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Abstract: We present a stochastic bulk damage model for rock fracture. The decomposition of strain
or stress tensor to its negative and positive parts is often used to drive damage and evaluate the
effective stress tensor. However, they typically fail to correctly model rock fracture in compression.
We propose a damage force model based on the Mohr-Coulomb failure criterion and an effective
stress relation that remedy this problem. An evolution equation specifies the rate at which damage
tends to its quasi-static limit. The relaxation time of the model introduces an intrinsic length scale for
dynamic fracture and addresses the mesh sensitivity problem of earlier damage models. The ordinary
differential form of the damage equation makes this remedy quite simple and enables capturing the
loading rate sensitivity of strain-stress response. The asynchronous Spacetime Discontinuous Galerkin
(aSDG) method is used for macroscopic simulations. To study the effect of rock inhomogeneity,
the Karhunen-Loeve method is used to realize random fields for rock cohesion. It is shown that
inhomogeneity greatly differentiates fracture patterns from those of a homogeneous rock, including
the location of zones with maximum damage. Moreover, as the correlation length of the random field
decreases, fracture patterns resemble angled-cracks observed in compressive rock fracture.

Keywords: bulk damage; brittle fracture; rock fracture; random fracture; Mohr-Coulomb;
Discontinuous Galerkin

1. Introduction

Interfacial, particle, and bulk or continuum models form the majority of approaches used for
failure analysis of quasi-brittle materials at continuum level. Interfacial models directly represent
sharp fractures in the computational domain. Some examples are Linear Elastic Fracture Mechanics

(LFEM), cohesive models [1,2], and interfacial damage models [3–7]. Since cracks are explicitly
represented, interfacial methods are deemed accurate when crack propagation is the main mechanism
of material failure. However, external criteria are needed for crack nucleation and propagation
(direction and extension). Moreover, accurate representation of arbitrary crack directions can be
cumbersome in computational settings. Mesh adaptive schemes [8–10], eXtended Finite Element Methods

(XFEMs) [11–13], and Generalized Finite Element Methods (GFEMs) [14,15] address this problem to some
extend. However, for highly dynamic fracture simulations and fragmentation studies, even these
methods have challenges in accurate modeling of the fracture pattern. Particle methods such as
Peridynamics [16–18] have been successfully used to model highly complex fracture patterns that are
encountered in dynamic (rock) fracture. They model continua as a collection of interacting particles.

Bulk or continuum damage models approximate the effect of material microstructural defects and
their evolution, e.g., microcrack nucleation, propagation, and coalescence, through the evolution
of a damage parameter. Due to the implicit representation of microcracks and other defects,
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bulk damage models are more efficient than interfacial and especially particle methods. In addition,
damage pattern is obtained as a part of the solution and no external criteria are needed for crack
nucleation and propagation. Finally, since damage is a smooth field interpolated within finite elements,
complex fracture patterns can be easily modeled by damage models, wherein the thickness of cracks is
effectively regularized by the damage field.

Earlier bulk damage models, however, suffered from mesh sensitivity problem where the width of
the localization and damaged region was proportional to element size; as a result, finer meshes resulted
in a more brittle fracture response. This problem is related to the loss of ellipticity/hyperbolicity of
the (initial) boundary value problem for the earlier formulations [19,20], and can be resolved by
the introduction of an intrinsic length scale to the damage evolution formulation. In gradient-based
models, this is achieved by adding higher order derivatives of the damage or strain fields to the damage
evolution equation [21,22]. In nonlocal approaches, strain or damage field employed in a local damage
formulation, is in turn computed over a neighborhood of finite size [23,24]. Finally, time-relaxed
damage formulations possess an internal time parameter which through its interaction with elastic
wave speeds introduce a finite length scale for the damage model in transient settings [25–28].
Related to these remedies is the phase field method which closely resembles a gradient-based damage
model [29]. The sharper approximation of crack width is one of the main advantages of the phase field
methods to gradient-based damage models [30].

