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for Non-Landmark GPS Estimation
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Abstract—This paper addresses the problem of geotagging images, i.e., assigning GPS coordinates (i.e., latitude, longitude) to
images using image contents. Due to the huge appearance variability of visual features across the world, the images’ contents and their
GPS coordinates may be inconsistent. This means images captured from geographically close areas may appear visually distinct;

and images with visually similar contents may be taken from geographically distant areas. In this paper, we propose a deep
Geo-constrained Auto-encoder (DGAE) to solve these inconsistency problems. Using clustered GPS data and visual data, our
approach identifies inconsistent data pairs (i.e., image, GPS). We then propose a novel deep learning framework that can learn similar
feature representations for geographically close images and distinct feature representations for geographically distant images.

We introduce two new constraints: the same-area constraint and the easy-confusing constraint to our feature learning networks.

The former one penalizes images from the same area but with very distinct visual features, and the latter one penalizes images from
distant areas but with very similar visual features. A deep architecture is developed to further improve learning discriminative features,
which can disambiguate different geometric locations. Our approach is extensively evaluated on a newly-compiled large image
geotagging dataset from large-scale community-contributed images with 664,720 images and outperforms comparison approaches.

Index Terms—GPS estimation, deep learning, auto-encoder

1 INTRODUCTION

HE goal of image geotagging is to assign GPS coordinates

(i.e., latitude, longitude) to a given image using its visual
content. It is a very challenging task even for humans.
Considering 20 example images in Fig. 1, can human easily
identify where they were taken? Some of them are extremely
easy. For instance, the four landmark images in the fourth
row. We may easily identify that the image containing
the temple was taken in Beijing. However, others are very
difficult, for example, the non-landmark images in the last
row. We may wonder why some of them are easy to identify
but some of them are hard?

The reason why some examples are easy to identify is
very likely because their visual features are distinct from
others. We all know that Beijing uniquely has this type of
temples. However, for difficult ones, the visual features
which humans observe do not exclusively belong to a single
place in the world, for example, the images in the rows of
Chinatown, Building and Park in Fig. 1. They are with high
visual similarity but actually belong to four different areas.
In addition, there exists huge variabilities in images
such as large viewpoints, scales, and appearance variations.
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Therefore, it is challenging for humans to geotag these
images, and not to mention machines.

Image geotagging has been popularly investigated in
recent years. It is due to broad applications, such as image/
video retrieval [1], [2], visualization [3], [4], and tourist rec-
ommendation systems [5], [6], etc. However, most previous
works only focus on restricted subsets of geo-tagging prob-
lem, such as cities with street view imageries [7], landmark
buildings [8], [9], and making additional use of satellite
imageries [10], [11], [12]. In contrast, our goal is to cover all
kinds of locations and photos, especially non-landmark
images geotagging. To our best knowledge, very few other
works have addressed this task [13], [14].

Recent popular image geotagging approaches heavily rely
on low-level features [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22]. For example, the methods in [13], [15] extract 6 types
of features including edge, color, and gist features, etc. [19]
extracts SIFT features and textual features for organizing a
large collection of geotagged photos. An interesting work for
video geotagging [23] extracts both textual features and visual
features from videos. Deep learning feature representation
also shows promising performance on related tasks [24].

Although satisfactory results have been shown in previous
work, these approaches may fail due to the inconsistencies
between images and their corresponding GPS coordinates.
We observe that there mainly exist two types of inconsisten-
cies: 1) images captured from geographically close areas may
appear visually distinct, namely the same-area inconsistency;
and 2) images with visually similar contents may be taken
from geographically distant areas, namely the easy-confusing
inconsistency. The same-area inconsistency is mainly caused
by different viewpoints (e.g., aerial) of the photos of the same
POI and the contexts [25] (e.g., weather) while taking photos.
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Fig. 1. Non-landmark GPS estimation problem. The first three rows show
that images in distant areas may appear visually similar, while images in
close areas may appear visually distinct. For instance, in the third row, it
is hard to identify where were the four park photos taken. Example
images for landmarks and non-landmarks are shown in the last two rows.
We can see how difficult our non-landmark GPS estimation problem is.

Photos of one POI are usually taken in different viewpoints
such as the aerial view and the low angle view. Meanwhile,
the different contexts such as daytime, night, sunny, raining,
snowy may also affect the appearance of the photos. Images
with variant viewpoints and contexts may be with different
low-level and even mid-level features. The easy-confusing
inconsistency is mainly because images in different areas
may look similar, as shown in the first three rows in Fig. 1.
Existing methods may easily get confused among visually
similar images which are actually taken in completely differ-
ent locations in the world. For example, it is hard to identify
where were the four park images taken.

In this paper, we address this problem by learning more
discriminative feature representation for geotagging of both
landmark and non-landmark images. To learn the discrimi-
native feature that can disambiguate different geometric
locations to alleviate these inconsistencies, in our paper, a
novel Deep Geo-constrained Auto-encoder is proposed. Our
approach first clusters GPS coordinates of images and gener-
ates geo-clusters. Low-level visual features are also clustered
into visual feature clusters. The GPS coordinate clusters and
visual feature clusters demonstrate that images have similar
visual contents may be geographically far away and images
have different visual contents may be geographically close.
The flowchart of our approach is illustrated in Fig. 2. We intro-
duce two new constraints, the same-area constraint and the
easy-confusing constraint into conventional Auto-Encoder
(AE) networks. The same-area constraint penalizes images
taken from the same areas but with distinct low-level visual
features and the easy-confusing constraint penalizes images
from distant areas but with very similar visual features. Thus,
DGAE constrains images taken in close geographical areas to
have similar visual features and images taken in distant areas
to have distinct visual features. In the online estimation stage,
given an input query image, our goal is to assign GPS coordi-
nates to this image only using its visual content. Discrimina-
tive feature representation is encoded using offline trained
DGAE network parameters. Then, visually similar images
are retrieved from a large geo-tagged database for voting GPS
coordinates.

The contributions of this paper can be mainly concluded as:

e We pointed out the GPS and visual inconsistency
problem in a large community-contributed geo-
tagged images database, which could be a bottleneck
of existing non-landmark GPS estimation approaches.

e We proposed a Deep Geo-constrained Auto-encoder
framework concerning the location relationship of
images instead of focusing merely on vision features.
DGAE adds the same-area constraint and the
easy-confusing constraint on the conventional auto-
encoder, which minimizes the differences of the out-
puts of AE within the same geo-area, and maximizes
the differences of the outputs of AE in different geo-
areas but with similar low-level features.

2 RELATED WORK

Most previous works of image geo-tagging have only
focused on subsets of the problem, such as cities with street
view images [7], landmarks [8], [9], [26], [27], scene classifi-
cation, etc. Landmark recognition systems [8], [9] recognize
landmarks by retrieving matching database images and
returning the landmark associated with them.

