] ∈ Rd×n , of which each column vector xi ∈ Rd denotes
a sample, Robust PCA decomposes X into a low-rank matrix A and a sparse residual matrix E,
where A represents the clean data and E captures noises. Clearly, robust PCA implies data lying in
a single subspace and is mainly used for low-rank matrix recovery and completion. On the other
hand, LRR assumes data are drawn from a union of low-dimensional subspaces and tries to seg-
ment these subspaces by learning the lowest rank representation Z for X: minZ,E rank(Z) + λ‖E‖0,
subject to X = XZ + E, where λ > 0 balances the rankness of Z and the sparseness of E. In prac-
tice, since solving LRR is an NP-hard problem, we usually tackle its convex relaxation, i.e., using
nuclear norm to estimate rank(Z) and �1 or �2,1 norm to approximate ‖E‖0. It is worth noting that,
LRR is in essence a generalization for Robust PCA, as XZ also exhibits low-rank property with the
minimizer of Z (Liu et al. 2013). By expressing X with itself, Z works as a pairwise affinity matrix
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that computes the similarity between data points. Moreover, it has been proven that Z enjoys a
nice block-diagonal property (Liu et al. 2013; Yin et al. 2016), which is able to uncover the global
structure of data and further facilitate the clustering process. In light of this, we employ LRR to
learn a robust representation for the co-association matrix, rather than directly recover it as a low-
rank one. However, one drawback of LRR is that the nuclear norm is a biased estimator to matrix
rank, as it over-penalizes the large singular values (Wang et al. 2013; Lu et al. 2014; Peng et al.
2015). Thus, in this article, we also present a non-convex RSEC model to achieve more robustness
for rank approximation.

3 ROBUST SPECTRAL ENSEMBLE CLUSTERING

In this section, we first propose a general model to our RSEC method and formulate it as a con-
vex optimization problem. Then, the solution based on Augmented Lagrange Multiplier (ALM) is
elaborated, followed by an analysis of convergence and complexity to our algorithm.

3.1 Preliminary

Let X = {x1,x2, . . . ,xn } be a set of n data points independently sampled from K clusters, repre-
sented as C = {C1, . . . ,CK }. Denote Π = {π1,π2, . . . ,πm } asm input BPs, each of which divides X
into Ki crisp partitions and maps X into a label set πi = {πi (x1),πi (x2), . . . ,πi (xn )}, where Ki is
the cluster number for the ith BP, 1 ≤ πi (x j ) ≤ Ki , and 1 ≤ i ≤ m, 1 ≤ j ≤ n. Note that, the cluster
number of each BP is usually set to be different for achieving the diversity among input BPs, which
has been recognized as an efficient manner to ensure the success for ensemble clustering (Fred and
Jain 2005; Wu et al. 2015).

The goal of ensemble clustering is to find the consensus partition that agrees with input BPs
most and divides X into its original K clusters. Commonly, EC methods summarizem BPs as a co-
association matrix, and then conduct a graph partitioning algorithm to obtain the final consensus
clustering, denoted as π . The co-association matrix S ∈ Rn×n actually calculates the times of two
instances occurring in the same cluster based on Π, which is defined by Fred and Jain (2005) as

S(xp ,xq ) =
m∑

i=1

δ (πi (xp ),πi (xq )), (1)

where xp , xq ∈ X and δ (a,b) is 1 if a = b; 0 otherwise.
Obviously, S could be normalized by S = S/m. Inspired by Liu et al. (2015a), we apply the spec-

tral clustering on the co-association matrix S, and have its trace minimization form by follow-
ing Luxburg (2007) as

min
H

tr(HTLs H) s.t. HTH = I, (2)

where Ls = I − D
−1/2
s SD

−1/2
s is the normalized Laplacian matrix of S, with degree matrix Ds ∈ Rn×n

being a diagonal matrix whose jth diagonal element is the sum of the jth row of S, and H ∈ Rn×K

is defined as the scaled partition matrix of the consensus partition π :

Hjk =

{
1/
√
|Ck |, if x j ∈ Ck in π

0, otherwise
. (3)

3.2 Problem Formulation

According to Equation (2), the intrinsic structure of co-association matrix S is the key factor to
ensemble clustering. Ideally, S should be a low-rank matrix (K 	 n), and enjoys a clear cluster
structure of K block-diagonal. However, since co-association matrix is directly computed by mul-
tiple BPs, its cluster structure could be easily undermined by the noises from BPs.
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LRR is capable of handling noises and revealing the membership between data points with a
block-diagonal form Liu et al. (2013); thus, it is natural to learn a robust representation for the
co-association matrix S by leveraging LRR. However, LRR only guarantees the low-rank property
of the learned representation, yet without considering the ensemble clustering task. Therefore,
we propose our RSEC method to simultaneously learn a robust representation for S and find the
consensus partition with a unified optimization framework. Given a normalized co-association
matrix S, the objective function of our RSEC is formulated as

min
H,Z,E

tr(HTLzH) + λ1rank(Z) + λ2‖E‖�

s.t. HTH = I, S = SZ + E,
(4)

with

Lz = I − D−1/2
z ((Z + ZT)/2 + HHT)D−1/2

z , (5)

where H denotes the consensus partition, Z ∈ Rn×n is the learned representation, E ∈ Rn×n is an
error matrix that tries to capture various noises inside S, ‖ · ‖� indicates a specific sparse regular-
ization strategy (e.g., �0 norm or �2,0 norm), and λ1, λ2 > 0 are two penalty parameters that balance
the corresponding terms. In Equation (5), Lz is designed as a normalized Laplacian matrix of the
graph constructed by Z and H, and the degree matrix Dz is computed by

Dz = diag([d1, . . . ,dn]), (6)

where dj , 1 ≤ j ≤ n, is the sum of the jth row of the matrix (Z + ZT)/2 + HHT. Here, (Z + ZT)/2 is

employed to obtain a symmetric graph. Moreover, since H is a high-quality clustering result, HHT

also works as an affinity matrix with clear cluster structure. Thus, we use it to iteratively enhance
the block-diagonal structure of Z during the optimization process.

In the objective function of RSEC, we minimize rank(Z) subject to the self-expressiveness prop-
erty (Liu et al. 2013) (i.e., S = SZ + E) to seek for the LRR of S. It is worth noting that, either �0
norm or �2,0 norm could be used as a sparse regularization on E, since it is reasonable to assume
the noises randomly appear on S due to disagreements between BPs, or mainly occur on some
specific instances (i.e., rows in S) that may easily induce outlier partition results. The spectral
clustering is conducted on Lz to find the consensus partition H. By using Lz in Equation (5), RSEC
incorporates an interaction between learning Z and finding H.

