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Abstract

To model the sample-to-sample variations and the effect of microscale in-
homogeneities on fracture response, statistical volume elements (SVEs) are
employed to homogenize the elastic and fracture properties of ZrB2-SiC, a
two-phase particulate composite often used as a thermal coating. In the
mesoscale analysis, 2D finite element models are generated using a non-
iterative, automated mesh generation algorithm named Conforming to In-
terface Structured Adaptive Mesh Refinement (CISAMR). The analysis of
SVEs under mixed, traction, and minimal kinematic boundary conditions
yields their angle-dependent tensile and shear fracture strengths and elastic
stiffnesses. This study shows that homogenized fracture strengths are highly
dependent on the SVE size and the particular geometric distribution of inclu-
sions (even for similar volume ratios), whereas elastic properties are mainly
a function of the volume fraction. Moreover, mean values of strength and
bulk modulus, respectively, decrease and remain almost constant as the SVE
size increases. For the macroscale analysis, an isotropic, inhomogeneous field
of fracture strength is generated from the homogenization of SVEs. The
asynchronous Spacetime Discontinuous Galerkin (aSDG) method is subse-
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quently employed for fracture analysis under uniaxial tensile and thermal
strain loadings.

Keywords: Statistical volume element, Brittle fracture, Size effect, Mesh
generation, CISAMR, Spacetime Discontinuous Galerkin

1. Introduction

Unlike the elastic response, fracture and damage are inherently local phe-
nomena, in that they often initiate from microstructural defects or material
interfaces. For ductile materials, diffused areas undergoing large plastic de-
formation reduce their sensitivity to microstructural design. On the other
hand, due to the lack of significant bulk energy dissipative mechanisms, quasi-
brittle materials are highly sensitive to their microstructure [1, 2]. Some con-
sequence of the (high) dependency of the failure response on microstructural
design are localized zones of failure even in the absence of macroscopic stress
concentration points [3], variations of the fracture pattern under the same
problem set-up [4], ultimate strength/fracture energy uncertainties [5, 6], and
decrease of the mean and the variation of fracture strength known as the size
effect [7].

Material defects and other microstructural features can be modeled ei-
ther explicitly or implicitly [8]. Explicit models directly incorporate defects
larger than a certain size in the analysis. However, due to the high com-
putational cost, their use is limited to small space and time scales. Implicit
approaches, on the other hand, only represent the impact of defects in an av-
eraged, statistical, or homogenized sense. For example, the Weibull’s weakest
link model [9, 10] can qualitatively explain the size effect. Also, Abedi et al.
showed that by assigning point-wise values of fracture strength based on the
Weibull model, realistic fracture patterns can be captured for problems that
lack macroscopic stress concentration points, e.g., fracture under dynamic
compressive loading [11] and fragmentation [12] studies. However, many of
such phenomenological models lack a direct connection to the material mi-
crostructure. As will be discussed next, homogenization approaches address
this concern and provide a direct link between micro and macro scales by
averaging the response in a Volume Element.

Continuum thermomechanics is founded on the concept of Representa-
tive Volume Element (RVE), which is well defined for [13]: (i) a unit cell
in a periodic microstructure; and (ii) a statistically representative Volume
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Element (VE) containing a large number of microscale elements. There are
many popular criteria to decide whether a VE is large enough to be consid-
ered representative for group (ii); see for example [14, 15] and the references
therein. Under such conditions, the material in an RVE can be represented as
a continuum. Several classical homogenization approaches attempt to obtain
effective material properties of an RVE; cf. [16, 17, 18, 19, 20, 21].

An RVE is not well-defined, when neither of the two aforementioned con-
ditions is satisfied. Then, the so-called Statistical Volume Element (SVE)
may still represent the material in continuum form, although the random-
ness in material properties must be properly characterized. Perturbations
to geometry and material properties of a periodic unit cell violate the def-
inition of group (i) RVEs and are the basis for the definition of SVEs in
[22, 23, 24, 25]. When a VE is not large enough to be considered an RVE
from group (ii), a collection of them should be considered to characterize the
statistics of the homogenized property. For these SVEs, the type of boundary
conditions [26], clustering/positioning of microstructures [27], and variations
in the observation window [28, 29] all affect the statistics of the homogenized
properties.