To solve the data sparsity problem in rural areas, [10],
[11], [12] apply auxiliary satellite aerial images. For exam-
ple, the embedding of ground images are learned from
transferring knowledge from aerial images with deep
networks [12].

Another task related to image geo-location is the scene
recognition, for which the SUN database [28] is an estab-
lished benchmark. The database consists of 131k images cat-
egorized into 908 scene categories such as “mountain”,
“cathedral” or “staircase”. However, non-landmark image
geo-tagging work is far more complex than scene recogni-
tion or classification.

In our paper, we target at geotagging all types of loca-
tions and photos only using visual image contents, espe-
cially for non-landmark images. To our best knowledge,
very few works have addressed this task [13], [14]. Thanks
for the large-scale community-contributed geo-tagged
images, Hays et al. paved the way of non-landmark geo-
tagging. Given a query photo, Im2GPS [13] and its recent
extension [14] retrieve similar images from millions of geo-
tagged Flickr photos and assign the GPS coordinates using
image content of the closest match to the query. Im2GPS
shows that with enough data, even this simple approach
can achieve surprisingly good results.

However, existing geo-tagging works mainly depend on
low-level features. For example, methods in [13], [15] extract
6 types of features such as edge, color, and gist features.
Compared with existing geotagging approaches [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], our approach
relies on deeply learned features, which have stronger dis-
criminative power than low-level features such as color,
SIFT, and edge, etc [29], [30].

Besides different ways of image feature representation,
there are mainly two ways for GPS estimation of previous
works. One is to use visual image retrieval and assign the
GPS coordinates of the closest match to the query [8], [9],
[13], [14]. The other way is to form the GPS estimation as a
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Fig. 2. System overview of the GPS estimation framework. The offline training module (blue) aims at learning a Deep Geo-constrained Auto-encoder
(DGAE) network to extract high-level feature. The inputs are the world-wide image gallery including both geo-tags (i.e., latitude, longitude) and low-
level visual features. First, mean-shift clustering is conducted towards geo-tags to discover geographically close areas. Second, the k nearest neigh-
bor (k-NN) search is adopted to cluster low-level visual features to identify images with similar visual contents. P and @ are the same-area-pair index
matrix and the easy-confusing-pair index matrix obtained by both geo-tags and visual based clustering results. DGAE is trained using low-level fea-
tures with geo-constraints on the inconsistency pairs P and ). The outputs of the off-line training module are encoded features and DGAE network
parameters (i.e., weights W and bias b). In the online estimation module, the input is a query image only with the visual content. First, we encode the
low-level feature of the query by the offline trained DGAE. Then similar images are searched based on the encoded high-level features from all the
images in the gallery. Finally, GPS of this image is estimated based on the images search results. A real estimation example is provided.

classification problem [15], [24], [26], [27], [31]. [26], [27] use
SVMs trained on BoVW of landmark clusters to decide
which landmark is shown in a query image. Kit et al. focused
on the learning a more discriminative codebook from a novel
clustering method Location Aware Self-Organizing Map
(LASOM) [15], [31]. LASOM learns regional similarity graph
by considering both geo-tags and visual features and gener-
ates the codebook. After obtaining the codebook, given
an input query image with visual feature, they search the
similar codebook vectors and estimate the GPS coordinates
with a weighted sum of the locations associated with similar
codebook vectors.

Instead of operating on image clusters, Weyand et al. [24]
predict the class of the cell of a query image’s location with
the visual content. The regions of these non-overlapping
cells on the earth’s surface are pre-defined by Google’s open
source S2 geometry library. However, as pointed by [24],
the prediction result would be less accurate since only the
cell information is provided, instead of the GPS coordinates.
It is especially true for some large size cells. Thus, in order
to predict accurate GPS coordinates instead of an area, we
follow the visual image retrieval way [8], [9], [13], [14],
which is more widely applied.

Im2GPS and its extensions [13], [14] and [10], [11], [12]
are most similar to our work, which cover all kinds of loca-
tions and photos. Compared to Im2GPS [13], [14], our
approach constrains (image, GPS) inconsistent data pairs,
and learns visually similar features for the images taken

from geographically similar areas and distinct visual fea-
tures for images from geographically distant areas. This
remarkably reduces the huge variability in visual features
across the world, and allows us to better deal with large
viewpoint, scale, and appearance variations in a large col-
lection of images.

3 SYSTEM OVERVIEW

The flowchart of our approach is illustrated in Fig. 2. In off-
line training, our approach takes images and their GPS coor-
dinates (geo-tags) as inputs. Geo-tags are clustered using the
mean-shift [32] algorithm to discover geographically close
areas in the world. Mean-shift is most widely applied for
finding highly photographed places [6], [19], [33]. Likewise,
the k nearest neighbor (k-NN) search is adopted to cluster
low-level visual features (we use the same features as [13],
[15]) in order to identify images with similar visual content.
It is expected that images with the similar content should be
taken in geographically close areas. However, due to the
large visual variability, we identify inconsistent (image,
GPS) data pairs as the same-area-pair index matrix P and the
easy-confusing pair matrix Q. Using such information, we
present a Deep Geo-constrained Auto-encoder that con-
strains images taken in close geographical areas to have simi-
lar visual features and images taken in distant areas to have
distinct visual features. We incorporate two new constraints
into the proposed auto-encoder, the same-area constraint
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and the easy-confusing constraint to our feature learning net-
works, to penalize the inconsistencies.

In the online estimation stage, given a query image, our
goal is to assign GPS coordinates to this image. Low-level
features are first extracted. We then compute a more dis-
criminative feature representation using the proposed
DGAE. The original low-level features and the learned
hidden layer features are concatenated into a long feature
vector, used as the new feature representation for the query
image. A k-NN method is adopted to find the neighbors
of the query image in the training data, and the GPS coordi-
nates of the query image is computed by the GPS coordi-
nates of its closest £ neighbors.

4 GEO-CONSTRAINED AUTO-ENCODER

In this section, we first briefly introduce the Auto-Encoder
as the preliminary of our Deep Geo-constrained Auto-
Encoder. Then we describe the way to identify inconsistent
image and GPS data. Third, we present DGAE in detail.

4.1 Auto-Encoder

Auto-encoder and its variants have been popularly investi-
gated in recent years due to the effective performance in fea-
ture presentation learning [34], [35], [36], [37] and its broad
applications, such as face recognition [38]. Before describing
our Deep Geo-constrained Auto-encoder, we introduce the
basic knowledge of AE as the preliminary [39].