Remark 3.1. Different from the Laplacian Regularized LRR problem (Yin et al. 2016), where the
graph is fixed by the predefined affinity matrix, the graph defined by Equation (5) is iteratively
updated in our method. Moreover, the Laplacian term is used for different purposes. In (Yin et al.
2016), it works as a regularization for LRR to hold the structure of the graph. However, the proposed
RSEC employs the Laplacian term to conduct spectral clustering on the learned representation Z,
which finds the final consensus partition H.

Clearly, Equation (4) is an NP-hard problem. By following Liu et al. (2013), we relax RSEC as

min
H,Z,E

tr(HTLzH) + λ1‖Z‖∗ + λ2‖E‖2,1

s.t. HTH = I, S = SZ + E,
(7)

where the nuclear norm ‖Z‖∗ is a convex envelope of rank(Z), and the �2,1 norm ‖E‖2,1 is a convex
proxy to ‖E‖2,1. In the next, we will give more details about how to solve Equation (7) with an
iterative optimization manner.
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3.3 Optimization

The problem of Equation (7) is hard to solve, since it is not jointly convex for Z and H. However,
we may divide it into several subproblems and optimize each of them by fixing the other variables.
The ALM method (Lin et al. 2010, 2011) comes to mind as an efficient and effective solver to our
problem. To apply ALM, we first introduce an auxiliary variable J to make Equation (7) separable,
and equivalently convert it as

min
H,Z,E

tr(HTLzH) + λ1‖J‖∗ + λ2‖E‖2,1

s.t. HTH = I, S = SZ + E, Z = J.
(8)

Following Dhillon et al. (2004), the constraint HTH = I is relaxed to avoid hard partition during
the optimization process. The augmented Lagrangian function of Equation (8) could be written as

L = tr(HTLzH) + λ1‖J‖∗ + λ2‖E‖2,1 + 〈Y1, S − SZ − E〉

+ 〈Y2, Z − J〉 + μ

2

(
‖S − SZ − E‖2F + ‖Z − J‖2F

)
,

(9)

where Y1 and Y1 are two Lagrangian multipliers, and μ > 0 is a penalty parameter.
The ALM solver solves Equation (9) with an iterative update manner, which addresses J, Z, E,

and H in sequence and optimizes one variable by fixing the others. More details are given in the
following.

Update J. We first minimize L with respect to J, and obtain J(t+1) by

J(t+1) = argmin
J

λ1‖J‖∗ +
〈
Y

(t )
2 ,Z

(t ) − J
〉
+
μ (t )

2
‖Z(t ) − J‖2F

= argmin
J

λ1

μ (t )
‖J‖∗ +

1

2

�����
J −

(
Z(t ) +

1

μ (t )
Y

(t )
2

)�����
2

F
.

(10)

Equation (10) could be solved with a closed-form solution as

J(t+1) = Θ λ1

μ (t )

(
Z(t ) +

1

μ (t )
Y

(t )
2

)
, (11)

where Θ(·) denotes the Singular Value Thresholding (SVT) operator (Cai et al. 2010).

Update Z. By substituting Equation (5) into L and dropping unrelated terms, the subproblem
for updating Z is equivalent to the following:

Z(t+1) = argmin
Z

− 1

2
tr

(
H(t )TD−1/2

z (Z + ZT)D−1/2
z H(t )

)
+

〈
Y

(t )
1 , S − SZ − E(t )

〉

+
〈
Y

(t )
2 , Z − J(t+1)

〉
+
μ (t )

2

(
‖S − SZ − E(t ) ‖2F + ‖Z − J(t+1) ‖2F

)
.

(12)

Note that the derivative of Dz with respect to Z is relatively complex, which actually complicates

the solution of obtaining Z(t+1) . To simplify the solution, the trick employed here is to fix Dz

as a constant, and update it later by using its definition with Z(t+1) and H(t ) . Though it is an
approximate way to take the derivative for Z, it has very little effect on the convergence property
to our method, as shown in the experiments.
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By fixing Dz , Equation (12) becomes a quadratic problem of Z. Thus, taking the derivative of L
with respect to Z as zero, we obtain

Z(t+1) = (SST + I)−1
(
STS + J(t+1) − STE(t )

+
1

μ (t )

(
STY

(t )
1 − Y

(t )
2 + D−1/2

z H(t )H(t )TD−1/2
z

))
.

(13)

Update E. The subproblem of updating E can be recast as

E(t+1) = argmin
E

λ2‖E‖2,1 + 〈Y(t )
1 , S − SZ(t+1) − E〉 + μ (t )

2
‖S − SZ(t+1) − E)‖2F

= argmin
E

λ2

μ (t )
‖E‖2,1 +

1

2

������
E − �

�
S − SZ(t+1) +

Y
(t )
1

μ (t )
�
�

������

2

F

.

(14)

Following the lemma provided in Liu et al. (2013), we may solve this subproblem column-wisely,

where each column of E(t+1) has a closed-form solution as

∀i E
(t+1)
i =

⎧⎪⎨⎪⎩
‖Qi ‖2−λ2/μ (t )

‖Qi ‖2 , if ‖Qi ‖2 > λ2/μ
(t )

0, otherwise
, (15)

where ‖Qi ‖2 denotes the �2 norm of a column vector, 1 ≤ i ≤ n, and Q ≡ S − SZ(t+1) +
Y

(t )
1

μ (t ) .

Update H. To solve the subproblem of H, we first update Lz and Dz by using their definition in

Equation (5) and Equation (6) with Z(t+1) and H(t ) . Then, H(t+1) is obtained by

H(t+1) = argmin
H

tr(HTLzH),

Lz = I−D−1/2
z ((Z(t+1) + Z(t+1)T)/2 + H(t )H(t )T)D−1/2

z .
(16)

Since H(t ) is a constant as the consensus partition obtained by last iteration, Equation (16) is still
quadratic w.r.t. H. Actually, solving the subproblem of H is equivalent to the normalized spectral

clustering on Lz . Thus, a well-known solution for Equation (16) is to set H(t+1) as the smallest K
eigenvectors of the Lz (Shi and Malik 2000; Ng et al. 2001; Luxburg 2007).

ALGORITHM 1: Robust Spectral Ensemble Clustering

Input: a set of basic partitions Π = {π1,π2, . . . ,πm }, cluster number K , two parameters λ1, λ2 > 0.

Initial: J0 = Z0 = E0 = 0 ∈ Rn×n , Y0
1 = Y0

2 = 0 ∈ Rn×n , H0 = 0 ∈ Rn×K , ρ = 1.1, μ0 = 10−6, μmax = 1010,

and t = 0.

1: Derive S from Π via Equation (1) and normalize it by S = S/m;

2: while not converged do

3: Update J(t+1) via Equation (11);

4: Update Z(t+1) via Equation (13);

5: Update E(t+1) via Equation (15);

6: Compute Dz and Lz based on Z(t+1) and H(t ) via Equation (5–6);

7: Set H(t+1) as the smallest K eigenvectors of Lz ;

8: Update the Lagrangian multipliers via Equation (17);

9: μ (t+1) = min(ρμ (t ) , μmax), t = t + 1;

10: end while

11: Run K-means on H or spectral clustering on Z to obtain the final partition π .