Beyond numerous works in the elastic regime, RVEs are used in [30,
31, 32, 33, 34] to homogenize and calibrate various fracture models. Yet,
the statistical characterization of fracture properties of a material by SVEs
can be more advantageous; first, by maintaining some level of heterogeneity,
even for a macroscopically homogeneous material, weak points of a realization
based on SVE statistics can result in localized fracture for problems that lack
macroscopic stress concentration points. Second, variations in the fracture
pattern, ultimate load, and fracture energy all can be represented by realizing
random fields that are consistent with the statistics of values homogenized by
SVEs. Thus, by differing from RVEs in preserving the spatial and sample-to-
sample variations, they address several concerns of a macroscopic model for
failure analysis. Yet, the analysis of domains characterized by SVEs can be
significantly more economical than an explicit approach, as microstructural
features are no longer directly incorporated in the (computational) model.

The goal of the this manuscript is to use SVEs to homogenize both elas-
tic and fracture properties and subsequently employ the homogenized fields
for macroscopic dynamic fracture analysis. The material system adopted for
this study is a ZrB2-SiC particulate composite, which is often implemented
as a thermal barrier coating for ultra-high temperature applications. While
the ZrB2 matrix has a high melting point and thermal stability, embedded
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SiC particles improve the oxidation resistance of the resulting composite
material in aggressive environments. A new microstructure reconstruction
algorithm relying on animation-inspired packing and optimization phases
[35, 36] is employed to virtually build a realistic RVE of this ZrB2-SiC based
on morphological and statistical information extracted from imaging data.
Thousands of SVEs with different sizes are then extracted from this RVE to
simulate their micromechanical behavior subject to macroscopic tensile and
shear loads. In order to automate the modeling process, a new mesh gen-
eration algorithm, named Conforming to Interface Structure Adaptive Mesh
Refinement (CISAMR) [37, 38, 39] is implemented to build the finite ele-
ment (FE) model associated with each SVE. The unique feature of CISAMR
is the ability to non-iteratively transform a simple structured grid into a
high-quality conforming mesh for problems with complex morphologies.

Although SVEs have been used for fracture analysis studies (e.g., [40, 41]),
these SVEs were not constructed based on realistic material microstructures;
i.e., limited to domains containing micro-cracks [40] and circular inclusions
[41]. Further, highly simplified models were used to derive fracture initiation
strengths, in that micro-cracks did not interact [40] and fracture could only
nucleate at interfaces between matrix and inclusion phases [42]. One of the
main contributions of this manuscript is providing a significantly more accu-
rate characterization and analysis of SVEs compared to [40, 42]. The virtual
microstructure reconstruction results in a highly realistic representation of
ZrB2-SiC RVE, together with CISAMR, enables constructing highly-fidelity
FE simulations at the SVE level. Beyond these advances in modeling capa-
bilities, the fracture initiation criteria not only takes into account the damage
nucleation along particle-matrix interfaces [41] but also allows its initiation
in each phase separately.