We have presented a time-delay damage model for dynamic brittle fracture in [31]. The coupled
elastodynamic-damage problem is solved by the asynchronous spacetime Discontinuous Galerkin (aSDG)
method [32,33]. This damage model addresses the mesh sensitivity problem of the earlier damage
models by the third approach discussed above, in that, damage evolution is governed by a time-delay
model. In addition, the existence of a maximum damage evolution rate results in an increase in
both the maximum attainable stress and toughness as the loading rate increases. This loading rate
dependency of strength and toughness is experimentally verified; see for example [24,34]. Finally,
the damage evolution law is an Ordinary Differential Equation in time. This greatly simplifies the
damage model formulation and lends itself to the aSDG method; the aSDG method directly discretizes
spacetime by elements that satisfy the causality constraint of the underlying hyperbolic problem
being solved. The nonlocal damage models violate this causality constraint, whereas the majority
of gradient-based damage models are not hyperbolic. In contrast, the time-delay damage model
maintains the hyperbolicity of the elastodynamic problem. Besides, the ODE form of the governing
equation greatly simplifies the application of initial and boundary conditions for the coupled problem.

The distribution of material defects at microstructure can have a great effect on macroscopic
fracture response, particularly for quasi-brittle materials. Some examples are high variability
in fracture pattern for samples with the same loading and geometry [35], high sensitivity of
macroscopic strength and fracture toughness to microstructural variations [36], and the so-called
size effect [37–39], i.e., the decrease of the mean and variations of fracture strength for larger
samples. Weibull model [40,41] is one of the popular approaches for modeling the effect of defects in
quasi-brittle fracture, particularly the size effect. We have used the Weibull model in the context of an
interfacial damage model to capture statistical fracture response of rock, in hydraulic fracturing [42],
fracture under dynamic compressive loading [43], and in fragmentation studies [44,45]. However,
these models are computationally expensive due to the use of a sharp interfacial damage model.

In this manuscript, we propose a stochastic bulk damage model for rock fracture. There are two
main differences to the damage model presented in [31]. First, in damage mechanics often only the
spectral positive part of either strain or elastic stress tensor is used to drive damage accumulation.
Moreover, upon full damage, only the negative part of the stress tensor is maintained in forming the
effective stress. While these choices are appropriate for tensile-dominant fracture, they have some
shortcomings for rock fracture under compressive loading. Specifically, using these models damage
does not accumulate under compressive loading; even if it could, it would not have modeled the
failure process as the effective stress remains the same as the elastic stress of the intact rock. Herein,
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we propose a new damage model based on the Mohr-Coulomb failure criterion and an effective
stress that correctly represents rock failure in compression. Second, we employ a stochastic damage
model wherein rock cohesion is treated as a random field. This aspect is important for the uniaxial
compression examples considered, as due to the lack of macroscopic stress concentration points highly
unrealistic fracture patterns will be obtained by using a homogeneous rock mass model. We note that
the use of a bulk damage model makes the proposed approach significantly more efficient than the
stochastic fracture problems [42–45] studies by the authors using an interfacial damage model.

The outline of the manuscript is as follows. The formulation of the stochastic damage model,
its coupling to elastodynamic problem, and the aSDG method are discussed in Section 2. We use
a dynamic uniaxial compressive example to demonstrate the effect of material inhomogeneity on
fracture response in Section 3. Final conclusions are drawn in Section 4.

2. Formulation

The first three subsections are pertained to the formulation of damage model. In Section 2.1 the
formulation of the damage force parameter based on the Mohr-Coulomb (MC) failure criterion and the
damage evolution equation are provided. In Section 2.2 the coupling of elasticity and damage problems
through the effective stress is described. Certain properties of the damage model are discussed in
Section 2.3. A brief description of the aSDG method and the implementation of the damage model is
provided in Section 2.4. Finally, the stochastic aspects of the damage model are explained in Section 2.5.

