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Generative Zero-Shot Learning via Low-Rank
Embedded Semantic Dictionary
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Abstract—Zero-shot learning for visual recognition, which approaches recognizing unseen categories through a shared
visual-semantic function learned on the seen categories and is expected to well adapt to unseen categories, has received considerable
research attention most recently. However, the semantic gap between discriminant visual features and their underlying semantics is still
the biggest obstacle, because there usually exists domain disparity across the seen and unseen classes. To deal with this challenge,
we design two-stage generative adversarial networks to enhance the generalizability of semantic dictionary through low-rank
embedding for zero-shot learning. In detail, we formulate a novel framework to simultaneously seek a two-stage generative model and
a semantic dictionary to connect visual features with their semantic representations under a low-rank embedding. Our first-stage
generative model is able to augment more semantic features for the unseen classes, which are then used to generate more
discriminant visual features in the second stage, to expand the seen visual feature space. Therefore, we will be able to seek a better
semantic dictionary to constitute the latent basis for the unseen classes based on the augmented semantic and visual data. Finally, our
approach could capture a variety of visual characteristics from seen classes that are “ready-to-use” for unknown classes. Extensive
experiments on four zero-shot benchmarks demonstrate that our proposed algorithm outperforms the state-of-the-art zero-shot
algorithms.

Index Terms—Generative Adversarial Network, Low-Rank Embedding, Semantic Dictionary, Zero-Shot Learning
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1 INTRODUCTION

R ECENT years have witnessed the tremendous progress
of several computer vision and machine learning tasks,

for example, object recognition, and fine-grained classifi-
cation, as well as the recent advance of deep learning
techniques. However, the truth behind is popular learning
schemes in this line usually require large amount of labeled
data for model training, e.g., MS-Celeb-1M with millions
of labeled face images. This would be affordable when
facing common objects, but the objects “in the wild” follow
in a long-tailed distribution, and thus the unusual ones
do not occur frequently enough. In reality, new concepts,
especially those from the Internet, emerge everyday, for
which collecting and labeling sufficiently large training sets
could be difficult and expensive [1]. Under this situation,
training effective classification systems for the uncommon
objects without the labeled data becomes a practically im-
portant problem and thus, has drawn considerable research
attention from the machine learning and computer vision
communities.

Recently, zero-shot learning (ZSL) has attracted signifi-
cant attention because of its promising performance. ZSL is
motivated with the learning mechanism of human cognitive
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Fig. 1. Illustration of visual features from seen classes and unseen
classes. Here we have three seen classes, i.e., Tiger, Lion and Leopard,
as well as two unseen class, i.e., cougar and liger. We could notice that
the distributions of different categories across seen and unseen data are
intertwined.

and attempts to identify new objects that are unobserved
during the training stage [2], [3], [4], [5], [6], [7], [8], [9], [10],
[10], [11], [12]. Humans are able to recognize approximate
30,000 basic objects and many more subordinate ones. In-
spiringly, they can recognize new objects given an attribute
description. For instance, one can identify a new species
of animal after being told what it looks like and how it is
similar to or different from other known animals. The reason
is simple: humans are able to explore the relationship among
different objects via secondary knowledge, and adapt the
information from seen classes to unseen ones. Likewise,
ZSL attempts to capture the intrinsic semantic relationship
between observed and unobserved categories. Generally,
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three fundamental concepts are required: (1) visual features
conveying non-trivial yet informative knowledge; (2) se-
mantic features reflecting the relationship among various
categories; (3) learning model properly connecting visual
features and their underlying semantics.

ZSL is appealing in simulating the human cognitive
process, however, it suffers two degenerating aspects. First
of all, the distribution of instances in visual feature space
is usually different from that of their underlying semantic
space, because visual features in different aspects may
convey the same meaning. Such a semantic mismatch ruins
the knowledge adaptation from the observed classes to
unobserved ones. Secondly, the “hubness” [13] is recently
recognized to result in the poor performance, that is exac-
erbated with a shortage of training samples for unknown
categories in visual domain. Thus, the domain mismatch
challenge [14] raises an issue for ZSL. The crux of ZSL lies in
learning a compatibility function between the visual feature
and its semantic representation. On one hand, complex
functions are flexible but at risk of over-fitting to the seen
categories and adapting poorly to the unseen ones. On the
other hand, simple ones would lead to poor classification
performance on the seen categories, and will unlikely adapt
well on the unseen ones either.

Current ZSL approaches typically assume a shared
semantic embedding space, in which both the feature space
and the class label spaces of the seen/unseen classes lie
in [2], [3], [4], [5], [6], [7], [8], [9]. In general, there are
three lines of approaches as follows: (1) direct mapping [15],
[16] including semantic coding methods [2], [11], [17]; (2)
parameter mapping [1], [18]; and (3) common space learning
[3], [19]. However, most ZSL approaches fail to build a better
semantic-visual function, since they only have access to the
seen data, subject to domain shifts with the unseen data in
the test stage.

In this paper, we explore the idea of generative adversar-
ial networks (GANs) to solve zero-shot learning challenge.
Generally, seen and unseen classes have different distribu-
tions in the view of visual feature space; however, different
categories in seen and unseen classes are lying in disjunction
distributions (Figure 1). Therefore, we manage to synthesize
more semantic features to cover unseen classes, and then
further augment visual features from seen classes to expand
the visual space for unseen classes. In this way, we could
build a more effective visual-semantic relationship to better
fight off zero-shot learning. To that end, we design a novel
Generative Semantic Dictionary Learning (GSDL) with two-
stage generations for zero-shot challenge under a low-rank
embedding framework (Figure 2). Our primary assumption
is that the latent semantic dictionary for unseen categories
should carry the majority shared information with that
for seen categories1, which can be identified in the low-
rank embedding space. Additionally, synthesized semantic
and visual features generated from seen data will allow to
recover a better latent semantic dictionary for the unseen
data.

