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Abstract

We propose an interfacial contact and fracture model based on Riemann so-
lutions. Instead of penalty method and Lagrange multiplier approach we pro-
pose a regularization scheme—Dbased on the interface displacement and separa-
tion velocity jumps—that smoothens contact-separation mode transitions. An
aperture-based regularization approach smoothens the transfer of hydraulic load
to in-situ cracks. A discontinuous Galerkin implementation is used to solve
dynamic fracture problems for uniaxial compression and explosive examples.
Moreover, we investigate contact—separation mode transitions and hydraulic
load transfer in several hydraulic refracture problems and study the effect of
loading rate and in-situ cracks in the number and orientation of activated per-
forations.

Keywords: contact fracture transition, dynamic fracture, Riemann solution,
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1. Introduction

Given that rocks are often under confinement pressure, contact and friction
play a critical role in rock mechanics. As discussed in [1], except a limited cases
where fracture is mostly tensile driven, rock fracture can be considered as a con-
sequence of tensile and shear micro-fractures. Specifically, for brittle hard rock
macroscopic fractured are formed by gradual closure, initiation, propagation,
and coalescence of these microcracks [2, 3]. During such complex crack prop-
agation processes, contact mode transitions are frequent even for the simplest
loading conditions. For example, for uniaxial compressive loading crack propa-
gations may initiate from local stress concentration points in tensile mode [4],
whereas shearing mechanisms become important after sufficient micro-tensile
damage accumulation [5, 6]. Thus, modeling crack propagation in tensile and
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frictional modes and the transition between various contact modes is of utmost
importance in rock fracture.

Moreover, there are several examples of contact mode transitions in the
area of hydrocarbon reservoir characterization and stimulation. In hydraulic
fracturing the interaction of a hydraulically loaded crack with in-situ cracks can
result in various mode transitions for both cracks. Some of these interactions
are studied in [7, 8, 9, 10] The fluid flow can also be diverted into the in-situ
crack, in which case it experiences a contact to separation mode transition.

The inverse of the aforementioned mode transition, i.e., separation to con-
tact mode transition, occurs in the initial stage of fluid flow application [11] or
when the hydraulic load is released and crack surfaces are pulled back together.
Understanding this transition, and the transition back to separation mode due
to the re-application of hydraulic load becomes important in refracting applica-
tions; for example, in pump-in/shut-in and pump-in/flow-back tests [12, 13, 14],
mini-hydraulic fracturing injections are performed wherein the hydraulic pres-
sure is released after induced crack surfaces open. By recording bottom hole
pressure (BHP) and repeating this test multiple times, until a constant fracture
closure pressure is reached, the minimum principal in-situ stress of the rock for-
mation can be measured. Cyclic application of the loads that better stimulate
a reservoir, as in [15, 16], or re-fracturing a reservoir to reactivate hydraulic
cracks or increase its productivity, cf. [17], and explosive fracturing [18, 19, 20]
are some other applications that involve contact mode transitions.

Specific combined tensile fracture and contact models have been incorpo-
rated into different types of numerical methods for rock failure analysis. For
example, the discrete element method (DEM) [21] and the closely related grain-
based model (GBM) [3] implementations represent rock as a collection of (de-
formable) particles that interact through their boundaries by carefully designed
models that include all contact and fracture modes. There have also been sev-
eral approaches that combine different computational approaches to maximize
their flexibility in modeling complex rock media. For example, [22, 23, 24, 10]
proposed a combined finite-discrete element method (FDEM) and [25] proposed
the No Binary Search (NBS) algorithm in which the contact detection algorithm
favorably scales linearly with respect to the number of distinct elements. This
approach was extended to hydraulic fracturing problems in [26, 27] to model
contact mode transitions.

Aside from the particular form of interface contact / fracture model, the
penetrability condition is enforced by different approaches. The most common
numerical techniques include penalty methods [28, 29] and Lagrange multiplier
methods [30, 31]. For example, a penalty method is used in [32]. In the con-
text of rock mechanics and hydraulic fracturing, [16, 33] use the cohesive model
approach to represent fracture processes on crack surfaces. To model contact,
the former employs a penalty method while the latter enforces the contact con-
dition by using a Lagrange multiplier approach. The hydraulic crack closure
condition has also been modeled by using a nonlinear elastoplastic approach
n [34]. Regarding the performance of these methods, it is noted that penalty
methods allow an unpredictable amount of interpenetration and can generate



stiff, ill-conditioned systems that might require extremely small time steps for
stability [35]. While Lagrange multiplier methods exactly enforce the impene-
trability constraint, they may increase problem size or introduce a more complex
computational framework.

In this manuscript we present a contact-fracture model that combines dy-
namically consistent Riemann solutions for separation, contact—stick, and contact—
slip modes. It is emphasized that first unlike the aforementioned works in rock
mechanics these solutions are formulated for dynamic, rather than static, fail-
ure analysis. Second, this contact model remedies the uncontrollable penetra-
tion of penalty methods by providing a maximum tunable penetration without
resulting in a stiff system of equations. Third, as discussed in §2.2.4, no nu-
merical regularization is required for contact stick—slip transitions. A uniaxial
compressive loading test and a explosive loading of a wellbore are presented
to demonstrate the ability of the aforementioned method in capturing various
contact /fracture modes. The powerful adaptive operations of the asynchronous
spacetime Discontinuous Galerkin (aSDG) method [36] is used to accurately
solve the corresponding dynamic problem and represent the resulting complex
fracture patterns.

These dynamic Riemann contact solutions were first presented in [37]. How-
ever, in their original form they cannot be applied to hydraulic fracturing appli-
cations as they do not correctly model contact—stick to separation mode transi-
tions. In the present work, we propose a new regularization approach in the two
dimensional phase space of normal separation and normal separation velocity
jump that remedies this problem, cf. §2.2.3. Another aspect that is addressed
is the contact to separation mode transition encountered upon the intersection
of a hydraulically loaded crack with an in-situ crack. We propose an aperture-
based approach to regularize the application of hydraulic load to newly loaded
crack segments. The proposed dynamic contact conditions are incorporated in
an interfacial damage model. A brief overview of the aSDG method and mesh
adaptive operations needed for capturing complex fracture patterns is provided
in §3. The contact / fracture model is used for the simulation of fracture under
uniaxial compression and explosive loading and hydraulic fracturing / refrac-
turing problems under different geometries and loading rates in §4.

2. Formulation

As will be further discussed in §3, we include inertia effects in the bulk
by solving the elastodynamic equations. Contact and fracture can occur on
interfaces that are either known a priori or are obtained as a part of solution.
In this section we provide the formulation of an interfacial damage model that
also incorporates dynamically consistent solutions for contact—stick and contact—
slip modes. These solutions govern the solution on contact-fracture interfaces
in rock. Cohesive models are commonly used to represent nonlinear material
responses on a fracture surface. However, the enforcement of impenetrability
condition and Coulomb friction relation is challenging for cohesive models. In
lieu of a cohesive model, we represent the process of material degradation on a



fracture surface by an interfacial damage parameter D that ranges from zero for
a fully bonded interface to D = 1 for a fully debonded one. There are two key
components to the damage model. First, given the traction and velocity states
on the two sides of an interface, dynamically consistent solutions for various
contact modes are obtained by the solution of local Riemann problems in §2.1.
Second as described in §2.2, by determining which mode(s) are active on a given
point on a contact/fracture interface, we linearly combine the aforementioned
Riemann solutions to derive macroscopic traction and velocity solutions. These
macroscopic target solutions replace the traction separation relation (TSR) that
is used in the context of cohesive models by specifying the traction (and velocity)
state of the interface based on the traces of the solution from the opposite sides
of the interface. Finally, in §2.3 we describe the process to smoothly apply
hydraulic pressure on newly connected fracture surfaces to hydraulically loaded
and propagating fracture network. Contact/separation model transitions in
hydraulic fracturing are also described in §2.3.

2.1. Riemann solutions for different contact modes

Figure 1: Local coordinate frame at arbitrary spacetime location P on a spacetime fracture
surface I' for a problem in two spatial dimensions.

For completeness, this section provides a short overview of different Riemann
contact solutions from [37] with an improved and modified notation. Bonded,
contact—stick, contact—slip, and separation are collectively called contact modes.
The solutions for individual contact modes are obtained by solving local Rie-
mann problems at a contact interface. A local coordinate frame at an arbitrary
spacetime location P on contact interface I" is illustrated in fig. 1. The local
coordinates are (£1,&2,t), and the frame is oriented such that the & -direction
aligns with the spatial normal vector on I' from + to — sides. The quantities
from the opposite sides of I', which are decorated with superscripts + and —,
define the initial data for the Riemann problem. Distinct velocity traces, v*,
and tractions, s, from the traces of solution fields from the two sides. Tractions
are defined by s = o - n in which the same spatial normal vector, n, is used to
compute st and s~ from the stress tensor . The Riemann values at a given
point P on the interface include components of the traction vector acting on the
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Figure 2: Top zoomed view of the point P from fig. 1. While the target traction solutions are
the same §7 = 8~ := §, depending on a given contact mode kinematic compatibility, normal
and tangential components of target velocities, ¥ and ¥, can be distinct from the two sides.

interface and traces of the velocity components from each side of the interface.
We denote these by (s, \“/i), as shown in the figure. Balance of linear momentum
requires equality between the traction vectors obtained from the stress fields on
opposite sides of the interface. That is, §7 = §~ :=&.