Suppose that there are NV images. z; is the D dimensional
feature of the ith image. Conventional AE consists of an
encoder which maps the input feature to a subspace to obtain
the hidden representation with a mapping function f(-), and
a decoder which maps the hidden representation back to the
original space with a mapping function g(-). Suppose that
the dimension of the hidden representation is d. The encod-
ing and decoding processes could be formulated as

Z2i = f(ZL‘Z) = O’(Wl X x; + bl), @)

x; = g(z;) = o(Wa X z; + ba), (2)

where W, € R*P and W, € RP*? are the linear transforma-
tion, and b; € R? and b, € RP are the biases for encoder and
decoder respectively. o is the non-linear activation function,
such as sigmoid [34] in ours or tanh(-) function.
Conventional AE minimizes reconstruction error as
following to optimize the parameters W, b;, W5 and b,

N
i — g(f@)|* + AR(WL,W2), ()

i=1

1
min —
Wb 2N
Wby
where R(Wy, Ws) = ||W1pr + ||W2pr is the regularizer. || - H%
is the Frobenius norm. ) is the weight decay parameter to
suppress arbitrary large weights.

4.2 Identify Inconsistent Data

Auto-encoders have shown promising performance in
learning high-level feature presentation in many fields such
as object detection and images search. However, GPS esti-
mation problem has its own challenges rather than pure
vision based image search. We observe that there exists two

types of inconsistencies between images and their corre-
sponding GPS coordinates: 1) images captured from geo-
graphically close areas may appear visually distinct; and 2)
images with visually similar content may be taken from
geographically distant areas. Thus, without considering the
original geo-location relations of images, mid/high-level
vision based feature presentation may still fail to estimate
accurate GPS coordinates. In this section, we introduce how
to identify the inconsistent data pairs.

The inputs of this step are images and their GPS coordi-
nates (geo-tags). For each area, first we apply mean-shift
clustering towards the GPS coordinates. Mean-shift cluster-
ing is density based, which helps to find Points of Interest
(POIs) [5]. POIs are the places where crowds gather and
take photos. Mean-shift is widely applied for finding
highly photographed places [6], [19], [33]. Mean-shift clus-
tering does not require the assumptions of the number of
clusters as most clustering methods do (e.g., K-means clus-
tering). It only requires the assumption of the scales (i.e.,
bandwidth), which could be the distance between two GPS
coordinates. Thus, Crandall et al. pointed out that mean-
shift clustering has effective performance on GPS data
which are at multiple scales [19]. However, there exists
huge variabilities in images within a POI, such as large
viewpoint, scale, and appearance variations. It causes the
first type of inconsistency.

For a given image z;, we calculate the distance between
z, and all the other images based on the original/low-level
visual features. The top k; visually similar images in the
same POI as x, forms a same-area set. Each z; in same-area
set forms a same-area pair with z,. Assuming that the same-
area-pair index matrix is denoted as P € RM*N and N is
the number of all the images, P; = 1 if z, and z; form the
same-area pair. We set a relative large number of k; in order
to well capture the first type of inconsistency. We would
like to clarify that we do not only search for images with
highly similar low-level features within the same POI to
generate the same-area constraint matrix . Our main pur-
pose for visual based k-NN search is to find inconsistent
(visual and GPS) pairs. For the first type of inconsistency
(i.e., same-area inconsistency), our purpose is to not only
find the most visually similar samples, but also to find some
geo-closed samples but with less similarity based on low-
level visual features. In this way, we force these same-area
inconsistent pairs to be close to improve the image geotag-
ging performance. If £; is too small, we only make samples
with similar low-level visual features even closer, which is
not helpful for capturing the first type of inconsistency. If k;
is too large, we may force two exactly different images to be
the same. It may degrade the reconstruction learning part of
AE. In the experiments, we discuss the performance across
different settings of k; and select k; according to the cross-
validation.

Images visually similar but within different POIs are
regarded as the second type inconsistency. For a given image
x,, the top ky visually similar images in different POIs from
x, form a easy-confusing set. Each x; in easy-confusing set
forms the easy-confusing pair with x,. Assuming that easy-
confusing pair matrix @ € R¥*Y, and N is the number of all
the images, Qs; =1 if z, and z; belong to easy-confusing
pairs.
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4.2.1 Computational Cost and Fast Solution of

Generating Graph Constraints

Here we first discuss the computational cost of generating P
and @ and then propose a fast solution for generating Q.

After obtaining the POIs by GPS coordinates based clus-
tering, for generating P and @), we build a visually similar-
ity graph using low-level visual features. Calculating all
pairwise similarities is the most naive method for generat-
ing the k~-NN graph, which is with O(n?) time complexity.
It means that the computational cost is directly related to
the number of samples in the similarity graph. For calculat-
ing P, we only need to build the graph within each POI,
which is with limited number of samples. As a result, the
computational cost of building the complete £-NN graph to
calculate P is small. However, for calculating (), we need to
build the complete k-NN graph with all the samples outside
the POL To the large-scale dataset, the computational cost
could be very high.

In this section, we provide a fast solution for identifying
the second type of inconsistent data pairs and generating Q.
The way of identifying the first type inconsistent data pairs
keeps the same. It is enlightened by Anchor Graph Regulari-
zation based methods [40], [41], [42]. As shown in previous
works, Anchor Graph Regularization achieves more effi-
cient computational cost than the complete k-NN graph,
while persevering the competitive performance. The main
idea of the fast solution is straightforward. Instead of con-
ducting the k-NN search completely pairwise, we generate
the graph in which the nodes are only anchor points, which
are the centroids of visual feature based clustering.

Within each POI, we conduct mean-shift clustering based
on low-level visual feature similarity using euclidean dis-
tance. Here we discuss the bandwidth of mean-shift cluster-
ing from 0.001 to 0.1 empirically. We set the bandwidth at
0.01 by manually checking the performance of randomly
picked 50 visual clusters. For each POI, there are usually 1
to 5 visual clusters. After obtaining the visual based clusters,
we regard the centroids of clusters as anchors and build the
pairwise graph where only these anchor points are regarded
as graph nodes. By less nodes in the graph, we obtain a
lower computational cost at O(n*?), which n* is the number
of anchors and n* < < n.

For generating @, for a given image x; in one POI, we first
find the top k3 anchors outside this POI but with highly sim-
ilar visual features. Then we calculate the distance between
x; and the samples in these k3 clusters. We pick the top k»
samples to generate (), and we use the same number of k»
as the original graph generating method. Empirically, when
ks = 50, the samples in these k3 clusters could already cover
90 percent of the top k; images with the completely £-NN
search. Thus, ) generated by the fast method changes
slightly and we could achieve almost the same performance
with far lower computational cost. For example, when
ks = 20, we only need to sort about 1,000 images.