2.1. Bulk Damage Problem Description

2.1.1. Damage Driving Force

As will be discussed in Section 2.2, the damage parameter D ∈ [0, 1] gradually reduces the
elasticity stiffness in the process of material degradation. Damage evolution if generally driven by
the strain field ǫ. For the remainder of the manuscript, we assume that the spatial dimension is two.
The symmetric elastic stress tensor σ is defined as,

σ = Cǫ, where σ =

[

σxx σxy

σyx σyy

]

and ǫ =

[

ǫxx ǫxy

ǫyx ǫyy

]

(1)

are the expressions of stress and strain tensors in global coordinate system (x, y) and C is the elasticity
tensor. Instead of ǫ, damage evolution can be expressed in terms of σ. This is more suitable for rock
fracture given that many known failure criteria such as Mohr-Coulomb (MC) or Hoek-Brown [46] are
expressed in terms of the stress tensor. Figure 1 shows the Mohr-Coulomb failure criterion in terms
of normal σ and shear τ traction components on a fracture surface. We employ the tensile positive
convention for σ. The failure criterion is determined by the cohesion c and friction angle φ = tan−1(k),
where k is the friction coefficient. In the figure, the Mohr circle for a stress tensor A (red semi-circle)
corresponding to principal stresses σ2 < σ1 is shown. Since only isotropic rocks are considered herein,
c and φ are assumed to be constant with respect to the orientation of principal stresses (with respect to
the global coordinate system axes). We define the scalar stress as,

c(σ, φ) :=
R

cos φ
+ σave tan φ (2)

where as shown in Figure 1, c is the ordinate of the tangent line on the Mohr-circle with angle φ,
and the radius R and average normal stress σave are given by,
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As will become clear later, the damage model, regularizes the process of failure. Otherwise,
failure for a stress state occurs instantaneously once MC criterion c(σ, φ) = c is satisfied; for example,
when σxx = σyy > 0 reaches sht (σxy = 0). To facilitate this, the damage force is defined as,

D f (c, c, c) :=















0 c ≤ c
c−c
c−c c < c < c

1 c ≤ c

(5)

where c corresponds to the ordinate of the upper MC line shown in dashed line in Figure 1.
The brittleness factor β defines a relation between the two MC lines through c = βc. In the absence of
the damage model, complete failure occurs for any positive value of D f as the Mohr circle expands over
the failure criterion. However, in the context of the damage model, D f corresponds to the quasi-static
damage value for a given strain ǫ, which through (1) and (2) defines c. For example, for the strain
(elastic stress) state A in Figure 1, D f = 0.5.

2.1.2. Damage Evolution Law

The damage value can be taken to be equal to the damage force. However, this local definition of
D has several shortcomings, as will be discussed below and in Section 2.3.2. We employ the time-delay
model in [3,25] for damage evolution. The rate of damage evolution, Ḋ, is given by,

Ḋ =

{

Dsrc(D, D f ) =
1
τc
(1 − e−a〈D f −D〉) D < 1

0 D = 1
(6)

where Dsrc(D, D f ) is a general source term for the evolution equation Ḋ = Dsrc(D, D f ). This function
can be calibrated from experimental strain-stress results, for example, for uniaxial tensile/compressive
loading. The specific form of Dsrc(D, D f ) is taken from [3,47] as it is claimed to accurately model
materials’ rate effect; cf. Section 2.3.2. In addition, τc is the relaxation time, a is the brittleness exponent,
and 〈.〉 is the Macaulay positive operator.

Albeit its simplicity, this evolution model incorporates several essential characteristics of real
materials. First, we observe that the damage evolution is governed by the difference of damage D and
damage force D f . The higher the difference, the higher the damage rate. Moreover, when D = D f ,
damage evolution terminates. That is, D f is the target damage value; if D is smaller than the target
value, it evolves until it reaches D f . Second, damage cannot instantaneously reach D f given that Ḋ

is bound by the maximum damage rate 1/τc. As will be discussed in Section 2.3.2, this results in
the rate-sensitivity of strain-stress response. Third, the positive operator ensures that damage is a
nondecreasing function in time (no material healing processes). Finally, Figure 3 shows the effect of a;
for higher values of a, even small differences between D f and D, quickly jumps up the damage rate
close to its maximum value of 1/τc; implying a more brittle response.

