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Abstract

To model the sample-to-sample variations and the effect of microscale in-
homogeneities on fracture response, statistical volume elements (SVEs) are
employed to homogenize the elastic and fracture properties of ZrB,-SiC, a
two-phase particulate composite often used as a thermal coating. In the
mesoscale analysis, 2D finite element models are generated using a non-
iterative, automated mesh generation algorithm named Conforming to In-
terface Structured Adaptive Mesh Refinement (CISAMR). The analysis of
SVEs under mixed, traction, and minimal kinematic boundary conditions
yields their angle-dependent tensile and shear fracture strengths and elastic
stiffnesses. This study shows that homogenized fracture strengths are highly
dependent on the SVE size and the particular geometric distribution of inclu-
sions (even for similar volume ratios), whereas elastic properties are mainly
a function of the volume fraction. Moreover, mean values of strength and
bulk modulus, respectively, decrease and remain almost constant as the SVE
size increases. For the macroscale analysis, an isotropic, inhomogeneous field
of fracture strength is generated from the homogenization of SVEs. The
asynchronous Spacetime Discontinuous Galerkin (aSDG) method is subse-

*Corresponding author: Associate professor of Mechanical Aerospace and Biomedical
Engineering, University of Tennessee, 411 B.H. Goethert Parkway, Tullahoma, TN, 37388,
USA.

Email address: rabedi@utk.edu (Reza Abedi)

Preprint submitted to Elsevier November 15, 2018



quently employed for fracture analysis under uniaxial tensile and thermal
strain loadings.

Keywords: Statistical volume element, Brittle fracture, Size effect, Mesh
generation, CISAMR, Spacetime Discontinuous Galerkin

1. Introduction

Unlike the elastic response, fracture and damage are inherently local phe-
nomena, in that they often initiate from microstructural defects or material
interfaces. For ductile materials, diffused areas undergoing large plastic de-
formation reduce their sensitivity to microstructural design. On the other
hand, due to the lack of significant bulk energy dissipative mechanisms, quasi-
brittle materials are highly sensitive to their microstructure [1, 2]. Some con-
sequence of the (high) dependency of the failure response on microstructural
design are localized zones of failure even in the absence of macroscopic stress
concentration points [3], variations of the fracture pattern under the same
problem set-up [4], ultimate strength/fracture energy uncertainties [5, 6], and
decrease of the mean and the variation of fracture strength known as the size
effect [7].

Material defects and other microstructural features can be modeled ei-
ther explicitly or implicitly [8]. Explicit models directly incorporate defects
larger than a certain size in the analysis. However, due to the high com-
putational cost, their use is limited to small space and time scales. Implicit
approaches, on the other hand, only represent the impact of defects in an av-
eraged, statistical, or homogenized sense. For example, the Weibull’s weakest
link model [9, 10] can qualitatively explain the size effect. Also, Abedi et al.
showed that by assigning point-wise values of fracture strength based on the
Weibull model, realistic fracture patterns can be captured for problems that
lack macroscopic stress concentration points, e.g., fracture under dynamic
compressive loading [11] and fragmentation [12] studies. However, many of
such phenomenological models lack a direct connection to the material mi-
crostructure. As will be discussed next, homogenization approaches address
this concern and provide a direct link between micro and macro scales by
averaging the response in a Volume Element.

Continuum thermomechanics is founded on the concept of Representa-
tive Volume Element (RVE), which is well defined for [13]: (i) a unit cell
in a periodic microstructure; and (ii) a statistically representative Volume



FElement (VE) containing a large number of microscale elements. There are
many popular criteria to decide whether a VE is large enough to be consid-
ered representative for group (ii); see for example [14, 15] and the references
therein. Under such conditions, the material in an RVE can be represented as
a continuum. Several classical homogenization approaches attempt to obtain
effective material properties of an RVE; cf. [16, 17, 18, 19, 20, 21].

An RVE is not well-defined, when neither of the two aforementioned con-
ditions is satisfied. Then, the so-called Statistical Volume Element (SVE)
may still represent the material in continuum form, although the random-
ness in material properties must be properly characterized. Perturbations
to geometry and material properties of a periodic unit cell violate the def-
inition of group (i) RVEs and are the basis for the definition of SVEs in
22, 23, 24, 25]. When a VE is not large enough to be considered an RVE
from group (ii), a collection of them should be considered to characterize the
statistics of the homogenized property. For these SVEs, the type of boundary
conditions [26], clustering/positioning of microstructures [27], and variations
in the observation window [28, 29] all affect the statistics of the homogenized
properties.

Beyond numerous works in the elastic regime, RVEs are used in [30,
31, 32, 33, 34] to homogenize and calibrate various fracture models. Yet,
the statistical characterization of fracture properties of a material by SVEs
can be more advantageous; first, by maintaining some level of heterogeneity,
even for a macroscopically homogeneous material, weak points of a realization
based on SVE statistics can result in localized fracture for problems that lack
macroscopic stress concentration points. Second, variations in the fracture
pattern, ultimate load, and fracture energy all can be represented by realizing
random fields that are consistent with the statistics of values homogenized by
SVEs. Thus, by differing from RVEs in preserving the spatial and sample-to-
sample variations, they address several concerns of a macroscopic model for
failure analysis. Yet, the analysis of domains characterized by SVEs can be
significantly more economical than an explicit approach, as microstructural
features are no longer directly incorporated in the (computational) model.

The goal of the this manuscript is to use SVEs to homogenize both elas-
tic and fracture properties and subsequently employ the homogenized fields
for macroscopic dynamic fracture analysis. The material system adopted for
this study is a ZrB,-SiC particulate composite, which is often implemented
as a thermal barrier coating for ultra-high temperature applications. While
the ZrBs matrix has a high melting point and thermal stability, embedded



SiC particles improve the oxidation resistance of the resulting composite
material in aggressive environments. A new microstructure reconstruction
algorithm relying on animation-inspired packing and optimization phases
[35, 36] is employed to virtually build a realistic RVE of this ZrB,-SiC based
on morphological and statistical information extracted from imaging data.
Thousands of SVEs with different sizes are then extracted from this RVE to
simulate their micromechanical behavior subject to macroscopic tensile and
shear loads. In order to automate the modeling process, a new mesh gen-
eration algorithm, named Conforming to Interface Structure Adaptive Mesh
Refinement (CISAMR) [37, 38, 39] is implemented to build the finite ele-
ment (FE) model associated with each SVE. The unique feature of CISAMR
is the ability to non-iteratively transform a simple structured grid into a
high-quality conforming mesh for problems with complex morphologies.

Although SVEs have been used for fracture analysis studies (e.g., [40, 41]),
these SVEs were not constructed based on realistic material microstructures;
i.e., limited to domains containing micro-cracks [40] and circular inclusions
[41]. Further, highly simplified models were used to derive fracture initiation
strengths, in that micro-cracks did not interact [40] and fracture could only
nucleate at interfaces between matrix and inclusion phases [42]. One of the
main contributions of this manuscript is providing a significantly more accu-
rate characterization and analysis of SVEs compared to [40, 42]. The virtual
microstructure reconstruction results in a highly realistic representation of
ZrB,-SiC RVE, together with CISAMR, enables constructing highly-fidelity
FE simulations at the SVE level. Beyond these advances in modeling capa-
bilities, the fracture initiation criteria not only takes into account the damage
nucleation along particle-matrix interfaces [41] but also allows its initiation
in each phase separately.

The second key contribution of this work is the in-depth analysis of ho-
mogenized elastic and fracture properties. The homogenization of SVEs is
formulated for traction, mixed displacement / traction, and minimal kine-
matic boundary conditions (BCs). In addition, normal and shear fracture
strengths are characterized for arbitrary angle of loading. Several interesting
trends are observed by investigating the effect of BCs, SVE size, and other
parameters. For example, for the same SVE size and microscopic volume
fraction of inclusions, the bulk modulus is rather constant while the frac-
ture strengths are highly variable, implying its sensitivity to the geometric
distribution of inclusions in SVE. Moreover, homogenized fracture strength
and bulk modulus exhibit different dependencies on the size of SVE. Finally,

4



the importance and impact of using the SVE-homogenized fracture strength
field on macroscopic fracture response is shown through two examples.

The outline of the manuscript is schematically shown in fig. 1. At the
macroscale, the algorithm in §2.1 is employed to construct a microscopic
realization of the ZrBo-SiC RVE. This RVE divided into non-overlapping
SVEs, entailing meshing by CISAMR, solution, and derivation of elastic and
fracture properties of SVEs is entirely discussed in §3. We then implement
a numerical homogenization approach in that homogenized properties will
be used as material properties of RVE; cf. third subfigure in fig. 1. The
formulation and calibration of an interfacial damage model, based on the ho-
mogenized fracture strength field are described in §2.2 and §2.3, respectively.
Subsequently, the asynchronous Spacetime Discontinuous Galerkin (aSDGQG)
method, cf. §2.4, is used for RVE dynamic fracture analysis. The analysis of
the statistics of homogenized elastic and fracture properties and two fracture
simulations the RVE scale for uniaxial tensile and thermal strain loadings
are presented in §4. Final conclusions are drawn in §5.
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Figure 1: Different modeling steps of the homogenization-based dynamic
fracture analysis presented in this manuscript.

2. Macroscopic dynamic fracture analyses

2.1. Virtual microstructure reconstruction

Figure 2a illustrates the 800 ymx800 yum RVE of the ZrB,-SiC composite
studied in this manuscript, which is synthesized using a simplified version
of the reconstruction algorithm recently introduced in [35]. In this section,



we provide a brief overview of this algorithm, which relies on a hierarchical
bounding box (BBox) representation of particles to virtually pack them in
the domain. Morphologies of SiC particles in this RVE are extracted from
scanning electron microscopy (SEM) images of a ZrB,-SiC thermal coating
presented in [43]. After the segmentation of images to isolate a representa-
tive set of inclusions composed of 97 particles, their morphologies are char-
acterized in terms of Non-Uniform Rational Basis Splines (NURBS) [44] and
stored in a shape library. NURBS are parametric functions that can ac-
curately describe geometries of randomly-shaped objects and in this work
provide an explicit representation of material interfaces in synthesized RVE.
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Figure 2: (a) Virtually reconstructed ZrB,-SiC RVE with V; = 20%; (b)
checking intersections between hierarchical BBoxes of embedded particles
during the packing process.

The virtual reconstruction of the ZrB,-SiC microstructure involves se-
lecting a particle P; from the shape library, rotating that at a random angle
0 < 0 < 27, and trying to add that to RVE at an arbitrary location x;.
Clearly, P; can be embedded in at this location only if it does not overlap
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with any of the existing particles. Otherwise, a new random location must
be assigned to P; and the process is continued until the volume fraction V;
of particles reaches the target value. As shown in fig. 2b, a set of hierarchi-
cal (primary and secondary) BBoxes representing each particle is employed
to identify overlaps between new and existing particles during the packing
process. Note that the secondary BBoxes shown in this figure are defined on
a set of consecutive points on the periphery of each particle, coordinates of
which are calculated using the NURBS function characterizing its shape.