The kinematic compatibility conditions on the interface depend on whether
the material interface is intact (perfectly bonded), or in the debonded case, on
the specific contact mode. The target velocities on I" are equal for bonded and
contact—stick cases. For contact—slip case, while the impenetrability condition
implies the continuity of target velocities in normal direction, ¥;" = %, , the
tangential components can be discontinuous due to the slip condition. Finally,
in separation model, all components of v and v~ can be discontinuous. Fig-
ure 2 shows a top and zoomed view of the point P in fig. 1. Interior traces
of the solution are shown on the two sides of the interface and target values
between the two sides. As evident, unlike target tractions, target velocities can
be discontinuous and [v] denotes the corresponding jump.

The Riemann solutions are obtained by preserving the characteristic val-
ues of the elastodynamic problem and enforcing kinematic conditions pertinent
to a given contact mode. For an isotropic material in linear elastodynamics,
the spacetime characteristic trajectories in all directions are determined by the
dilatational and shear wave speeds, c;[ and c¥,

A2
Y Ix+ " CS:\/F (1)
p p

where p is the mass density and A, i are the Lamé parameters.
The definition of characteristic values, [37], uses the impedance values given
by,
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in which the index i corresponds to spatial directions in the local frame shown
in fig. 1.
After the solution of the local Riemann, the target values for contact—stick

and bonded modes decorated with ST and B respectively, are obtained as,
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the index ¢ ranges from 1 to d the spatial dimension of the problem. No sum-
mation convention is implied for the repeated index i. The quantities (s, vj )
and (s7, v;") are shown in fig. 2 for a 2D (d = 2) geometry. As expected from
(3b), we have v© = v~ :=+¥.

In separation mode, v and v~ are fully independent. The Riemann trac-
tions are, however, set equal to S, the tractions specified by a particular fracture
model or crack-surface loading. In §2.3.2, we discuss in detail how hydraulic
pressure is incorporated in the target value S. The Riemann solutions for the
separation case, decorated by S, are then obtained by preserving the character-
istic values on each side of the interface,

§gs=5=9 (4a)
(4b)

Finally, the solutions for contact—slip mode are obtained by enforcing continu-
ity of normal component of target velocity ([9]1 = 0). This results in the same
solutions for normal direction to that presented in (3). For the tangential direc-
tions, target tangential traction components are obtained from Coulomb friction
law, resulting in possibly distinct components for tangential velocity target val-
ues ([9]; # 0, ¢ = 2,3). The solution for tangential directions resemble those
for separation mode in (4), with some technical details on how the direction
of Coulomb friction is determined. The reader is referred to [37] for detailed
derivation and expression for all the Riemann solutions.

2.2. Macroscopic target values and mode reqularizations

2.2.1. Macroscopic target values
At any given point at the contact interface I' the damage parameter D
interpolates between bonded and debonded target solutions,

s*:=(1-D)sg+ Dsp (5a)
vt = (1-D)Vp+ DV (5b)
where subscripts B and D indicate Riemann values for bonded (c¢f. (3)) and

debonded conditions. Note that v in (5b) is not decorated with side + since
from kinematic compatibility condition, same target value is enforced on both



sides as evident from (3b). The solution for the debonded part, itself is first
divided into contact and separation modes. The relative part of contact to
entire debonded (1 — D) fraction, is denoted by 7. Finally, the contact mode
can take either the contact—stick or contact—slip modes. The number v denotes
the ratio of contact-stick to entire contact fraction. Since the Riemann solutions
for bonded and contact-stick modes are the same, cf. (3)), there are only the
three distinct modes of bonded (B), contact—slip (SL), and separation modes
(S). Thus, considering different contact modes within the debonded (1 — D)
fraction, the solution (5) can be written as,

s* := apSp + as.SsL, + asSs (6a)
viE = apVp + aSL\V/'SiL + GS‘U’Si (6b)
where
ap=1—D + Dny (7a)
as, = Dp(1—7) (7b)
as = D(1—n) (7c)

again in (6b) Vvp is not decorated with side notations + since from (3b) the stick
velocities are the same for both sides.

Equations (3), (4) provide target values for contact—stick / bonded and sep-
aration modes and the target values for contact—slip are provided in [37]. Once
the values of D,7n and v are determined, macroscopic traction and velocity vec-
tors are fully determined from (6) and (7). The determination of D,n and - is
discussed in the next three subsections.

2.2.2. Damage evolution law to determine D

At the top level of hierarchy of relative area fractions, the value of D must
be determined. Here we adopt the rate-dependent interfacial damage model of
[38] where damage rate is given by the evolution law,

0 D=1’ (®)

b {Hl—H«m -D)y)] D<1
where 7 is the relaxzation time, and Dy is the target damage value. The function
H takes the value of unity at zero and monotonically decreases to 0 at infinity.
Following [39, 40], the particular form of H used in this work is given as H(z) =
exp(—az). It is evident from (8) that under monotonically increasing quasi-
static loading, i.e., when the load increases much slower than 7, (D; — D)y — 0
and D — D;. That is, D, is the damage value for the present interface condition,
if the loading had been applied under quasi-static condition. The positive part
operator in (D; — D), ensures that D is a nondecreasing function of time.

We assume D; to be a function of bonded Riemann traction (3a) through



the value of effective stress ! 3,

§:= /(%)% + (678)? &)
4 [oi\2
where & and 75 == /> =2 (sé) refer to the normal component and the

magnitude of the tangential component of bonded Riemann traction. The shear
stress factor, B8, controls mode mixity. This definition of effective stress is com-
mon in fracture mechanics and is adopted from [41]. Finally, D; is expressed
as,
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where s and s denote, respectively, effective traction thresholds for the onset of
additional damage evolution and for the attainment of maximum damage rate.
We refer to § as the fracture strength.

A few points should be clarified regarding the definition of §. First, based on
the form of § and damage evolution (8), § corresponds to the quasi-static ten-
sile strength. The maximum attainable tensile strength increases under higher
loading rates, due to the rate form of the damage evolution law. Second, quasi-
static shear strength is equal to §/8. Third, the use of bonded Riemann trac-
tions rather than the macroscopic traction vector s* from (6a) in the definition
of effective stress is not only physically justified (as damage evolution is driven
by the strength of impinging waves), but also prevents premature termination
of damage evolution; if s* had been used since its value decreases as D — 0,
from (10) § eventually falls below s, thus preventing the full debonding of an
interface.

2.2.3. Determination and regqularization of 7

The determination and analysis of 7 is one of the main emphasis of this
paper. In [37], this analysis was provided for S = 0 in (4a). However, it does
not carry over to hydraulic fracturing and in general to problems where S* # 0.
The details of the newly proposed approach are provided below.

Figure (3) shows the 2D phase space for analytical 1 in terms of nondimen-
sional normal separation velocity jump [0s,]/0 and normal displacement jump
&' := /8. The fracture scales ¥,3,0 are described later. Let uj and u] be
the normal component of displacements from — and + sides. It is clear that
the interface is in separation mode (n = 0) if the normal displacement jump

0:=u; — uf is positive. Moreover, § < 0 is unacceptable as inter-penetration

1The effective stress refers to a scalar stress measure that drives damage evolution and
should not be confused with its use in rock mechanics referring to the compressive part of the
normal traction minus the pore pressure.
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Figure 3: Maps of separation (n = 0) and contact (n = 1) modes based on normal separation
velocity jump [¥s,] and normal displacement jump 6. The separation-to-contact (S1 to C)
and contact-to-separation (C to Sz or S3) transitions are discussed in §2.2.3.

is not permitted. For § = 0 the choice on whether contact or separation mode
holds depends on the velocity at which the two sides of interface hypothetically
separate. To clarify this, among the three modes of bonded (B), contact—slip
(SL), and separation (S), it is only the latter that can have nonzero normal
displacement jump. Thus, from (6) and (7c) we have,

[vi] = vi” —vi" = as[B:] = D(1 - n)[s,] (11)

where [Us,] = o5, — 0. Clearly, the value of 7) has an influence only if D > 0,
otherwise the interface is fully in bonded mode and as expected from either (5)
or (6) s* := Sp, v* := vp. Thus, to determine the value of n when 6 = 0
we assume D > 0 in (11). If [og,] < 0, then we must have n = 1; otherwise
[vi] < 0 which is not permissible as it implies interpenetration given that J is
assumed to be zero. On the other hand, if [9s,] > 0 from the two choices of
n =0 and n = 1, the condition n = 0 is the physical choice, since it is a positive
[0s,] that can take an interface already at contact mode (§ = 0, [vs,] < 0) back
to separation mode. Thus, for § = 0, the sign of [vg,] determines 7, as shown
in (3).

Next, we relate [0g, ] to traction quantities which are generally easier to com-
pute, particularly in hydraulic fracturing application. By plugging the values
T;Sji from (4b) in [vs,] = ¥, — ¥ and using the identity (3a) we obtain,

ZV[os,] =203 - 8Y) = (12a)
Z'[vy] = 2D(1 — ) (55 — S") (12b)
where - g1t
. 271-
1._
Y (13)



is defined as the impedance of the interface for normal waves. It should be
noted that in [37], 85, rather than [#s,] is used on the vertical axis of the phase
space in fig. 3. From the form of (12a), it is evident that the former approach
is correct only if S! = 0.