Output: the final partition π .
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Remark 3.2. Co-association matrix is in essence a pairwise similarity matrix upon the par-
tition space, which transforms ensemble clustering into a graph partitioning problem such as

Equation (16). Hence, (Z(t+1) + Z(t+1)T)/2 + H(t )H(t )T serves as a better affinity graph than the

original S: (1) the LRR Z(t+1) alleviates the noise existing in S, and thus highlight the cluster struc-

ture; (2) the high-quality consensus partition H(t ) is incorporated into the affinity graph to further
enhance its block-diagonal structure.

Update Multipliers. Having J(t+1) , Z(t+1) , E(t+1) , and H(t+1) fixed, we compute the Lagrange mul-

tipliers by performing a gradient ascent with the step size of μ (t ) as

Y
(t+1)
1 = Y

(t )
1 + μ

(t ) (S − SZ(t+1) − E(t+1) ),

Y
(t+1)
2 = Y

(t )
2 + μ

(t ) (Z(t+1) − J(t+1) ).
(17)

We eventually obtain a robust representation Z and an optimized partition matrix H when the
procedure of solving Equation (7) terminates. Note that, the final partition could be generated
either by running K-means on H or conducting spectral clustering on Z. Generally, RSEC employs
H by default. However, as will be shown in the experiment, these two manners achieve the same
performance for the most cases. Algorithm 1 provides a detailed summarization for RSEC.

3.4 Convergence and Complexity

Convergence Analysis. Generally, it is hard to guarantee global convergence for solving optimiza-
tion problem with more than two variables, such as Equation (7). However, as suggested by pre-
vious works (Lin et al. 2010, 2011), ALM with Alternating Direction Minimizing (ADM) strategy
could solve the proposed RSEC effectively, since each subproblem in our optimization process has
a closed-form solution. Moreover, empirical evidence on real-world datasets indicates that our al-
gorithm has a stable convergence performance, which shows Algorithm 1 works well in practice.

Complexity Analysis. As shown by Algorithm 1, the computing cost of the proposed RSEC mainly
includes 4 parts: (1) For updating J, the SVD computation in Equation (11) would cost O (n3), which
would be computationally expensive when n is large. However, it could be accelerated as O (rn2)
by using the skinny SVD decomposition (Lin et al. 2011), where r 	 n is the rank of the matrix
J. (2) Several matrix multiplications and a matrix inverse operation are involved in Equation (13),
thus it needs O ((l + 1)n3), where l is the number of the multiplications. (3) E can be updated with
a thresholding solution in Equation (15), whose complexity is O (n2). (4) To find the partition H, an
eigenvalue decomposition is employed, which takes O (n3). Thus, the total cost of our method is
O (t ((r + 1)n2 + (l + 2)n3))), where t is the iteration number of Algorithm 1. Our approach has a
similar time and space complexity compared with previous low-rank based methods (Yi et al. 2012;
Zhou et al. 2015), which is relatively high for large-scale datasets. Fortunately, it could be reduced
by some off-the-shelf fast LRR methods (Xiao et al. 2015; Oh et al. 2015), and be further accelerated
by a learnable predicting scheme (Li et al. 2016b, 2017b, 2017c). However, in this article, we are
more interested in improving robustness and effectiveness for ensemble clustering, and thus we
leave the scalability in our future work.

4 A NON-CONVEX ALTERNATIVE

In this section, we first explain how a non-convex penalty function can benefit the rank minimiza-
tion problem, and then provide a non-convex RSEC model, along with an effective solution via the
MM-ALM method.
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4.1 Preliminary

Before giving our non-convex RSEC model, here, we first introduce how to use the Minmax Con-
cave Plus (MCP) (Zhang 2010) function to obtain the matrix MCP norm and γ -norm, which can be
used as non-convex penalty for sparsity modeling and rank minimization, respectively.

Given a matrix X ∈ Rd×n and λ > 0, γ > 1, the matrix MCP norm is defined as

Mλ,γ (X) =
∑
i, j

ϕλ,γ (Xi, j ), (18)

of which ϕλ,γ (·) is given by

ϕλ,γ (t ) = λ

∫ t

0

(
1 − u

γλ

)
+

du =

{
γλ2/2, if |t | ≥ γλ
λ |t | − t2/2γ , otherwise

,

where (z)+ = max(z, 0). The definition given by Equation (18) is also applicable to a vector, in
which case d = 1. In the following, we set λ = 1 as the default, and denoteMγ (X) =M1,γ (X) for
conciseness. It is worth noting that, the matrix MCP norm offers a better way, which jointly enjoys
sparsity, continuity and unbiasedness (Zhang 2010), to approximate the �0 norm than its convex
proxies (e.g., �1 norm and �2,1 norm). Based on MCP, the matrix γ -norm is defined by (Wang et al.
2013) as

‖X‖γ =
r∑

i=1

∫ σi (X)

0

(
1 − u

r

)
+
du =

r∑
i=1

ϕ1,γ (σi (X)) =Mγ (σ (X)), (19)

where γ > 1, r = min(d,n), σ (X) = (σ1 (X), . . . ,σr (X))T denotes a function from Rm×n to Rr
+ and

σi (X) is the ith largest singular value of X, 1 ≤ i ≤ r . Considering the matrix rank is equivalent to
‖σ (X)‖0, γ -norm naturally inherits the advantage of MCP function, and thus provides an unbiased
approximation to the matrix rank.Mγ (X) and ‖X‖γ are both non-convex w.r.t. X.

4.2 Motivation and Formulation

Recall the RSEC model in Equation (7), we use nuclear norm to approximate the matrix rank and
transform RSEC as a convex problem with respect to each variable. However, since the nuclear
norm simply sums all the singular values of a matrix, it may over-penalize large singular val-
ues (Wang et al. 2013; Peng et al. 2015), resulting in a biased rank estimation. This problem can
degrade the performance of RSEC on some imbalanced datasets. Therefore, motivated by the ro-
bustness of non-convex rank minimization, we propose to reformulate our RSEC model by using
the MCP matrix norm and γ -norm. The objective function of RSEC in Equation (4) is remodeled
as

min
H,Z,E

tr(HTLzH) + λ1‖Z‖γ1 + λ2Mγ2 (E) s.t. HTH = I, S = SZ + E, (20)

with Lz being defined by Equation (5). In Equation (20), we employ ‖Z‖γ1 andMγ2 (E) as the non-
convex relaxation for rank(Z) and ‖E‖0, respectively. According to the definition in Equation (18)
and Equation (19), when γ → ∞, we haveMγ (·) → ‖ · ‖1 and hence ‖ · ‖γ → ‖ · ‖∗; when γ → 1,
Mγ (·) works as a hard thresholding operator correspond to the �0 norm, which may induce poor
local convergence result. Thus,Mγ bridges the gap between the �1 and �0 norm, and we always
keep γ > 1 to achieve a good relaxation to �0 penalty. As suggested by [Wang et al. 2013], both
Mγ1 (·) and ‖ · ‖γ2 are quite insensitive to γ1 and γ2 as long as they stay in small real values strictly
greater than 1. We fix γ1 = γ2 = 2 in the experiment.