In order to add a new particle to RVE, we first check intersections between
its primary BBox with those of existing particles. If no overlap is detected,
this computationally inexpensive calculation (heuristic check) gives the per-
mission to embedded the new particle in RVE at the designated location.
In order to further enhance this process, a quadtree search algorithm is em-
ployed to quickly identify existing particles in the vicinity of a new particle
and minimize the corresponding computational cost. This avoids the un-
necessary checking of intersections between primary BBox of a new particle
and those of hundreds or thousands of existing particles far away from that.
Assuming that the numbering shows in fig. 2b corresponds to the order at
which particles are embedded in RVE, this approach would be sufficient to
determine that particles 1, 2, 3, 7, 8, 9, 10, and 12 can be added to the mi-
crostructure without overlapping with any of previously embedded particles.

Given the arbitrary shape of particles used in the virtual reconstruction
of the ZrB,-SiC microstructure, some of which with concave geometries (cf.,
fig. 2a), checking intersections between primary BBoxes of new and existing
particles overestimates the overlap between them. In other words, it is still
probable that two particles do not intersect with one another although their
primary BBoxes does, which is the case for particles 1-5, 2-4, 4-6, and 2-11 in
fig. 2b. In such cases, we proceed to checking intersections between secondary
BBoxes of each pair of particles to more accurately determine whether they
overlap with one another or not. To minimize the number of calculations
at this stage, we first identify the overlapping box of primary BBoxes of
each pair of particles. If none of the secondary BBoxes of the new particle
intersects with this box, the particles do not overlap and the new particle
can be added to the microstructure (pairs 4-6 and 2-11). Otherwise, the
same task is carried out for secondary BBoxes of the existing particle and
the overlapping box to determine the feasibility of adding the new particle.
If some of the secondary BBoxes of both the new and existing particles
intersect with the overlapping region of their primary BBoxes, they still may
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not overlap with one another if none of these secondary BBoxes intersect
with one another (cf., pairs 1-5 and 2-4).

The BBox-based packing algorithm described above yields a virtual mi-
crostructure with a relatively uniform spatial arrangement of particles in the
domain. However, this is clearly not the case for the RVE shown in fig.
2b, where particles are locally clustered in some regions and larger particles
are non-uniformly distributed within the domain. In order to synthesize this
RVE, particles are first packed within the domain at a higher volume fraction
than the target value, i.e., with a volume fraction of V., = 45% compared
to a target value of Vy = 20%. A multi-objective Genetic Algorithm (GA)
[45, 46] is then employed to selectively eliminate some of the particles from
the initial (raw) microstructure not only to cut back the volume fraction to
Vi = 20% but also to achieve the desired size distribution and spatial ar-
rangement for them. The latter two statistical microstructural descriptors
are characterized using a log-normal distribution function (size distribution)
and a two-point correlation function (spatial arrangement). Although the
reconstruction algorithm is able to generate high-quality virtual microstruc-
tures by using the statistical descriptors directly extracted from SEM images,
these descriptors in the current study are artificially designed to achieve a
non-homogeneous spatial arrangement of particles with distinct variations in
their sizes. This ensures a large variation of homogenized properties (e.g.,
strength) of SVEs with different sizes at different locations within RVE, which
in turn better highlights the effect of the SVE size on resulting Probability
Distribution Functions (PDFs) and the fracture response. More details re-
garding the GA-based optimization phase used for the reconstruction of RVE
shown in fig. 2b are presented in [35].

2.2. Macroscopic interfacial damage model
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(«',y) on a fracture surface.



Figure 3 shows the point P on a crack surface. The local coordinate
system (2',1/) is at angle 6 with respect to the global system z, y. Interfacial
constitutive equations relate the mechanical fields from the two sides of the
interface to the traction target vector s* = [s¥, s¥| on P. For example,
traditional cohesive models, e.g., [47, 48, 49], employ a Traction-Separation
Relation (TSR) to related the separation vector Au = P* — P~ to the
traction s*. In lieu of a TSR we employ an interfacial damage model [12].
A damage parameter D linearly interpolates between fully bonded (D = 0)
and debonded (D = 1) states; thus, s* is given by,

s*:= (1 - D)s" + DsP, (1)

where 8 and 8P are dynamic traction solutions for perfectly bonded and
debonded interfaces obtained by a local Riemann solution [50]. A similar
equation interpolates target velocity values for each side of the interface.

At point P, §2(0) and 52(0) denote the normal and shear components
of bonded traction §B, along 2’ and 7/’ directions, respectively. The effective
stress, defined by

50) = \/(55(9»2 + (B(0)3E(0))”, (2)

drives the damage evolution. The positive part operator (.) ensures that
compressive normal traction does not contribute to damage evolution, and
B(0) is the macroscopic mode mixity at angle 6 [12]. A time-delay model
similar in form to that in [51, 52] is used to govern the damage evolution,

h=1G(D; - D)) (3)

where D; is the damage value that would have been realized under quasi-
static conditions and G is a monotonically increasing function satisfying
D(0) = 0 and G({(D; — D)) < 1. The form of (3) implies that 0 < D < 1/7
and D — 0 when D — D;. Damage evolution is stress-driven in that D; is
a function of the ratio of () to quasi-static tensile strength 5,(0) at angle
0. Thus, (2) implies that mode mixity is given by,

5n(0)
55(0)

where 54(0) is the quasi-static shear strength at angle 6.

p(o) =

(4)
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2.3. SVE-homogenized properties for macroscopic fracture analysis

The fracture response of quasi-brittle materials is highly sensitive to their
microstructure. Specially in fragmentation, due to the lack of macroscopic
stress concentration points, inhomogeneity of material properties greatly af-
fects the fracture response. For example, it has been shown in [3] that un-
realistic patterns are observed when homogeneous fields are used for elastic
and fracture properties. In contrast, if inhomogeneities are resolved at a
sufficiently small scale, expected dynamic brittle fracture features such as
microcracking and crack branching are successfully captured. Similarly, [53]
demonstrates the importance of using an inhomogeneous strength field for
some dynamic fracture problems.

To accommodate material inhomogeneity at the RVE-level, we adopt a
numerical homogenization approach, in that homogenized material properties
are subsequently used as input parameters to a macroscopic problem. This
process is depicted in fig. 1. The 800 pmx800 yum RVE is covered by non-
overlapping SVEs of a certain size. Through the homogenization of an SVE,
for any given field, a value is assigned at the centroid of SVEs. These values
are used to linearly interpolate the given field at any other point in the
original domain. The second subfigure in fig. 1 shows a fracture strength field
constructed based on a 1/32 x 1/32 division of RVE. Thus, this process can
be viewed as an averaging and upscaling of microscale properties to within
a level of inhomogeneity determined by the size of SVEs used to subdivide
the RVE; the finer the SVEs, the more variation of material properties are
maintained in constructed homogenized fields.

In principle, elastic properties and angle-dependent strengths 3, () and
55(0), homogenized in SVEs, can be used to construct such homogenized fields
for the macroscopic fracture analysis. However, in the present work first we
only consider the inhomogeneity of fracture properties. This is justified by
less variations of homogenized elastic properties, which will become evident
in §4. In addition, fracture strength has been the field that is considered
inhomogeneous in majority of similar studies, see for example [54, 55, 56, 57,
53].

Moreover, instead of maintaining the angular dependency of fracture
strengths, we use S, and Sy, defined by,

S, = minge(o, 50 (6), (5a)
SS . minge[& ﬂ-]gs(e). (5b)

10



as conservative minimum values of §,, () and 34(6) over all angles of loading;
note that 5, (6+m) = 5,(0) and 35(0+m) = 55(6). Finally, to further simplify
the macroscopic analysis, only S, is treated as inhomogeneous and instead
of a space- and angle-dependent mode mixity 5 (4), its mean value over all
space and angle positions is considered. As will be observed in §4.3.1, this
simplification is acceptable due to the weak anisotropy of fracture strengths.

Finally, we clarify that the damage model from §2.2 is only partially
calibrated, because from its two intrinsic scales of strength S, and time 7
only S, is treated as an inhomogeneous field. Given that fracture energy ¢
scales linearly with the product of fracture strength and time scales, cf. [58],
this implies that by taking a constant value for 7, ¢ proportionally varies
with S,,. The same type of approximation is observed in TSR-based models
in [55, 56, 57, 53] where again S, is treated as inhomogeneous, while the
intrinsic separation of TSR is considered constant. Similar to the proposed
damage model, b linearly scales with S, for these TSR-based models. Note
that ideally both intrinsic scales of an interfacial fracture model should be
homogenized. However, it has been shown in [53] that even by considering
S, alone to be inhomogeneous, realistic fragmentation patterns are captured
and macroscopic measures such as ultimate load and fracture energy are
rather insensitive to the macroscopic mesh gradation and the scale at which
inhomogeneity is considered.

2.4. Mesh-adaptive aSDG method for macroscopic fracture analysis

At the macroscale a crack is nucleated at a position such as N in fig. 3
if the condition $(0) > 3,(0) holds for any angle 6 € [0,27). Similarly, an
existing crack propagates from its tip, such as position () in fig. 3, at an angle
0o for which 5(6y)/5,(6p) takes a maximum value greater than unity over all
angles 6 € [0,27). These are collectively called the principal of maximum
effective circumferential stress for crack nucleation and propagation. Once
a crack propagates, the evolution model (3) is used to determine the rate
at which D increases to unity to model the process of interface debonding.
For all processes of crack nucleation, propagation, and damage evolution
on existing crack surfaces, rather than 5,(6), $(0) is compared against the
angle-independent and inhomogeneous strength S,,.

A major challenge in computational dynamic fracture is tracking com-
plex fracture patterns such as those shown in the last subfigure in fig. 1.
FExtended Finite Element Methods (XFEMs) [59, 60], Generalized Finite Ele-
ment Methods (GFEMSs) [61, 62], and Discontinuity-Enriched Finite Element
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Methods (DE-FEMs) [63] are a few of the approaches that enrich the element
solution space to model the crack propagation, nucleation, and bifurcation
within elements. Herein, we take a different approach, where by mesh adap-
tive operations in spacetime, element boundaries are aligned with proposed
crack propagation directions [64].

We employ the asynchronous Spacetime Discontinuous Galerkin (aSDG)
method [65] for macroscopic dynamic fracture simulations. Various error
indicators and spacetime adaptive operations ensure the accuracy of results.
Dual error indicators in the bulk and on fracture interfaces control the energy
dissipation and satisfaction of fracture constitutive relations, respectively
[66]. The h-adaptive scheme [67] adjusts element sizes in the spacetime to
efficiently satisfy the two aforementioned error conditions. Finally, cracks are
nucleated at vertices of the space domain when the effective stress (2) reaches
the (inhomogeneous) value of S, sampled at a given vertex. The principal
of maximum effective circumferential stress is employed to determine the
direction of crack propagation. The latter set of adaptive operations are
particularly critical in capturing realistic fracture patterns. A more detailed
review of this adaptive method for fracture simulations and its comparison
with aforementioned enriched methods can be found in [12].