Finally, the quantities in the axes of fig. 3 are normalized by their corre-
sponding fracture scales. This facilitates choosing nondimensional parameters
that are used in the regularized version of 1, described shortly after. In [42, 43]
fracture scales are derived for a general cohesive model. The same analysis can
be extended to the damage model with evolution equation (8) to obtain fracture
displacement scale & and velocity scale v,

i
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where the stress (strength) scale for the damage model is § = 5 based on the
particular form of D; in (10). Thus, equations (14), (12a), and (13) yield the
form of normalized axes in fig. 3.

Separation to contact transition | Contact to separation transition

Condition S > 3 ([vs,] < 0) S < sp ([vg,] > 0)
S S \ : \
= o | A E o
Transition for ) )
& D) (S.[v*]) = (38.0) (58,0) = (S. [o"])

Figure 4: The schematic of contact separation transitions where the magnitude of character-
istics distribute differently between normal traction §* and normal velocity jump [v*].

Contact separation mode transitions implied by fig. 3 can physically be non-
smooth in that tractions and velocities on either sides can suffer jumps upon
such transitions. To simplify the following discussion, we temporarily assume
D = 1, that is the interface is fully debonded. The same conclusions can be
made for D > 0 and for D = 0 clearly there is no debonded mode to transition
between the contact and separation modes. Figure 4 shows the schematics of
these two transitions. The superscripts and subscripts 1 for normal traction and
velocity components are removed for brevity.

For the separation-to-contact transition, we start from the separation mode;
i.e., the space of n = 0 in fig. 3. Given that a contact mode is supposed to
occur, the separation velocity must be negative (Jv*] < 0) so that the two sides
can approach each other. This corresponds to the point S; approaching point C'
in fig. 3. From (12b) we observe that this is equivalent to S > §g. Given that
upon transition to contact mode, n changes from 0 to 1, §* suddenly jumps from
the separation mode traction S to its bonded target value 3g; cf. (3a), (4a) (6),
(7), and note that D = 1. Similarly, the separation velocity [¥s,] jumps from
2(3g — S)/Z to zero. That is, the kinetic energy implied by relative motion of

10



the two sides of an interface is suddenly transferred (added) to strain energy.
This jump is physical and causes the propagation of sharp waves inside — and
+ domains. Clearly, the larger S — sg, the larger the magnitude of these waves.

The contact-to-separation transition, takes a point similar to C in fig. 3
and moves it into separation mode by reaching a stage when [vs,] > 0. This
path is shown by the red arrow C' — Ss (or C' — S3) in the figure. Similar
to separation-to-contact transition ($*, [v*]) suffer jump between contact and
separation states; in this case §* changes from $p to S while [Us,] changes
from negative 2(5g — S)/Z to its corresponding zero or positive values at Sy
or Ss, respectively. Now, what almost always makes this transition smooth is
the way [Us,] increases on a contact interface. Often, impinging characteristic
waves gradually lose their compressive strength until [s,] — 0~. This occurs
by the approach of tensile (separation-inducing) finite width (non-sharp) waves
from the sides of the interface. Thus, unlike the previous transition, contact-to-
separation transition does not require a regularization in this case. The path
of this transition is shown by C' to S in fig. 3 and right at the moment of
transition [Us,] = 0, thus stress and separation velocity do not suffer jumps.

The previous contact-to-separation transition is often smooth and is typ-
ically driven by the change in §g (through impinging waves from the bulk).
However, [Us,] can also become positive if S is sufficiently reduced (becomes
more compressive). This is very relevant to hydraulic fracturing where upon
the intersection of a hydraulically loaded crack and an in-situ crack, a hydraulic
pressure p, = —S larger than the in-situ pressure o, = —$p can suddenly cause
a transition of C to S5 in fig. 3. Clearly, this contact-to-separation transition is
non-smooth.

[os,] 25113—51
v A S
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Figure 5: Map of regularized n based on normal separation velocity jump [¥g,] and normal
displacement jump 6.

To summarize, separation-to-contact transition is physically non-smooth. In
[37] a regularization approach based on ¢’ is proposed that smoothens this tran-
sition. This regularization even if not essential, greatly reduces computational
costs in resolving sharp wave fronts generated by separation-to-contact transi-

11



tions. Figure 5 depicts a regularized version of fig. 3. The parameter 6’ < 0
denotes the maximum nondimensional penetration permitted in the regularized
model, corresponding to displacement jump ¢'9. The particular form of the
function that regularizes 1 from unity to zero for ¢’ from —¢’ to 0 and the ex-
ceptionally smooth contact-separation mode transition behavior of this model
are described in [37]. Unlike cohesive models, this model possesses a maximum
penetration which can also be numerically tuned without resulting in a stiff
system of equations or nonconvergence issues.

As for the contact-to-separation transition, it typically does not require
any regularization. Moreover, n should immediately turn to zero as soon as
[9s,] — 0~, otherwise contact-to-separation transition is artificially prevented
or other nonphysical responses arise, see [37] for further discussion on this. On
the other hand, for cases that C suddenly jumps to S3, through the intersec-
tion of a hydraulically loaded and an in-situ crack, the transfer of the hydraulic
load must be regularized such that the path from C to S2 is smoothly taken
from negative [vs,] values, past So, until the final stage S is realized when
the hydraulic pressure is fully applied on the surfaces of the in-situ crack. The
gradual application of hydraulic pressure, upon intersection, not only smoothens
contact-to-separation mode transition but also eliminates the nonphysical sud-
den loading of the entire length of the in-situ crack. This pressure regularization
scheme is discussed in §2.3.2 and its impact is studied through the examples in
84.3.

2.2.4. Mohr-Coulomb friction model to determine -y

The binary value of v € {0, 1} is determined based on the particular friction
model employed. For example, for a linear Mohr-Coulomb friction model on a
debonded interface we have v = 0 when |7g| > k <f§]13> n and one otherwise,
where k is the friction coefficient. Similar to separation-to-contact transitions,
stick—slip mode transitions are reported to generate numerical artifacts. The
apparent source of non-smoothness arises from the original form of Coulomb
friction law where the direction of tangential traction is determined by the slip
velocity; since the latter quantity vanishes at stick—slip transitions the direction
of tangential traction becomes ambiguous. While numerical regularizations such
as those in [44, 45, 46] are proposed to resolve this ambiguity and eliminate nu-
merical artifacts at transition instances, in [37] we have shown that the transition
is in fact physically smooth and the direction of tangential (slip) traction is al-
ways well-defined. As a result, the value of v is not regularized herein; please
see [37] for more details.

2.8. Application of hydraulic pressure

For accurate modeling of hydraulic fracturing, the fluid flow in fracture net-
work should be coupled with the deformation of crack surfaces as in [47, 48].
Moreover, in studies such as [49, 50, 51] fluid flow in rock domain is also consid-
ered by solving poroelastic equations. However, for fracture analysis of shale gas
reservoirs with low permeability the application of constant fluid pressure is an

12



acceptable approximation; see for example [52] and the references therein. For
very tight formations, the poroelastic effects and the leak-off of fluid across crack
faces can also be neglected. Besides, for low viscosity fracturing fluids such as
treated water, the constant fluid pressure assumption is even more acceptable,
especially near the wellbore. The accuracy of constant pressure approximation
is demonstrated in [53, 54, 55, 56] for rocks with high fracture toughness and/or
hydraulic fluids with low viscosity. In the remainder of this manuscript, we
assume the hydraulic pressure p to be spatially constant, except through the
pressure regularization scheme that modifies p near crack intersection sites, as
described in this section.

2.8.1. Pressure factor

By using a simplicial complex representation of cracks and modeling their
connectivity by a disjoint set data structure [57], the authors provide a means to
transfer hydraulic pressure to an in-situ crack when a hydraulically loaded crack
intersects it. This representation, however, only provides information whether a
crack is hydraulically loaded or not, resulting in two potential problems. First, if
a hydraulically-loaded crack intersects a long crack, clearly not all the points on
that crack surface will immediately experience the hydraulic pressure exerted
at the connection of the two cracks. Second, as described in §2.2.3 traction
and velocity fields experience a sudden jump if the full hydraulic pressure is
suddenly exerted on newly connected crack surfaces; the in-situ compressive
stress between crack surfaces will suddenly jump to a potentially much greater
hydraulic pressure if the hydraulic load is immediately transferred. We provide
an aperture-based approach that regularizes the transfer of hydraulic load to
newly connected crack surfaces and remedies both aforementioned problems.

Figure 6: Regularization of the applied hydraulic pressure on a crack surface based on the
apertures of connected crack segments.

Figure 6 shows the intersection of a hydraulically loaded crack, segment CA,
with an in-situ or otherwise unloaded crack, i.e., the extension of DE. The
goal is to regularize the applied hydraulic pressure for the sample segment AB.
Accordingly for an arbitrary point P, such as A and B, we define,

op,

max

= max; (dp,) (15)
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where 0p, are the apertures of the hydraulically loaded and connected cracks to
point P, as shown in the figure for points A and B. Then the pressure factor f,
or point P is defined as,

0 & <0
H(P)=4 % 0<d,<d (16)
1 0 <dp

where 0% = dp,,., /5 is the maximum aperture at point P, normalized by the
displacement scale 5, ¢f. (14a). The nondimensional parameter 0 < § < 1
basically regularizes the application of hydraulic load from dp,, = 0todp, . =
§’6. That is, the maximum aperture of connected hydraulically-loaded cracks
smoothens the sudden transition of C to Ss in fig. 3.