4.3 Deep Geo-Constrained Auto-Encoder (DGAE)

In this section, we introduce our Deep Geo-constrained
Auto-Encoder. Fig. 3 provides the intuitive illustration of
our scenario and how DGAE works. The inputs are nine
samples from z; to xg, and each three samples (e.g., z1, 22,
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Fig. 3. Intuitive illustration of DGAE (color version preferred). Each
graph presents an image. Nine graphs from z; to x4 in three groups
(within a “(')”) are shown as example inputs. Each group presents one
geo-area. The shape of the graph (e.g., triangle, square and pentagon)
presents low-level feature and the color (e.g., red, green and blue)
presents encoded mid-/high-level feature. Through training processing,
colors in the same group become more similar, and the color difference
between groups become more remarkable (three-primary colors).
It shows that the encoding process enhances the discrimination of fea-
tures in different areas.

x3) are in one geo-closed area. Each sample is presented
with a graph with different color and shape. Assuming that
the shape illustrates the low-level feature and the color illus-
trates mid/high-level feature, as shown in the right part of
Fig. 3, two images of the same area may be with different
low-level features. For example, the last two graphs are
all in Santiago but with triangular and square shapes.
Meanwhile, two middle images are with similar low-level
feature but in two different cities.

It is not difficult to think to use deep learning networks,
such as Auto-Encoder [34] to learn mid/high-level feature
representations. Although the mid/high-level features by
conventional deep networks achieve high performance than
low-level features, we still face the problem that, images in
geographically close area may be with visual distinction
and images with visually similar content may be taken from
geographically distant areas. In Fig. 3, we could see that the
colors of three samples in one area may be distinct, and the
colors of 25 and 7 may be similar.

Graph embedding frameworks and the extensions [40],
[41], [42], [43] enforce the intra-class compactness and the
inter-class separability. It is recently introduced in deep
metric learning [44] in face recognition. However, few
works have enforced graph embedding in auto-encoder, not
to mention geo-constrained auto-encoder for non-landmark
geo-tagging problem.

Inspired by graph embedding, our geo-constrained auto-
encoder takes advantage of two geo-constraints: the same-
area constraint and the easy-confusing constraint to penalize
the inconsistencies between images and GPS. The same-area
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constraint minimizes the differences of the outputs of AE
within the same geo-area, in order to constrain images in
close geographical areas to have similar mid/high-level fea-
tures. Easy-confusing constraint maximizes the differences
of the outputs of AE in different geo-area but with similar
low-level feature, to constrain images taken in distant areas
to have distinct visual features.

The inputs of DGAE are low-level features of images in
the gallery, together with the same-area-pair index matrix
P, and the easy-confusing-pair index matrix . We have
already described the way to calculate P and @ in the last
section. The outputs are the learned deep network with
weights W and biases b. Assuming that there are M encod-
ing layers and M decoding layers, we unify the notations
Wi and W5 in Egs. (1) and (2) as W and b, and by as b™
of the mth layer, (m =1,2,...,2M). Compared with con-
ventional AE, we add geo-constraints on top of encoder
layers (A/th layer) and formulate a supervised auto-encoder
method as

ran}} J=Ji+ak+ I3+ vy

NZ [l — g0 (f ()P

N N
o M M 2
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where .J; minimizes the reconstruction error of all the sam-
ples. Ji and J; are the same as conventional auto-encoder.

Different from conventional auto-encoder, we add a new
constraint J, working as the same-area constraint and J;
working as the easy-confusing constraint. Two parameters
a (@ > 0) and B (B > 0) balance the importance between
reconstruction error .J;, the same-area constraint J, and the
easy-confusing constraint J;. P and () are indicators for
the same-area pair and the easy confusing part, which are
described in the last section.

The output of z in the mth layer (m = 1,2, ...,2M) could
also be described as

f(m) (z) = Bm) (5)

— U(W(m)h(mfl) + b(’"'>). (6)

In Fig. 3, through training, the same-area constraint ./, min-
imizes the difference of mid-/high-level features. The easy-
confusing constraint J; maximizes the difference of samples’
colors with similar shape but in a different area. Thus, the
colors in the same group progressively change to be the same,
and meanwhile are with maximum difference with the color
in different areas. For example, orange changes to red and
purple changes to blue. For a query graph, for example, a red
triangle, if we only use the low-level feature (shape) to search
for similar graphs, the results may be with the same shape but
in different colors/geo-areas. However, with the encoded
feature, the shape attribute is ignored and results are with
similar colors and within the same geo-area.

4.4 Solutions

In this section, we provide the solution for solving the objec-
tive function Eq. (4). Stochastic gradient descent + back
propagation [45] is applied for optimization. The basic rules
for updating W™, b (m =1,2,...,2M) of the mth layer
of auto-encoder with M encoded layers and M decoded
layers will be

d
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The gradients of the ob]ectlve function J in Eq. (4) with
respect to the parameters W™ is computed as

v T )y m-1)T
P, (m=D% L L™ pm
;; s t,s t ) (9)

2o
Nk:
QﬂN - n) nT (m); (m-1)T
el ) 7 hm ) er hrr
WE@Q’“ ! )

~

+ 2w,

And the gradients of b

+NklZZPsk L)

i=1 s=1 t=

26 -\ (m) 4 ,
- 72 Z Qs,k(L + L ) + 2)”?('”)»
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The operatlon © denotes the element-wise multiplica-
tion, and 2" is given as 2™ = W™ p{"Y 4 (") Note that
during back-propagation, only the reconstruction loss has
effects on the optimization of decoder layers, and both
the reconstruction loss and geo-constrained losses have
effects on the encoder layers.

Algorithm 1 illustrates the solution for learning the
DGAE. After optimizing the DGAE, we use the output of
the top hidden layer h(*) as the learned high-level represen-
tation of the image.

4.5 Geometric Interpretation of DGAE

In this section, we interpret DGAE from the geometric per-
spective under the manifold assumption [46] inspired by
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the manifold learning perspective regarding to the insight
behind the Denoising Auto-encoder (DAE) [34].

Algorithm 1. DGAE

INPUT: Low level features of all the training images z; Intra
class index matrix P; Inter class index matrix ); Parameters: «,
B, v, M, learning rate ), convergence error ¢, and total iterative
number 7.
OUTPUT: Weights and biases {W(™), 5™ }* .
1. fork=1,2,...,T do
2: Do forward propagation to all the training data and get
R™ m e {1,...,2M} for each layer.
3:  Compute the training loss J in the kth iteration using
Eq. (4) and denote as J;.
4:  form=2M,2M —1...,1do

5: Calculate 8.J;,/0W™ and 8.J;/8b™ by
back-propagation using Eqs. (9) and (10).

6: end for

7: form=1,2,...2M do

8: W = Wi — XaJ, /oW ™,

9: b = b — \a.J, /ob™;
10:  end for
11 A< 095 x A
12:  if |J, — Ji-1] < &, go to Output
13: end for

In our visual based GPS estimation task, we suppose that
the images X with visually similarity of one POI lie close to
a low dimensional manifold. Images X 1 with dissimilar low-
level features but within one POI are likely being far from the
manifold. Tmages X, with similar low-level features but in
different POls are likely being close to the manifold. If we
only apply low-level features in the original space, the dis-
tance between X; and X is likely to be larger than the distance
between X, and X.