3. Microscopic analyses

3.1. Automated mesh generation

The domain shown in fig. 2, with edge size L = 800 pum, is used for the
construction of SVEs. Square SVEs are constructed with four different edge
sizes of lgyg = 12.5 pm, 25 pm, 50 pm, and 100 gm. The non-dimensional
size of an SVE is defined as,

lsve
[ = —. 6
. ©)
Thus, the non-dimensional sizes of sampled SVEs are &, 35, 15, and z.

For these sizes, the RVE is divided into 4096, 1028, 256, and 64 SVEs,
respectively.

The homogenization-based fracture analysis presented in §4 relies on the
FE approximation of the stress field in all the 5440 SVEs sampled above.
Clearly, performing such a large number of simulations would not be feasible
without an utter automation of the modeling process, i.e., converting the ge-
ometrical model corresponding to each SVE into an appropriate conforming
mesh. Further, it is equally important to create a high-quality conforming
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mesh for each SVE (small element aspect ratios and negligible discretization
error) to accuracy approximate sites of stress concentrations along material
interfaces. It is also highly desirable that the mesh is adaptively refined in
such regions to maintain an acceptable computational cost without compro-
mising the accuracy.

In order to automatically generate a high fidelity FE model for each
SVE, we implement a new non-iterative mesh generation algorithm named
Conforming to Interface Structured Adaptive Mesh Refinement (CISAMR)
(37, 39]. In 2D, CISAMR transforms a structured mesh composed of quadri-
lateral elements into a conforming mesh, in which element aspect ratios are
guaranteed to be less than 3. This is achieved by overlaying the domain
geometry (e.g., ZrB,-SiC SVE) with a structured mesh, where CISAMR can
automatically detect background elements intersecting with material inter-
faces, as well as relative position of mesh nodes with respect to each phase
(e.g., inside or outside of a particle). The transformation of the initial grid
into a conforming mesh occurs in three steps: (i) h-adaptive refinement of
background elements in the vicinity of material interfaces; (ii) r-adaptivity
of nodes of elements cut by each interface, during which some of the nodes
are moved to the interface while others maintain their original position; (iii)
subdividing nonconforming elements, as well as elements with hanging nodes
(created during the h-adaptivity phase) to build the final conforming mesh.
It must be noted that in order to facilitate the homogenization-based fracture
analysis presented in this article, the last phase is extended to all background
quadrilateral elements to obtain a mesh composed of triangular elements only.

Figure 4 illustrates a small sub-region of the conforming mesh created
for one of the SVEs studies in this work, which clearly shows proper aspect
ratios of resulting elements in the vicinity of material interfaces. For this
SVE and all SVEs studied in the following sections, initial structured meshes
with an element size of h = 1 um and two levels of h-adaptive refinement
along particle-matrix interfaces are employed to generate corresponding con-
forming meshes. Note that additional levels of refinement might be necessary
in regions where two material interfaces are in close proximity to properly
capture stress concentrations in such areas. It is evident that CISAMR can
highly facilitate the current homogenization-based study by enabling the au-
tomated construction of FE models for thousands of SVEs, which only re-
quires overlaying a structured mesh corresponding to each SVE size with
different regions of RVE shown in fig. 2a.
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Figure 4: Small subset of the conforming mesh generated using CISAMR for
one of the SVEs corresponding to the RVE microstructure depicted in fig.
2a.

3.2. Boundary conditions

Analyzing the micromechanical behavior of an SVE subject to a macro-
scopic load requires applying appropriate boundary conditions (BCs) to prop-
erly simulate the effect of this load. According to the homogenization theo-
rem, such BCs must satisfy the strain averaging theorem [68, 69|, which can
be expressed as,

EM(XM) = ﬁ/@é’m@(m) d@, (7)

meaning the corresponding macroscopic strain €y at point x); must be equal
to the average of microscopic strains €y in the corresponding SVE. Most
straightforward choices that satisfy this theorem are the traction t, and
displacement u,, BCs applied along external edges /A of SVE to represent ey
as,

tm|a = Ceyny,  Un|a = enXm, (8)

where C is the fourth order elasticity tensor, n,, is the outward unit normal
vector to the SVE boundary, and x,, is the microscopic coordinate. For
SVEs subject to displacement BCs simulating a macroscopic normal stress,
a traction-free BC is applied along lateral edges of the domain to minimize
stress concentrations in these regions. In the remainder of this manuscript,
we refer to this boundary condition as mixed BC.
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While implementing either traction or mixed BCs in an FE model to
simulate the micromechanical behavior of SVE is straightforward, unrealistic
stress concentrations caused by such BCs in the vicinity of domain bound-
aries could undermine the accuracy [70]. Alternatively, it has been shown
that using the periodic BC (PBC), together with applying ey to all elements
of SVE (rather than applying its effect along domain boundaries), can con-
siderably alleviate this problem [71]. However, a major limitation of PBC is
that it can only be utilized in a periodic FE mesh, which in turn requires
an SVE with a periodic microstructure. Thereby, because SVEs created as
subdomains of the virtual RVE depicted in fig. 2a lack this characteristic, we
cannot implement PBC in the present study.

As an alternative to PBC for problems with non-periodic microstructures,
one can implement the Minimal Kinematics BC (MKBC) [72], in which ey
is imposed on SVE edges in a weak sense, i.e.,

1

where |©] is the area of SVE and i, j are indicial notations. The following
degrees of freedom are also constrained at arbitrary-selected nodes A and B
on domain boundaries to prevent rigid body motion: u® = 0 and up, =
0. More details regarding the implementation of MKBC, together with a
comparison of its performance with PBC, is provided in [71].

A thorough study on the impact of different SVE sizes and BCs (mixed,
traction, and MKB) on corresponding PDF's; as well as the homogenization-
based fracture response of RVE is presented in §4. As a prelude to this
study, fig. 5 shows a comparison between FE approximations of the normal
stress field in the z-direction (0,,) in an SVE with lsyg = 50 pum subject
to mixed BC, traction BC, and MKBC representing a macroscopic tensile
stress in the same direction. This figure also illustrates normal stress fields
in four smaller SVEs with lsyg = 25 pum subject to different BCs, each of
which is a quadrant of the SVE with lgyg = 50 pum. In each case, a unit
value of corresponding BC (i.e., unit displacement, traction, or macroscopic
strain) is applied to SVE. Resulting stress field are then normalized to have
the same range. Note that ranges of ., in color bars associated with mixed
BC compare to traction BC and MKBC are quite similar. However, focusing
on the left edge of SVE with lgyg = 50 pm, it is evident that using mixed BC
leads to more pronounced stress concentrations in this region. For all BCs,
differences between stress fields away from the domain edges are negligible,
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Figure 5: Comparison between FE approximations of ., in an SVE with
lsyvg = 50 pm and four smaller SVEs corresponding to its quadrants with
lsvg = 25 pm under mixed and traction BCs replicating a macroscopic strain
applied in the z-direction.

which reemphasizes the fact that increasing the SVE size mitigates the role
of the type of BC on predicted average stresses.

Studying stress fields in smaller SVEs (lsyg = 25 pm) in fig. 5 sheds more
light on the impact of different BC types on the simulated micromechanical
behavior. Because each quadrant SVE is analyzed independently, the normal
stress along midlines of the resulting contour plot is discontinuous. More
pronounced stress concentrations along edges of SVEs subject to mixed BC
compared to those analyzed using MKBC and traction BC is also evident in
the figure. More insight into the impact of BC type on the stress field can
be obtained by comparing contour plots of the large SVEs (lsyg = 50 pm)
with those created by putting together the smaller SVEs representing its
quadrants. In particular, stress fields in the lower two quadrant SVEs (lsyg =
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25 pm) simulated under mixed BC show a notable discrepancy with the FE
approximation of the normal stress in the lower half of large SVE.

It is worth mentioning that, as will be shown in §4, homogenized values
for elastic moduli and fracture strengths evaluated for SVEs simulated under
traction BC and MKBC assumption will be identical. At first glance, this
might seem contradictory, as in MKBC a unit macroscopic strain is weakly
imposed in one direction (e.g., in x), while a zero macroscopic strain is main-
tained in other directions (e.g., in y and zy). On the other hand, applying
a normal traction BC in the same direction causes normal strain in the per-
pendicular direction due to the Poisson’s effect, which would clearly not be
identical to that obtained from MKBC. Note that this difference is confirmed
by the stress field depicted in fig. 5, where o, fields associated with traction
BC and MKBC are not identical. However, since both simulations are con-
ducted under linear elastic assumption, the stress field approximated under
normal traction BC is in fact a superposition of that evaluated using MKBC
in x and y directions; hence resulting homogenized material properties would
be the same. This indicates the superiority of traction BC over MKBC for
linear homogenization analyses, as imposing the constraint (9) for a simu-
lation under MKBC leads to a high condition of the stiffness matrix, which
in turn leads to a higher computational cost and implementation complexi-
ties. Note that this would not be the case if one aims to perform a nonlinear
simulation involving plasticity or damage, where linear superposition is no
longer valid.

3.3. Effective fracture strength

3.8.1. Angle-dependency of fracture strengths

In this section, we present the derivation of the elasticity stiffness tensor
and angle-dependent tensile and shear fracture strengths of SVEs. For any
of the square SVEs and any of the three BCs discussed in §3.2, the linear
and static FE approximations are carried out subject to three load cases to
derive corresponding homogenized elasticity and fracture values. The average
macroscopic stress tensor, in Voight notation, for the load case number « can

be written as,
(6%

0% =[o0,,00,00]|", «ae€{l 23}, (10)

zz) Y yy Y zy

where T is the transpose operator. For example, for traction BC, these three
load cases are proportional to [1,0,0]T, [0,1,0]T, and [0,0,1]T. Having the
average strains and stresses from these three load cases enables computation
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of the potentially anisotropic homogenized stiffness and compliance matrices,
as well as the in-plane bulk modulus.

Global coordinate system Local coordinate system

Figure 6: Schematic of an SVE in the global (z,y) and local (2, 3/’) coordinate
systems used for defining fracture strengths at an angle 6.