A few important aspects of the model are briefly commented on. First, the
locations for which apertures are measured are not right at a given point. For
example, as shown in fig. 6 for points A and B, there is an offset behind the
point of consideration on a given crack surface. Second, the pressure factor on a
crack surface is linearly interpolated based on the values at the end vertices, for
example points A and B in fig. 6. Third, to ensure that the regularization is not
influenced by the level of mesh adaptivity, and in general element sizes, the off-
set is set to be a fraction of a fracture related length scale, e.g., fracture process
zone size (cf. equation (29f) in [42]). Fourth, the objective of the regulariza-
tion is to activate and smoothen the sudden application of hydraulic load upon
the intersection of two cracks. While in this work spatially constant hydraulic
pressure is applied on on crack surfaces, the same regularization scheme can be
applied to regularize the onset of the application of hydraulic pressure based
on other models such as lubrication equation. The condition ¢’ < 1 ensures
that the pressure regularization is only active for the very early stages of crack
opening.

2.3.2. Regularized hydraulic pressure

It is evident from (16) that f, for a point P tends to one when maximum
aperture dp,__ reaches the threshold value of §’d. Pressure factor f, basically
specifies the fraction of hydraulic pressure that is enforced. For the remain-
ing fraction, 1 — f,, a target normal traction that would have been active in
the absence of hydraulic pressure should be enforced. Accordingly, the normal

component of target separation traction, cf. (4a) is given by,

St = —{fppn + (L= fp)(~3p)+} (17)

where py, is the hydraulic pressure at the given space and time position. The sec-
ond term in the interpolation (—&§) is the compressive traction under bonded
(contact) mode. Given that S is one of the three contact modes within debonded
part (D fraction) of damage model, c¢f. §2.2.1 and (6a), (5a), the (1— f,) part in
(17) cannot withstand any tensile traction. The positive part in (—35%) ensures
that zero compressive stress in considered when the bonded normal traction is
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tensile (55 > 0). The front minus sign in (17) is needed to express the reg-
ularized compressive traction with tensile positive convention. Finally, in the
present work S? = 0, as it is assumed that no shear traction is applied on crack
surfaces through the fluid’s viscous effects. If needed, the shear traction can
also be regularized using f,.

Lastly, we want to investigate under what conditions, the hydraulic pressure
pr, is large enough to cause crack opening. When the interface is in (partial)
contact condition, which implies §' < § < 0, it transitions to separation mode
if and only if [og,] > 0, as discussed in §2.2.3. By plugging the pressure factor
regularized form of S! from (17) into (12a) we observe,

Z'vs,] = 2{fp (pn +85) + (1= fp)(35)+ } (18)

Since pp, > 0, it is evident that [og,] > 0 if the normal bonded traction
is tensile, that is 55 > 0. This corresponds to a case where the impinging
characteristics on the crack surface tend to open the crack. Clearly, the crack
surface pressure accelerates the speed at which the crack surfaces separate.
The more interesting case is when impinging characteristics attempt to close
the crack surface (55 < 0), e.g., when the crack is under in-situ compressive

stresses. Under this condition,

Z'[vs,] = 2fy (pn + 5)  when 3} <0 (19)

Thus, independent of the sign of 55 we obtain,
[9s,] >0 (and [1] >0) < pp > —5p (20)

Accordingly, when a crack with zero normal separation (§ = 0) is hydrauli-
cally loaded, it transitions to separation mode if and only if the hydraulic pres-
sure is greater than bonded pressure —35§, cf. fig. 5. That is, hydraulic pressure
must be greater than the ambient pressure (whose value is given by —3%) to
open the crack. Since Z'[t1] = 2f,D(1 —n) (p + 55) (for 55 < 0), cf. (11),
we observe that speed at which crack faces separate is linearly proportional to
fp with [1] being zero at initial stages of application of hydraulic load and
reaching its maximum when f, reaches one. This in essence is the effect of
pressure regularization that smoothens the application of hydraulic load and
regularizes the transition of C' to S3 in fig. 3. In fact, if in (17) the (1 — f,)
part was not included, i.e., if hydraulic pressure were gradually regularized to
its pick value without starting from the ambient stress field, many of the afore-
mentioned properties would be lost and the regularization could be rendered
ineffective.

3. Implementation

This section provides a short overview of the asynchronous spacetime Discon-
tinuous Galerkin (aSDG) method that is needed for the interpretation of results
in §4. In the bulk we solve the elastodynamic equation of motion, V-o+pb = pv,
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where o is the stress tensor, b is the body force vector, and v is velocity. We
use the aSDG method [58] to solve the elastodynamic problem. For 2D prob-
lems considered herein, we start from a triangulation that represents the spatial
domain at initial time. Figure 7 shows how the aSDG method advances the
solution in time, by each time pitching a vertex in time to form a patch, i.e.,
a group, of spacetime tetrahedral elements that are solved simultaneously. For
example, in fig. 7(a) the patch of elements shown in the right is already solved,
whereas the left patch is just pitched. If the solution of all the elements in a
patch is acceptable, the patch is accepted and the elements are added to the
spacetime mesh. As shown, at each stage of solution a new patch is erected and
solved. This process continues until the entire spacetime domain is filled with
spacetime elements.

Figure 7: Tent-Pitcher in 2D xtime; the time-axis is vertical. Wireframe renderings depict
new patches of tetrahedra to be solved. Patches with opaque surfaces are already solved
(reproduced from [58]).

At each instant, the collection of triangular outflow faces of the farthest
elements in time is called the front mesh. As can be seen in fig. 7, the front
mesh is asynchronous as vertices can have different advances in time. The height
at which a vertex can be pitched in time is limited to an extent that keeps all the
outflow faces of the elements in that patch causal, in that elastodynamic waves
only exit these facets in spacetime. While this aspect is similar to explicit time
marching method, the aSDG method is fully asynchronous and unlike explicit
schemes very small elements do not pose small time advances for the entire
space mesh. Moreover, the solution within a patch is implicit. Finally, given
that at each instant only a patch of a few elements (rather than the entire
spatial domain) is solved, the solution cost scales linearly versus the number of
elements; see [59] for more details on the Tent-Pitcher algorithm.

Mesh adaptivity in spacetime is used for two purposes in the aSDG method.
Figure 8 shows a spatial view of a sample patch, which can hypothetically
correspond to the top view of any of the patches shown in fig. 7. The angular
distribution of effective stress §, ¢f. (9), around the top vertex V is shown by
radial distance to it. A crack will be nucleated at V if the effective stress at any
given angle 6 exceeds the strength threshold s (see (10)) at V. The propagation
direction is then decided at angle(s) with local maximum 3. For example, in fig.
8 a crack will propagate from V along the line VP. If this direction is not aligned
with existing inter-element boundaries in that patch, mesh adaptive operations
create a new element boundary along this direction by either realigning the
closest element boundary or refining the front element containing it. The same
approach is used for crack propagation from an already existing crack tip at
vertex V; see [61] for the details of this crack tracking scheme applied to rock
fracture.
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Figure 8: The angular distribution of effective stress § and fracture strength threshold s
around vertex V at the top of a patch. The magnitude of these parameters for a given angle
0 is mapped to radial distance from V. (reproduced from [60]).

The second set of adaptive operations are used to improve solution accuracy
and efficiency. For example, if energy dissipation in any of the elements in the
left patch of fig. 7(a) is larger than a user-specified tolerance, that patch is
rejected and the triangles at the base of this patch are refined. The next time
Tent Pitcher resumes in that region, smaller elements in space and time are
generated. Finite element refinement and coarsening algorithms and geometric
meshing details of this scheme are provided in [36]. Finally, on contact and
fracture surfaces we use a secondary error indicator that ensures contact and
fracture constitutive equations are solved accurately. The dual control of bulk
energy dissipation and contact / fracture face errors is described in [62]. In
summary, the asynchronous and local solution features of the aSDG method,
exact capturing of crack propagation direction, and control of bulk and fracture
errors results in a highly accurate and efficient solution scheme to model rock
fracture.

4. Numerical examples

In the first example, presented in §4.1, the failure of a rectangular domain
under uniaxial compressive load is studied. The three examples presented in §4.2
study the nucleation and propagation of cracks under highly dynamic explosive
loads exerted on the wellbore wall. One key aspect of both problems is the lack
of macroscopic stress concentration points. The stochastic fracture strength
model from [60] is employed to enable nucleation of cracks from the weakest
points and prevent nonphysically sudden and spatially global fracture of the
rock mass.

The second group of results pertain to problems where cracks grow from
hydraulically loaded perforations around a wellbore. The existence of initial
macroscopic stress concentration points, i.e., crack tips, and nonzero hydraulic
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pressure are the main differences of these problems compared to those in §4.1
and §4.2. In the two examples presented in §4.3 we demonstrate the need to
regularize the application of hydraulic pressure, especially when a hydrauli-
cally loaded crack intersects an unloaded crack. The re-fracture example in
84.4 demonstrates that the regularization scheme in §2.2.3 can smoothly model
transition between contact and separation modes. Finally, the numerical ex-
amples in §4.5 are provided to study the effect of loading rate in a refracture
problem and to study the interaction of hydraulically loaded cracks with in-situ
microcracks. Except for the problem in §4.1, rock is under confining pressure
of 2.425 MPa in all directions at the initial time and its material properties are:
Young’s modulus E = 20 GPa, mass density p = 2500 kg/m?, and Poisson’s
ratio v = 0.20. The interface properties are: fracture strength § = 2 MPa and
relaxation time 7 = 30 ms.