4.3 Optimization

The Majorization–Minimization (MM) method is a common way for solving the non-convex op-
timization problem (Wang et al. 2013; Li and Fu 2015). It proceeds by iteratively solving a convex
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problem that locally approximates the original non-convex problem in each step. In this section,
we develop a MM-ALM method to solve the problem of Equation (20), consisting of two loops:
the outer loop replaces our non-convex RSEC by its locally linear approximation (LLA) to form
a weighter convex problem; while the inner loop performs an inexact ALM algorithm. Similar to
Equation (8), we first introduce an auxiliary variable J and relax the HTH = I to facilitate the op-
timizing process, and then our non-convex RSEC can be formulated as

min
H,Z,E,J

tr(HTLzH) + λ1‖J‖γ1 + λ2Mγ2 (E) s.t. S = SZ + E, Z = J. (21)

In the outer loop, since Equation (21) is concave with respect to (σ (J), |E|), we approximate ‖J‖γ1

andMγ2 (E) by its LLA at (σ (J)old , |E|old ), and transform Equation (21) into a convex problem:

min
H,Z,E,J

tr(HTLzH) + λ1Qγ1 (σ (J) |σ (J)old ) + λ2Qγ2 (E|Eold )

s.t. S = SZ + E, Z = J,
(22)

where

Qγ (A|Aold ) =Mγ (A) +
∑
i, j

(1 − |Aold
i j |/γ )+ ( |Ai j | − |Aold

i j |),

is the LLA of Mγ (A) given Aold .
In the inner loop, similar to Section 3.3, the inexact ALM algorithm is used to solve Equation (22)

by dividing it into several subproblems, which updates one variable while keeping others fixed.
The augmented Lagrange functions of Equation (22) is written as

L = tr(HTLzH) + λ1Qγ1 (σ (J) |σ (J)old ) + λ2Qγ2 (E|Eold )

+ 〈Y1, S − SZ − E〉 + 〈Y2, Z − J〉 + μ

2
(‖S − SZ − E‖2F + ‖Z − J‖2F),

(23)

where Y1,Y2 are two Lagrange multipliers, and μ > 0 is a penalty parameter. One may note that,
since the subproblems of Z and H are similar to that of Equations (12) and (16), their solutions keep
unchanged. Thus, here, we only give the solutions to the subproblems of J and E. For the (t + 1)-th
iteration of the inner loop, based on the theorem provided by Wang et al. (2013), we can obtain

J(t+1) and E(t+1) by

J(t+1) = argmin
J

1

2

������
J − �

�
Z(t ) +

Y
(t )
2

μ (t )
�
�

������

2

F

+
λ1

μ (t )
Qγ1 (σ (J|σ (J)old ) (24)

= Θ λ1

μ (t ) ,Λ
�
�
Z(t ) +

Y
(t )
2

μ (t )
�
�

,

E(t+1) = argmin
E

1

2

������
E − �

�
S − SZ(t+1) +

Y
(t )
1

μ (t )
�
�

������

2

F

+
λ2

μ
Qγ2 (E|Eold ) (25)

= D λ2

μ (t ) ,W
�
�
S − SZ(t+1) +

Y
(t )
1

μ (t )
�
�

,

where Λ = (I − ΣJold /γ1)+ and W = (1n1T
n − |Eold |)+ are two elementwise non-negative matrices

obtained by the outer loop. Θτ ,Λ andDτ ,W are defined as the generalized singular value shrinkage
operator and generalized shrinkage operator (Wang et al. 2013) as the following:

Θτ ,Λ(X) = UXDτ ,Λ(ΣX)VT
X,

[Dτ ,W (A)]i j = sgn(Ai j ) ( |Ai j | − τWi j )+.
(26)
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ALGORITHM 2: Non-Convex RSEC by MM-ALM

Input: a set of basic partitions Π = {π1,π2, . . . ,πm }, cluster number K , two parameters λ1, λ2 > 0.

Initial: J0 = Z0 = E0 = 0 ∈ Rn×n , H0 = 0 ∈ Rn×K , ρ = 1.3, μmax = 1010 and ϵ = 10−7.

1: Derive S from Π via Equation (1) and normalize it by S = S/m;

2: while not converged do

3: Initialize Y0
1 = Y0

2 = 0 ∈ Rn×n , μ0 = 1.5/‖S‖2, and t = 0;

4: Λ = (I − ΣJold /γ1)+;

5: W = (1n1T
n − |Eold |)+;

6: while not converged do

7: Update J(t+1) via Equation (24);

8: Update Z(t+1) via Equation (13);

9: Update E(t+1) via Equation (25);

10: Compute Dz and Lz based on Z(t+1) and H(t ) via Equation (5–6);

11: Set H(t+1) as the smallest K eigenvectors of Lz ;

12: Update the Lagrangian multipliers Y
(t+1)
1 and Y

(t+1)
2 via Equation (17);

13: Check the convergence condition

‖S − SZ(t+1) − E(t+1) ‖∞ < ϵ and ‖J(t+1) − Z(t+1) ‖∞ < ϵ ;

14: μ (t+1) = min(ρμ (t ) , μmax), t = t + 1;

15: end while

16: Jold ← J(t+1) , Eold ← E(t+1) ;

17: end while

18: Run K-means on H or spectral clustering on Z to obtain the final partition π .

Output: the final partition π .

4.4 Convergence and Complexity

Convergence Analysis. The Algorithm 2 has two parts including outer loop and inner loop. Let
f (H,Z,E, J) be the objective function in Equation (21). For the outer loop, by keeping the other
variables fixed, f (J,E) obeys the following property (Wang et al. 2013):

f (J,E) ≤ λ1Qγ1 (σ (J) |σ (J)old ) + λ2Qγ2 (E|Eold )

≤ λ1Qγ1 (σ (J)old |σ (J)old ) + λ2Qγ2 (Eold |Eold )

= f (Jold ,Eold ),

which shows Algorithm 2 is non-increasing, and hence could find a local optimal solution. For the
inner loop, it has the similar convergence property to the Algorithm 1, which has been provided in
Section 3.4 before. The convergence behavior of Algorithm 2 is also demonstrated by the empirical
evidence in the experiment.

Complexity Analysis. The MM-ALM method inevitably burdens the computing cost of our non-
convex RSEC model, since it may conduct the LLA for (σ (J), |E|) several times. To alleviate such
defect, we adopt a one-step LLA strategy, which only proceeds the outer loop once. As suggested
by Wang et al. (2013), this has little effect to the final performance. The inner loop in Algorithm 2
is also solved by the ALM method with a similar procedure to the Algorithm 1, thus these two
algorithms actually have the same time complexity.