This work is the extension of our previous conference
work [17] under the same basic spirit, which is the low-rank

1. Both seen and unseen categories in our work have lots of common
semantics.
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Fig. 2. Illustration of our designed basic semantic-visual framework, in
which low-rank embeddingW maps visual featuresX into a new space,
and hence similar features, e.g., “has a tail”, would gather together.
At the same time, a semantic dictionary D is learned through the
reconstruction WX ≈ DA to link visual features and their semantics.
To boost the generalizability of semantic dictionary, we explore two-
stage generative adversarial networks (shown in Figure 3) to synthesize
more semantic and visual features to cover the feature space of unseen
classes. Therefore, adaptive semantic dictionary could constitute the
latent basis for the unseen categories.

embedded semantic dictionary to build semantic-visual re-
lationship. In our previous work, we exploited the ensemble
strategy to learn multiple semantic dictionaries, targeting at
covering the space of unseen classes. In this work, however,
we explore the idea of generative adversarial networks to
synthesize more semantic and visual features based on seen
classes to cover the space for unseen classes. With more
augmented data, we could enhance the generalizability of
semantic-visual function for unseen classes, which would
have a better chance to capture the information for un-
seen classes. In other word, our current work explores an
explicit data augmentation strategy with generative model
to improve the generalization ability of semantic dictionary
instead of our previous ensemble method. Furthermore, we
adopt a weighted rank minimization to replace the direct
rank minimization on our previous embedding matrix, so
that we could capture more intrinsic structure information
from visual and semantic features during the low-rank
embedding learning.

Finally, we summarize our contributions in three folds:

• First, a semantic dictionary plays a role to link
visual features and semantic representations under
a reconstruction scheme. Then, we exploit a low-
rank embedding to adapt the intrinsic and shared
knowledge from the seen classes. Thus, a better latent
semantic dictionary for the unseen classes can be
obtained.

• Second, two-stage generative adversarial networks
are exploited to synthesize more semantic features
and visual features from seen classes. Thus, we are
more likely to cover the unseen classes by span-
ning the semantic and visual space of seen classes.
Specifically, an effective semantic dictionary will be
optimized to complete the latent semantic dictionary
and mitigate the distribution shift between seen and
unseen data.
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• Finally, we explore a graph-regularized term to
involve more intrinsic structure in low-rank embed-
ding learning. In addition, we formulate a novel low-
rank re-framing approach to overcome the current
sparse singular values issues2 to secure a better low-
rank embedding.

2 RELATED WORK

In this section, we briefly discuss two related works, i.e.,
zero-shot learning and generative adversarial networks, and
highlight the differences across our model and the existing
ones.

2.1 Zero-shot learning

The goal of Zero-shot learning (ZSL) is to learn models
from visual concepts without any test information. As
visual information from those test categories is not available
during learning process, ZSL needs external information to
compensate for the missing visual knowledge. Attribute-
based descriptions are the most widely-used characteristics
shared among different categories [11], [15], [21], [22], [23],
[24], [25], which can be treated as a special case of multi-
view learning [19], [26]. Provided the low-level visual image
features and their correspondent high-level semantics, the
core issue for ZSL turns to adapt knowledge from the
observed categories to unobserved ones [2], [3], [4], [5], [6],
[7]. According to the strategies for semantic gaps, there are
three lines of ZSL models in general.

First, direct mapping is proposed to build a mapping
function from visual features to their semantics [2], [15].
In this fashion, Direct/Indirect Attribute Prediction were
first developed to explore the hidden layer of attributes
as variables to decouple the images from the layer of
labels [16]. Later on, Gan et al. presented a representation
transformation in visual space to enhance the attribute-level
discriminability for attribute annotation [27].

Second, shared space learning attempts to seek new
spaces in which visual features and semantic represen-
tations enjoy the maximum similarities for within-class
samples. The learned common space is either interpretable
or latent. For example, Zhang et al. exploited a probabilistic
framework to seek joint similarity latent embedding in
which both visual and semantic embedding along with a
class-independent similarity measure were obtained simul-
taneously [3].

Finally, parameter mapping manages to estimate model
parameters for unseen classes by “tuning” model parame-
ters learned from observed classes. Essentially, it discovers
the inter-class relationship across observed and unseen
classes in semantic space [1], [18]. Following this, Mensink
et al. explored co-occurrences statistics of visual concepts
in images for knowledge adaptation and proposed a novel
classifier with the co-occurrences [18].

2. Differently, Hu et al. [20] proposed a truncated trace norm via
minimizing the sum of r-smallest singular values, in order to reduce
the effect of large singular values. However, it is an l1-minimization
problem by minimizing the sum of r-smallest singular values, which
leads to a sparse solution, i.e., several r-smallest singular values tend
to be zero, but the left may remain large values.

However, all these algorithms pay limited attention to
discriminative knowledge in the unseen categories given
high intra-class variability, and may easily ignore the shared
semantics among different domains. Our designed model
belongs to the direct mapping scheme and share certain
spirits with the pioneering work of “dictionary learning
+ sparse coding” [2], [28]. Notably, a complex semantic-
visual function would hurt the generalization performance
given the domain shift. Differently, we explore the gener-
ative model in zero-shot learning to synthesize more data
to enhance the semantic-visual function. Specifically, we
build a two-stage generative adversarial network by jointly
optimizing low-rank embedding and semantic dictionary to
uncover common discriminative features between seen and
unseen categories.

2.2 Generative Adversarial Networks

Generative adversarial networks (GANs) [29] consist of two
players trained in opposition to one another. The generator
G(·) inputs with a random noise vector z and outputs a fake
imageG(z); while the discriminatorD(·) inputs either a real
image or a fake image from the generator, then outputs a
probability distribution over possible image domains. The
discriminator is learned by maximizing the log-likelihood it
assigns to the right domain.

The vanilla GANs could be enhanced with side infor-
mation. Conditional GANs are to provide the generator
and discriminator with class labels or latent information
[30], [31]. Class conditional synthesis can significantly en-
hance the quality of generated data [32]. Richer auxiliary
knowledge could further improve sample quality, e.g, image
captions or bounding box localizations [33]. Different from
feeding side information to the discriminator, one can learn
the discriminator with reconstructing external information.
This is done by equipping the discriminator with an aux-
iliary decoder that outputs the class label for the training
data [34], [35] or a subset of the latent variables from
which the samples are synthesized [36]. It is well-known
to improve performance on the original task by forcing
a model to perform additional tasks [37]. In addition, an
auxiliary decoder could leverage pre-trained discriminators
(e.g., image classifiers) to further improve the synthesized
images’ quality [38]. Chen et al. designed a new structure-
aware convolutional network to implicitly consider such
priors during the deep network training [39].

3 THE PROPOSED ALGORITHM

In this section, we will propose our novel low-rank em-
bedded semantic dictionary learning stacked with two-stage
generative adversarial nets.