2.2. Coupling of Damage and Elastodynamic Problems

The equation of motion, corresponding to strong satisfaction of the balance of linear momentum
for elastodynamic problem, reads as,

∇ · σeff + ρb = ṗ, (7)

where σeff, b, and p are the effective stress tensor, body force, and linear momentum density,
respectively. The linear momentum density is defined as p = ρu̇, where ρ is the mass density.
This equation is augmented by the compatibility equations between displacement, velocity, and strain,
and initial/boundary conditions to form the elastodynamic initial boundary value problem.
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Figure 3. The effect of brittleness exponent a on the rate of damage evolution.

The coupling between damage and elastodynamic problems is through the effective stress tensor
σeff. In the simplest form, the scalar damage parameter D linearly degrades the elasticity stiffness
tensor, that is σeff = (1 − D)σ = (1 − D)Cǫ [21]. However, in more advanced damage-elasticity
constitutive equations, only certain parts of the elastic stress (or elastic strain) are degraded by
D [48]. By inspecting Figures 1 and 2, it is observed that damage is induced by high tensile and
shear stresses and no damage is induced by a hydrostatic compressive stress state (σ1 = σ2 < 0).
Accordingly, we define a consistent damage-elasticity constitutive equation in which the entire elastic
stress, except its hydrostatic compressive part, are degraded by D. That is,

σeff = (1 − D)σd + (1 − D)〈σh〉+ 〈σh〉− (8)

where σh and σd are hydrostatic and deviatoric parts of σ. The positive and negative (〈σh〉− =

σh − 〈σh〉) parts of σh correspond to the hydrostatic tensile and compressive stresses of σ.
For example, if σ2 ≤ σ1 are the principal values of σ, σd, 〈σh〉, and 〈σh〉− have the principal values
of [(σ2 − σ1)/2, (σ1 − σ2)/2], [〈(σ2 + σ1)/2〉, 〈(σ2 + σ1)/2〉], and [〈(σ2 + σ1)/2〉−, 〈(σ2 + σ1)/2〉−],
respectively, all with the same principal directions. Clearly, they correspond to the pure shear, tensile,
and compressive parts of σ.

2.3. Properties of the Damage Model

We first discuss the properties of the damage force and effective stress models, concerning the
mechanisms that drive damage and lead to the stress state at full damage. Next, we discuss how the
damage evolution law captures material’s stress rate effect and alleviates the mesh sensitivity problem
of local damage models.

2.3.1. Damage Force and Effective Stress

Equations (5) and (8) determine under what strain (elastic stress) conditions damage initiates
and how the effective stress evolves as D tends to unity. A common approach in continuum damage
mechanics is to break the elastic stress tensor into its spectral positive and negative parts, and to
express D f and σeff as,
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D f (σ) = D f (σ+) (9a)

σeff = (1 − D)σ+ + σ− (9b)

We note that alternative expressions exist where instead of σ, the spectral decomposition of strain
is considered [21,49–51]; however, due to the use of σ in (5) and (8), the form (9) is preferred for the
discussion in this section.

Rock fracture is often under compressive stress state. The shortcomings of (9) can be illustrated
by referring to Figure 1. First, as can be seen a large difference between the principal stresses σ1 and σ2

corresponds to a large enough shear stress τ that can initiate damage evolution; see for example the
stress state A. However, if (9a) is used, D f (and damage) remain zero, since σ+ = 0. Second, even if
damage could evolve by an equation other than (9a), the stress would not degrade using (9b); that is,
σeff = σ− = σ at D = 1. In contrast, stress state A induces a D f = 0.5; cf. (5). Moreover, D f is sensitive
to the hydrostatic stress. For example, for the same maximum shear τ and higher compressive σave,
no damage occurs for the stress state B. Finally, through damage evolution, σeff tends to the hydrostatic
compressive stress 〈σh〉− as D → 1. This can be seen for stress state A and D = 0.5. In damage reaches
unity, the effective stress state will correspond to the point σave in the figure.