5 EXPERIMENT

In this section, we report the clustering results of our convex model in Algorithm 1 (denoted
as RSEC), as well as its non-convex relaxation provided in Algorithm 2 (denoted as NRSEC).
We compare our algorithms with several state-of-the-art ensemble clustering (EC) methods on
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Table 1. Dataset Details

Dataset #Instance #Feature #Class #minClass #maxClass CV Density Source
breast_w 699 9 2 241 458 0.4390 0.9975 UCI

BreastTissue 106 9 6 14 22 0.1849 0.9927 UCI
Glass 214 9 6 9 76 0.8339 0.7965 UCI
iris 150 4 3 50 50 0.0000 1.0000 UCI

ionosphere 351 35 2 126 225 0.3989 0.6002 UCI
pendigits 10992 16 10 1055 1144 0.0422 0.8717 UCI

wine 178 13 3 48 71 0.1939 1.0000 UCI
fbis 2463 2000 17 38 506 0.9614 0.0799 CLUTO
k1b 2340 21839 6 60 1389 1.3162 0.0068 CLUTO
re0 1504 2886 13 11 608 1.5023 0.0179 CLUTO
tr12 313 5804 8 9 93 0.6381 0.0471 CLUTO
tr11 414 6429 9 6 132 0.8817 0.0438 CLUTO
tr23 204 5832 6 6 91 0.9345 0.0661 CLUTO
wap 1560 8460 20 5 341 1.0403 0.0167 CLUTO

COIL20 1440 1024 20 72 72 0.0000 0.6561 others
ImageNet 7341 4096 5 910 2126 0.3072 0.1623 others
MNIST4K 4000 784 10 359 454 0.0818 0.1854 others

USPS 9298 256 10 708 1553 0.2903 0.2456 others

18 real-world datasets by using two widely-used validation criteria. Moreover, extensive discus-
sions are given to the factors related to the clustering performance of our methods.

5.1 Experimental Setup

Datasets Details. Eighteen real-world datasets are used in the experiment for evaluating the pro-
posed method. To achieve a comprehensive evaluation, we employ datasets of various types from
different sources. Specifically, we select seven datasets from the UCI Machine Learning Reposi-
tory1; seven text-type datasets from CLUTO2; and four image-type datasets from other sources,
such as COIL20 (Nene et al. 1996), ImageNet,3 MNIST4K,4 and USPS.4 UCI is the most widely-
used dataset collection for the machine learning community, and CLUTO provides a testbed for
the document clustering task. The MNIST4K provided by Cai et al. (2011) is a subset of the MNIST

dataset (LeCun et al. 1998). More details are shown in Table 1, where “#minClass” and “#maxClass”
denote as the instance number of the smallest cluster and the largest one, respectively. Besides, CV
indicates the Coefficient of Variation statistic which characterizes the imbalance degree of clusters,
and Density is used to measure the feature sparseness.

Compared Methods. We compare our approaches (RSEC and NRSEC) with six state-of-the-art
ensemble clustering methods, including Graph-based Consensus Clustering (GCC) (Strehl and
Ghosh 2003), Hierarchical Clustering on Co-association matrix (HCC) (Fred and Jain 2005), En-
semble Clustering by Matrix Completion (ECMC) (Yi et al. 2012), K-means based Consensus Clus-
tering (KCC) (Wu et al. 2015), Spectral Ensemble Clustering (SEC) (Liu et al. 2015a, 2017), and
Robust Clustering Ensemble (RCE) (Zhou et al. 2015). These six methods are selected in terms of

1https://archive.ics.uci.edu/ml/datasets.html.
2http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download.
3http://www.cs.dartmouth.edu/∼chenfang/.
4http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.
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(1) classic and representative methods (GCC and HCC); (2) recent effective work (KCC and SEC);
and (3) robust EC methods based on low-rank constraint (ECMC and RCE). Besides, two traditional
clustering algorithms, i.e., K-means and spectral clustering, are also employed as baseline methods
in the experiment.

Validation Criteria. We use two well-known clustering validation criteria for the quantitative
analysis, which are Average Clustering Accuracy (ACC) and Normalized Mutual Information (NMI).
ACC and NMI are both positive measurements ranged from 0 to 1, where a higher value indicates
better performance. A brief introduction to these two metrics are given as follows.

ACC is the fraction of resulted labels given by a clustering method that match with ground-truth
labels (Yan et al. 2009). Given a dataset X of n instances with K clusters, ACC is formulated as

max
д

1

n

n∑
j=1

δ (yj ,д(π (x j ))), (27)

where x j ∈ X,yj ∈ [1,K] is the ground-truth cluster label of x j , 1 ≤ j ≤ n, π is the clustering result
that maps X into a label set {π (x1), . . . ,π (xn )}, π (x j ) ∈ [1,K], and д(·) works as a permutation
operation. Since clustering is an unsupervised algorithm, thus we need to search д(·) from all the
permutations of K cluster labels to maximize the final ACC.

NMI computes the mutual information entropy between cluster labels and the ground-
truth (Shao et al. 2015), which is defined as

NMI =

∑
h

∑
l nh,l log(

nnh,l

nhnl
)√

(
∑

h nh log nh

n
) (
∑

l nl log nl

n
)
, (28)

where nh and nl denote the number of instances in cluster Ch found by a partition result and
Cl given by the ground-truth, respectively, and nh,l is the number of instances in both Ch and Cl .
NMI will be inclined to 0 if the data are randomly partitioned. More details about clustering criteria
could be referred by Wu et al. (2009).

Clustering Tools. Following Wu et al. (2015), we generate r = 100 BPs (denoted as Π) with the
RPS strategy (Fred and Jain 2005; Wu et al. 2015) on each dataset, and use Π as the default input
for all the EC methods. In details, each BP of Π is obtained by running K-means with the cluster
number varying from K to

√
n, where K is the true cluster number and n is the size of dataset.

We performed each EC method by running the code provided by the authors, and tuned the
parameters as suggested in their papers. For traditional methods, we directly used the MATLAB
function K-means for the K-means algorithm, and implemented spectral clustering according to
(Ng et al. 2001). The cluster number was set to be K for testing all the methods. Moreover, we
tested KCC, SEC, K-means and spectral clustering twenty times and reported the average result,
as they all include random initialization. For ECMC and RCE, their model has two parts, i.e., first,
recovering a low-rank co-association matrix and, second, performing spectral clustering on the
recovered matrix for the final partition result. Thus, we also ran the second part of these two
methods 20 times for a fair comparison. Similarly, for our RSEC (NRSEC), we repeated the last step
in Algorithm 1(2) twenty times. The standard deviation (std) of clustering results were reported for
all the methods except for HCC, as HCC is a deterministic algorithm. We set λ1 = 0.1, λ2 = 0.01
for RSEC and λ1 = 1, λ2 = 0.01 for NRSEC as the default setting.