In DGAE, on one hand, in the first regularization term, a
stochastic mapping ¢, (X;|X) manages to find 7, € X; in X
to obtain the corrupted the vision of z as ;. During
the training processing, similar to DAE, DGAE learns the
stochastic operator p; (X|X,) while generating P that maps
the images whose low-level features are dissimilar to the
images close to the manifold back to the manifold.

On the other hand, in the second regularization term,
¢2(X2| X) manages to find # € X, in X to obtain the cor-
rupted vision of x as Z. During the training processing,
DGAE learns the stochastic operator p»(X|Xs) while gener-
ating () that maps the images whose low-level feature are
similar to the images but of different POIs far away from
the manifold.

4.6 Discussion of Arriving New Images

Users continuously upload images to social media such
as Flickr.com every day, and the centers and slopes of
cityscapes and landscapes change gradually. There would
be some new POls appearing and some old POls disap-
pearing and the centers and scopes of the POIs may also
be changing gradually. We assume that images are
uploaded within one time period (i.e., one month) would
not change a lot. Thus, we do not need to update the cen-
ters of POIs and the visual based anchors within one time
period. After one period, based on the data, we completely
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re-mine the POls, re-generate the graph and re-train the
model.

During each time period, we fine-tune the model with
the continuously arriving new images each day. Here we
introduce the way of fine-tuning the deep learning model.

After a new image arriving, we first assign this image to
one POI based on the GPS coordinate. Then, we update the
P and @ matrix by calculating the columns and rows con-
taining this new image in either the original or fast graph
generating ways. After updating P and @, we apply the sto-
chastic gradient decent (SGD) and back propagation for
updating the parameters of each layer. Thus, we do not
need to calculate the gradient decent of all the samples and
then update the weights. Instead, with SGD, we only update
the weights for the new coming images.

5 GPS EsTIMATION WITH DGAE

In the online-estimation stage, given an input query image,
our goal is to assign GPS coordinates to this image only based
on its visual feature. What we want to emphasize is: we pro-
vide the GPS coordinates (i.e., latitude, longitude) estimation
and it is more accurate than using classification methods to
classify a query image to an area (i.e., city) [15], [24].

Following [13], [14], we estimate the GPS for the query
image through retrieving visually similar images and assign
the GPS of best matches to the query image.

As shown in Fig. 2, it mainly consists of three steps. First,
low-level features are extracted from the query image and
concatenated as a long feature vector denoted as x. We
encode low-level feature = with DGAE to obtain mid/high
level feature. Assuming that a DGAE is with M encoding
layers, for the mth hidden layer (m =1,2,..., M),z would
be encoded through f(z) = h™) = g(WMpM=1 4 plm)y,
We stack all the hidden layers together to present the query
image. Thus, the query image and geo-tagged image set are
mapped into the same feature space.

Second, a k-NN based search is adopted to find the
neighbors of the query image from the big geo-tagged
community-contributed dataset with encoded mid/high-
level features. The key for accurate image retrieval is the
robust feature representation.

Third, two heuristics of models are conducted after k~-NN
search: I-NN and Mean-Shift, following [13]. 1-NN model
applies the GPS coordinate of top nearest neighbor as the
GPS estimation result. We apply Euclidean distance similar-
ity to measure the distance between two images. For Mean-
Shift model, after k&-NN search, a mean-shift clustering with
bandwidth of 500 km is conducted towards top k (k = 120)
nearest neighbors. We capitalize each word in “Mean-Shift”
heuristic to make it distinguishable from “mean-shift”
clustering. The centroid of the cluster which owns the high-
est cardinality is applied as the GPS estimation result.

6 EXPERIMENTS

In this section, we conduct experiments comparing recent
state-of-the-art works of non-landmark GPS estimation
under a newly collected large database. The estimation per-
formance of our methods and the state-of-art methods are
shown, followed by the discussions of parameters, visuali-
zation and computational cost.
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Fig. 4. Examples of our test dataset of non-landmark images for GPS
estimation.

6.1 Dataset and Data Processing

We collect a new less biased dataset for non-landmark GPS
estimation task from geo-tagged community contributed
photos. Although there are a few GPS estimation datasets,
these datasets mainly only focus on landmark estimation
[47], scene recognition [28] or cover limited cites [15],
instead of focusing on world-wide non-landmark image
geo-tagging. Im2GPS dataset [13] has biases towards the
city centers, while our dataset covers most of the areas in/
around the city, and it is less biased.

We download geo-tagged images in/around 35 areas
with Flickr open API. Note that, we do not only focus on the
landmarks when collecting data. All the GPS coordinates
are treated equally to achieve the unbiased characteristic of
our dataset. First, we remove user profiles by face detection.
There are 664,720 images remained after filtering. The num-
ber of remaining images of each city is shown in Table 1.

We extract six low level-features for each image following
Im2GPS [13] and LASOM [15]: two tiny version images with
sizes 5 x 5 x 3 and 16 x 16 x 3; a CIE L"a"b color histogram
with 14 x 14 x 4 bin; a texture histogram with 512-bin; an
edge length and edge angle histogram with 232-bin; a ‘gist’
vector with 600 dimension. For each image, we concatenate
the six features together as a 2,893 dimension vector.

For the test set, we first randomly select 700 images from
the whole dataset. There is no overlap between the training
and test set. Then we filter out unusual images (e.g., black
and white or artistic) to create a test set of 300 images. The
number of test set is similar to [13], [14]. Fig. 4 shows
15 examples of the test dataset, which demonstrates the
difficulty of estimating the GPS of most of the images.

This dataset would be publicly available upon the accep-
tance of this paper. Our release would contain images after
filtering, meta-data of the each image and low-level fea-
tures, so that researchers could save time of data prepro-
cessing and focus on the model development. Furthermore,
this dataset could not only be used for im2gps problem, but
also be used for POI recommendation, POI sequence plan-
ning and so on. Here we summarize the main challenges of
this dataset:

First, it is a large-scale dataset with 35 areas. It contains
664,720 images after removing the images containing faces.
The dataset consists of both landmark and non-landmark
images. Second, community-contributed photos are more
challenging since they are with more noises, low-quality,

TABLE 1

Number of Images in Each City
city number city number
Ahmedabad 1,230 Houston 20,833
Arkansas 23,228 Istanbul 46,281
Atlanta 15,180 Jakarta 7,396
Bangkok 5,910 LosAngeles 14,539
Beijing 15,470 Melbourne 9,401
Bogota 13,274 MexicoCity 7,318
Cairo 13,653 NewYorkCity 27,369
Chengdu 6,300 Miami 2,301
Chicago 8,966 Milan 9,614
Colorado 14,229 Moscow 19,482
Connecticut 28,516 Osaka 12,316
Delaware 19,692 Rome 10,342
Delhi 13,459 Salvador 16,161
Florence 21,507 Santiago 44,920
Galapagos 21,123 SaoPaulo 18,894
Hawaii 21,742 Shanghai 11,759
Heidelberg 6,398 Tokyo 94,003
HongKong 41,914 - -

and large variation. Third, the dataset is less biased to city
centers and landmark images. Meanwhile, as we have
pointed out, there are data inconsistency problems between
visual and GPS coordinates.