3.1 Preliminary & Motivation

In ZSL scenario, we are able to access to many “seen”
classes with visual features and semantic representations
for training, while evaluating on “unseen” classes which
have no identity overlap with seen classes. Assume there
exist Cs seen classes with n labeled samples S =
{X,A, y} and Cu unseen classes with nu unlabeled samples
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U = {Xu, Au, yu}. Each instance is represented as a d-
dimensional visual feature. Thus, we have X ∈ Rd×n and
Xu ∈ Rd×nu . y ∈ Rn and yu ∈ Rnu are class label
vectors for the seen and unseen data, respectively. In ZSL,
the seen and unseen classes are disjoint, i.e., y ∩ yu = ∅.
A ∈ Rm×n and Au ∈ Rm×nu are the m-dimensional
semantic representations of instances in the seen and unseen
datasets, respectively. For the seen classes, a is provided
since each visual sample x for seen classes is annotated by
either a binary attribute vector or a continuous semantic
vector denoting its corresponding class label y.

ZSL is challenging due to the unseen test samples and
labels during the model learning. Hence, it is essential
to establish the visual-semantic relationship based on the
seen classes. However, seen classes and unseen classes
always have different distributions in the view of visual
features, and thus cause the domain shift between seen and
unseen classes. The key for ZSL is how to well address the
domain mismatch issue in the visual feature space. Recently,
semantic representation gradually plays a bridge role to
link seen and unseen classes, and one of typical methods is
visual attribute features. Generally, different combinations of
attributes could generate different semantic representation
for various classes. The same attribute would link to dif-
ferent visual features in the same class due to the intra-class
variance. In this sense, if we could synthesize more semantic
features as well as visual features of the seen classes, we
could expand the space of seen classes and maximize the
overlap between seen and unseen classes. So the domain
gap between them tends to be alleviated.

3.2 Low-Rank Embedded Semantic Dictionary

Known from previous works [8], [12], [25], [40], the seen
dataX and unseen dataXu are drawn from different feature
spaces, but A and Au may have more similar semantics. For
instance, in attribute-based description, both seen and un-
seen data could be represented with pre-defined attributes
with various weights, for example, binary and continuous
values. The intuition behind ZSL is that the classifier can
capture the relationship across the visual-input space and
the individual semantic feature space [21]. Inspired by
Kodirov et al. recent work [2] that considers semantic
representation A as the encoded coefficients of X based on a
semantic dictionary, we present a novel embedded semantic
dictionary learning formula that explores the merits from
semantic dictionary and discriminative embedding:

min
W,D
‖WX −DA‖2F + αf(W ) s.t. ‖dj‖22 ≤ 1,∀j, (1)

in which α is the trade-off parameter, ‖ · ‖F means the
Frobenius norm, and dj ∈ Rd is the j-th atom of semantic
dictionary D ∈ Rd×m. f(W ) denotes a regularizer on W .

We elaborate the key difference and motivations in the
following paragraphs. First of all, considering the scenario
in which samples from a class are sampled over a complex
manifold, e.g., crescent manifold, using mean vector as the
prototype or exemplar of each class [40] is less reasonable.
Secondly, in the test phase, the unseen categories do not
match any classes from the training data, and will not be
able to obtain corresponding discriminant information from

the learned feature space. To that end, we instead concen-
trate on the semantic representations, and explore manifold
learning by assuming that if the semantic representations
of some instances after embedding lie on the same local
manifold structure, they most likely have the same class
label.

For that purpose, a graph regularizer is utilized to
preserve the locality information for the embedded visual
data as follows:

min
W,D
‖WX −DA‖2F + αtr(WXLX>W>)

s.t. ‖dj‖22 ≤ 1, ∀j,
(2)

in which tr(·) represents the trace operator of a matrix.
Specifically, we adopt a spectral Dual-Graph approach [12]:
a concatenation of two supervised graphs to jointly preserve
the data structures from X and A, and induce a novel
graph Laplacian. We build k-nn graphs for both visual and
semantic features, and adopt the cosine similarity to define
the weights (Sx and Sa). Thus, we achieve weights for dual-

graph as S =
Sx + Sa

2
. L is the Laplacian graph calculated

as L = Sd − S (Sd is the degree matrix of S with its i-th
diagonal element as

∑
j Sij .

We further decompose L = UΣU> = UΣ
1
2 Σ

1
2U> =

UΣ
1
2 (UΣ

1
2 )> = UΣU

>
Σ by eigen-decomposition fol-

lowed by a few matrix operations. Afterwards, we have
tr(WXLX>W>) = ‖WXUΣ‖2F. To promote the structure
consistency of dual-graph and suppress the impacts of
outlier samples, we adopt the rank minimization instead
of the Frobenius norm. This gives the proposed graph
weighted low-rank regularization term and we have a
robust graph regularized dictionary learning model:

min
W,D
‖WX −DA‖2F + αrank(WXUΣ) s.t. ‖dj‖22 ≤ 1,∀j,

(3)
in which rank(·) means the rank operator of a matrix.
Briefly, the rank constraint on WXUΣ enforces the learned
representation for seen classes to highlight common se-
mantics. For example, attribute “it has a tail” would be
annotated to various categories, e.g., loin, dog and cat.
Rank constraint on WXUΣ will assist collecting such visual
features underlying the embedding space. Mathematically,
the low-rankness can be propagated toDA in Eq. (1), further
yielding a low-rank semantic dictionary D, which includes
common semantics among seen categories.

Since rank minimization is an NP-hard challenge, ma-
jority approaches focus on searching a surrogate instead.
One widely-used term is to trace norm ‖WXUΣ‖∗ [41].
Specifically, trace norm has been corroborated to be able
to encourage low-rank matrix structure in the matrix com-
pletion literature, which summarize all singular values of
WXUΣ. Unfortunately, it does not allow an explicit control
on the rank of WXUΣ, which indicates that the non-
zero singular values of WXUΣ may change along with
‖WXUΣ‖∗, while the rank of WXUΣ can keep the same.
In this sense, trace norm is not a suitable surrogate to rank
minimization.

Instead, we propose to enforce the rank of the updated
WXUΣ to be smaller than a target rank r [17], which
skillfully transforms the problem to minimizing the square
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Fig. 3. Illustration of two-stage generative adversarial networks (GANs) boosted semantic dictionary for zero-shot learning. The first-stage generator
Gs(·) aims to synthesize more semantic features to cover unseen classes based on random noise z. Then, the second-stage generator Gv(·)
attempts to generate more visual features based on the real and synthesized semantic representations (a and Gs(z)). Therefore, we could enhance
the semantic dictionary and low-rank embedding learning.

sum of the (d-r)-smallest singular value for WXUΣ, i.e.,∑d
i=r+1 σ

2
i (WXUΣ). While the non-zero singular values

increase largely, however, they are excluded with our de-
signed term since the norm value keeps constant. According
to Ky Fan’s Theorem [42], the new formula with fixed rank
constraint can be reformulated as:

min
W,D,Θ

‖WX −DA‖2F + αtr(Θ>WXLX>W>Θ)

s.t. ‖dj‖22 ≤ 1, ∀j, Θ>Θ = Id−r,
(4)

where Θ ∈ Rd×(d−r) and Id−r ∈ R(d−r)×(d−r) is an identity
matrix.