The two sets of equations for D f and σeff predict a similar response for tensile dominant loading,
i.e., when σave > 0; while there are some differences in the details of damage evolution, in both cases
σeff → 0 as strain (proportionally) increases. There are, however, some differences in the failure
damage state, σeff(D = 1), for pure shear and compressive dominant mixed loading (σ2 < 0 < σ1 and
|σ2| > σ1). In short, the proposed damage model based on the Mohr-Coulomb failure criterion is more
appropriate for rock fracture, especially when compressive mode failure is concerned.

2.3.2. Damage Evolution: Rate Effects and Mesh Sensitivity

Figure 4 compares strain stress responses for three different model and loading scenarios.
The loading considered can correspond to any of the strengths in (4). The nondimensional scalar
elastic stress, strain, and effective stress are defined as σ′ = σ/σ, ǫ′ = σ′ = Cǫ/σ, and σ′

eff = σeff/σ,
respectively, where σ, ǫ, and σeff are the scalar elastic stress, strain, and effective stress. (Note that
the scalar elastic stress measure σ in this section is different from the normal stress component in
the Mohr-Coulomb criterion; cf. Figure 1.) These scalar values, σ, and stiffness C correspond to a
particular loading condition; for example for uniaxial tensile loading σ = σxx, ǫ = ǫxx, σ = sat, (cf. (4b)).
The corresponding stiffness is C = E and E/(1 − ν2), for plane stress and plane strain conditions,
respectively, where E and ν are the elastic modulus and Poisson ratio.

As loading (ǫ′) increases, the scalar stress c increases until c = c in Figure 2 for the given loading
condition. This corresponds to ǫ′ = 1. For the MC model, material is deemed to fail instantaneously,
for σ′

eff = σ′ = 1. This sudden failure is shown by the green circle in the figure. The damage model
regularizes the MC failure criterion. For the quasi-static loading Ḋ ≈ 0, thus D ≈ D f throughout the
loading. Given the linear dependence of D f on c in (5), σeff linearly decreases from unity to zero as ǫ′

increases from unity to c/c = 1/β. As, β → 1 the response of the damage model tends to that of the
un-regularized MC model, clarifying why β is called the brittleness factor. Regardless of the rate of
loading for ǫ′, Ḋ remains bounded by 1/τc; cf. (6). This results in a delayed damage response where D

falls far behind its quasi-static limit D f for higher rates of loading for ǫ′. This, in turn, increases the
maximum effective stress, max(σeff′), failure strain, ǫ′(D = 1), and toughness, i.e., the area under
the strain-stress curve. That is, the time-delay evolution law (6) can qualitatively model material’s
well-known stress rate effect. The dynamic solution in Figure 4 corresponds to a nondimensional strain
rate of 3. For lower and higher nondimensional loading rates, the stress response gets closer to the
quasi-static response and further expands, respectively.
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Figure 4. Sample quasi-static and dynamic strain versus stress responses.

If the quasi-static damage model D = D f where to be used, it would suffer the mesh-sensitivity
problem of the early damage models. The introduction of an intrinsic length scale addresses this issue.
The length scale ld is either used in conjunction of added higher spatial order derivative terms in a
local damage model [21,22] or by nonlocal integration of certain fields, e.g., strain, over neighborhoods
of size ld. However, both approaches are computationally expensive. The proposed damage model is
much easier to implement, since it is simply an ODE in time. It also maintains the hyperbolicity of the
elastodynamic problem which is critical for the solution of the coupled problem by the aSDG problem.
Finally, the interaction of elastic wave speeds with the intrinsic time scale τc indirectly introduces a
length scale ld for the damage problem. While this length scale is not relevant for very low rate loading
problems [52], at moderate to high loading rates it is expected to resolve the mesh sensitivity problem
of local damage models.

2.4. aSDG Method

The asynchronous Spacetime Discontinuous Galerkin (aSDG) method, formulated for elastodynamic
problem in [32], is use for dynamic fracture analysis. The Tent Pitching algorithm [53] is used to
advance the solution in time by continuous erection of patches of elements whose exterior patch
boundaries satisfy a special causality constraint. This results in a local and asynchronous solution
process. In addition, since spacetime is directly discretized by finite elements, the order of accuracy can
be arbitrarily high both in space and time directions. This is in contrast to conventional finite element
plus time marching algorithms where increasing the order of accuracy in time is not straightforward.