Figure 6 shows the schematic of an SVE in the global coordinate system
(x,y). The local coordinate (z',y’) is obtained by rotating (x, y) by angle 6 in
the counter clockwise direction. Stress components in the (z,y) coordinate
system are obtained by those in the rotated (2',%3’) coordinate system by
using the Mohr circle relations [42],

5’x/x/ + 5'y/y/ 5’x/x/ — 5'y/y/

Oz = 5 + 5 c08(20) — G4, sin(26) (11a)
Oyy = Ta'al ;L A ; ovy’ cos(20) + 7,1, sin(20) (11b)
Goy = W S1(20) + 51y cO8(20) (11c)

To obtain §,(0), the normal strength of an SVE at angle ), an average
stress loading is sought where 7,,, = 5,(0), 6,» = 0, and 7,y = 0. The
value of §,(0) is chosen such that the failure can be initiated in the matrix,
inclusion, or their interface as described below. The reason that &, rather
than 7./, is set to be equal to the strength at angle 0 is that if a crack is
nucleated at this point, it has an orientation of # with respect to the z axis.
For the angle-dependent shear strength §4(6), average stresses in the (2, y')
coordinate are G,,» = 0, 7,7,y = 0, and 7,7,y = 55(0). From (11) the stress
conditions corresponding to normal and shear loadings at angle 6 are factors
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of
0,(0) = [sin*(0), cos?(#), — sin(#) cos(0)]T, (12a)
0(0) = [—sin(26), sin(26), cos(20)]T. (12b)

For any of the BC modes considered in this manuscript, the three aver-
aged solutions 0* corresponding to the load cases used for the homogeniza-
tion provide a basis to span the stress space. Thus, by a linear combination
of them either of the stress states ,,(6) or a4(0) can be formed to represent
a normal or shear average stress loading at angle 6, respectively. For the
superposition of ¢ that forms 0,(#), the microscopic stress values are de-
termined at each point in the matrix, inclusions, and their interfaces. Failure
models for each of the three phases of matrix, inclusion, and interface will be
discussed in the next section. Knowing these failure models, we can find the
smallest load factor to (12a) loading for which failure is initiated at least in
one of the phases. This load factor corresponds to fracture initiation strength
for a normal tensile loading corresponding to 6, which is associated with the
normal strength 5,(6). The same process is used to derive 54(6) from o4(0)
in (12b). In §4.3.1, it will be shown that strengths 5,(0) and 54(f) become
more isotropic as the SVE size increases. Except that section, we will only
analyze the statistics of S, and Sy; cf. (5).

The aforementioned linear analysis at the SVE level only provides S,
and S,. For a variety of interfacial fracture models, e.g., the damage model
from §2.2 and extrinsic TSRs, they provide the stress level beyond which
debonding initiates. To fully formulate and calibrate a macroscopic interfa-
cial model, however, the entire stress response versus macroscopic fields (e.g.,
displacement jump for TSRs) is required. This entails a nonlinear analysis
of VE for stress levels beyond gn and 5’5, for which cracks or other forms of
weakening processes initiate from the most critical points. It is only through
the analysis of their propagation and coalescence that the energy character-
istic and the nonlinear response of the interfacial model to full debonding
can be characterized.

Limiting our SVE failure analysis to the derivation of S, (and S,) is
acceptable as the only input(s) for the macroscopic fracture model in §2.2.
First, S, and S, serve the purpose of generating an inhomogeneous field for
fracture strength, which as demonstrated in [54, 55, 56, 57, 53] can capture
key characteristics of brittle fracture. The advantage of the current approach
is that SVEs, rather than phenomenological models such as Weibull distri-
bution, are used to assign S, at the RVE-level. Second, since quasi-brittle
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materials lack the large energy dissipation capacity of ductile materials, their
nonlinear response past S, is less pronounced. This is reflected in rather close
values for S, and ultimate strength based on the quasi-static analysis of VEs
in [73]. This proximity is observed even for strain rates up to around 10*/s
in [53], implying that only calibrating S, for an interfacial fracture model is
deemed satisfactory for up to relatively moderate loading rates. Third, the
model (3) is already rate-sensitive and predicts higher ultimate strength and
fracture energy as the loading rate increases. This is qualitatively consistent
with the observations made from fully nonlinear analysis of VEs in [53] for
strain rates beyond 10*/s.

3.3.2. Failure criteria

As described in §3.3.1, §,(0) and §,(0) correspond to averaged normal
and shear stresses at angle 0, cf. fig. 6, such that failure is about to initiate
at a point in the matrix, inclusions, or interfaces between the two. In this
section, we describe the failure criteria used in each of these three phases.
This determines that for a given point how much larger the unit normal and
shear loadings in (12) can be to initiate failure. Thus, by determining the
most critical point, §,(0) and 34(0) are determined.

A
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(a) Mohr Coulomb bulk failure criterion (b) Interfacial failure criterion [49]

Figure 7: Bulk and interfacial failure criteria used to compute the angle-
dependent fracture strengths of an SVE. In a) the dashed line corresponds
to unmodified Mohr-Coulomb criterion, and the solid region corresponds to
the modified criterion used herein.
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The solid line in fig. 7a shows the modified isotropic Mohr-Coulomb fail-
ure criterion in the 2D principal stress space. The Mohr-Coulomb model is
characterized by the uniaxial tensile s,, and uniaxial compressive S, strengths.
Corresponding strengths for the two phases are decorated by a superscript
a € {M,I} corresponds to “Matrix” and “Inclusion” phases. Thus, s¥
and $M are uniaxial tensile and compressive strengths of the (ZrB,) matrix
phase, and 5! and 3! are corresponding values for the (SiC) inclusion phase,
respectively.

The dashed lines in fig. 7a correspond to an unmodified Mohr-Coulomb
model which is often characterized by the friction coefficient and cohesion pa-
rameters. However, such model overestimates the hydrostatic tensile strength
and predicts a wrong fracture angle [11]. In addition, it has no limit on hydro-
static compressive stress. There are various modified Mohr-Coulomb models,
e.g., the Hoek-Brown model [74], but the model used in fig. 7a is simple yet
addresses the aforementioned shortcomings. In addition, it predicts the same
value for uniaxial and hydrostatic tensile strengths. Finally, from fig. 7a the
shear strength is derived as,

(13)

For the analysis of fracture initiation along interfaces between the matrix
and inclusion phases, we employ the scalar effective stress proposed by [49],

§ =/ (sn)? + (Bss)%, (14)

where [ is the mode mixity parameter, and s, and s are normal and shear
components of the traction vector acting on an interface.! The failure crite-
rion for an interface, § = §; is shown in fig. 7b, where 5; is the strength of
the interface. Based on the form of (14) the normal and shear strengths of
the interface are §', = §; and & = 5,/8.

The use of these failure criteria in the determination of §,(0) is as follows.
From (12a), the macroscopic (average) SVE stress array o,,(6) corresponds to
the tensile stress 7, of magnitude one. As mentioned in §3.3.1, the super-
position of the three load cases of an SVE is done such that the superposed

'Equations (14) and (2) are effective stresses in the form proposed by [49]. However,
(14) is utilized along interfaces between the matrix and inclusions in each SVE, while (2)
is used at the RVE-scale and is compared to homogenized fracture strength S, .
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average macroscopic stress from 0 is equal to 0,(#). Thus, the microscopic
stress state for all points of SVE corresponding to the macroscopic loading
0,(0) is known. Figure 7a shows the principal stress state (of and ¢%’) in
a sample point P in one of the two bulk phases. As shown, if the macro-
scopic loading @,(#) is multiplied by f¥, fracture initiates at the point P.
Similarly, the traction components for a point () at the interface between the
two phases is shown fig. 7b. For this point, the load factor f€ is required
to initiate fracture. Thus, by taking minimum values of f© and f9 over all
points in bulk phases and their interfaces we find the smallest load required
to initiate fracture in SVE. Given that 7,,, = 1 for 0,,(6), this load factor
in fact corresponds to s,, the tensile fracture initiation strength at angle 6.
The same process is used for the superposed solution corresponding to o(6)
in (12b) to obtain S,. It is noted that a similar approach was implemented
in [42], however therein a simplified model with circular inclusions was used
for the composite and fracture initiation was restricted to the interface only.

4. Results and discussions

For the composite ZrB,-SiC, material properties of the ZrB, matrix phase
are: Young’s modulus EM = 524 GPa, Poisson’s ratio v™ = 0.15, tensile
strength $) = 381 MPa, and compressive strength $¥ = 2.5 GPa [75, 76, 77].
The inclusion phase, SiC, properties are: Young’s modulus E? = 415 GPa,
Poisson’s ratio v/ = 0.15, tensile strength 5/ = 359 MPa, and compressive
strength s/ = 2.1 GPa [78]. Employing (13), the shear strength of these
two phases are obtained as §¥ = 330.6 MPa and 5! = 306.6 MPa. A plane
stress mode is used for the 2D analyses reported herein. The interface tensile
strength is assumed to be 80% of the minimum of tensile strengths of matrix
and inclusion phases, which is a reasonable assumption for composites of
this type [79]. The interface fracture mode mixity is assumed to be one, that
according to (14) implies that §) = § = 287 MPa.

4.1. Volume ratio of inclusions

The volume fraction of SiC in the 800 pm x 800 um domain is 20%; cf.
fig. 2. However, the microscopic volume ratio of sampled SVEs, vy, is not
necessarily equal to the macroscopic value and has a certain probability dis-
tribution depending on the SVE size . Figure 8 shows the (PDF) of SiC
volume ratio for different SVE sizes. The largest variations are observed for
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the smallest SVE size, | = 6%1. As the SVE size increases, the PDFs be-
come narrower and centered around 0.2, the volume ratio of the macroscopic
domain.
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To better understand the distribution of vy, the variation of its minimum,
maximum, and mean values versus the SVE size is shown in fig. 9. For the
smallest size [ = 6—14, the minimum volume ratio is identically zero. This
corresponds to SVEs that do not intersect any of inclusions. Out of 4096
SVEs for this size, there are 60 SVEs with v; = 0. On the other side of
the spectrum, there are 4 SVEs with v, > 0.95 and the largest volume
ratio is vy = 0.998, that is an SVE that is almost entirely composed of SiC
particles. The high variation of vy is a consequence of the natural clustering
of inclusions, which is replicated using the multi-objective GA optimization
phase of the reconstruction algorithm, as discussed in §2.1. The ranges of vy

are [0.01, 0.54], [0.08, 0.362], and [0.13, 0.28], for | = 45, | = &, and | = £,
respectively. As demonstrated in the figure, mean values of v; are very stable
and for all SVE sizes and are equal to 0.2. This clearly is expected as SVEs
of any size eventually cover the entire macroscopic domain with the volume

ratio of 0.2.

4.2. Bulk modulus of SVEs

As described in §3.2, the elastic stiffness and compliance tensors can be
characterized by the analysis of SVE for three different load cases. The in-
plane bulk modulus is defined as the ratio of in-plane pressure to the relative
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area change and is equal to,
1
K = ,
Ci1 + Cyo + 2Cy2

where C;; are components of the potentially anisotropic compliance tensor in
Voight notation.

(15)
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Figure 10: PDFs of bulk modulus for different SVE sizes analyzed by different
BCs.