Discussion: Non-linearity. Robust graph regularization in-
troduces non-linearity into the objective function, i.e. L is
non-linear w.r.t. WX . Low-Rankness. It is well-known that
rank minimization has promoted to uncover the intrinsic
global structure of the data. Additionally, such locality-
constrained reconstruction would generate latent semantic
representation in the semantic manifold space. Denoising.
In the presence of noise and outliers, the magnitude of
‖WXUΣ‖F of the regularization term becomes very large,
and so as to the whole objective function. In contrast,
the fixed rank constraint on rank(WXUΣ) will be able
to suppress the impacts of outliers and noises, and thus
optimize the objective function.
Remark: Compared with our previous direct rank constraint
on W [17], in this paper, we adopt a weighted rank mini-
mization regularizer by incorporating the locality and graph
similarity. Thus, we can leverage additional knowledge to
seek a better low-rank embedding. Compared with a plain
graph regularizer onWX , the precise rank control by Θ will
generate better low-rank manifold embedding.

3.3 Two-Stage Generative Adversarial Networks
Boosted Semantic Dictionary Learning

If we could synthesize more data to cover the space of
unseen classes as much as possible, we are more likely to

build an effective visual-semantic function. Thus, we pro-
pose a two-stage generative learning scheme. The semantic
feature space across seen and unseen classes is very close,
e.g., the attributes of unseen classes could be represented
as a combination of attributes from seen classes. While
the visual feature distributions across seen and unseen
have larger discrepancy. Therefore, our two-stage generative
model could build a smooth path to span the semantic
feature and visual feature space, attempting to cover that
of the unseen classes.

In the first stage, we aim to expand the semantic
space by generating features and thus are more likely to
cover the semantic space of unseen classes. We follow the
conventional generative model Gs(·) and use the prior input
noise pz(z) to synthesize more semantic representation.
In the discriminator Ds(·), a and synthesized semantic
features Gs(z) are presented as inputs to a discriminative
function. They formulate an objective function of a two-
player minimax game as follows:

Lf1 = E[log(1−Ds(Gs(z)))], (5)

Lr1 = E[log(Ds(a))], (6)

where the generator manages to synthesize features similar
to real features and maximizeLf1 ; the discriminator attempts
to differentiate the real and synthesized features by maxi-
mizing Lr1+Lf1 . Specifically, we explore two fully-connected
layers for Gs(·) and one fully-connected layer Ds(·).

For the second stage, we explore to generate more visual
features based on synthesized and real semantic features to
cover more unseen class knowledge. Given random noise
z ∈ Rdz , real visual feature x ∈ Rdx with its semantic
representation a ∈ Rda , we follow the conditional generative
model Gv(·) by using the prior input noise pz(z) and seman-
tic representation to synthesize more visual representation.
In the discriminator Dv(·), x and synthesized semantic
features Gv(·) are presented as inputs to a discriminative
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function. The formulation of a two-player minimax game is
as follows:

Lf2 = E[log
(
1−Dv(Gv(z|Gs(z)))

)
]

+E[log
(
1−Dv(Gv(z|a))

)
]

(7)

Lr2 = E[log(Dv(x))], (8)

in which the generator attempts to enforce the generated
features similar to real visual features and to maximize
Lf2 ; the discriminator manages to classify the real and fake
features by maximizing Lr2+Lf2 . Specifically, we explore one
fully-connected layer for both Gv(·) and Dv(·). In detail, the
generator attempts to synthesize fake feature xf with the
input of random noise z ∈ Rdz and semantic representation
a ∈ Rda . Therefore, we design Gv(·) by taking z and a as
input for example:

Gv(z̄|a) = f1(Wg

z̄
a

) = f1([Wz,Wa]

z
a

)

= f1(Wzz +Waa),

(9)

where Wg = [Wz,Wa] while Wz ∈ Rd×dz and Wa ∈ Rd×da .
And f1(·) denotes the element-wise activation function, e.g.,
leaky-ReLU function or Sigmoid function. To constrain the
scale of the synthesized semantic and visual features, we
follow a normalization process to constrain the fake feature
to be the same scale of the real feature, i.e., N (xf ) =
xf/‖xf‖2 ∗ M, where M is the mean norm of real visual
feature.

Recall our goal is to synthesize more data to facilitate our
low-rank embedded semantic dictionary learning, which
plays a key role in revealing the visual-semantic relation-
ship. In our two-stage generative model, we first synthesize
visual features based on real semantic features A and fake
semantic features Gs(z). Thus, we are allowed to use the
generated data to improve the generalization ability of our
semantic dictionary by introducing the new visual features
as X̄ = [X,λ1Gv(z|A), λ2Gv(z|Gs(z))] and the new seman-
tic features Ā = [A, λ1A, λ2Gs(z)]. Note the two parameters
λ1 and λ2 are leveraged to balance the influence of semantic
dictionary learning across the real data and synthesized
data with the expectation that the real data could still
dominate the semantic-visual relationship learning, while
the synthesized data complement the learning and expand
the feature space.

To sum up, we design a new loss for low-rank embedded
dictionary learning (with constraints ‖dj‖22 ≤ 1,∀j and
Θ>Θ = In−r) by involving the synthesized semantic and
visual features as follows:

Lc = ‖WX̄ −DĀ‖2F + αtr(Θ>WXLX>W>Θ). (10)

Finally, we could iteratively optimize discriminator and
generator in a minimax strategy as the following objective:

min
W,D,Θ,
Ds(·),Dv(·)

max
Gs(·),
Gv(·)

Lc + β
2∑
i=1

(Lfi + Lri ),

s.t. ‖dj‖22 ≤ 1,∀j, Θ>Θ = Id−r.

(11)

where β is a trade-off parameter to balance square-loss and
cross-entropy loss.

Discussion: With objective function (11), we manage to
synthesize more semantic and visual features from seen
classes to augment the feature space to cover the unseen
classes as much as possible. In this way, we could build a
more effective visual-semantic function by better solving the
domain shift issue across seen classes and unseen classes.
And hence, we are able to handle the zero-shot learning
more efficiently.