In addition to the displacement field for the elastodynamic problem, the damage field D is
discretized in spacetime. The finite elements solve the weak form of elastodynamic balance laws,
cf. Section 2.2, and the damage evolution Equation (6), Ḋ − Dsrc(D, D f ) = 0. Since the damage
evolution is simply an ODE and maintains the hyperbolicity of the problem, the solution of the coupled
elastodynamic-damage problem lends itself to the aSDG method. In addition, the satisfaction of
balance laws per element for discontinuous Galerkin methods results in a very accurate discrete
solution of the damage evolution equation. We refer the reader to [31] for more details on the aSDG
implementation of the problem, including the specification of jump conditions, and initial/boundary
conditions for the damage evolution equation.
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2.5. Realization of Stochastic Damage Model Parameters

As discussed in Section 1, incorporating material inhomogeneity is quite important to capture
realistic failure response of quasi-brittle materials. The inhomogeneity is both in elastic and fracture
properties. If an isotropic material model is assumed at the mesoscale, often only the elastic modulus
is deemed to be a random field as in [54]. However, in general the entire elasticity tensor should be
considered as a tensorial random field. However, often due to the higher effect that fracture properties
have on macroscopic failure response, only they are considered to be random and inhomogeneous.

For a general fracture model, strength, energy, and initial damage state are the main model
parameters. For the MC model, the friction angle φ (or friction coefficient k) and cohesion c are the
model parameters used to determine c and D f from (2) and (5), respectively. Cohesion is the parameter
that is associated with fracture strength. The relaxation time τc in (6) and brittleness factor β determine
the area under the strain-stress curve for different loading rates in Figure 4. That is, they determine the
fracture energy of the damage model. Finally, the initial condition for damage parameter, D(x, t = 0),
corresponds to the initial state of material. In the present work, among strength, energy, and initial
damage parameters, we consider inhomogeneity only in the strength property. This is in accord with a
majority of similar studies in the literature such as [55–60].

Accordingly, the only random field in the present study is cohesion c. For a macroscopically
homogeneous material, the point-wise and two-point statistics of the random field are spatially
uniform. For the point-wise statistics, the mean and standard deviation of the random field are the
main parameters. For the two-point statistics the form of the correlation function and the correlation
length, i.e., the length scale at which the field spatially varies are the main parameters. In [54], where the
elastic modulus is considered to a random field, standard deviation and correlation length of the
random field are considered as the main parameters that impact fracture response. The realization of
random fields for fracture strength and the subsequent fracture analysis becomes more expensive as the
correlation length tends to zero. In [54] it is shown that certain macroscopic fracture statistics converge
as the correlation length tends to zero. That is, by maintaining sufficient level of material inhomogeneity
through using a small enough correlation length, accurate representation of macroscopic fracture
response can be obtained.

We treat cohesion as a stationary random field with certain standard deviation ςc and correlation
length lc. The statistics of this random field can be systematically obtained by using Statistical Volume

Elements (SVEs), as shown in [60,61]. However, for simplicity and better control on the effect of these
parameters, we artificially manufacture random fields with certain ςc and lc. The distribution of c

is assumed to follow a Lognormal(µc, ςc) probability structure where µc and ςc are the mean and
standard deviation of the normal field. The corresponding mean and standard deviation of the log

normal field for c are Mc = exp
(

µc + ς2
c/2

)

and Σc = exp(µc + ς2
c/2)

√

exp(ς2
c)− 1.