We investigate how the bulk moduli of SVEs are related to those of two
phases. For an isotropic material, the in-plane bulk modulus is 2(1 — 2v)/E
in the plane stress mode. Thus, bulk moduli of the matrix and inclusion are
kM = 308 MPa and k! = 248 MPa, respectively. Figure 10 shows PDFs of
k for different SVE sizes and BC modes. First, it is observed that the bulk
modulus is very insensitive to the choice of BC. Note that as mentioned pre-
viously, results for MKBC are identical to those from traction BC and thus
not shown in the figures presented hereafter. Second, for [ = é, the statisti-
cal variation in the homogenized bulk modulus falls between corresponding
values of the two constituent phases. This is the reflection of the variation
in the microscopic volume fraction shown in fig. 8, which spans almost the
entire range of 0 to 1. Third, as the SVE size increases, PDFs shrink and
their mean values approach the RVE limit bulk modulus. Also, through this
process PDFs appear to become more symmetric and mode values decrease.

Figure 11 better demonstrates these trends. In fact, by using the statistics
of k and a power law relation between lgyg and variations in the homogenized
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property [80, 81|, only about 1% variation in homogenized « is expected for a
VE size of lsyg ~ 800 pm. This condition is recommended in [14] in deciding
the size of the RVE and matches the RVE size chosen for this analysis, that
is L =800 pm (I =1).
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Figure 12: Variation of the bulk modulus as a function of the volume fraction
for different SVE sizes.

To clarify the source of the variation of bulk modulus, x is plotted versus
vy in fig. 12 for all SVE sizes. Elastic properties of an SVE are generally
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affected by elastic properties of its constituents, their relative volume ratio,
spatial arrangement of different phases, and the size of SVE. Herein, we
observe that s is a rather linear function of v; for all SVE sizes. That is,
there is almost no variations on « for all realized SVEs with a given vy.
Variations for | = 6%1 are slightly higher than those for larger SVE sizes,
but even for smallest SVEs variations are minimal. Given the minimum and
maximum values of vy for this SVE size, cf. fig. 9, the corresponding bulk
modulus varies from ™ = 308 MPa to x’/ = 248 MPa as v; ranges from
unity to zero.

From this figure it is clear that the main source of lower variability of s
in fig. 10 is lower variations of vy, cf. also fig. 9. In general, the particular
distribution of inclusions even for the same vy can have a noticeable impact
on homogenized elastic properties. As the SVE size increases, two things
happen; first vy of SVEs gets closer to the macroscopic volume ratio, as
shown in fig. 9, and second due to the large population of inclusions their
geometric effect also balances out among different SVE realizations. Herein,
we do not observe significant geometric effect even for smallest SVEs.

Another observation is the rather linear change of x versus vy. This
effect is more pronounced for the mixed boundary condition, as for traction
BC the relation is slightly convex. The Pearson correlation coefficients of
0.8573 and 0.8567 for mixed and traction BCs confirm this observation. The
rather linear dependence of k on vy and its weak dependence on particular
(geometric) representations of SVEs with the same vy are consequences of
the proximity of elastic moduli of two phases. It also explains the similarity
of PDFs in fig. 8 and fig. 10 and the size effect plots in fig. 9 and fig. 11,
for the fields vy and . Finally, this almost linear response implies that the
mean values of k for all SVE sizes are very close and are approximately equal
to 248 MPa, the linearly interpolated value of x from the two phases based
on the mean value of 0.2 for vy.

4.8. Fracture strength of SVEs

4.8.1. Angle-dependency of fracture strengths

The process detailed in §3.3.1 is used to characterize §,,(6) and 5,(9) for all
SVEs. The results for a sequence of four nested SVEs are shown in fig. 13 in
that the SVE corresponding to fig. 13a is the lower left quadrant of the SVE
corresponding to fig. 13b and so forth. Several observations can be made.
First, in all cases the shear strength is lower than the normal strength. The
smaller shear strength of both phases, e.g., ¥ = 381 vs. s = 330.6 MPa,
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Figure 13: Variation of normal §,(0) and shear 34(f) strengths with load
angle for sample SVEs with different sizes and traction BC.

the response of the interfacial fracture model, and the difference in stress
distributions for normal and shear SVE loadings contribute to smaller 3
than §,,.

The results for different SVE sizes also suggest the manner in which the
fracture strengths vary as a function of [. First, there is an overall decrease
to strengths. Second, the span of fracture strength, that is the difference
between maximum and minimum strengths across all angles of loading, de-
creases for both §, and §, as the SVE size increases. For example, high
anisotropy of strengths in fig. 13a is caused by positioning of a few inclusions
close to one of the boundaries of the corresponding SVE; as lgyg increases
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more inclusions are included in the SVE, resulting in a more isotropic re-
sponse. This effect holds for the elastic and fracture properties and is re-
ported herein for fracture strengths. From here we focus on the conservative
strengths S, and S, defined in (5).

4.8.2. Zone of fracture initiation

As discussed in §3.3.2, fracture can initiate in the bulk or in the matrix,
both based on the Mohr-Coulomb fracture model. In addition, fracture can
initiate along interfaces based on the definition of effective stress (14). As our
results demonstrate, for the material considered, almost no failure is initiated
in the inclusion phase for either normal or shear strength evaluations. Thus,
only the percentages of failure in the matrix and interface phases are shown
in fig. 14 and fig. 15 corresponding to S, and Sy, respectively. We first
study the dominant zone of failure for normal strength in fig. 14. For the
SVE size | = é, the failure is almost entirely initiated in the interface,
except 2.39% and 2.29% of failures being initiated in the matrix for mixed
and traction BCs, respectively. The very small percentage of failures in the
bulk are associated with SVEs containing no inclusion (hence no interfaces),
comprising ~ 1.5% of SVEs of this size, as well as SVEs with very low vy.
For [l = 32, the matrix failure percentage drops further to 0.1% and 0.03% for
mixed and traction BCs, respectively. For all larger SVEs, this percentage is
zZero.

The failure zone percentages for the shear strength S, are presented in fig.
15. It is observed that failure initiates in the matrix phase for a significantly
larger percentage of SVEs compared to that for S,. Under macroscopic
normal and shear loading the local stress state within the two bulk phases
are also mostly in normal and shear modes, except at some locations in the
vicinity of the inclusions. The interface tensile and shear strengths s! =

5\ = 359 MPa are much closer to shear strengths of the bulk phases (sM =

330.6 MPa and 5! = 306.6 MPa) than their tensile strengths (5 = 381 MPa
and §/ = 359MPa). Thus, the fracture is more likely to initiate in the
bulk phases under a shear loading compared to a tensile loading on an SVE.
This explains higher percentages of the failure in the matrix case in fig. 15
compared to fig. 14. As for the results of mixed BC in fig. 15a, a higher rate

of failure is observed in the matrix compared to fig. 15b.
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Figure 14: Distribution of failure zones for the tensile strength S, using
mixed and traction BCs. Yellow and dark blue colors correspond to failure
in the matrix and interface phases, respectively.
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Figure 15: Distribution of failure zones for the shear strength S, using mixed
and traction BCs. Yellow and dark blue colors correspond to failure in the
matrix and interface phases, respectively.

4.8.3. Dependence of fracture strength on volume fraction

Due to the importance of v; on homogenized properties, as shown for s
in §4.2, we first study its impact on fracture strengths. Normal and shear
fracture strengths for the entire data set for the mixed BC are plotted versus
vy in fig. 16. The singleton points corresponding to vy = 0 in both plots
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correspond to about 1.5% of SVEs with [ = 6—14 that are entirely comprised
of the matrix, thus exhibiting the highest normal and shear strengths of
S, = & = 381 MPa and S, = ¥ = 330.6 MPa, respectively. With even a
small volume fraction of the inclusion phase, the failure initiates along the in-
terface between the two phases and fracture strengths reduce to values in the
neighborhood of interface strengths §/ = §° = 287 MPa. This corresponds
to the drop of S, and S, for vy — 0% in comparison to those for vy = 0 in
fig. 16a and fig. 16b. Given the higher difference between 5 and 3¢ relative
to M — 5 we observe a sharper drop for S, in fig. 16a at vy ~ 0 compared
to that for S, in fig. 16b.

230 b 220l
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Vg vr
(a) Normal strength S, (b) Shear strength S,

Figure 16: The variation of normal and shear strengths as a function of
volume fraction for the mixed BC.

Fracture properties are expected to be very sensitive to the geometric
distribution of inclusions in an SVE. As shown in fig. 16, even for the same
vy there is a significant scatter in sampled fracture strengths. This feature
can be observed for all volume ratios in fig. 16 and can be contrasted to
the very weak influence of the distribution of the inclusion phase on the
bulk modulus in fig. 12. This contrast can be explained by the fact that
the fracture response is dictated by local stress concentration points, while
elastic properties average out the overall response of SVE. There are two
other observations regarding the scatter in fracture strengths. First, even for
the same vy, there is a lower scatter and overall smaller fracture strengths for
larger SVEs. Second, across all volume ratios the lowest fracture strengths
are obtained for the intermediate range of v; € [0.15,0.8]. This is due to the
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higher likelihood of fracture initiation along interfaces between the matrix
and interface phases, c¢f. §4.3.2, and the increased density of such interfaces
at this intermediate range of vy.
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Figure 17: The variation of normal and shear strengths as a function of
volume fraction for the traction BC.

Except for a few minor differences, the results for traction BC, shown in
fig. 17, follow the same trend discussed for mixed BC. Variations of fracture
strengths, hence the standard deviation, appears to be higher for the latter.
In addition, the drop in the strength near vy = 0 is more severe for traction
BC. This is believed to be due to lower stress concentrations around an SVE
boundary at this range of v, for mixes BC, resulting in a smoother drop of
strengths from their limiting values at vy = 0.

4.8.4. Distribution of fracture strengths

In this section, we study the distribution of fracture strengths for different
SVE sizes. Figures 18 and 19 show PDF's of fracture strengths for mixed and
traction BCs. As discussed in §4.3.3, the appearance of the secondary peaks,
around §) = 381 MPa and 5} = 330.6 MPa, in the PDFs for | = & is a
result of having ~ 1.5% (60 out of 4096) of SVEs in this group comprised of
only the matrix phase. Similar to fig. 10 the mode of PDF's and the range of
values decrease as the SVE size increases.

The size effect plots for S, and S;, shown in (20), better demonstrate the
effect of SVE size on these fracture strengths. Similar to fig. 11, the variation

of homogenized values decrease when [ increases. Clearly, this response is
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Figure 18: PDFs of normal and shear fracture strengths for different SVE
sizes and the mixed BC.
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Figure 19: PDFs of normal and shear fracture strengths for different SVE
sizes and the traction BC.

expected for any homogenized property. A more interesting observation is
about the variation of the mean fracture strengths. Larger SVEs in average
contain a larger number of inclusions. Due to the higher population of inclu-
sions (hence stress concentration points), SVEs are more likely to have worse
stress concentration points (compared to smaller SVEs). This explains the

decline of means of S,, and S, as [ increases. In contrast, the mean of elastic
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Figure 20: Minimum, maximum, and mean values of fracture strengths versus
SVE size [.

properties often converge to a unique value; for this particular problem, due
to the closeness of elastic moduli, the mean of k appears to be converged
from the largest sampled SVE sizes in fig. 11.