Moreover, Zero-shot learning can a special case of
transfer learning (TL) [14], [26]. We could relate ZSL and
TL in different lines. First of all, seen classes in ZSL can
be treated as source domain in TL; while unseen classes in
ZSL could be considered as target domain in TL. However,
the general setting of ZSL is different from TL, since we
cannot have access to any unseen data in the training stage
for ZSL, while target domain is available in the training
stage of TL. Secondly, there are two views (visual data
and semantic data) in seen classes for ZSL. We could treat
two views as two domains, while the key is to adapt the
relationship between two views to unseen classes. However,
for TL, the key is to adapt the label knowledge from one
domain (source) to another (target). Generally, the ideas of
GAN in TL are in two lines: one is to seek domain-invariant
features [43], [44] and the other is to transform one domain
to another in image space [45]. The key of TL is to solve the
domain shift across source and target domains. However,
in ZSL, the key is to learn knowledge from seen classes
and generalize to unseen classes. There exists domain shift
between seen classes and unseen classes. Thus, we propose
a two-stage generative model, where we aim to synthesize
more semantic features in the first stage, then we could
augment the visual feature space to have better chance to
cover the unseen classes. The motivation is also different.
For TL, GAN loss is used as a domain alignment strategy.
Our goal is to do data augmentation to boost the low-rank
embedded dictionary learning, which is used in the test
stage for unseen classes.

Zero-shot learning is also much related to “emerging
new classes learning”. The major difference is that emerging
new classes learning does not assume knowledge about the
object, while lots of zero-shot learning research exploits the
knowledge (such as object parts) about the object. Along
this line, Mu et al. proposed to dynamically maintain two
low-dimensional matrices to detect emerging new classes
and update the model in the data stream [46]. Following
this, Mu et al. further explored completely-random trees to
classify streaming emerging new classes [47]. Similarly, Zhu
et al. proposed a model to recognize samples on currently
observed labels, detect the emergence of a new label in
new samples, and build a new classifier for every new label
which works collaboratively with the classifier for observed
labels [48].

3.4 Optimization

As the optimization in Eq. (11) is not joint convex over
all variables, there is no closed-form solution. Thus, we
resort to an iterative strategy to optimize a single variable
each time. We further group into two sub-problems, i.e.,
learning semantic dictionary D and low-rank embedding
W,Θ by fixing generators and discriminators; and learning
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Gs/v(·) and Ds/v(·) with semantic dictionary and low-rank
embedding fixed. Those two sub-problems will be updated
iteratively.

3.4.1 Learning Semantic Dictionary and Low-rank Embed-
ding

Semantic Dictionary Refinement: When W , Gs/v(·) and
Ds/v(·) are fixed, we could update the semantic dictionaries
D as:

D = arg min
D

‖WX̄ −DĀ‖2F s.t. ‖dj‖22 ≤ 1,∀j. (12)

By applying projected gradient descent, we optimize the
j-th dictionary atom dj as follows:

sj = dj − 1
µ∇djF(W,D),

dj = arg min
‖dj‖22

‖dj − sj‖2 = sj

‖sj‖2 ,
(13)

in which µ is the step size, F(W,D) = ‖WX̄ −DĀ‖2F.

Learning Low-Rank Embedding: When D is fixed, we
could update W,Θ.
Update W :

W = arg min
W

‖WX̄ −DĀ‖2F

+ αtr(Θ>WXLX>W>Θ).
(14)

We then calculate the deviation to W and set it to zero:

(WX̄ −DĀ)X̄> + αΘΘ>W = 0,

⇒WX̄X̄> + αΘΘ>W = DĀX̄>,
(15)

which is a standard Sylvester formulation and could be
effectively solved with the BartelsStewart algorithm [49].
Update Θ:

When W is updated, we could optimize Θ with the
following eigen-decomposition problem as:

Θ = arg min
Θ>Θ=Id−r

tr(Θ>WXLX>W>Θ), (16)

where the optimal solution of Θ is formed by the (d − r)
eigenvectors of WXLX>W> corresponding to the (d − r)
smallest eigenvalues.

For clarity, we present the details of the optimization in
Algorithm 1. For µ, we set them to be 10−3 as default. α
and r are two hyper parameters, which need to be tuned
during the experiments. For initializations of W,D,Θ, we
first use the real visual and semantic features for seen classes
to optimize Eq. (4). Then, we use the values for W,D,Θ to
further optimize Eq. (10) with the synthesized data.

3.4.2 Learning Two-Stage Generative Adversarial Net-
works
Given W,D, we could update generators Gs/v(·) and
discriminators Ds/v(·) iteratively. Because GANs could be
optimized as a minimax optimization problem, we first fix
the generator to optimize the discriminator, then fix the
discriminator to optimize the generator by following the
literature [29], [33], [50].

Algorithm 1 Solving First Sub-Problem
Input: X,A, α, β, λ1/2,Gs/v(·)
Initialize: W,D,Θ, µ = 10−3, ε = 10−5, t = 0.

while not converged do
1. Optimize D via Eq. (12) by fixing others.
2. Optimize W via Eq. (15) by fixing others.
3. Optimize Θ via Eq. (16) by fixing others.
4. Check the convergence conditions: |Lt+1

c − Ltc| < ε.
5. t = t+ 1.
end while
output: W,D,Θ.

Since we have two-stage GANs, we first train them
separately for a better initialization. In detail, we first train
the first-stage GAN by only using Gs(·) and Ds(·), where
the parameters are initialized randomly. Then we train
the second-stage GAN with the fixed first-stage generator
Gs(·) and the semantic dictionary loss Lc. Specifically, we
hope Waa to preserve the class center, while Wz z̄ to mimic
the class variation. Thus, we initialize Wa via Wa =
arg minWa

‖X −WaA‖2F, and then we could obtain its class
center by multiplying Wa with its semantic representation
a. For random noise part, we attempt to simulate the class
variations to span the space. Hence, we randomly initialize
Wz and z. To this end, we could model the data variation
from seen classes and synthesize more meaningful data for
unseen classes.

After initialization separately, we joint train them as
whole by considering W/D are fixed. To make the training
more stable, we adopt the Wasserstein GAN strategy [51],
and implement our model through TensorFlow3. We set
the learning rate to be 10−4 and the optimizer with Adam
optimizer. We exploit leaky-relu and sigmoid activation
functions for Gs/v(·) and Ds/v(·), respectively.