Once the underlying correlation function form and length, and point-wise Probability Distribution

Function (PDF) are specified, there are a number of statistical methods to realize consistent random
fields. We use the Karhunen-Loéve (KL) method [62,63] to realize a random field ξ = ξ(x, ω) by an
expansion of its covariance kernel; the field is described by the series,

ξ(x, ω) = µξ(x) +
∞

∑
i=1

√

λibi(x)Yi(ω), (10)

where the denumerable set of eigenvalues λi and eigenfunctions bi(x) are obtained as solutions of
the Fredholm equation, i.e., the generalized eigenvalue problem (EVP), as detailed [64]. Since the
eigenvalues monotonically decrease, the truncated series with an appropriate value of the upper limit n

instead of ∞ in (10), can precisely represent the statics of the underlying random field. For practical use
of the KL method, random variables Yi should be statistically unrelated. This condition is automatically
satisfied for Gaussian fields. Thus, we sample Gaussian random fields with the mean µc and standard
deviation ςc. To obtain the final random field for c, we need to take the exponent of the realized
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4. Conclusions

We presented a dynamic bulk damage model, based on the time-delay evolution law in [3].
The relaxation time τc indirectly introduces an intrinsic length scale for dynamic fracture problems.
This resolves the mesh sensitivity problem of early local damage models. Moreover, by limiting
the maximum damage rate, the model qualitatively captures stress rate effect, in that, both strength
and toughness increase when the loading rate increases. The ODE form of the evolution model
greatly simplifies the implementation of the damage model and maintains the hyperbolicity of the
elastodynamic problem.

The coupled elastodynamic-damage problem was implemented by the aSDG method to solve
a uniaxial compressive fracture problem for rock. The MC model is used to formulate a damage
force model. In the process of damage accumulation, the effective stress tends from the initial elastic
limit at D = 0 to its hydrostatic compressive value at D = 1. The MC model also captures rock
strengthening effect as hydrostatic pressure increases. In contrast, damage models that are based on
spectral positive and negative decomposition of strain (or stress) tensor, fail to model failure under
compressive response.

To model the effect of material inhomogeneity, cohesion was assumed to be a random field.
Two different macroscopic compressive load amplitudes were used for this study. For a homogeneous
material, the higher load amplitude initiates damage as the compressive wave enters the domain,
whereas for the lower load damage initiates only in the center of the domain where stress doubling
effect occurs upon the intersection of compressive waves. Four lognormal fields with different
correlation lengths lc were generated for c. It was shown that inhomogeneity could significantly alter
the failure response of an otherwise homogeneous rock. For example, for the higher load amplitude,
unlike the homogeneous case, damage initiates in the center of the domain. This is due to the particular
form of the realized random field where a large zone of low c is sampled in the center of the domain.
Moreover, for the lower load amplitude damage can initiate everywhere in the domain as the waves
travel toward the center of the domain. This is due to the weaker sampled c at these locations,
which does not require the stress wave doubling effect to initiate damage. Moreover, even the zones
that eventually accumulate the highest damage can be significantly different between models with
homogeneous and inhomogeneous properties, even as the correlation length tends to zero (low load
amplitude example).

Another problem of using a homogeneous material model is the inability or difficulty of bulk
damage models to capture sharp localization zones. In contrast, as lower correlation lengths were used
for inhomogeneous domains, the fracture pattern became more realistic and resembled the results
that are obtained by more accurate sharp interface models [43]. In particular, the MC model predicts
fractures at ±(45 + φ/2) degree angles with respect to the compressive load direction. For the lowest
correlation lengths, localized damage zones with angles roughly in the range ±45 to ±(45 + φ/2)
are observed. These features are better resolved with the higher resolution finite element mesh,
confirming that finer meshes are required for the solution of problems with more rapid variation of
material properties.

There are several extensions to the present work. First, the form of effective stress (8) implies
that friction coefficient is zero at complete damage (D = 1), whereas jointed (damaged) rock may
still possess some residual friction coefficient. This will enhance the angle of localized regions in
Figure 18d. Second, MC criterion is not appropriate for rock tensile fracture analysis and the damage
force can be formulated by Hoek-Brown [76] and other more accurate models. Third, as shown
in [77], rock anisotropy, for example induced by the existence of bedding planes, can affect fracture
angle under compressive loading. Anisotropic failure criteria such as those in [78,79] can be used to
formulate the damage force. Finally, mesh adaptive operations in spacetime [33] can drastically reduce
the computational cost of the formulated aSDG method for this bulk damage model.
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