6.2 Compared Methods

Although GPS estimation is a hot topic in recent years, as
discussed in the related work section, few works [13], [14]
have focused on the same scenario as ours: estimating the
GPS coordinates of a single query image worldwide, with
only visual features as input. For example, [10], [11] focus
on ground-to-aerial geo-localization, which is localizing a
ground-level query image by matching it to a reference
database of aerial imageries.

We compared our method with two state-of-the-art
works and named as LF [13] and NFLL [14]. To evaluate the
effectiveness of DGAE, we also implement two deep learn-
ing frameworks with the conventional Auto-Encoder [34]
and deep neural networks (CNN) [30] as two baseline meth-
ods for DGAE. Since our paper mainly focused on feature
representation learning, we apply the same way of GPS esti-
mation (k-NN based search) for LF and the deep learning
comparison methods, but with different feature representa-
tions. The descriptions of comparison methods are shown
as follows:

o Low-level feature based method (LF) [13]. Im2PGS is
the first work dealing with non-landmark GPS esti-
mation. A purely data-driven scene matching
approach is proposed based on 6 low-level features.

e New feature + Lazy Learning (NFLL) [14]. NFLL is the
extension of LF [13]. NFLL also applies low-level fea-
ture representations to search k nearest neighbors
first. Then NFLL adds SIFT descriptors to enhance
local feature representation based on SIFT points
match between image pairs. Furthermore, a lazy
learning method is proposed based on SIFT points
match between image pairs.

e Auto-Encoder based method [34]. In order to evaluate the
effectiveness of DGAE, we also investigate a



128

TABLE 2
Percentage of Test Images Whose Estimation Error Is within
the City, Region, Country and Continent Level by 1-NN Model

Performance (%) city region country continent
LF[13] 8.7 15.3 22.9 25.3
AE 10.3 23.6 26.3 35.2
CNN 12.9 233 28.9 38.8
DGAE 14.2 25.2 30.5 41.8
fDGAE 14.0 25.2 29.9 40.7

The best and the second best results are shown with bold font style and underline.

conventional Auto-Encoder based framework. We
substitute DGAE with AE which has no geo-con-
straints. In off-line training module, only low-level fea-
tures are needed as the inputs of auto-encoder and we
need not conduct mean-shift clustering towards the
geo-tags.

o  Deep Convolutional Neural Networks based method [30].
We investigate a Convolutional Neural Networks
based framework. We extract deep features for both
training and testing images, using AlexNet [30],
which is pre-trained on ImageNet dataset. We use
the outputs of fc7 layer after activation as the feature
representation.

e  Deep Geo-constrained Auto-Encoder based method. In this
method, when identifying the inconsistent data pairs,
we apply the original (non-fast) version described in
Section 4.2. Then we apply DGAE to learn the feature
representation.

e Fast Deep Geo-constrained Auto-Encoder based method
(fDGAE). Compared with DGAE, the fast solution of
identifying the inconsistent data pairs in Section 4.2.1
is applied. Other steps are the same as DGAE.

Although we use a new dataset, the experiments are fair.

Because, we implement existing works under the same set-
tings and compare them under the same metrics on our new
dataset as [14]. We compare the 6 methods under two heuris-
tics of models of GPS estimation as described in “GPS Estima-
tion with DGAE” section: 1-NN and Mean-Shift models
following [13]. For Mean-Shift model, k£ nearest neighbors
(e.g., k=120) form an implicit estimation of geographic loca-
tion. We project the geo-locations as 3D points on the earth’s
surface when calculating the distance during mean-shift
clustering. We use a mean-shift clustering algorithm with
bandwidth of 500km. Clusters with fewer than 4 matches are
disregarded. The centroid of the cluster with the highest
cardinality is reported as the estimated GPS coordinate.

6.3 Ground Truth and Criteria

To evaluate the performance of GPS estimation by different
methods, we calculate the distance between the estimated
GPS and the ground truth GPS with a spherical law of
cosines.' The spherical law of cosines is used generally for
computing great-circle distance between two pairs of coor-
dinates on a sphere:

Err = R arccos(sin (lat'9) sin (lat'*))

(11)
+ cos (lat'9) cos (Iat'®)) % cos (lon'9 — lon'))),

1. http:/ /www.movable-type.co.uk/scripts/latlong.html
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Fig. 5. Geo-location error Err with 1-NN model under LF, AE, CNN,
DGAE and fDGAE. Following [13], errors are sorted from best to worst
independently for each curve, thus showing the proportion of images
geo-located within an error threshold. NFLL only applies Mean-Shift
model. Under 1-NN model, NFLL degrades to LF. We also conducted a
chance-random method, which is a baseline in [13]. Similar to [13],
chance-random performs far less accurately than LF. The errors of less
than 1 percent images are within 5 km and only 20 percent are within
5,000 km. Thus, we do not regard chance-random as a main comparison
and show it on the figure.

where lat¥ and lon'9) are the latitude and longitude of
ground truth GPS coordinates. lat') and lon'® are the lati-
tude and longitude of estimated GPS coordinates.

Ground truth GPS coordinates are either manually labeled
by users when uploading images to Flickr, or automatically
recoded by digital devices. R= 6371.004 km is the average
radius of the earth. Err is the error of the distance between the
estimated GPS and the ground truth GPS. According to [13],
Err <25 km presents the error distance which is within a
“City” level; 25 < Err <200 km presents the “Region” level;
200 < Err < 750 km presents the “Country” level and
750 < Err <2500 km presents the “Continent” level.

6.4 Experimental Results
Figs. 5 and 6 show the error Err of geo-location estimates
(as Eq. (11)) across the test set with 1-NN and Mean-Shift
model by LF, NFLL, AE, CNN, DGAE and fDGAE. Also,
following [13], in Table 2 and 3, we present the percentage
of test images whose estimation errors are within city,
region, country and continent level. We seta = 0.2, §=0.1,
y = 0.05, k1 = 20, ks = 10, bandwidth of Mean-Shift cluster-
ing as 500 km according to cross-validation results. We set
both « and g from 0 to 1 with interval 0.05.

From the observation of both Figs. 5, 6 and Tables 2, 3, we
can reach the following conclusions:

1) Inboth 1-NN and Mean-5Shift heuristics, the proposed
DGAE and fDGAE achieve the best and the second
best performance. The overall error (the area under
the curve) of comparison methods was shown in
Figs. 5 and 6. Clearly, the area on the right hand side
contributes most. Our method significantly reduces
the overall geo-location error, especially when z-axis
ranges from 25 to 100 percent. The area of DGAE is
1.7 and 1.5 times larger than the area of state-of-the-
arts in 1-NN and Mean-Shift models respectively.