3.5 Zero-Shot Learning
Given a test visual data xiu, we explore a reconstruction
scheme over semantic dictionary D and low-rank embed-
ding W to predict its semantic representation ãu as:

ãu = arg min
ãu

‖Wxiu −Dãu‖22 + ξ‖ãu‖22, (17)

where ξ is simply set as 10−2.
Generally, zero-shot learning includes many sub-tasks,

e.g., zero-shot recognition, zero-shot annotation or zero-shot
image retrieval, and here we explain the basic settings in
test phase one by one. For zero-shot recognition, the Acu is
known in the test phase as reference samples. Each reference
sample has been represented by the attributes through our
model and the average of each class will be used as the
representative of class cu. Thus, we would have a label-
attribute table for unseen classes (i.e., Au with Cu classes).
When we get the predicted semantic feature for unseen
visual features, we will search from label-attribute and the
most similar one will tell us the predicted label. Based on
this, we can calculate the recognition accuracy. Similarly,
for zero-shot annotation, we should verify if the predicted
annotation is correct or not by comparing with Acu. For
zero-shot image retrieval, we need to search the top similar
visual images for unseen classes by given any semantic
representation.

3. https://www.tensorflow.org/
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TABLE 1
Statistics of four benchmark datasets.

Dataset aP&aY AwA CUB SUN
#Training classes 20 40 150 707

#Test classes 12 10 50 10
#Instances 15,339 30,475 11,788 14,340

#Semantic Space 64 85 312 102

4 EXPERIMENT

In this part, we evaluate on four standard zero-shot learning
benchmarks in terms of different ZSL tasks and properties
analysis.

4.1 Dataset & Experimental Setting

Four standard benchmarks are evaluated with their statistics
provided in Table 1.
aPascal-aYahoo (aP&aY) contains 20 object classes from
the PASCAL VOC 2008 dataset and 12 object categories
collected with the Yahoo image search engine. Following
previous work [3], [5], [52], [53], we train on image samples
from PASCAL VOC 2008 and evaluate on images from Ya-
hoo image engine. In addition, 64 attributes that characterize
shape, material and the presence of important parts are
provided.
Animal with Attribute (AwA) has 50 animals in total, each
with over 92 samples, paired with a human provided 85-
attribute inventory and corresponding class-attribute asso-
ciations.
Caltech-UCSD Birds 2011 (CUB) is a fine-grained bird
benchmark with attributes, which includes 200 different
birds, with 11,788 images in total. The class level attribute
annotations are given with 312 visual attributes (e.g., color,
part pattern).
SUN scene attribute dataset is a fine-grained dataset, in
which the difference between classes is quite marginal.
There exist 717 scenes, each with 20 samples. There are 102
attributes to annotate each image.

More specifically, each image of the aP&aY, CUB and
SUN datasets has its own attribute description, meaning
that two images of the same class can have different
attributes. Differently, all the images of a given class in
AwA share the same attributes. We exploit the continuous
attributes as the semantic representation, as it performs
better than the binary one [1]. Moreover, we follow previous
zero-shot learning works [3], [10], [12], [25], [40], [53] and
adopt the same training and test protocol shown in Table 1.

Regarding the representation of visual images, we uti-
lized the recently proposed deep features, i.e., AlexNet CNN
FC7 [54], VGG-VeryDeep-19 [55], and GoogLeNet [56]. For
AlexNet CNN FC7, we adopt the 7-th layer (FC7) as visual
features with dimensions 4,096. For VGG-VeryDeep-19, we
utilize the top layer hidden unit activations of the network
as a 4,096-dimensional CNN feature. For GoogLeNet, we
adopt the 1,024-dimensional activations of the pooling units.

For β, λ1 and λ2, we set them as 0.1, 0.5, 0.1 throughout
the experiments for simplicity. For k-nn graph, we fix
k = 10 across different datasets. The dictionary size for
AwA is set as 300 and those for the other three datasets
are chosen to 700. Following previous ZSL works [3], [5],

TABLE 2
Zero-shot classification accuracy (%) of the comparisons on the four

datasets. There are two kinds of features: AlexNet CNN features
[ALEX], and GoogLeNet features [GGL].

Features Methods aP&aY AwA CUB SUN

[ALEX]

DAP [57] - 53.2 31.4 -
UDA [2] - 73.2 39.5 -

COSTA [18] - 55.2 36.9 -
SJE [15] - 61.9 40.3 -

ESZSL [52] - 53.2 37.2 -
ISEC [5] 46.1 - 42.0 75.5
SynC [1] - 64.8 47.1 -

LESD [17] 48.9 71.4 43.9 77.1
Ours 50.2 73.2 45.3 79.6

[GGL]

DAP [57] - 60.5 39.1 -
COSTA [18] - 61.8 40.8 47.9

SJE [15] - 66.7 50.1 87.0
ESZSL [52] - 59.6 44.0 82.1

SynC [1] - 72.9 54.5 90.0
LESD [17] 58.8 76.6 56.2 88.3

MFMR [11] 46.4 76.6 46.2 81.5
UVDS [12] 38.7 80.3 57.2 60.8

Ours 60.2 79.5 58.4 89.4

TABLE 3
Zero-shot classification accuracy (%) of the comparisons on the four

datasets using VGG-VeryDeep-19 CNN features.

Methods aP&aY AwA CUB SUN
DAP [57] 38.2 57.2 39.8 72.0

ESZSL [52] 24.2±2.9 75.3±2.3 - 82.1±0.3
SSE [53] 46.2±0.5 76.3±0.8 30.4±0.2 82.5±1.3
JSLE [3] 50.4±3.0 79.1±0.5 41.8±0.5 83.8±0.3
ISEC [5] 53.2±0.9 77.3±1.0 43.3±0.4 84.4±0.7

KDICA [27] - 73.8 43.7 -
LESD [17] 55.2±1.1 82.8±0.9 45.2±0.3 86.0±0.3

MFMR [11] 48.2 79.8 47.7 84.0
UVDS [12] 42.3±0.5 82.1±0.1 44.9±0.9 80.5±0.8
JDZSL [58] - 88.2 47.1 85.9
LDLA [10] 51.1 80.5 56.4 83.5
DSRL [25] 56.3±0.4 77.4±0.1 50.3±0.1 82.0±0.0

DSRL-LP [25] 51.3±1.4 87.2±0.3 57.1±0.1 85.4±0.2
Ours 56.3±0.2 84.4±0.4 48.5±0.3 88.2±0.7

[52], [53], we adopt cross-validation to tune the parameter
α. To be specific, we conduct parameter selection over
the training set with 3-fold cross-validation which splits
the seen class data into a training set and a validation
set. The trade-off parameter is selected from the range
{10τ |τ = −3,−2, · · · , 2, 3} based on the test performance
on the labeled instances from the observed classes in
the validation set. After parameter selection, we used the
selected parameters to perform ZSL with the original seen
and unseen classes. Since different initializations could lead
to different optimal solutions, thus, we run five times to
average our results.