4.4. Homogenization-based fracture analysis

The goal of this section is to demonstrate the importance of material
inhomogeneity in dynamic brittle fracture, a concept introduced in §2.3.
Two main advantages of SVEs over phenomenological statistical models
for inducing such inhomogeneity are: First, SVE-homogenized fields are
microstructure-informed. Second, in phenomenological models, fracture strengths
are often randomly sampled at FE nodes or quadrature points; e.g., cf. the
Weibull sampling in [53, 12]. Therefore, the spatial correlation of the un-
derlying field is lost through this white noise sampling process. In contrast,
fracture strengths at the macroscopic material grid points are directly av-
eraged from neighboring SVE-homogenized values, cf. §2.3 and the third
subfigure in fig. 1; this naturally builds a correlation length scale, related to
the morphology of the microstructure and the SVE size [3], into the macro-
scopic SVE-homogenized field. The second advantage is important as [82, 3]
demonstrate the great impact of this correlation length on macroscopic frac-
ture response.

While any size of SVE can be used to construct the inhomogeneous mate-
rial fields for the 800 pm x 800 um RVE, we employ the 64 x 64 finest grid of

33



lsvg = 12.5 ym SVEs as its corresponding fields provide the closest approxi-
mation of the actual microstructure and its corresponding correlation length.
Moreover, it has been shown in [3] that if relatively large SVEs are used for
homogenization, the inhomogeneity is lost to an extent that certain features
of brittle fracture, such as microcracking, are not captured in fragmentation
simulations.

The analysis of fracture properties demonstrate their weak anisotropy,
justifying the use of conservative strengths S, and S, rather than the angle-
dependent strengths 5,(0) and 54(0); c¢f. §4.3.1. The use of SVE-homogenized
values is similar to the approach in [83], with the difference that herein instead
of elastic properties, the fracture strength is treated as the inhomogeneous
field. Various measures of elastic anisotropy, cf. e.g., [84], range less than
3% for the homogenized stiffness tensors. This justifies the use of the elastic
modulus and Poisson’s ratio to characterize the homogenized isotropic ma-
terial. For this material, the mean value of the elastic modulus is 502 GPa,
which is very close to that obtained by linear interpolation of elastic mod-
uli of the matrix and inclusion phases using the volume ratio of 0.2; cf. the
results in §4.2. Aside from the aforementioned statistical aspects, fracture
strength is the most important field to be considered inhomogeneous for the
problems considered herein; cf. the discussion in §2.3.

4.4.1. Fracture under tensile loading

Figure 21 shows the results for a simple tensile loading on the 800 pm x
800 pum domain. Roller boundary condition is used on all the four edges
of the domain, meaning that the normal displacement and shear traction
are specified. These values are all zero except the normal velocity of the
right edge which ramps up from zero to its terminal value of v = 5.4 m/s in
t = 35 ns. The boundary conditions correspond to a 1D tensile loading on the
domain in the horizontal direction for a homogeneous and isotropic material.
However, right after the nucleation of the first crack, and specifically due to
the inhomogeneity of the fracture strength the response of the problem is
genuinely two dimensional.

Parameters of the loading on the right boundary are chosen to demon-
strate the effect of the inhomogeneous field for S, on dynamic fracture pat-
terns. The longitudinal wave speed is ¢q = 9.80 km/s, meaning that it takes
tw = 81.7 ns for the wave to traverse the domain width. Thus, the ratio
t/tw = 0.429 means that the wave travels about half of the domain width
until it reaches its terminal value. This corresponds to a moderately fast
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(g) t =105 ns (h) t =107 ns (i) t = 215 ns

Figure 21: Solution visualization for a uniaxial tensile loading on a domain
with homogeneous elastic and inhomogeneous uniaxial tensile strength prop-
erties. The strain energy density is mapped to the color field, where blue to
red colors correspond to zero to high strain energy densities.
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rate of loading. The magnitude of the stress carried by the wave before be-
ing reflected on the left boundary is ¢ = 291 MPa, while the mean value of
S, across the whole domain is mean(S,) = 293 MPa; cf. fig. 20a. Thus, if
the fracture strength S, were homogeneous in the domain, no crack would
have been nucleated in the first pass of the elastic wave. The first cracks
would have been nucleated everywhere in the domain as the elastic wave re-
flected with twice the magnitude in stress (26 = 582 MPa > mean(S,,)) had
traversed the domain from the left to the right boundary.

In fig. 21 the strain energy density is mapped to color, with blue to red
colors corresponding to zero to high values. Figure 21a shows the solution
at t = 39 ns, which is slightly after the inward propagating elastic wave has
reached its terminal stress value of ¢ = 291. The first crack nucleation is
observed behind the wave front, slightly below the vertical central line of the
plate. In fig. 21b this crack has further propagated and two new cracks have
propagated behind the wave front. In fig. 21c, shortly after the nucleation
of the first crack, the region behind the wave front is highly cracked and
stress waves are significantly relaxed. Due to this relaxation and reduced
transmittance of wave through the damaged zone, the amplitude of left-
propagating elastic wave subdues. The lower density of crack nucleations
in the middle region of the plate in fig. 21d is a direct consequence of the
formation of this initial damaged zone.

The first reflection of the wave is observed in fig. 21e to fig. 21h, where
upon reflection the normal stress magnitude would have doubled for an intact
elastic material. The evolving high strain energy density region close to the
left boundary reflects this doubling effect of the stress wave. Similar to
the initial stage, where the wave entered the domain, the increased wave
magnitude leaves a highly damaged region behind. Further, as shown in fig.
21g and fig. 21h, the stress relaxation shields the regions inside the domain
as the reflected wave farther propagates inward.

For a fully homogeneous material the response would have been com-
pletely different; first there would have been no cracks nucleated in the first
pass of the elastic wave from the right to the left boundary. Second, upon
the reflection of the wave the entire height of the domain behind the dou-
bled wave would have failed simultaneously. The response predicted by the
inhomogeneous material model is clearly more realistic as cracks nucleate
from the weaker sites of the material and through stress relaxation shield the
neighboring areas from new crack nucleations.

The final stage of crack propagation is illustrated in fig. 21i. As observed,
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cracks further propagate and open during this stage. Interestingly, for a far
field velocity loading, the stress field increases upon each reflection of the
waves for a fully elastic solution. However, herein due to the creation and
propagation of cracks the stress fields are relaxed. In short, this example
demonstrates that the inhomogeneities in the fracture field result in realistic
fracture patterns even for problems that lack macroscopic stress concentra-
tion points.
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Figure 22: Comparison of the meshes for early and final stages of the crack
propagation. Crack segments on element boundaries are shown by red lines.

To demonstrate the level of mesh adaptivity that results from controlling
the bulk and fracture interface errors, and from aligning element boundaries
with proposed crack directions, front meshes of two stages of the solution are
shown in fig. 22. Due to the asynchronicity of the aSDG method, temporal
coordinate of vertices of the front are not uniform; hence reported times are
approximate values for the entire spatial domain. The front meshes closely
correspond to stages of the solution shown in fig. 21a and fig. 21i, respectively.
We observe that the front mesh is considerably refined between these two
stages. Moreover, the lower density of cracks inside the domain in fig. 22b is
a result of the shielding effect of left and right damaged zones, as explained
above.
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(a) ep = —1.0625 x 10°*  (b) ep = —1.1562 x 1074 (c) ep = —1.2188 x 104

(d) er = —1.3125 x 10°*  (e) ep = —1.4062 x 104 (f) ep = —1.4375 x 104

Figure 23: Crack nucleation and propagation for a circular region with fixed
boundaries undergoing increasing thermal strain eg.

4.4.2. Fracture under thermal loading

For this problem, a circular cut of radius 400 pum centered at the centroid
of the 800 pum x 800 pm domain is considered. The entire circumference of
the circle is fixed and the temperature is gradually decreased, resulting in a
temporally increasing and spatially uniform compressive eigenstrain. Given
that the thermal loading is fully specified, no heat conduction equation is
solved. A circular domain is chosen to completely eliminate possible stress
concentrations or anisotropy that could have resulted from the shape of the
domain, i.e., induced from corners of a rectangular domain. Similar to the
problem in §4.4.1, S, is inhomogeneous. Thus, even under this spatially
uniform and temporally increasing stress field, failure initiates at a location
with the minimum sampled S, rather than predicting the nonphysical re-
sponse of having the entire spatial domain failing at once. A sequence of
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crack nucleation and propagation for this problem is shown in fig. 23. Figure
23a illustrates the nucleation of the first crack on the lower left side of the
domain. More cracks are nucleated and propagated in figs. 23b to 23d, before
much higher density of cracks are observed in the last two figures.

5. Conclusion

A packing-optimization reconstruction algorithm was employed to virtu-
ally reconstruct the distribution of inclusions in a 800 pm x 800 pym domain
of a ZrB,-SiC composite. This domain was divided to thousands of SVEs
with relative edge sizes of é, %, 1—16, and %. A non-iterative mesh generation
algorithm named CISAMR was then employed to create high-quality con-
forming FE meshes needed to evaluate homogenized elastic properties and
angle-dependent initiation tensile and shear fracture strengths of SVEs under
three different boundary conditions: mixed BC, traction BC, and MKBC.

The statistical analysis of SVEs revealed interesting results. For the elas-
tic response it was shown that the main factor affecting the homogenized
bulk modulus x was the microscopic volume ratio of inclusions, vy. In fact,
effects of the SVE size and particular arrangement of inclusions were much
lower than that of vy, such that a functional relation could be observed be-
tween vy and k. For SVEs with the relative size 1—16, vy varied from zero to
almost unity, whereas for the largest size this range shrunk to [0.13, 0.28].
This change of the range of vy explains the size effect observed for &, in that
its variations decreases as the SVE size increases. Furthermore, the rather
linear relation between vy and x and the mean value of 0.2 for vy of all sam-
pled SVE sizes resulted in an approximately constant mean value for  for
any SVE size.

Various size effects were observed for fracture strength fields. First, as
the size of SVEs increased, homogenized fracture strength fields became more
isotropic. Second, unlike  that exhibited a rather constant mean value across
all SVE sizes, the mean of fracture strengths decreased for larger SVE sizes.
Third, similar to , the variation of strengths decreased as the SVE size in-
creased. The second and third observations are commonly known as the size
effect in quasi-brittle fracture. A high dependency of fracture strengths on
the particular lay-out of inclusions within an SVE was observed and unlike
k there was no clear relation between vy and fracture strengths. In fact,
the lowest fracture strengths were obtained for the intermediate ranges of
vy, which correspond to largest interface densities in SVEs. The analysis of
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fracture zones support this observation in that, except for a very small per-
centage of smallest SVEs that did not include any inclusions, tensile failure
entirely occurred at the interfaces, rather than inside the matrix or inclusion
phases. The further proximity of bulk shear and interface strengths resulted
in a significantly higher percentage of failures in the matrix phase under the
shear loading of SVEs.