2)  Under all the conditions, the deep learning methods
(AE, CNN, DGAE and fDGAE) perform better than
low-level feature based methods (LF and NFLL).


http://www.movable-type.co.uk/scripts/latlong.html

JIANG ET AL.: DEEP GEO-CONSTRAINED AUTO-ENCODER FOR NON-LANDMARK GPS ESTIMATION 129

x10%

——LF
——NFLL
151 |TAE
~—CNN
——DGAE
——fDGAE

y- Geolocation error,km

20 40 60 80 100
x- Percentage of test set (%)

Fig. 6. Geo-location error Err with Mean-Shift model under LF, NFLL,
AE, CNN, DGAE and fDGAE. Other settings are the same as Fig. 5.

3) In all cases, DGAE and fDGAE perform better than
AE and CNN, which means the same-area constraint
and easy-confusing constraint proposed in this
paper are effective.

4) Comparing fDGAE with DGAE, fDGAE achieves
very competitive or slightly lower performance than
DGAE. It demonstrates that fDGAE would achieve
effective accuracy with much lower computational
cost, which makes it a candidate tool for large-scale
dataset.

5) Similar to the observation in Im2gps [13], 1-NN
approach performs better for precise localization
(e.g., within a city), while Mean-Shift model performs
better for global localization. We could see that gener-
ally, 1-NN approach performs better at city and
region level, and Mean-Shift model performs better
at country and continent levels.

6.5 Discussion of Parameters

In this section, we discuss the parameters used in POI min-
ing and DGAE. We describe how we set these parameters
and analyze the performance of different settings.

Note that the parameter discussions are conducted under
the original DGAE (non-fast version). In this way, it could
focus on demonstrating the influence of the parameter
itself, instead of being influenced by both the parameter and
the fast variation simultaneously. Although a fast version
DGAE is proposed, the computational cost of the original
DGAE is still affordable which is shown in Section 6.7
“Discussion of Computational Cost”. Thus, it is more
encouraging to use DGAE when computational cost is not
a main concern, while the fast version is encouraged to use
when the computing resource is limited.

TABLE 3
Percentage of Test Images Whose Estimation Error
Is within the City, Region, Country and Continent Level
by the Mean-Shift Model

Performance (%) city region country continent
LF[13] 3.7 124 17.3 26.8
NFLL[14] 6.3 15.2 20.9 32.4
AE 7.7 16.2 24.6 36.8
CNN 8.9 19.3 26.2 39.4
DGAE 11.6 23.4 32.9 454
fDGAE 10.1 22.3 33.1 44.6

Parcentage of Estimates Within 200 kn

005 g5 01
. 00 8

Fig. 7. Geo-localization performance across different settings of parame-
ters o and B of DGAE.

6.5.1 Discussion of POI Mining

The only parameter we set in POI mining is the bandwidth
of mean-shift clustering. It is set empirically according
to related works [6], [33] and our observations of dataset.
We manually check the visual images in the clusters and
adjust the bandwidth. We get the same observations of the
bandwidth setting as the existing works. With a very large
bandwidth, one cluster may contain multiple POIs, while
with a very small bandwidth, one POI may be divided into
multiple clusters. We observe that the clustering results are
not very sensitive to the bandwidth settings, and we could
obtain satisfactory clustering performance when setting
the bandwidth in the range of 0.0001 to 0.05. In our experi-
ments, we set the bandwidth at 0.005 for POI mining.

6.5.2 Discussion ofa, g andy

In Fig. 7, we discuss the impacts of parameters « and g. We
fix y=0.05, ;=20 and k»=10. The percentage of correct esti-
mates within 200 km ranges from 17.333 to 23.333 percent.
When a = 0.2, 8 =10.1 and « = 0.2, 8 = 0.2, DGAE achieves
the highest performance at 23.333 percent.

When «=0 and =0, since the geo-constraints have no
effects on training the deep network, DGAE degrades to
the general auto-encoder, and achieves 19.667 percent of
correct estimation within 200 km. The highest performance
of DGAE 23.333 is 3.665 percent higher than this setting
and the average performance is about 2 percent higher
than this setting. It indicates the effectiveness of the geo-
constraints. When o #0 and B=0, only the same-area con-
straint has effects on network training. DGAE achieves
20.333, 21.667, 21.667, 21.667 and 20.6667 percent when
«=0.05, 0.1, 0.2, 0.5 and 1. It indicates that the same-area
constraint has the positive effects on the performance.
When B #0 and «=0, only the same-area constraint has
effects on network training. DGAE achieves 21.337, 20.667,
21.333, 18.667 and 17.6667 percent when $=0.05, 0.1, 0.2, 0.5
and 1. It indicates that the easy-confusing constraint
achieves positive effects when allocating a small weight.
When the weight of easy-confusing constraint is too large,
the performance degrades, since it may affect the learning
of the reconstruction error term .J;.

The weight decay parameter y is set empirically accord-
ing to previous studies on [48], [49]. Both conventional AE
and DGAE are not sensitive to y. The performance is satis-
factory when y is in the range from 0.01 to 0.1. We pick 0.05
in our model.
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TABLE 4
Discussion of k&, and k, in DGAE

0 5 10 15 20 25 30

k1 20.2 22.3 242 24.1 252 243 221
ko 23.7 24.8 25.2 24.8 24.5 24.5 23.8

We show the performance of the percentage of correct estimations within 200 km.

6.5.3 Discussion of Layer Size

Fig. 8 discusses different settings of layer sizes of DGAE.
01in z-axis is the baseline, meaning that only low-level features
are used. The settings of layer size are 1) [100]; 2) [2000, 1000];
3) [2000,1000,500]; 4) [2000,1500,1000,500] and 5) [2000, 1600,
1200, 800, 500]. We see that DGAE achieves the highest per-
formance when the number of hidden layers is 3.

6.5.4 Discussion of k; and ks

In this section, we discuss the impacts of k; and k; in DGAE.
In Table 4, we show the performance of the percentage of
correct estimations within 200 km when k; and ks, in the
range from 0 to 30. In the “k;” row, we fix k» = 10 and in the
“ko” row, we fix k1 = 20. We fix @ = 0.2, 8 = 0.1 and y=0.05.
From Table 4, we could see that when fixing ky = 10,
DGAE achieves the highest performance when k; is around
20. Based on the motivation of capturing same-area inconsis-
tency, the top k; images consist of a part of images which are
most similar to the query image in the POI, and a part of
same-area inconsistent images in the POI based on the low-
level feature similarity. We force both the most similar sam-
ples and the same-area inconsistent samples close to the
query image. If k; is very small and less than 10, DGAE is
only able to force the most similar images close and could
not capture the same-area inconsistency. If £, is too large,
DGAE may force some irrelevant images to be close, which
causes the performance degrading. In the row “k»”, we find
that when setting £ in the range from 5 to 25, DGAE is able
to capture the easy-confusing inconsistency, in which images
have similar low-level features but in different POIs. In the
experiments, we set these parameters with cross-validation.