All the experiments were conducted by MATLAB on a 64-bit Ubuntu 14.04 platform with two
Intel Core i7 3.4GHz CPUs and 32GB RAM. Note that, since RCE suffers from a high space com-
plexity of O (rn2), we cannot run it on some datasets due to the memory limitation, labeled by
“N/A” in Tables 2 and 3.
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Table 2. Clustering Performance on 18 Real-world Datasets by ACC (%)

Datasets
Our methods Ensemble clustering methods Baseline methods

RSEC NRSEC GCC HCC ECMC KCC SEC RCE K-means spectral

breast_w 97.14±0.00 97.14±0.00 90.56±0.00 94.99 95.85±0.00 66.35±8.83 95.81±0.00 97.14±0.00 95.85±0.00 96.28±0.00

BreastTissue 37.00±1.30 43.40±0.00 37.74±0.00 40.57 42.45±0.00 41.32±1.88 39.62±0.00 41.23±0.44 33.96±0.00 34.43±1.28

Glass 47.20±0.00 54.16±0.55 51.47±0.78 52.34 52.14±2.76 53.24±3.57 54.08±2.99 52.34±0.00 52.10±3.12 51.79±1.11

iris 97.33±0.00 97.33±0.00 97.33±0.00 89.33 88.67±0.00 88.92±2.47 96.00±0.00 90.00±0.00 89.27±0.20 88.67±0.00

ionosphere 67.52±0.00 68.38±0.00 67.18±0.00 68.38 56.01±1.16 63.82±0.00 63.53±0.00 67.52±0.00 71.23±0.00 70.37±0.00

pendigits 86.44±0.00 86.44±0.00 73.06±0.00 74.24 78.30±0.00 63.97±5.12 74.61±4.20 N/A 74.51±4.76 70.75±3.05

wine 52.25±0.00 53.76±2.38 51.69±0.00 50.00 52.92±2.01 50.49±0.33 51.12±0.00 50.00±0.00 50.00±0.00 51.12±0.00

fbis 54.39±2.29 58.15±2.15 45.49±0.02 54.28 45.98±3.65 48.91±2.81 48.37±1.79 53.47±0.00 28.62±3.00 19.33±0.20

k1b 77.62±1.36 80.09±1.04 51.06±0.01 82.26 68.80±8.18 49.17±5.78 49.38±1.66 74.79±0.00 72.59±8.42 58.91±1.53

re0 42.08±1.96 43.93±0.04 35.51±0.00 39.56 39.17±2.72 36.27±2.60 34.91±1.46 35.44±0.00 37.20±3.16 29.11±2.22

tr11 63.38±2.48 63.35±1.80 65.70±0.00 63.29 50.19±2.86 60.53±2.83 53.57±2.50 64.49±0.00 31.27±1.59 31.63±0.61

tr12 69.33±0.36 69.33±0.00 55.59±0.00 45.05 47.60±5.10 56.03±3.90 58.85±2.07 50.16±0.00 28.20±1.32 28.85±0.30

tr23 41.18±0.00 42.67±2.97 41.18±0.00 37.75 38.73±0.00 41.32±3.75 39.46±1.61 40.20±0.00 40.74±1.98 38.56±1.27

wap 48.96±1.55 51.86±0.61 42.04±0.13 41.47 42.42±2.41 42.08±2.99 38.76±2.67 40.04±1.04 37.02±2.97 38.73±2.40

COIL20 64.96±2.36 62.27±3.09 53.68±0.00 30.49 51.72±2.92 61.18±3.84 61.03±3.14 40.83±0.29 63.09±4.41 64.04±3.27

ImageNet 79.62±1.22 83.72±0.00 72.40±0.01 79.70 79.92±5.06 74.40±4.59 78.86±5.78 N/A 73.48±2.98 76.04±0.02

MNIST4K 61.50±0.66 61.43±1.22 66.08±0.00 58.20 51.55±2.94 55.75±4.05 57.04±2.91 58.96±0.03 54.31±2.29 52.88±1.83

USPS 68.13±2.51 73.15±1.30 59.59±0.01 69.49 59.30±3.91 57.52±5.66 68.61±3.75 N/A 67.15±0.42 68.76±3.62

score 17.17 17.79 15.80 15.93 15.55 15.34 15.84 13.29 14.80 14.30

The top EC performer is highlighted by bold font with red color, while the second best by italic with blue.

5.2 Clustering Performance

Overall. Tables 2 and 3 summarize the clustering performance of our approaches (RSEC and NR-
SEC) and compared methods in terms of ACC and NMI, respectively. As can be seen, our approaches
outperform all the other EC methods in most cases. In detail, our approach is the top performer
on 15 out of 18 datasets and the second best on two out of the remainder by ACC in Table 2. For
another metric, we achieve the highest NMI on 16 out of 18 datasets and perform second best on
the others in Table 3. Moreover, we get the first position by both ACC and NMI on 14 datasets.
The superiority of our approach to the other methods can be clearly observed on pendigits and
tr12, where we improve clustering performance over 8% on pendigits and 10% on tr12. To further
evaluate the performance of all the methods, we compute a measurement score by following (Wu

et al. 2015): score(Ai ) =
∑

j
R (Ai ,D j )

maxi R (Ai ,D j ) , where R (Ai ,D j ) indicates the ACC or NMI value of Ai

method on the D j dataset. This score gives an overall evaluation on all the datasets. As shown by
Table 2(3), our approach outperforms other methods significantly.

Compared to Baseline Methods. From Tables 2 and 3, we may have several important obser-
vations. First, EC methods substantially boost the clustering performance over the baseline
methods in general, which shows ensemble clustering as an effective clustering manner. Second,
we observe that K-means and spectral clustering can exceed EC methods on some datasets, such
as ionosphere and COIL20. We conjecture this is mainly due to the limitation of RPS strategy. RPS
ensures the diversity of multiple BPs, while it may undermine the cluster structure of the dataset
on some cases. Finally, one may note that, all the EC methods perform unsatisfactorily on wine

and ionosphere. Nevertheless, the performance could be improved by using an alternative BP
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Table 3. Clustering Performance on 18 Real-world Datasets by NMI (%)

Datasets
Our methods Ensemble clustering methods Baseline methods

RSEC NRSEC GCC HCC ECMC KCC SEC RCE K-means spectral

breast_w 82.38±0.00 82.38±0.00 61.44±0.00 69.99 73.61±0.00 28.16±13.72 73.61±0.00 80.64±0.00 73.61±0.00 75.63±0.00

BreastTissue 25.67±0.88 32.38±0.00 27.44±0.00 30.46 29.12±0.00 30.89±1.45 29.08±0.00 28.98±0.20 36.52±0.00 35.11±2.06