4.2 Zero-Shot Classification

In this part, we mainly evaluate on the zero-shot recognition
task by comparing to DAP [57], ESZSL [52], SSE [53], JSLE
[3], ISEC [5], KDICA [27], UDA [2], COSTA [18], SJE [15],
SynC [1], MFMR [11], LESD [17], UVDS [12], JDZSL [58],
LDLA [10], and DSRL (DSRL-LP) [25]. The recognition
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Fig. 4. Confusion matrices of the test results on unseen classes for the proposed method on (a) aP&aY and (b) AwA. Diagonal numbers indicate
the correct prediction accuracy. Column means the ground truth and row denotes the predictions.

performance in term of top1 accuracy is reported in Tables
2 and 3. Note that we directly copy partial results from the
published works.

As wen can see, our proposed approach works better
than other competitors in most cases across four bench-
marks with remarkable margins. Note that JDZSL and
DSRL do not strictly follow ZSL setting, since they involve
either visual features or semantic features from unseen
classes during model training, thus, they could have better
performance in some cases. However, our model can still
beat them in some cases, although we only train on seen
classes. For the comparison of three different visual features,
we find that VGG-VeryDeep-19 and GoogLeNet features
outperforms AlexNet CNN FC7, which indicates that these
two features are more discriminative in representing visual
images. Comparing VGG-VeryDeep-19 with GoogLeNet
features, we notice that VGG-VeryDeep-19 presents supe-
riority for AwA, while GoogLeNet features work better for
aP&aY, CUB and SUN. Furthermore, we also observe that
all comparisons achieve better performance on AwA and
SUN over on aP&aY and CUB. The reason we consider
is that the class association in AwA and SUN is much
significant than in aP&aY, since AwA only contains animals
while SUN only has scene classes, whereas aP&aY includes
random object categories. Hence, it is more efficient to
learn the common information across different categories in
AwA/SUN than in aP&aY. Besides, the provided attributes
of AwA show special descriptions tailored for animals;
however, the provided semantic attributes of aP&aY on
shape, part, and material are insufficient to describe an
object comprehensively. Thus, richer and more valuable
knowledge could be transferred from the seen classes to
the unseen ones for AwA than for aP&aY. Differently, there
exist 200 bird species in CUB and some birds look very
similar from the visual appearance, which leads CUB to a
very challenging ZSL benchmark.

Furthermore, we provide the zero-shot classification
accuracy in term of the confusion matrices for our model
(Figure 4), in which we experiment on aP&aY and AwA

with VGG-VeryDeep-19 features. In each confusion matrix,
the column indicates the ground truth and the row means
the predictions. From the confusion matrix of AwA, we
observe that our algorithm obtains over 85% accuracy for
some animal categories, e.g., leopard (85.84%) and raccoon
(85.38%). Given the fact that our approach is trained with
no labeled data from these classes at all, these results are
quite impressive. The confusion matrix for aP&aY also
provides promising results on some categories, e.g.,, donkey
(59.71%) and centaur (61.38%). All these results verify the
effectiveness of our model in solving zero-shot classification.

4.3 Zero-shot Retrieval

In the retrieval task, a semantic representation of an unseen
class is provided to retrieve top matched image instances.
mean average precision (mAP) is usually adopted to mea-
sure the performance. As the retrieval evaluation is not
widely explored in previous ZSL studies, we present a
comprehensive comparison to several state-of-the-art ap-
proaches, i.e., SSE [53], JSLE [3], SynC [1], ISEC [5], MFMR
[11] and our conference version, i.e., LESD [17].

Table 4 illustrates comparative results in terms of mAP
for four benchmarks using VGG-VeryDeep-19 features. We
could observe that our proposed model achieves average
mAP score of 58.0%, compared to the best counterpart
of MFMR (its performance is 56.2%). Especially for three
datasets out of AwA, our model achieves consistent su-
periority over the state-of-the-arts. It thus again validates
the effectiveness of our GSDL on conducting more effec-
tive knowledge transfer for unseen classes. For AwA, we
consider it only has class-level attributes, which hinders to
synthesize more diverse semantic and visual features.

Furthermore, we provide qualitative results for the
proposed model. Given only semantic representations (no
image samples), we attempt to present what visual infor-
mation our model is able to capture for unseen classes.
Figure 5 presents 10 unseen class labels of CUB and Figure
6 lists 12 unseen class labels of aP&aY, where we show
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Fig. 5. Qualitative results of our approach on CUB, where 10 unseen class labels are shown on the top. Then we list the top-3 instances recognized
in each class in the middle. The third row represents the top-3 misclassified samples.

TABLE 4
Retrieval performance comparison (%) in terms of mAP. The best

results on each dataset are highlighted in bold font.

Method aP&aY AwA CUB SUN Avg.
SSE [53] 15.4 46.25 4.7 58.9 31.3
JSLE [3] 32.7 66.5 23.9 76.5 49.9
SynC [1] 30.4 65.4 34.3 74.3 51.1
ISEC [5] 36.9 68.1 25.3 52.7 45.8

MFMR [11] 45.6 70.8 30.6 77.4 56.2
LESD [17] 40.3 71.2 31.3 76.6 54.9

Ours 44.8 73.6 34.2 79.2 58.0

the top-3 correct images classified (second row in red)
and top-3 wrong images misclassified (third row in blue)
into each category with VGG-VeryDeep-19 features. Seeing
from the top images, our approach reasonably captures
discriminative visual information for every unseen category
solely based on its semantic representation. We could also
witness that the misclassified samples have very similar
visual appearance to that of predicted class. Thus, even
humans cannot distinguish them easily.

4.4 Generalized Zero-shot Recognition
Most recently, researchers manage to explore the general-
ized setting of ZSL (GZSL), where the evaluation set from
both seen and unseen categories, as it is much more practical
in the real-world applications. Thus, we evaluate our model
on GZSL strictly following the experimental setting in
[59]. Specifically, we reserve 20% data samples of the seen
categories and merge them with the unseen samples as the

TABLE 5
Generalized ZSL recognition (%) in terms of accuracy, where U :

Unseen classes; S: Seen classes; T = S + U .