4.1. Dynamic fracture under uniaxial compressive loading

o0
T

/
Y

%74
xr H,
R

Geometry and loading 00 Initial front mesh

Figure 9: Problem description for the rectangular-domain under dynamic uniaxial compressive
load.

The geometry, boundary condition, and initial front mesh for a rectangular
domain, W = 0.08 m and H = 0.16 m, subject to uniaxial compressive dynamic
load o is shown in fig. 9. The load oy ramps from zero to a sustained value
of 2.56MPa in 10 microseconds. The material properties are: Young’s modulus
E = 65 GPa, mass density p = 2600 kg/m?, and Poisson’s ratio v = 0.27. The
interface properties are: mean fracture strength E(s) = 4.5 MPa, relaxation
time 7 = 30 ms, and friction coefficient k£ = 0.3.

The goal of this example is to demonstrate the nucleation and propagation of
cracks in a domain without explicit representation of initial flaws, and propaga-
tion of nucleated cracks in mode I, i.e., due to the activation of slip mode along
their faces. As will be discussed below, under uniaxial compressive loading and
using the effective stress model (9), cracks nucleate at the angle 8 = 45°; cf.
fig. 9 as the stress waves travel inward. When a homogeneous material model
is employed, cracks are expected to nucleate at all points on the wave fronts.
However, this clearly is not physical and cracks will only nucleate from weakest
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(a) t =28 us (b) t =35 pus (c) t =155 pus (d) t =165 pus
(e) t =80 pus (£) t =90 us ) t =120 ps (h) t =150 us

Figure 10: Strain-energy density map for the rock domain under uniaxial compressive load.

points in rock. Various approaches are used in the literature to incorporate some
inhomogeneity in rock properties to address this issue in modeling uniaxial com-
pressive failure; see for example [63, 2, 1, 3]. To represent rock inhomogeneity, it
is assumed that its fracture strength follows a Weibull model, conceptually sim-
ilar to the approach used in [1]. For the Weibull parameters used the standard
deviation of fracture strength is ¢(5) = 956kPa. For the details of the statistical
nucleation model based on Weibull distribution, the reader is referred to [60].

Before the nucleation of any cracks, x and y are the principal axes for the
stress tensor for all points in the domain with zero and negative values for o,
and oy, respectively. Thus, on any potential crack surface with angle 0, cf. fig.
9, the normal stress is compressive and the effective stress from (9) reduces to
the shear stress on that plane. Since, the shear stress is maximum on planes of
angle +45°, cracks are expected to form and propagate on these planes in mode
1I.

To verify this prediction, we refer to figs. 10 and 11 for a sequence of solution
visualization. The strain energy density is U := 20‘ : €, where € is the strain
tensor. In fig. 10 and all subsequent solution visualization U is mapped to color
field, where zero to maximum values are mapped to blue-to-purple color range.
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(a) t =28 us

(c) t =55 ps (d) t =165 us

)

(e) t =80 us (f) t =90 ps (g) t =120 pus (h) t =150 ps

Figure 11: Deformed shape and fracture pattern for the rock domain under uniaxial compres-
sive load. Damage on crack segments in the range, D € [0, 1], is mapped to a blue-to-red
color range.

The unit of U is J/m3 = Pa. In fig. 11, only crack segments are shown on the
deformed geometry. The color on crack segments demonstrate the local damage
level. This figure is better to observe the evolution of fracture pattern.

Figures 10(a) and 11(a) show a 45 degree crack propagating from the lower
left corner. In fig. 10(b) and fig. 11(b), this crack has propagated further and a
few other cracks have propagated at angles close to +£45°. While, the location
of the cracks are determined by sampling the weakest fracture strengths at the
vertices on the front mesh, cf. §3, their propagation direction is very close to
the predicted +£45° angles. In figs. 10(c) to 10(f) (figs. 11(c) to 11(f)) it is
observed that the points of stress concentration and the corresponding active
mode II crack slip regions change. This is due to the scattering of the waves
from the domain boundaries and crack surfaces. Finally, at later stages shown
in fig. 10(g) and fig. 10(h) (fig. 11(g) and fig. 11(h)), finer fragmented clusters
are formed and several slip systems with larger displacements are observed.

Due to complex wave scattering events and the interaction of cracks, various
transitions between contact—stick, contact—slip, and even slight separation are
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Figure 12: Contact and fracture fractions for the rock domain under uniaxial compressive load
at t = 150 us. The corresponding values, in the range of [0, 1] are mapped to a blue-to-red
color range.

encountered in this problem. Consequently, the spatial location of active slip
regions change as implied by the solutions shown in figs. 10 and 11. Figure 12
shows a snapshot of various contact fractions at ¢ = 150 us. The crack segments
are color-coded based on a field of interest. For example in fig. 12(a) damage,
D € [0, 1], is mapped to blue-to-red colors. The majority of cracks are at angles
close to +45°. Yet, six of them along the height of the domain run at around
+45° degree and form the major slip systems. These main cracks are almost
entirely damaged across their lengths. The contact and slick relative fractions
n and « in fig. 12(b) and fig. 12(c) show that these planes are mostly in contact
(n &~ 1) and in relative slip mode (7 & 0). The map of absolute slip mode agy,,
¢f. (7b), in fig. 12(d) shows that there are some regions of active slip along these
cracks. From the same figures, it is observed that the majority of connecting
cracks between these main slip lines experience less damage and slippage.
Figure 13 shows the evolution of the front mesh, cf. §3, as cracks are nu-
cleated and propagated in time. The time values shown in subfigure captions
(second value), correspond to the lowest time coordinate of all vertices on the
front. Since, the aSDG method is asynchronous, not all vertices have the same
time coordinate; cf. fig. 7. The front mesh is modified to accommodate nucle-
ation and propagation of cracks in arbitrary directions. In addition, adaptive
operations ensure that the problem is solved with the desired level of accuracy.
The latter point is demonstrated by the comparison of the initial front mesh in
fig. 9 and the front meshes in figs. 13(a) and 13(b). While the initial front mesh
is comprised of only two spatial elements, as the elastic waves enter the domain
from the top and bottom boundaries, large energy dissipation in the bulk calls
for refinement operations in the wave front. For this problem the wave front
is not very sharp, since its thickness corresponding to the ramp time of 10 mi-
croseconds is 5.6 cm; i.e., 35% of H. Still, as the load ramps up and enter the
domain in figs. 13(a) and 13(b), more elements are created on the wave front
and later inside the domain. The vertices encircled in these figures show local
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Figure 13: The front mesh for the rock domain under uniaxial compressive load at different
stages. Damage on crack segments in the range, D € [0, 1], is mapped to a blue-to-red
color range. The first and second numbers in subfigure captions correspond to the total
number of patches solved and minimum time coordinate of the vertices on the front mesh (in

microseconds), respectively.
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Figure 15: Load history for the compressive

Figure 14: Problem sketch for compressive
mode fracture problem.

mode fracture problem.

edge bisection optionations on the front. The reader is referred to [59, 36] for
the description of edge bisection and other mesh adaptivity operations.

Figures 13(c) to 13(e) show the propagation of cracks from the first three
nucleation points. It is evident that the front mesh is very irregular and element
boundaries are not aligned with £45° directions. Local adaptive operations
(mesh smoothing and refinement; c¢f. §3) are used to align element boundaries
with proposed crack directions. This can more clearly be seen in the modification
of the front mesh from fig. 13(e) to fig. 13(f). Given that the relaxation time
7 = 30 ms, it takes about 30 ms, until any visible damage accumulation can be
observed on crack segments; see figs. 13(h) to 13(0).

Several adaptive operations on the front mesh are shown in fig. 13. The
front mesh in rectangle and triangle zones in figs. 13(f) and 13(h) correspond to
mesh adaptivity needed to accommodate requested crack direction and resolve
local stress concentration points (relatively high strain energy densities and
local slip can be observed in this triangle zone in fig. 10(a)). As local slip
zones are activated and cracks propagate in figs. 13(j) to 13(0), corresponding
to times shown in figs. 10(c) to 10(h), high energy dissipation error in the bulk,
energy error on contact / fracture surfaces, and complex fracture pattern result
in much finer front mesh. For example, the front mesh in fig. 13(o) contains
5682 elements and a total crack length of 3.44 m, which can be contrasted
with 2 spatial elements and zero crack length for the initial front shown in fig.
9. Finally, it is noted that the aSDG mesh adaptive operations can capture
other fracture angles that are implied either my using more appropriate failure
criterion such as Mohr-Coulomb or by modeling anisotropic rock, as shown in
[64].

4.2. Explosive fracturing

Consider a wellbore subjected to the ambient pressure o5, = 2.425 MPa as
shown in fig. 14. The diameter of the wellbore is 15.24 cm and the computational
domain is 2 m x 2 m. The friction coefficient is k¥ = 0.3. Similar to the problem
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in §4.1, the domain initially does not contain any stress concentration points
such as crack tips. Accordingly, the same statistical fracture nucleation and
propagation model, based on Weibull distribution, is used for this simulation.
The reader is referred to [65] for the model parameters. Also, instead of the
effective stress model presented in §2.2.2, the effective stress is defined based
on a Mohr-Coulomb failure criterion, which is more appropriate for fracture
under compressive model, i.e., when the normal traction on crack surfaces is
compressive. The description of the effective stress model is provided in [65].