Finally, the original 800 um x 800 pum domain was used for macroscopic
dynamic fracture simulations. The inhomogeneous S, field obtained by the
homogenization of SVEs was used as the tensile fracture strength in the
context of a macroscopic interfacial damage model. Various spacetime mesh
adaptive operations of the aSDG method enabled accurate resolution of frac-
ture process zones and exact tracking of crack paths. The incorporation of
material inhomogeneity was critical for the tensile stress and thermal strain
problems considered, as they lack macroscopic stress concentration points.
In fact, a completely different time-line and pattern of fracture would be pre-
dicted if a homogeneous fracture strength field were used. It should be noted
that the statistics of the SVEs can also be used to directly realize random
fields consistent with the homogenized properties; see for example [3]. Thus,
by eliminating the need to homogenize new SVEs, larger computational do-
mains can be more efficiently modeled. Moreover, the simulation of many of
such realizations enables the propagation of randomness from microscale to
macroscopic measures such as dissipated energy.

Many works demonstrate that by incorporating some level of material in-
homogeneity, certain macroscopic characteristics of dynamic brittle fracture
can accurately be captured. The approach used in this work, which is based
on the analysis of SVEs, promises to be more realistic than studies relying
on phenomenological statistical models for this purpose. Yet, the accuracy
of the macroscopic models should be further studied. Some important ex-
tensions are: Calibrating a macroscopic fracture model beyond the linear
fracture initiation limit; understanding if and how the results obtained by
SVE-homogenized properties converge to those from direct numerical simula-
tion of the microstructure; designing finite element error indicators and adap-
tive schemes that maintain or enhance such convergence properties. Given
that the main focus of this work was on deriving SVE-homogenized prop-
erties, rather than macroscopic fracture analysis, we will investigate these
questions in future research.

40



Acknowledgement

Abedi, Bahmani, and Clarke acknowledge partial support for this work

via the U.S. National Science Foundation (NSF), CMMI - Mechanics of Ma-
terials and Structures (MoMS) program Grant No. 1538332 and and NSF
CCF - Scalable Parallelism in the Extreme (SPX) program grant number
1725555. Soghrati, Yang, and Nagarajan acknowledge the funding from Air
Force Office of Scientific Research (AFOSR) under Grant No. FA9550-17-1-
0350, as well as partial support from the Ohio State University Simulation
Innovation and Modeling Center (SIMCenter) and the allocation of comput-
ing time from the Ohio Supercomputer Center (OSC).

References

1]

A. Rinaldi, D. Krajcinovic, and S. Mastilovic. Statistical damage me-
chanics and extreme value theory. International Journal of Damage
Mechanics, 16(1):57-76, 2007.

M. Genet, G. Couegnat, A.P. Tomsia, and R.O. Ritchie. Scaling strength
distributions in quasi-brittle materials from micro- to macro-scales: A
computational approach to modeling nature-inspired structural ceram-
ics. Journal of the Mechanics and Physics of Solids, 68(1):93-106, 2014.

P.L. Clarke, R. Abedi, B. Bahmani, K.A. Acton, and S.C. Baxter. Ef-
fect of the spatial inhomogeneity of fracture strength on fracture pat-
tern for quasi-brittle materials. In Proceedings of ASME 2017 Inter-

national Mechanical Engineering Congress € Exposition IMECE 2017,
page VO09T12A045, Tampa, Florida, USA, 2017. IMECE2017-71515.

A. Al-Ostaz and I. Jasiuk. Crack initiation and propagation in materials
with randomly distributed holes. Engineering Fracture Mechanics, 58(5-
6):395-420, 1997.

J Kozicki and J Tejchman. FEffect of aggregate structure on fracture
process in concrete using 2D lattice model. Archives of Mechanics, 59(4-
5):365-84, 2007.

X. Yin, W. Chen, A. To, C. McVeigh, and W.K. Liu. Statistical vol-
ume element method for predicting microstructure-constitutive property
relations. Computer Methods in Applied Mechanics and Engineering,
197(43-44):3516-3529, 2008.

41



[7]

8]

[10]

[11]

[12]

[13]

[14]

[16]

Zdenek P Bazant and Jaime Planas. Fracture and size effect in concrete
and other quasibrittle materials, volume 16. CRC press, 1997.

Karel Matous, Marc GD Geers, Varvara G Kouznetsova, and Andrew
Gillman. A review of predictive nonlinear theories for multiscale mod-
eling of heterogeneous materials. Journal of Computational Physics,
330:192-220, 2017.

W. Weibull. A statistical theory of the strength of materials. R. Swed.
Inst. Eng. Res., page Res. 151, 1939.

W. Weibull. A statistical distribution function of wide applicability.
Journal of Applied Mechanics, 18:293-297, 1951.

R. Abedi, R.B. Haber, and A. Elbanna. Mixed-mode dynamic crack
propagation in rocks with contact-separation mode transitions. In Pro-
ceeding: 51th US Rock Mechanics/Geomechanics Symposium, San Fran-
cisco, California, USA, 2017. ARMA 17-0679.

Reza Abedi, Robert B. Haber, and Philip L. Clarke. Effect of random
defects on dynamic fracture in quasi-brittle materials. International
Journal of Fracture, 208(1-2):241-268, 2017.

M. Ostoja-Starzewski. Microstructural randomness versus representa-
tive volume element in thermomechanics. Journal of Applied Mechanics-
Transactions of the ASME, 69(1):25-35, 2002.

T Kanit, S Forest, la Galliet, Va Mounoury, and D Jeulin. Determina-
tion of the size of the representative volume element for random com-
posites: statistical and numerical approach. International Journal of
solids and structures, 40(13):3647-79, 2003.

W.K. Liu, L. Siad, R. Tian, S. Lee, D. Lee, X. Yin, W. Chen, S. Chan,
G.B. Olson, L.E. Lindgen, M.F. Horstemeyer, Y.S. Chang, J.B. Choi,
and Y.J. Kim. Complexity science of multiscale materials via stochastic
computations. International Journal for Numerical Methods in Engi-

neering, 80(6-7):932-978, 2009.

P. Ponte Castaneda and P. Suquet. Nonlinear composites. Advances in
Applied Mechanics, 34, 1987.

42



[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

P. Suquet. Continuum micromechanics. CISM Courses and Lectures,
272, 1997.

Siavouche Nemat-Nasser and Muneo Hori. Micromechanics: overall
properties of heterogeneous materials, volume 37. Elsevier, 2013.

D. Jeulin and M. Ostoja-Starzewski. Mechanics of random and multi-
scale microstructures. CISM Courses and Lectures, 430, 2001.

Martin Ostoja-Starzewski. Material spatial randomness: From statisti-
cal to representative volume element. Probabilistic Engineering Mechan-
ics, 21(2):112 — 132, 2006.

Matthew Mosby and Karel Matous. Computational homogenization at
extreme scales. Extreme Mechanics Letters, 6:68-74, 2016.

S. Sakata, F. Ashida, and M. Zako. Kriging-based approximate stochas-
tic homogenization analysis for composite materials. Computer Methods
in Applied Mechanics and Engineering, 197(21-24):1953-1964, 2008.

M. Kaminski and M. Kleiber.  Numerical homogenization of n-
component composites including stochastic interface defects. Interna-
tional Journal for Numerical Methods in Engineering, 47(5):1001-1027,
2000.

S. Sakata, F. Ashida, and K. Enya. A microscopic failure probability
analysis of a unidirectional fiber reinforced composite material via a
multiscale stochastic stress analysis for a microscopic random variation
of an elastic property. Computational Materials Science, 62:35—-46, 2012.

S. Sakata, F. Ashida, and K. Ohsumimoto. Stochastic homogenization
analysis of a porous material with the perturbation method considering
a microscopic geometrical random variation. International Journal of
Mechanical Sciences, T7:145-154, 2013.

L. Huyse and M.A. Maes. Random field modeling of elastic properties
using homogenization. Journal of Engineering Mechanics, 127(1):27-36,
2001.

J. Segurado and J. LLorca. Computational micromechanics of compos-
ites: The effect of particle spatial distribution. Mechanics of Materials,
38(8-10):873-883, 2006.

43



28]

[29]

[30]

[36]

N. Tregger, D. Corr, L. Graham-Brady, and S. Shah. Modeling the effect
of mesoscale randomness on concrete fracture. Probabilistic Engineering
Mechanics, 21(3):217-225, 2006.

S.C. Baxter and L.L. Graham. Characterization of random compos-
ites using moving-window technique. Journal of Engineering Mechanics,
126(4):389-397, 2000.

Lee M. Taylor, Er-Ping Chen, and Joel S. Kuszmaul. Microcrack-
induced damage accumulation in brittle rock under dynamic loading.
Computer Methods in Applied Mechanics and Engineering, 55(3):301 —
320, 1986.

F. Homand-Etienne, D. Hoxha, and J.F. Shao. A continuum dam-
age constitutive law for brittle rocks. Computers and Geotechnics,
22(2):135-151, 1998.

J.F. Shao and J.W. Rudnicki. A microcrack-based continuous damage
model for brittle geomaterials. Mechanics of Materials, 32(10):607-619,
2000.

Vinh Phu Nguyen, Martijn Stroeven, and Lambertus Johannes Sluys.
Multiscale continuous and discontinuous modeling of heterogeneous ma-
terials: a review on recent developments. Journal of Multiscale Mod-
elling, 3(04):229-270, 2011.

Y.L. Lu, D. Elsworth, and L.G. Wang. Microcrack-based coupled dam-
age and flow modeling of fracturing evolution in permeable brittle rocks.
Computers and Geotechnics, 49:226-44, 2013.

Ming Yang, Anand Nagarajan, Bowen Liang, and Soheil Soghrati. New
algorithms for virtual reconstruction of heterogeneous microstructures.
Computer Methods in Applied Mechanics and Engineering, 338:275-298,
2018.

Ming Yang, Mingshi Ji, Ehsan Taghipour, and Soheil Soghrati. Cross-
linked fiberglass packs: Microstructure reconstruction and finite element
analysis of the micromechanical behavior. Computers and Structures,
209:182 - 196, 2018.

44



[37]

[38]

[39]

[41]

[42]

[43]

Soheil Soghrati, Anand Nagarajan, and Bowen Liang. Conforming to
interface structured adaptive mesh refinement: New technique for the
automated modeling of materials with complex microstructures. Finite
Elements in Analysis and Design, 125:24 — 40, 2017.