Datasets Methods U-U S-S U-T S-T

AWA

DAP [57] 51.1 78.5 2.4 77.9
SynC [1] 73.4 81.0 0.4 81.0

MFMR [11] 79.9 76.1 13.4 75.6
UVDS [12] 80.3 86.7 15.3 79.5
LESD [17] 80.9 87.2 16.4 78.2

Ours 82.1 88.6 17.8 80.4

CUB

DAP [57] 38.8 56.0 4.0 55.1
SynC [1] 54.4 73.0 13.2 72.0

MFMR [11] 56.9 74.1 23.4 73.2
UVDS [12] 57.5 75.4 23.8 76.5
LESD [17] 56.7 76.4 23.6 75.6

Ours 58.6 77.8 25.4 78.2

evaluation set. For consistency, we adopt the GoogLeNet
feature and the continuous attributes. Table 5 shows the
four cases for GZSL, in which U -U means the traditional
unseen-to-unseen ZSL, S-S denotes the conventional su-
pervised learning task, U -T and S-T represent two kinds
of GZSL which evaluate whether the learned unseen/seen
models can be confused by one another. From the results,
we notice that the proposed approach could consistently
achieve better performance than other comparisons in most
cases. In AwA, our approach performs worse in one out
of the four scenarios, that is, our performance is slightly
lower than that of SynC [1] for S-T . The seen/unseen
balance could be treated as an over-fitting issue: when
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Fig. 6. Qualitative results of our approach on aP&aY, where 12 unseen class labels are shown on the top. Then we list the top-3 instances recognized
in each class in the middle. The third row represents the top-3 misclassified samples.
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Fig. 7. Performance of our conference model and the proposed method
under different number of seen/unseen classes on CUB.

we sacrifice the performance on seen categories (S-T ), we
tend to significantly improve the performance on unseen
classes U -T . The evaluation on CUB dataset also shows such
evidence.

4.5 Evaluation on the Seen/Unseen Class Scale

In this section, we testify the performance with various
scales for the seen/unseen categories using the CUB dataset
(GoogLeNet features).

First, we evaluate the performance of zero-shot recogni-
tion on different sizes of unseen classes by fixing the scale of
seen classes to 50. We conduct 10 random selections for the
seen/unseen classes and report the average results in Figure
7 (a). From the results, we could see that the classification

accuracy drops when the scale of unseen classes increases.
That means a fixed seen knowledge set has a limited
adaptation ability.

Second, we experiment on the different class scale for
seen classes by fixing the size of unseen classes as 50. We
also do 10 random selections of the seen/unseen classes and
report the average results in Figure 7 (b). Interestingly, we
find that we can obtain higher recognition rate by involving
more seen classes, which indicates that we can enhance the
generalization ability by seeing more objects.

4.6 Empirical Analysis

In this section, we testify more properties of our proposed
framework on four benchmarks.

First of all, to dive deeper into the efficacy of our
two-stage generative zero-shot model, we evaluate several
variants: GSDLA means that we remove the two-stage
GANs and only learn W,D on real data as a baseline;
GSDLO means that we preserve the second-stage GAN
boosted low-rank embedded semantic dictionary model;
GSDLF means that we only explore Frobenius norm on
W by removing rank constraint on WXUΣ; GSDLR means
that we only explore low-rank constraint on W instead
of WXUΣ; GSDLG means that we only explore graph
regularizer on WX instead of rank constraint on WXUΣ.

From the results in Figure 8(a), we notice that two-stage
generative model contributes a lot, which could synthesize
more data to mitigate the domain shift across seen and un-
seen classes. This indicates the effectiveness of our two-stage
generative model. Compared with GSDLA and GSDLO,
we observe that two-stage GANs model helps to enhance
the generalization ability of our low-rank embedding W
and semantic dictionary D, which further denotes that the
first-stage GAN can also span the semantic feature space
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Fig. 8. (a) Comparison of different variants to our model, (b) parameter analysis on α, (c) rank analysis of r on four benchmarks with VGG-VeryDeep-
19.

-80 -60 -40 -20 0 20 40 60 80
-80

-60

-40

-20

0

20

40

60

80

-80 -60 -40 -20 0 20 40 60 80
-80

-60

-40

-20

0

20

40

60

80

(a) GSDLA

-80 -60 -40 -20 0 20 40 60 80
-80

-60

-40

-20

0

20

40

60

80

-80 -60 -40 -20 0 20 40 60 80
-80

-60

-40

-20

0

20

40

60

80

(b) Ours

Fig. 9. Visualization of 5 hard unseen class samples from AwA using their learned semantic representations, where (a) is from GSDLA and (b) is
from GSDL (ours). Each color represents a class and each point represents an image.

while further span the visual feature space. Compared
with GSDLF , we notice that rank constraint also helps to
improve the performance, since rank constraint could help
seek a more effective embedding space to gather similar
visual features. By involving the manifold information to
the rank constraint, we also achieve better performance.
Furthermore, we observe that our proposed weighted low-
rank constraint would improve limited performance based
on the traditional manifold regularizer,, i.e., GSDLG.

To further validate whether our two-stage generative
model enhances the generalization ability of semantic dic-
tionary, we visualize 5 hard unseen AwA classes of their
predicted latent semantics with the VGG visual features as
the input. Specifically, we adopt t-SNE4 to map the learned
latent semantic representations of each unseen class instance
to a 2-D plane. We compare our two-stage generative
model with GSDLA and show the results in Figure 9.
Interestingly, we could observe that the intra-class images
are grouped much closer and those from different classes
are more separated for our model compared with GSDLA,
which indicates that the two-stage generative model could

4. https://lvdmaaten.github.io/tsne/

improve discriminability and generalizability of semantic
dictionary for the unseen classes recognition.

Secondly, we evaluate the parameter α in our model
for the weighted rank constraint. Through the analysis
on parameter α (Figure 8 (b)), we notice that our model
can obtain promising performance around [1, 10] on four
datasets. This shows the weighted rank constraint could
help improve the zero-shot learning ability of our model
by exploring more intrinsic structure within seen data, i.e.,
semantic and visual features.

Finally, we evaluate the rank of WXUΣ to see its in-
fluence during our visual-semantic function training. From
the evaluation on rank r, we witness that the classification
accuracy tends to be better when r is around 140 to 220
(Figure 8 (c)). Specifically, the performance would degrade
when r is either too small or too large. This indicates that a
low-rank constraint would benefit grouping similar features
across different categories for zero-shot learning purpose.

5 CONCLUSION

In this paper, we proposed a novel two-stage generative
model boosted semantic dictionary learning framework un-
der low-rank embedding for zero-shot tasks. Specifically, we
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designed an effective knowledge transfer model by jointing
semantic dictionary and low-rank embedding learning into
a unified framework. Thus, the semantic gap between visual
features and their semantics could be mitigated with the
learned visual-semantic function. To enhance the general-
izability of our model, we explored two-stage generative
adversarial networks to synthesize more semantic and
visual features to cover the space of unseen classes in the
training stage. Hence, it was more likely to build a powerful
semantic dictionary and low-rank embedding. Extensive
experiments on four zero-shot benchmarks indicated the
superiority of our proposed model through comparing with
the state-of-the-art ZSL algorithms.
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