) Time ¢t = 15 us (b) Time t = 20 us (¢) Time t = 25 us
(d) Time t = 30 us ) Time t = 37.5 us (f) Time ¢t = 57.5 us

Figure 16: Strain energy density, mapped to color field, for the well fracture problem for load
A (sustained loading).

As shown in fig. 15, three different load histories p(t), approximating an
explosive load, are applied on the inner surface of the wellbore. For all the loads,
the applied compressive pressure ramps from the ambient pressure to 27.5 MPa
in 750 ns. In load A, p(t) is hypothetically maintained at this level afterward,
while in loads B and C, the explosive load is released from time ¢t = 15 us. Load
B corresponds to a slow unloading where the ambient pressure is recovered at
t = 27.5 ps while for load C the unloading is complete at t = 17 ps. It is
emphasized that these load histories are not taken from any real experiments
and are simply chosen to demonstrate the effect of unloading rate (if any) on
fracture pattern.

Figure 16 shows a sequence of solutions for load A. The high pressure from
the explosive load compacts the rock around the wellbore and causes it to fail.
The complex solution right around the wellbore is due to the nucleation and slant
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propagation of cracks. The highly deformed shape of the wellbore boundary in
fig. 16(e) and fig. 16(f) manifests the extend of rock compaction and failure in
this zone. The outward propagating fronts of the circular compressive wave and
fracture zone are relatively indistinguishable in fig. 16(a) to fig. 16(c). However,
the distinction of these two fronts becomes more apparent in subsequent figures.
This is contributed to two reasons. First, the compressive wave front propagates
with the longitudinal wave speed cq, ¢f. (1), which is considerably faster than
the Rayleigh wave speed, the maximum attainable speed for the propagation
of cracks for this problem set-up. Second, the relaxation time 7 in the damage
evolution model (8) causes a time delay from the time a crack is propagated to
the time that it experiences partial or full damage.

) Time t = 15 us (b) Time t = 20 us (c) Time t =25 ps
(d) Time t = 30 us ) Time t = 37.5 us (f) Time ¢t = 57.5 us

Figure 17: Strain energy density, mapped to color field, for the well fracture problem for load
B (slow unloading).

The results for load B (slow unloading) are shown in fig. 17. The solution
up to time ¢ = 15 us is exactly the same for all load cases, as the unloading in
loads B and C starts from this time. This explains having identical results in
fig. 16(a) and fig. 17(a) (and fig. 18(a)). The unloading, however, results in a
relaxed stress field afterward. This is specifically evident at later times, i.e., in
fig. 17(d) to fig. 17(f) when the unloading is complete. This explains the low
strain energy around the wellbore. The results for load C (fast unloading) are
shown in fig. 18. Since the unloading occurs in 2 us rather than 12.5 us, the
unloading wave front is much sharper for this case. The front of this unloading
front can clearly be seen from fig. 18(b) to fig. 18(d). Interestingly, the strain
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(a) Time t =15 ps (b) Time t = 20 us (c) Time t =25 us
(d) Time t = 30 us ) Time t = 37.5 ps (f) Time ¢t = 57.5 us

Figure 18: Strain energy density, mapped to color field, for the well fracture problem for load
C (fast unloading).

energy (thus stress values) are further relaxed in the highly compacted zone
around the wellbore in fig. 18(e) and fig. 18(f) compared to corresponding times
in figs. 16 and 17.

Figure 19 shows the front mesh for load B at time ¢ = 37.5 us. The damage
value D is shown on crack surfaces. As evident, only a short region around the
wellbore is fully damaged. In fact, this is one of the potential drawbacks of ex-
plosive loading for stimulating a hydrocarbon reservoir, as the zone of fractured
rock—while being more damaged—is often not as expansive as that correspond-
ing to hydraulic fracturing. The long propagation of cracks is caused by the
passage of the compressive wave around the wellbore. However, the duration
of sufficiently high stress values farther than the wellbore is not long enough,
compared to 7 in (8), to induce full damage. This is due to the decreasing
intensity of the compressive wave as its front moves farther outward. Finally,
it is noted that mesh adaptivity again captures sharp moving wave fronts and
follows the regions of high crack density in the damaged zone; for example the
mesh adaptivity is more modest in the upper left side of the wellbore where the
the crack density is lower.

The damage values and crack patterns for the three different load cases are
compared in fig. 20 at time ¢t = 37.5 ps. Similar to load A, only a small region
around the wellbore is fully damaged for load cases B and C. Also, there is not a
significant difference in the extend of both crack propagation and fully damaged
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Figure 19: The front mesh for the well fracture problem for load B at time ¢t = 37.5 us.
Damage on crack segments in the range, D € [0, 1], is mapped to a blue-to-red color range.

(a) A (sustained loading). (b) B (slow unloading). (c) C (fast unloading).

Figure 20: Comparison of crack patterns and damage values for different applied loadings
at time t = 37.5 pus. Damage values on crack segments in the range D € [0,1] map to a
blue-to-red color range.

regions among difference load cases. Finally, fig. 21 shows the contact—slip area
ast,, cf- §2.2.1. For load cases A and B, the damaged region around the wellbore
is mostly in contact—slip mode, verifying the fact that cracks mostly propagate
in a shear mode dominant fashion. However, in fig. 21(c) the regions with high
contact—slip area have considerably shrunk. This is contributed to the long
(about 20 pus) time past since the unloading of the compressive load.

4.8. Hydraulic pressure reqularization

Figure 22 shows the schematic of a problem where a hydraulically loaded
fracture intersects a vertically oriented unloaded natural fracture. To illustrate
the effect of pressure regularization from §2.2, the problem is first solved with-
out the regularization followed with a solution with regularization active. The
hydraulic pressure p; ramps up from the ambient pressure of 2.425 MPa to the
sustained value of 19.4 MPa in 1 microseconds. The long in-situ crack length
and short ramp time in the application of hydraulic load are chosen to better
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(a) A (sustained loading). (b) B (slow unloading). (¢) C (fast unloading).

Figure 21: Comparison of crack patterns and contact—slip area for different applied loadings
at time ¢ = 37.5 ps. Contact-slip areas on crack segments in the range agy, € [0,1] map to a
blue-to-red color range.
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Figure 22: Sketch of the problem for modeling the interaction of a hydraulically-loaded hori-
zontal crack with an unloaded in-situ vertical crack.

demonstrate the problems with the sudden transfer of hydraulic load. In ad-
dition, to focus only on these two cracks, the crack nucleation is intentionally
deactivated in these two problems. This prevents the penetration of the hy-
draulic crack through the vertical crack or potential nucleation of new cracks
from these cracks or other points in the domain.

Figure 23 and 24 show sequences of solutions and front meshes when the
pressure is not regularized. Similar to previous elastic solution visualizations,
strain energy density is mapped to color field. In addition, kinetic energy den-
sity is mapped to height field for the remainder of solution visualizations. Figure
24 shows the spatial fronts from different instants of the aSDG solution. Figure
23(a) shows the instant right before the hydraulically loaded crack intersects
the in-situ crack. The color field around the tips of the vertical crack represents
the strain field generated due to the scattering of elastic fields by these points.
As shown in fig. 24(a), the vertical crack is still unloaded (f, = 0). Figures
23(b) to 23(e) show a time period of less than 6 us where the entire length
of the in-situ crack is fully loaded. Two problems arise with non-regularized
transmission of the hydraulic load. First problem is the sudden jump in the
hydraulic pressure acting on the intersected cracks. At the time of intersec-
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(a) Time ¢t = 590 ps (b) Time t = 600 s

(c) Time t = 610 pus (d) Time t = 620 us

(e) Time t = 650 us (f) Time ¢ = 800 ps
Figure 23: Strain and kinetic energy densities, mapped to color and height fields respectively,
for the problem in fig. 22 without pressure regularization. Lack of pressure regularization
results in sharp jumps in stress and velocity.

tion, which is roughly at 600 us, hydraulic pressure is pp ~ 12.6 MPa. That
is, upon intersection the pressure instantly jumps from the ambient pressure of
2.425 MPa to pp, ~ 12.6 MPa. The spikes in fig. 23(b) to fig. 23(d) correspond to
a sudden jump in material velocity field induced by instantaneous application of
the hydraulic load. The second problem is that the entire crack line experiences
the hydraulic load right at the time of intersection, cf. fig. 23(b) to fig. 23(e).
Aside from these nonphysical responses, the non-regularized application of hy-
draulic load significantly increases the computational cost; the very high level of
mesh refinement in fig. 24(b) to fig. 24(d) corresponds to the sharp wave fronts
generated by the sudden change in the pressure load applied on the vertical
crack. The refinement lines track the wave fronts that carry the high amplitude
compressive waves in the bulk. These sharp wave fronts, and the corresponding
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(a) Time ¢ =~ 590 us (b) Time t ~ 600 us

(¢) Time t =~ 610 ps (d) Time t ~ 620 us

(e) Time t ~ 650 us (f) Time t ~ 800 us
Figure 24: A sequence of front meshes at different times for the problem in fig. 22 without

pressure regularization. Pressure factors on crack segments in the range, f, € [0, 1], are
mapped to a blue-to-red color range.

refinement lines, can be observed at a later time in fig. 23(f) and fig. 24(f).
For the second problem we use a parameter 65 = 0.1, ¢f. (16), to demonstrate
the effect of pressure regularization. Figures 25 and 26 show the solution and the
front meshes for six different stages of the problem, respectively. Figure 25(a)
shows a time slightly before the intersection of the cracks. The value of f, =0
on the vertical line in 26(a) confirms that the cracks have not intersected. The
slight oscillation of the propagating crack is commonly observed in dynamic
fracture of quasi-brittle materials as it provides a means to dissipate excess
input energy to the system. Figure 25(b) shows an instant slightly after the
hydraulically crack intersects the in-situ crack. During the process at which
a point on the in-situ crack transitions from fully unloaded (f, = 0) to fully
loaded (f, = 1), pressure increases from the in-situ stress (2.425 MPa) to the
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(a) Time ¢ = 600 ps (b) Time t = 650 us

(e) Time t = 820 us (f) Time t = 1.2 ms
Figure 25: Strain and kinetic energy densities, mapped to color and height fields respectively,
for the problem in fig. 22 with pressure regularization.

instantaneous hydraulic pressure of 12.6 MPa at time ¢t ~ 600 us or higher at
later times. Although this process is regularized by the process described in §2.3,
and eliminated the nonphysical responses observed in fig. 23 and fig. 24, it still
creates high gradient wave fronts. This can be observed in fig. 26(b) where the
two hydraulic pressure process zone tips separate the hydraulic pressure process
zone from the unloaded parts of the in-situ crack.