Soghrati S, Xiao F, and Nagarajan A. A conforming to interface struc-
tured adaptive mesh refinement technique for modeling fracture prob-
lems. Computational Mechanics, 59(4):667-684, 2017.

A. Nagarajan and S. Soghrati. Conforming to interface structured adap-
tive mesh refinement: 3D algorithm and implementation. Computational
Mechanics, pages 1-26, 2018.

P.L. Clarke and R. Abedi. Fracture modeling of rocks based on random
field generation and simulation of inhomogeneous domains. In Proceed-

ing: 51th US Rock Mechanics/Geomechanics Symposium, San Francisco,
California, USA, 2017. ARMA 17-0643.

K.A. Acton, S.C. Baxter, B. Bahmani, P.L.. Clarke, and R. Abedi.
Mesoscale models characterizing material property fields used as a basis
for predicting fracture patterns in quasi-brittle materials. In Proceed-
ings of ASME 2017 International Mechanical Engineering Congress €
Exposition IMECE 2017, pages VO09T12A061, 6 pages, Tampa, Florida,
USA, November 3-9, 2017. IMECE2017-71500.

Katherine A. Acton, Sarah C. Baxter, Bahador Bahmani, Philip L.
Clarke, and Reza Abedi. Voronoi tessellation based statistical volume el-
ement characterization for use in fracture modeling. Computer Methods
in Applied Mechanics and Engineering, 336:135-155, 2018.

Hai-Jun ZHOU, Qian FENG, Yan-Mei KAN, Le GAO, and Shao-Ming
DONG. Zrb2-sic coatings prepared by vapor and liquid silicon infil-
tration methods: Microstructure and oxidation resistance property. |,
28(10), 2013.

L. Piegl and W. Tiller. The NURBS book. Springer Science & Business
Media, 2012.

D. E. Goldberg. The Design of Innovation: Lessons from and for Com-
petent Genetic Algorithms. Kluwer Academic Publishers, Massachusetts,
2002.

45



[46]

[47]

[48]

[49]

[50]

[51]

K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist
multi-objective genetic algorithm: NSGA-II. [EEE Transaction on
Evolutionary Computation, 6(2):181-197, 2002.

V. Tvergaard and J. W. Hutchinson. The relation between crack growth
resistance and fracture process parameters in elastic-plastic solids. Jour-
nal of the Mechanics and Physics of Solids, 40:1377-1397, 1992.

X. P. Xu and Needleman. Numerical simulations of fast crack growth in
brittle solids. Journal of the Mechanics and Physics of Solids, 42:1397—
1434, 1994.

G. T. Camacho and M. Ortiz. Computational modelling of impact dam-
age in brittle materials. International Journal of Solids and Structures,
33:2899-2938, 1996.

Reza Abedi and Robert B. Haber. Riemann solutions and spacetime dis-
continuous Galerkin method for linear elastodynamic contact. Computer
Methods in Applied Mechanics and Engineering, 270:150-77, 2014.

O. Allix and A. Corigliano. Modeling and simulation of crack propa-
gation in mixed modes interlaminar fracture. International Journal of
Fracture, 77:111-140, 1996.

A Corigliano and M Ricci. Rate-dependent interface models: formu-
lation and numerical applications. International Journal of Solids and
Structures, 38:547-576, 1999.

N.P. Daphalapurkar, K.T. Ramesh, L. Graham-Brady, and J.F. Moli-
nari. Predicting variability in the dynamic failure strength of brittle
materials considering pre-existing flaws. Journal of the Mechanics and

Physics of Solids, 59(2):297-319, 2011.

J. Carmeliet and H. Hens. Probabilistic nonlocal damage model for con-
tinua with random field properties. Journal of Engineering Mechanics,
120(10):2013-2027, 1994.

F. Zhou and J.F. Molinari. Stochastic fracture of ceramics under dy-

namic tensile loading. International Journal of Solids and Structures,
41(22-23):6573-6596, 2004.

46



[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

J. Schicker and M. Pfuff. Statistical modelling of fracture in quasi-brittle
materials. Advanced Engineering Materials, 8(5):406-410, 2006.

S. Levy and J.F. Molinari. Dynamic fragmentation of ceramics, signa-
ture of defects and scaling of fragment sizes. Journal of the Mechanics
and Physics of Solids, 58(1):12-26, 2010.

R. Abedi and R.B. Haber. Spacetime dimensional analysis and self-
similar solutions of linear elastodynamics and cohesive dynamic fracture.
International Journal of Solids and Structures, 48(13):2076-87, 2011.

Belytschko T and Black T. Elastic crack growth in finite elements with

minimal remeshing. International Journal for Numerical Methods in
Engineering, 45(5):601-620, 1999.

Moés N, Dolbow J, and Belytschko T. A finite element method for
crack growth without remeshing. International Journal for Numerical
Methods in Engineering, 46(1):131-150, 1999.

Duarte CA, Babuska I, and Oden TJ. Generalized finite element meth-
ods for three-dimensional structural mechanics. Computers and Struc-
tures, 77(2):215-232, 2000.

T. Strouboulis, I. Babuska, and K. Copps. The design and analysis of
the generalized finite element method. Computer Methods in Applied
Mechanics and Engineering, 181:43-69, 2000.

Alejandro M Aragén and Angelo Simone. The discontinuity-enriched
finite element method. International Journal for Numerical Methods in
Engineering, 112(11):1589-613, 2017.

Omid Omidi, Reza Abedi, and Saeid Enayatpour. An adaptive mesh-
ing approach to capture hydraulic fracturing. In The 49th US Rock
Mechanics/Geomechanics Symposium, San Francisco, California, USA,

2015. ARMA 15-572.

Reza Abedi, Robert B. Haber, and Boris Petracovici. A spacetime dis-
continuous Galerkin method for elastodynamics with element-level bal-
ance of linear momentum. Computer Methods in Applied Mechanics and
Engineering, 195:3247-73, 2006.

47



[66]

[67]

[68]

[74]

Reza Abedi, Morgan A. Hawker, Robert B. Haber, and Karel Matous.
An adaptive spacetime discontinuous Galerkin method for cohesive mod-
els of elastodynamic fracture. International Journal for Numerical Meth-
ods in Engineering, 1:1-42, 20009.

R. Abedi, R. B. Haber, S. Thite, and J. Erickson. An h-adaptive
spacetime—discontinuous Galerkin method for linearized elastodynam-
ics. European Journal of Computational Mechanics, 15(6):619-42, 2006.

Hill R. On the micro-to-macro transition in constitutive analyses of
elastoplastic response at finite strain. In Mathematical Proceedings of the
Cambridge Philosophical Society, volume 98, pages 579-590. Cambridge
Univ Press, 1985.

Hossein Ahmadian, Ming Yang, Anand Nagarajan, and Soheil Soghrati.
Effects of shape and misalignment of fibers on the failure response of
carbon fiber reinforced polymers. Computational Mechanics, 2018.

Kenjiro Terada, Muneo Hori, Takashi Kyoya, and Noboru Kikuchi. Sim-
ulation of the multi-scale convergence in computational homogenization
approaches. International Journal of Solids and Structures, 37(16):2285—
2311, 2000.

Helen M Inglis, Philippe H Geubelle, and Karel Matous. Boundary con-
dition effects on multiscale analysis of damage localization. Philosophical
Magazine, 88(16):2373-2397, 2008.

Sinisa Dj Mesarovic and Jagan Padbidri. Minimal kinematic boundary
conditions for simulations of disordered microstructures. Philosophical
Magazine, 85(1):65-78, 2005.

Vinh Phu Nguyen, Oriol Lloberas-Valls, Martijn Stroeven, and Lamber-
tus Johannes Sluys. Homogenization-based multiscale crack modelling:
From micro-diffusive damage to macro-cracks. Computer Methods in
Applied Mechanics and Engineering, 200(9):1220-36, 2011.

Evert Hoek and Edwin T Brown. Underground excavations in rock. CRC
Press, 1980.

48



[75]

[76]

[77]

[30]

[81]

[82]

[83]

[84]

Eric W Neuman, Gregory E Hilmas, and William G Fahrenholtz.
Strength of zirconium diboride to 2300 c¢. Journal of the American
Ceramic Society, 96(1):47-50, 2013.

DE Wiley, WR Manning, and O Hunter Jr. Elastic properties of poly-
crystalline tib2, zrb2 and hfb2 from room temperature to 1300 k. Journal
of the Less Common Metals, 18(2):149-157, 1969.

Govindaraajan B Yadhukulakrishnan, Sriharsha Karumuri, Arif Rah-
man, Raman P Singh, A Kaan Kalkan, and Sandip P Harimkar. Spark
plasma sintering of graphene reinforced zirconium diboride ultra-high
temperature ceramic composites. Ceramics International, 39(6):6637—
6646, 2013.

Munro R G. Material properties of a sintered a-sic. J. Phys. Chem. Ref.
Data, 26(5), 1997.

Bahador Bahmani, Ming Yang, Anand Nagarajan, Philip L. Clarke,
Soheil Soghrati, and Reza Abedi. An integrated approach for statisti-
cal microscale homogenization to macroscopic dynamic fracture analy-
sis. In Proceedings of ASMFE 2018 International Mechanical Engineering
Congress € FExposition IMECE 2018, Pittsburgh, Pennsylvania, USA,
2018. Accepted.

G. Matheron. FEstimating and Choosing. An Essay on Probability on
Practice. Springer, Berlin, 1989.

Ch Lantuejoul. Ergodicity and integral range. Journal of Microscopy,
161(3):387-403, 1991.

L.S. Dimas, T. Giesa, and M.J. Buehler. Coupled continuum and dis-
crete analysis of random heterogeneous materials: Elasticity and frac-
ture. Journal of the Mechanics and Physics of Solids, 63(1):481-490,
2014.

Arash Noshadravan and Roger Ghanem. A probabilistic mesoscale dam-
age detection in polycrystals using a random matrix approach. Journal
of Intelligent Material Systems and Structures, 24(8):1007-17, 2013.

Shivakumar I Ranganathan and Martin Ostoja-Starzewski. Universal
elastic anisotropy index. Physical Review Letters, 101(5):055504, 2008.

49



	Introduction
	Macroscopic dynamic fracture analyses
	Virtual microstructure reconstruction
	Macroscopic interfacial damage model
	SVE-homogenized properties for macroscopic fracture analysis
	Mesh-adaptive aSDG method for macroscopic fracture analysis

	Microscopic analyses
	Automated mesh generation
	Boundary conditions
	Effective fracture strength
	Angle-dependency of fracture strengths
	Failure criteria


	Results and discussions
	Volume ratio of inclusions
	Bulk modulus of SVEs
	Fracture strength of SVEs
	Angle-dependency of fracture strengths
	Zone of fracture initiation
	Dependence of fracture strength on volume fraction
	Distribution of fracture strengths

	Homogenization-based fracture analysis
	Fracture under tensile loading
	Fracture under thermal loading


	Conclusion