Glass 43.94±0.61 48.24±0.00 41.80±0.54 40.83 37.72±3.88 39.56±1.77 40.95±0.83 35.42±0.00 39.69±3.36 43.37±2.88

iris 90.11±0.00 90.11±0.00 90.11±0.00 79.08 74.19±0.00 78.30±4.50 87.05±0.00 78.69±0.00 75.66±0.49 74.19±0.00

ionosphere 8.01 ±0.00 8.57 ±0.00 7.19 ±0.00 8.57 7.88 ±3.92 8.81 ±0.00 7.70 ±0.00 7.35±0.00 13.49±0.00 12.64±0.00

pendigits 82.64±0.00 82.64±0.00 70.58±0.00 77.29 74.19±0.00 68.36±3.43 73.87±1.67 N/A 68.93±0.56 65.94±0.76

wine 28.89±0.00 28.89±0.00 16.32±0.00 18.67 21.98±4.22 16.51±0.39 17.60±0.00 16.34±0.00 13.38±0.00 13.36±0.00

fbis 55.95±0.79 57.07±0.11 54.23±0.00 56.21 51.79±2.46 55.11±1.21 54.87±1.09 54.17±0.00 24.75±3.81 5.02 ±0.29

k1b 55.20±2.35 60.40±0.23 56.29±0.01 63.18 52.47±10.2 47.58±8.02 50.57±2.08 57.32±0.02 44.46±13.37 48.71±0.43

re0 39.50±0.94 41.66±0.03 38.02±0.03 37.71 35.65±3.81 39.04±1.16 38.24±1.17 32.64±0.01 23.24±1.24 28.39±0.79

tr11 65.65±1.29 67.06±0.91 65.33±0.00 65.58 54.21±3.54 64.35±1.81 59.73±2.28 64.80±0.00 10.06±1.32 7.39 ±0.59

tr12 61.31±0.49 62.62±0.27 49.03±0.00 41.89 34.88±4.79 51.21±3.32 51.39±2.07 45.72±0.00 8.90±1.68 7.35±0.67

tr23 32.54±0.00 34.67±1.07 33.43±0.00 28.97 29.50±0.00 31.91±3.24 29.24±1.29 29.44±0.00 12.98±2.31 7.19 ±1.17

wap 57.29±1.09 58.46±0.39 49.81±0.10 56.59 43.37±4.13 56.40±1.32 54.10±1.20 54.20±0.02 42.55±2.24 49.10±1.31

COIL20 77.70±1.38 76.48±1.66 71.41±0.00 61.24 69.14±1.64 75.63±1.40 75.00±1.22 62.01±0.45 76.70±1.82 76.98±1.59

ImageNet 59.61±1.22 61.72±0.01 49.35±0.01 54.19 56.33±2.16 52.50±3.89 57.84±2.62 N/A 45.22±2.37 45.96±0.03

MINIST4K 65.25±0.66 64.92±0.24 59.98±0.00 62.27 51.39±2.56 56.47±3.25 56.52±1.76 60.70±0.01 45.37±1.34 45.56±0.85

USPS 76.77±0.45 75.49±0.41 62.84±0.01 73.92 64.52±1.86 63.14±3.66 65.87±1.44 N/A 61.35±0.27 64.83±1.74

score 16.85 17.44 15.10 15.55 14.52 14.76 15.37 12.33 12.16 11.89

The top EC performer is highlighted by bold font with red color, while the second best by italic with blue.

Fig. 2. An illustration of clustering structure in the learned co-association matrices from different methods

on iris.

generation strategy, named as Random Feature Selection (RFS) (Wu et al. 2015). As will be shown
in the next, our approach performs best with RFS on these two datasets.

Compared to Low-Rank Based Methods. The proposed method outperforms the other two low-
rank based EC methods, i.e., ECMC and RCE, in most scenarios of Tables 2 and 3. This is mainly
because our method can better uncover the cluster structure of a co-association matrix, which is
demonstrated by Figure 2. Given the co-association matrix S of iris, ECMC alleviates the existing
noises in S but undermines its cluster structure to some extend; on the other side, RCE holds the
structure, yet still suffers from some gross noises. Different from these two methods, our approach
learns a LRR for S, and employs the consensus partition to iteratively enhance the cluster structure
of the learned representation. Thus, the proposed RSEC and NRSEC can reduce the noises in S

meanwhile without weakening its structure. As shown by Figure (d) and (e), both RSEC and NRSEC
obtain a clear K = 3 block-diagonal co-association matrix.
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Table 4. Computational Time (sec.) of the Proposed RSEC and NRSEC on 18 Datasets

Datasets breast_w BreastTissue Glass iris ionosphere pendigits wine fbis k1b

RSEC 18.33 0.29 1.51 0.67 2.37 31269.80 1.09 602.77 521.66
NRSEC 15.54 0.25 1.40 0.61 3.67 45815.79 0.92 652.40 798.35

Datasets re0 tr11 tr23 tr12 wap COIL20 ImageNet MINIST4K USPS

RSEC 93.62 6.76 3.52 1.83 136.83 67.15 10822.23 1949.05 21734.01
NRSEC 113.55 5.38 3.24 1.28 139.66 95.61 13565.59 2632.54 28079.31

Fig. 3. Convergence curves of the Proposed RSEC and RSECN on four datasets.

Fig. 4. A comparison of NMI between two different manners for obtaining the final clustering result on all

the datasets, where RSEC-H (NRSEC-H) indicates running K-means on the optimal consensus partition H,

and RSEC-Z (NRSEC-Z) denotes conducting spectral clustering on the learned low-rank representation Z.

RSEC vs. NRSEC. In this article, we propose a convex formulation (RSEC) and a non-convex
relaxation (NRSEC) to our model, respectively. The main difference between these two solutions
lies in which way we approximate the matrix rank, where RSEC employs the nuclear norm while
NRSEC uses the matrix γ -norm. By comparing the results of RSEC and NRSEC in Table 2(3), we
observe that NRSEC generally has a better performance than RSEC on some imbalance datasets,
whose CV values are greater than 0.8 (see Table 1). Considering the co-association matrix of a
imbalance dataset ideally has diagonal blocks with highly different sizes, our RSEC may overlook
some small clusters duo to the nuclear norm is biased to large singular values. This can degrade
the performance of RSEC on some cases, such as Glass, fbis, and k1b. Fortunately, NRSEC is able
to address this issue by using the unbiased rank estimation, and thus effectively improves the
robustness of our approach to the imbalance datasets. Moreover, we also compare NRSEC and
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Fig. 5. Parameter analysis of λ1 and λ2 on tr12 for RSEC and NRSEC.

Fig. 6. Impact of BPs number to the proposed RSEC (first row) and NRSEC (second row).

RSEC in terms of running time on all the datasets in Table 4, where NRSEC generally exhibits a
similar computation complexity to RSEC. Thus, we may conclude that NRSEC boosts RSEC without
degrading the computation efficiency.

To sum up, Tables 2 and 3 demonstrate the effectiveness of our approach compared with the
sate-of-the-art EC methods. Moreover, the proposed RSEC and NRSEC show promising clustering
performance on the text-type and image-type datasets, which implies our approach can be further
applied for many specific tasks, such as document clustering and image segmentation.