Figures 25(b) to 25(e) show the propagation of hydraulic load on the vertical
crack in the time span of about 170 us. As can be seen the sharp transition
of mechanical waves and their outward motion on the in-situ crack generates
diagonal waves in the bulk. The mesh adaptivity in figs. 26(b) to 26(e) captures
these solution features by creating finer elements at the tips of the process zone
and along the diagonal waves. Also, the change of f, = 1 inside the hydraulic
pressure process zone to f, = 0 outside of it, confirms the gradual application
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(a) Time ¢ & 600 us (b) Time t ~ 650 us

(c) Time t = 700 ps (d) Time t =~ 750 us
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(e) Time t &~ 820 pus (f) Time ¢t =~ 1.2 ms
Figure 26: A sequence of front meshes at different times for the problem in fig. 22 with pressure

regularization. Pressure factors on crack segments in the range, f, € [0, 1], are mapped to a
blue-to-red color range.

and propagation of the hydraulic load. Finally, figs. 25(f) and 26(f) correspond
to a time after the hydraulic pressure reaches the tips of the vertical crack.
The hydraulic load extends these cracks into the bulk. As evident from these
two examples, pressure regularization smoothens out an otherwise sudden ap-
plication of hydraulic load and prevents it instantaneous propagation along the
length of in-situ cracks. As a final note for these two problems, the high level of
dynamic mesh adaptation in figs. 24 and 26 is needed to capture complex frac-
ture patterns and solve solution features such as sharp wave fronts and contact
and slip lines accurately. Moreover, mesh coarsening operations behind moving
fracture process zones and wave fronts are essential to keep the computational

costs manageable. These adaptive operations are discussed in more detail in §3,
§4.1, and [36, 62].
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Figure 27: Problem description of a wellbore
with four perforations.

16

14

2

pr(MPa)

0 2 4 8 10 12 14 16

s
time (ms)

Figure 28: Load history for the hydraulic re-
fracturing problem.

4.4. Contact and re-fracture in hydraulic fracturing

Before presenting the remaining numerical results, which are pertained to
hydraulic fracturing, we point out that aside from the modifications implied by
pressure regularization, a spatially uniform hydraulic pressure p is exerted on
all hydraulically loaded crack surfaces. That is, p is not obtained from a fluid
model such as the lubrication equation. However, as detailed in [61] and in the
beginning of §2.3, this assumption is reasonably accurate in many circumstances.
In any case, the focus of the subsequent examples is on incorporating Riemann
contact solutions for hydraulic fracturing applications. Even if required, they
can be included in more advanced fluid models, an aspect that is beyond the
scope of this manuscript.

Figure 27 shows the problem set-up for a wellbore with 4 perforations, at
0°,90°,180°,270° angles. The 16 m x 16 m domain is under uniform ambient
pressure o = 2.425 MPa. The hydraulic pressure history is shown in 28. The
purpose of this example is to demonstrate that the regularization of 7 from
§2.2.3 smoothens the transition of a hydraulically loaded crack from separation
to contact mode when hydraulic load is removed and to use the pressure factor
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concept from §2.3 to gradually re-apply hydraulic pressure on already fractured
segments. Similar to previous problems, the loads are applied rapidly to better
demonstrate various contact and load transition modes.

(a) Time t = 4.3 ms (b) Time t = 5.0 ms (c) Time t = 5.1 ms

(d) Time t = 5.7 ms (e) Time t = 7.0 ms (f) Time ¢t = 7.6 ms

(g) t =8.6 ms (h) t=9.2 ms (i) t=9.5ms

Figure 29: Strain and kinetic energy densities, mapped to color and height fields respectively,
for the hydraulic re-fracturing problem.

Figures 29 and 30 show the aSDG solution and space mesh for different
stages of this hydraulic re-fracturing problem. In addition, in fig. 30 we map
pressure factor f;, to color on fracture segments to discuss its evolution in time.
Figures 29(a) and 30(a) show the solution and mesh in the early stages of the
period when the hydraulic load is being removed. The existence of regions of
high kinetic and strain energy densities, mapped to height and color fields re-
spectively, corresponds to a highly transient crack propagation regime. The
diagonal short crack between the right and top main cracks propagates in shear
mode and is not hydraulically loaded; cf. fig. 30(a) where f, = 0. The prop-
agation of this crack is induced by scattered waves and stress redistribution.
Other than this, all the other cracks are hydraulically loaded and propagate in
a tensile-dominated mode.

Figures 29(b) and 30(b) correspond to ¢ = 5 ms where the hydraulic pressure
is completely removed. As a result, we already observe some microcracks start
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Figure 30: A sequence of front meshes at different times for the hydraulic re-fracturing prob-
lem. Crack segments are colored based on the value of pressure factor f, with blue to red
corresponding to the range f, € [0 1].

to transition to contact mode with the microcrack on the top left side of the
vertical main crack being one example. Figures 29(c-d) and 30(c-d) refer to
times slightly after the removal of the hydraulic load. We observe that the
crack surfaces start to close. See for example the closure of the horizontal crack
segment at the far left end of the left main crack. Local wave scattering events
and the transition of f, to zero can be seen in figs. 29(c) and 30(c). Another
interesting observation is the emittance of acoustic waves in all directions as a
result of crack and microcrack closures. The front of these secondary waves can
more clearly be seen in figs. 29(d) and 30(d).

Figures 29(e-f) and 30(e-f) show the transition of the remaining crack sur-
faces to contact mode. The progression of regions with complete crack closure
and f, = 0 can be observed in the figures. It should be emphasized that the
regularization of 7, cf. fig. 5, is essential in smooth separation to contact mode
transition. Also, the low level of mesh refinement in fig. 30(e-f), compared to
previous times, stems from the fact that the entire domain is reverting to its
spatially uniform ambient pressure field.
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Load case | p Py(t,pp)

14.55 GPa/s | 500 us, 12.125 MPa
1.455 GPa/s | 500 ps,5.578 MPa
145.5 MPa/s | 500 us,4.923 MPa
14.55 MPa/s | 500 ps,4.8573 MPa

| Q| =| >

Table 1: The loading rate and distinct points in load history of four loading cases considered for
the refracturing problem in fig. 31. The other points P; (0 us, 4.85 MPa), P3(1 ms, 2.425 MPa),
and P4(2 ms, 2.425 MPa) are the same for all load histories.

Finally, in figs. 29(g-i) and 30(g-i) the cracks start to transition back to
separation mode after the start of the second stage of hydraulic loading from
t = 8 ms. Specifically, in the space meshes we observe the progression of f,, from
zero to one for all cracks except a few microcracks that remain arrested and in
contact. As expected, cracks further open and propagate in tensile-dominated
mode due to hydraulic loading. One key aspect of the model for transition from
contact to separation mode is the use of the aperture of all connected segments
to a crack segment, rather than only the crack itself (that is using cracks CA,
BE, and AD in fig. 6 in computing f, for crack segment AB), in computing ép,,.
in (15) and subsequently f, in (16). This results in natural propagation and
re-application of hydraulic load from the main four initial perforations outward
to other cracks. Otherwise, all crack segments would remain in contact mode
given that their opening does not increase in the absence of hydraulic pressure.

4.5. Effect of loading rate and interaction with in-situ cracks

Figure 31 shows the problem set-up for a wellbore with 4 perforations, with
domain size and perforation angles similar to the problem in fig. 27. The differ-
ence is the presence of in-situ cracks with crack density 0.52. The microcrack
lengths follows a Weibull distribution. A take-and-place algorithm is used to
place them in the computational domain. Their angles follow a uniform distri-
bution with mean value and range of 30° and 10°, respectively.

The purpose of this example is to demonstrate the effect of hydraulic loading
rate in fracture / refracture response and to study the interaction of hydrauli-
cally loaded cracks with in-situ cracks. Four loading rates p are used for the
loading stages of hydraulic fracturing in this problem. The load histories for load
cases A to D are shown in fig. 32. Since the times of unloading and reloading at
positions P, and Ps do not change, the only difference between these simulations
arise in how fast the load ramps up. The load history parameters are compared
in Table 1. As can be seen, each time the loading rate decreases by a factor of
10 from load A to load D. While the high loading rates, for example for loads A
and B, can be deemed unrealistic in conventional hydraulic fracturing practices,

2Crack density is the nondimensional number defined by sum of squares of crack lengths
per unit area of the domain.
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4m

Figure 31: Problem description of a wellbore with
four perforations, surrounded by in-situ cracks with
density 0.5 and 30° angular bias.