6.5.5 Discussion of kNN Model in Estimation

Table 5 shows the performance of k~-NN model under k£ =1
to 5. We report the top 1 prediction and the best of top
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Fig. 8. Geo-localization performance across different layers of DGAE.
Percentage of estimates within 200 km for each different settings of
DGAE are shown. 1- 5 in z-axis presents the number of hidden layers
used in DGAE. 0 in z-axis means only low-level features are used, which
is present as the baseline.
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TABLE 5
Geo-Localization Accuracy of Top-k£ Most Confident
Predictions of DGAE
Performance (%) city region country continent
top 1 14.1 25.7 30.5 41.8
best top 2 14.9 26.3 32.5 50.6
best top 3 16.2 27.6 37.3 57.9
best top 4 17.3 28.4 40.7 63.8
best top 5 20.1 31.9 43.3 68.3

{2,3,4,5} predictions for each query. For example, when k=
3, first, we retrieve 3 most similar images as the query using
feature representation learned with DGAE, and obtain the
GPS of these three images. Second, we calculate the Err of
the GPS of each image separately. Third, we pick the lowest
Err as the performance. We could see that when comparing
the best of the top-5 and top-1, the former one has roughly
1.5 times higher performance at all the levels.

6.6 Visualization of Estimated Results
Fig. 9 shows two examples of the GPS estimation results
using LF[13], NFLL[14], AE and DGAE. Results of the best
performance of each method according to cross-validation
are presented. We could see that various approaches
achieve different performance in these cities.

LF which only relays on low-level features performs the
worst. In the first example, none of the top six results are
within the same city by LF. There is only one image of the
top six results within the same city. NFLL performs better
than LF and is able to retrieve images with the scale and
angle variations, such as the fourth result of NFLL. AE and
DGAE achieve better performance than LF and NFLL. No
less than two out of six results are within the same city.
DGAE achieves the highest performance among four meth-
ods. Four out of six results are within the same city in these
two examples.

We analyze that various approaches achieving different
performance in these cities is mainly caused by whether
these approaches could identify the discriminative features
in these cities. Since LF only relays on low-level features
such as color and texture, it may fail to learn discriminative
features related to the image content. Clearly, images with
similar low-level features may have very different content/
high-level features. Compared to LF, NFLL adds SIFT
descriptor to enhance the local feature representation based
on SIFT points matches. We analyze that the SIFT feature
based pair matching in NFLL plays a major role in exclud-
ing images with similar low-level features but irrelevant
contents. Thus, NFLL is able to search images with same
content but with scale and angle variations.

However, the variations of image contents in the close
area are usually beyond scale and angle changes. AE and
DGAE which learn mid/high-level feature representation
achieve better performance than LF and NFLL. Compared
to AE, we analyze that the attractive performance of DGAE
are achieved by (1) the same-area constraint enhancing the
rankings of the images within same area but may be with
different low-level features; (2) the easy-confusing con-
straint reducing the rankings of images with similar low-
level feature but in far away locations. For example, in the
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Fig. 9. Visualization of GPS estimation results by LF, NFLL, AE and DGAE. The left images are the input queries. The ground truth of geo-tag (i.e.,
latitude and longitude) is provided under each query image. For each query image, results of top 6 nearest neighbors are provided with scan order.
To each result, the original geo-tag and area information are shown. Result images which are within the same city as ground truth of the query

images are marked with red frame.

first example, when comparing AE and DGAE, we could see
that the first result (incorrect) of AE is moved to the fifth
result of DGAE, which may be due to the effectiveness of
easy-confusing constraint that pushes out visually similar
but geometrically far way images. The sixth result of DGAE
does not appear in the top six results of AE and other two
methods, which may be due to the effectiveness of same-
area constraint that drags visually dis-similar but geometri-
cally close images close.

6.7 Discussion of Computational Cost

In this section, we discuss the computational cost of both
offline training and online estimation stages. In Table 6, we
show results of the time cost of both a small subset of 27,369
images in New York City (named as “small”) and a large
dataset including all the areas (named as “large”).

For offline training, there are three main time consuming
steps. Step 1: mean-shift based geo-location clustering.
Step 2: generating the pairwise graph for P and Q. Step 3:
optimizing weights of DGAE. In Table 6, we name these
three steps as “POI”, “graph”, “training”. The fast version
of graph generation in Section 4.2.1 is named as “graph(f)”.

In the test stage, there mainly contains feature extraction
and kNN search steps. 1-NN model is applied for both
small and large dataset settings. For one image, it takes
about 3 seconds on average to extract both low-level and
high-level feature representations. The time cost of ANN
search is related to the size of the dataset. The time cost of
the test stage is named as “test”.

When comparing “graph(f)” and “graph”, we could see
that in the large dataset, “graph(f)” is about 40 percent faster
than “graph”. It shows that the anchor based strategy
greatly reduces the time cost of generating graph. In small
dataset, the time difference is not large. The time which are
saved in graph generating stage is not much larger than the
additional time used for visual based clustering.

TABLE 6
Training Time of NCSCAE and LCSCAE
POI graph graph(f) training test
small 1.20 0.33 0.26 0.89 0.001
large 5.33 20.22 12.16 18.32 0.03

The time costs are shown using the unit of hour.
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6.8 Limitations and Future Works

In this section, we discuss the limitations of the current
model and the potential solutions addressing these prob-
lems in the future.

In the current version, we mainly considered the spacial
inconsistency constraints. Considering temporal correlation
constraints with image geo-tagging would be a very interest-
ing idea. Unfortunately, we found that a large portion of the
timestamps in our current dataset are missing. We have also
manually checked the quality of the timestamps, and found
that there are many noises of the timestamps. For example,
some images with timestamps in daytime may be night
scenes. Thus, we are hesitated to directly merge the temporal
information with DGAE model. We would like to explore
the temporal correlation constraints in the future work.

Furthermore, currently, our model is working on a single
machine. In the future, we would like to extend it to distrib-
uted systems to reduce the training time. It would be an
interesting research topic of graph constrained deep learn-
ing models on distributed systems.

7 CONCLUSION

In this paper, we proposed a deep geo-constrained auto-
encoder to extract deep feature presentation for automatic
non-landmark GPS estimation. We addressed the key prob-
lems in GPS estimation, that images in same geo-area may
be diverse while images with similar appearance may
spread over the world. DGAE automatically minimizes the
differences of images within the same geo-area, and mean-
while maximizes the differences of easy-confusing images
which are allocated in different geo-areas but shared simi-
lar low-level features. In addition, we collected a new big
dataset containing 664,720 images by Flickr open APL
Extensive experimental results on the new dataset demon-
strated the effectiveness of our DGAE based GPS estima-
tion framework, which outperformed recent state-of-the-art
works.
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