5.3 Discussion on RSEC

Here, we discuss the properties of RSEC and NRSEC from the following three aspects.

Convergence. We calculate the relative error as ‖S − SZ − E)‖F/‖S‖F to evaluate the convergence
property of our approach. As illustrated by Figure 3, the proposed RSEC and NRSEC both con-
verges within 15 iterations on four datasets, which shows we have a fast and stable convergence
performance.

Different Clustering Manners. Recall the Algorithm 1(2), RSEC (NRSEC) can obtain the final clus-
tering result either by running K-means on the optimal consensus partition H (RSEC-H or NRSEC-
H) or conducting spectral clustering on the learned representation Z (RSEC-Z or NRSEC-Z).
Figure 4 shows the difference between these two manners by NMI for RSEC and NRSEC, respec-
tively. As expected, RSEC-H and RSEC-Z have the similar performance in most cases, where the
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Fig. 7. Impact of incomplete BPs to ensemble clustering methods. We test ECMC (Yi et al. 2012), KCC (Wu

et al. 2015), SEC (Liu et al. 2015a), RCE (Zhou et al. 2015), and the proposed RSEC and NRSEC on four

datasets by ranging missing ratio from 10% to 90% (NMI in the first row and ACC in the second).

same situation appears at NRSEC-H and NRSEC-Z. This indicates the efficacy of our optimization
framework on jointly learning H and Z.

Parameter Analysis. In our objective function of Equation (4), λ1 and λ2 are two parameters
to balance the rankness of the learned representation Z and sparseness of the noise matrix E,
respectively. We take tr12 as an example to show the effect of these two parameters to the clustering
performance of our approach. Figure 5 depicts the NMI variation of RSEC and NRSEC, where λ1

and λ2 are both ranged from 10−4 to 1. As can be seen, RSEC generally keeps stable at the region
of λ1 ∈ [0.01, 1] and λ2 ∈ [0.1, 1]; NRSEC tends to be steady with the area of λ1 ∈ [10−4, 1] and
λ2 ∈ [10−4, 0.01]. It seems NRSEC is more robust to the parameters than RSEC.

5.4 Exploration of Input BPs

In the following, we continue to explore some key factors of BPs for practical use, such as the
number of BPs, the impact of missing data and another BPs generation strategy.

Impact of BPs Number. We vary the number of BPs to see the performance change of RSEC
and NRSEC. Specifically, we randomly sample a certain number of BPs from Π and run RSEC and
NRSEC for the consensus result. The above process is repeated 100 times for a fixed number of
BPs. Figure 6 shows the boxplots of RSEC and NRSEC with the numbers of BPs increasing from
10 to 90 with 10 intervals on breast_w, iris, wine and tr12. It can be seen that the performance of
RSEC and NRSEC goes up and the volatility becomes narrow with the increase of numbers of BPs.
Moreover, when the number of BPs exceeds some threshold, the performance of RSEC and NRSEC
converges. Therefore, we set the number of BPs to be 100 for a stable and robust solution for RSEC
and NRSEC.

Impact of Incomplete BPs. In some real-world applications, BPs might be corrupted due to the
transformation loss or device failure. These missing values lead to the incomplete BPs. One naive
way to handle this scenario is to remove the instances with missing values, which is a kind of waste.
In light of this, we extend our model to handle incomplete BPs by redefining the co-association
matrix S as S(xp ,xq ) =

∑m
i=1 Δ(πi (xp ),πi (xq )), and

Δ(a,b) =
⎧⎪⎪⎨⎪⎪⎩

1, if a = b and a, b � 0
−1, if a � b and a, b � 0
0, if a = 0 or b = 0

,
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Fig. 8. Comparison results between RFS and RPS on 18 datasets by NMI, where GC, HC, EC, KC, SE, RC, RE,

and NRS denote GCC (Strehl and Ghosh 2003), HCC (Fred and Jain 2005), ECMC (Yi et al. 2012), KCC (Wu

et al. 2015), SEC (Liu et al. 2015a), RCE (Zhou et al. 2015) and the proposed RSEC and NRSEC, respectively.
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where xp , xq ∈ X, and πi ∈ Π. After a normalization by S = S/m, the entries of 0 value denote the
most uncertainty in S.

To mimic the data corruption, we randomly drop out some elements of each BP in Π according
to a certain proportion τ , that is, to assign the missing elements in each BP as 0. To explore the
impact of different corruption ratios, we varyτ from 10% to 90% with a fixed step of 10%, and sample
incomplete BPs from Π for each proportion. Figure 7 shows the comparison result between our
methods (RSEC and NRSEC) and several state-of-the-art EC methods with incomplete BPs on four
datasets. As can be seen, RSEC and NRSEC outperform the competitors when τ ≤ 40% and achieve
comparable results when corruption gets aggravated, which indicates our approach is effective to
handle BPs with missing values.

Alternative BPs Generation Strategy. So far, we generate BPs with Random Parameter Section
(RPS) strategy for all the experiments above. Here, we test EC methods with another common
BPs generation strategy, called RFS (Wu et al. 2015), to further explore the impact of BPs to en-
semble clustering performance. Different from RPS, RFS generates BPs by running K-means with
randomly selected partial features. As following the empirical setting in (Liu et al. 2015b), we set
the feature selection ration as 10% and generate 100 BPs for all the datasets.

Figure 8 shows the comparison results between RFS and RPS on 18 real-world datasets by NMI.
One may note that, RFS significantly boosts the clustering performance over RPS on the ionosphere

and wine dataset. We conjecture this is because these two datasets suffer from noisy features, which
leads to low-quality BPs generated by RPS, while RFS alleviates this problem to some extent as it
employs partial features. However, as shown by Figure 8, RPS still performs better than RFS in
the majority cases. Hence, similar to previous works (Fred and Jain 2005; Wu et al. 2015; Liu et al.
2015a), we leverage RPS as the default BPs generation strategy and employ RFS as the alternative
one.

6 CONCLUSION

In this article, we proposed a novel RSEC algorithm, which not only targeted at a denoising task for
the co-association matrix for consensus clustering, but also reinforced the cluster structure. Gen-
erally speaking, we jointly learned a robust representation for the co-association matrix through
low-rank constraint, and explored the cluster structure in a unified optimization framework. The
consensus partition obtained from the learned representation was applied to further enhance its
block-diagonal structure with an iterative manner. Moreover, we further proposed a non-convex
model to improve the robustness of rank approximation, which exhibited higher performance on
some imbalance datasets. Experimental results on 18 real-world datasets demonstrated that the
new representation provided by RSEC enjoyed a much clearer structure than the ones learned
from other methods and that our approaches outperformed several state-of-the-art methods in
terms of ACC and NMI. Several impact factors of BPs generation were also explored extensively
for practical use.
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