Hydraulic pressure (MPa)

time (ms)

Figure 32: Load history for the refrac-
ture problem with in-situ cracks.

this example demonstrate how the crack patterns are altered when the loading
rate decreases.

Figure 33 shows the results for load A. Figures 33(a) and 33(b) show the
response in the first loading stage. In fact, the unloading starts right from

= 500 ps in fig. 33(b). The high strain and kinetic energies are due to the
high value of p. The microcracks have a minor effect in changing the crack
paths during this stage due to the high crack propagation driving force. More
importantly, all four perforations result in crack propagation.

As hydraulic load starts to decrease from fig. 33(b), crack paths start to
be further affected by in-situ crack directions. This is more in the form of
crack path alignment for the cracks emanating from 0° and 180° perforations,
as the angle difference between propagating and in-situ cracks is around 30°.
Examples of such alignments can be seen on the right propagating crack in
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(a) t =350 us (b) t =500 us (c) t =700 pus

() t=24 ps (k) t =2.5ms (1) t =2.6 ms

Figure 33: Strain and kinetic energy densities, mapped to color and height fields respectively,
for the hydraulic re-fracturing problem with domain description in fig. 31 for load A (p =
14.55 GPa/s).
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fig. 33(b) and fig. 33(c). For vertically propagating cracks, however, the angle
difference appears to be too high for alignment in most cases, and the in-situ
cracks tend to offset the path of the propagating cracks. Examples can be found
on the upward propagating crack in fig. 33(b) to fig. 33(d).

The unloading of the hydraulic pressure releases the stress, thus the internal
energy, in the bulk. The initiation of these lower energy regions close to the bases
of the perforations and their propagation outward can be seen in fig. 33(b) to
fig. 33(d). As this lower energy zone expands, its interaction with in-situ cracks
creates a complex stress field. This can more clearly be seen in fig. 33(d) and
fig. 33(e) and is the source of minor stress variations at later stages in fig. 33(f)
to fig. 33(h).

The propagation of crack in the unloading stage, i.e., fig. 33(b) to fig. 33(e),
is expected as the hydraulic load is still large enough to continue driving crack
propagation. For this highly dynamic loading crack propagation continues (at
lower speeds) even during the stage where the hydraulic load is completely
released; i.e., from fig. 33(e) to fig. 33(h). This is due to the highly dynamic
nature of loading. In fact, crack surfaces are not even fully closed at the end of
unloading stage in fig. 33(e) and more time would have been needed for this to
happen. Some exceptions can be seen on the side microcracks, e.g., the cracks
that are roughly along 30° on the lower and upper sides of the left- and right-
propagating main cracks, respectively, in fig. 33(f) and fig. 33(g). In fact, from
the instant the second loading stage starts in fig. 33(h) to fig. 33(1) besides these
two cracks, many other microcracks (nucleate and) start propagating close to
30°.

The results for load B are shown in fig. 34. We observe a much subdued
internal energy field up to the ends of loading and unloading stages in fig. 34(b)
and fig. 34(d), respectively. In addition, only three of the perforations result in
hydraulic crack growth; the two left- and right-propagating cracks have a more
favorable path as their angles are closer to the in-situ crack directions. Due to
the lower loading rate p, not only energy fields decrease but also only one of the
two vertical cracks (the lower one) propagates. In fact, this crack has a smaller
overall opening and closes between ¢ = 700 us to t = 1.4 ms (cf. figs. 34(c) to
fig. 34(e)), before the horizontal cracks close. Moreover, due to the lower rate
of loading in this case, all the cracks are completely in contact mode before
the second loading stage starts at ¢ = 2 ms; ¢f. fig. 34(f). The nonuniform
stress field implied by the color map is a result of wave scatterings off of in-situ
cracks during the unloading stage. The crack propagation in the second stage
of loading is shown in fig. 34(g) to fig. 34(i). Due to the lower driving force for
the cracks, their path is more affected by in-situ cracks. This particularly holds
true for the vertical crack where at least three crack path diversions can be seen
in fig. 34(i).

The results for load C are shown in fig. 35. In comparison to the results for
load B, we observe a much less dynamic mode of crack propagation (implied
by lower energy fields). In addition, no vertical cracks propagate in this case.
The elimination of active propagation directions from the initial perforations is
a result of decreased power input to the system. From an energetic perspective,
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(a) t =360 us (b) t =500 pus (c) t =700 ps

(d) t=1.0 ms (e) t=1.4ms (f) t =1.8 ms

(g) t =2.6 us (h) t=3.2ms (i) t =3.8 ms

Figure 34: Strain and kinetic energy densities, mapped to color and height fields respectively,
for the hydraulic re-fracturing problem with domain description in fig. 31 for load B (p =
1.455 GPa/s).
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(a) t =500 us (b) t =800 us (¢) t=1.0 ms

(d) t =1.6 ms (e) t = 5.6 ms (f) t=5.9 ms

(g) t =6.3 us (h) t=9.2ms (i) t =9.5 ms

Figure 35: Strain and kinetic energy densities, mapped to color and height fields respectively,
for the hydraulic re-fracturing problem with domain description in fig. 31 for load C (p =
145.5 MPa/s).
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the propagation of the two horizontal cracks in this case suffices to dissipate the
input energy to the system. Herein, the propagation of the horizontal cracks
rather than vertical ones is a result of their favorable interaction with in-situ
cracks. This phenomena is also reported in [66] for simpler loading and geometry
settings. For this problem, the crack closure occurs at an earlier time when the
hydraulic load is released; cf. fig. 34(f) and fig. 35(d). Moreover, the resumption
of crack propagation takes a much longer time due to the lower rate of loading.

(a) t =500 ps (b) t =800 us (¢) t=1.0 ms

(d) t=1.3 ms (e) t =1.5ms (f) t =16.0 ms

(g) t =26.0 us (h) t =26.6 ms (i) t =29.0 ms

Figure 36: Strain and kinetic energy densities, mapped to color and height fields respectively,
for the hydraulic re-fracturing problem with domain description in fig. 31 for load D (p =
14.55 MPa/s).

The results for load D are shown in fig. 36. The same trends described for
load C continue and are enhanced for this lower loading rate. In fact, crack clo-
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sure is complete in fig. 36(d), just slightly after the hydraulic load is completely
released in fig. 36(c). The resumption of crack propagation also takes a much
longer time, as can be seen in fig. 36(f).

One very important observation for the crack propagation under these lower
loading rates is the occurrence of rather short periods at which long crack prop-
agations are observed. For example, between fig. 36(g) to fig. 36(h) (and beyond
that fig. 36(i)) we observe significant crack propagation in a rather short time
relative to the loading period. These bursts become more dynamic at higher
loading rates, see for example crack propagations between fig. 35(h) to fig. 35(i)
and fig. 34(h) to fig. 34(i) for loads B and C, respectively. The height and color
fields around these moving cracks imply that the crack propagation during these
short periods has some dynamic characteristic. The reason for this behavior is
that once the stress field around the a crack tip builds sufficiently high (though
slow increase of the hydraulic load), the crack propagation suddenly becomes
favorable. For this particular problem where cracks interact and get arrested
by in-situ cracks there are more instances of such short periods of crack prop-
agation. In fact, their acoustic wave signature may be large enough to enable
the detection of crack propagation.

5. Conclusions

We presented an interfacial damage model for dynamic rock fracturing and
hydraulic fracturing applications that seamlessly combines separation, contact—
stick, and contact—separation modes. The employed Riemann solutions preserve
the characteristic structure of elastodynamic waves for different contact modes.
As demonstrated the separation-to-contact separation is physically non-smooth.
We proposed a regularization approach that smoothened separation-to-contact
mode transition in the presence of nonzero fracture surface loads, e.g., hydraulic
fracturing pressures. Moreover, the contact-to-separation transition is typically
smooth; however, when a hydraulically loaded crack intersects an in-situ crack,
this transition is nonsmooth as well. We proposed an aperture-based regular-
ization scheme that smoothens the application of hydraulic load under such
conditions.

Numerical results demonstrate the effectiveness of the proposed methods in
modeling various crack interaction scenarios. The uniaxial compressive load-
ing and wellbore explosive examples demonstrate that the stochastic nucleation
and h-adaptive aSDG method can capture complex formation and propagation
of cracks under highly dynamic loads. Various contact mode transitions, par-
ticularly between stick and slip modes, were observed in these examples. For
the refracture examples, we showed that the pressure regularization not only
smoothens out the application of hydraulic load but also prevents its nonphys-
ical and sudden application on the entire length of a newly intersected crack.
Simple refracture examples demonstrated the ability of the method to model
crack closure and re-opening under the removal and reapplication of the hy-
draulic load. We also demonstrated that as the loading rate decreased, fewer
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perforations in a wellbore became active, and those that had a more favorable
orientation relative to in-situ cracks remained active.

Some future works for more accurate modeling of the aforementioned prob-
lems are the derivation of fluid pressure on fracture surfaces from a fluid model,
formulation of dynamic contact solutions for poroelastic rock, and more realistic
modeling of refracture problem. Pertained to the the last point, the refracture
problems in §4.5 are more naturally modeled when different flow rate profiles,
rather than pressure profiles, are applied as boundary condition.
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