The second key contribution of this work is the in-depth analysis of ho-
mogenized elastic and fracture properties. The homogenization of SVEs is
formulated for traction, mixed displacement / traction, and minimal kine-
matic boundary conditions (BCs). In addition, normal and shear fracture
strengths are characterized for arbitrary angle of loading. Several interesting
trends are observed by investigating the effect of BCs, SVE size, and other
parameters. For example, for the same SVE size and microscopic volume
fraction of inclusions, the bulk modulus is rather constant while the frac-
ture strengths are highly variable, implying its sensitivity to the geometric
distribution of inclusions in SVE. Moreover, homogenized fracture strength
and bulk modulus exhibit different dependencies on the size of SVE. Finally,
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we provide a brief overview of this algorithm, which relies on a hierarchical
bounding box (BBox) representation of particles to virtually pack them in
the domain. Morphologies of SiC particles in this RVE are extracted from
scanning electron microscopy (SEM) images of a ZrB2-SiC thermal coating
presented in [43]. After the segmentation of images to isolate a representa-
tive set of inclusions composed of 97 particles, their morphologies are char-
acterized in terms of Non-Uniform Rational Basis Splines (NURBS) [44] and
stored in a shape library. NURBS are parametric functions that can ac-
curately describe geometries of randomly-shaped objects and in this work
provide an explicit representation of material interfaces in synthesized RVE.

(a) (b)

Figure 2: (a) Virtually reconstructed ZrB2-SiC RVE with Vf = 20%; (b)
checking intersections between hierarchical BBoxes of embedded particles
during the packing process.

The virtual reconstruction of the ZrB2-SiC microstructure involves se-
lecting a particle Pi from the shape library, rotating that at a random angle
0 < θ < 2π, and trying to add that to RVE at an arbitrary location xi.
Clearly, Pi can be embedded in at this location only if it does not overlap
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with any of the existing particles. Otherwise, a new random location must
be assigned to Pi and the process is continued until the volume fraction Vf

of particles reaches the target value. As shown in fig. 2b, a set of hierarchi-
cal (primary and secondary) BBoxes representing each particle is employed
to identify overlaps between new and existing particles during the packing
process. Note that the secondary BBoxes shown in this figure are defined on
a set of consecutive points on the periphery of each particle, coordinates of
which are calculated using the NURBS function characterizing its shape.

In order to add a new particle to RVE, we first check intersections between
its primary BBox with those of existing particles. If no overlap is detected,
this computationally inexpensive calculation (heuristic check) gives the per-
mission to embedded the new particle in RVE at the designated location.
In order to further enhance this process, a quadtree search algorithm is em-
ployed to quickly identify existing particles in the vicinity of a new particle
and minimize the corresponding computational cost. This avoids the un-
necessary checking of intersections between primary BBox of a new particle
and those of hundreds or thousands of existing particles far away from that.
Assuming that the numbering shows in fig. 2b corresponds to the order at
which particles are embedded in RVE, this approach would be sufficient to
determine that particles 1, 2, 3, 7, 8, 9, 10, and 12 can be added to the mi-
crostructure without overlapping with any of previously embedded particles.

Given the arbitrary shape of particles used in the virtual reconstruction
of the ZrB2-SiC microstructure, some of which with concave geometries (cf.,
fig. 2a), checking intersections between primary BBoxes of new and existing
particles overestimates the overlap between them. In other words, it is still
probable that two particles do not intersect with one another although their
primary BBoxes does, which is the case for particles 1-5, 2-4, 4-6, and 2-11 in
fig. 2b. In such cases, we proceed to checking intersections between secondary
BBoxes of each pair of particles to more accurately determine whether they
overlap with one another or not. To minimize the number of calculations
at this stage, we first identify the overlapping box of primary BBoxes of
each pair of particles. If none of the secondary BBoxes of the new particle
intersects with this box, the particles do not overlap and the new particle
can be added to the microstructure (pairs 4-6 and 2-11). Otherwise, the
same task is carried out for secondary BBoxes of the existing particle and
the overlapping box to determine the feasibility of adding the new particle.
If some of the secondary BBoxes of both the new and existing particles
intersect with the overlapping region of their primary BBoxes, they still may
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Figure 3 shows the point P on a crack surface. The local coordinate
system (x′, y′) is at angle θ with respect to the global system x, y. Interfacial
constitutive equations relate the mechanical fields from the two sides of the
interface to the traction target vector s∗ = [s∗n, s∗s] on P . For example,
traditional cohesive models, e.g., [47, 48, 49], employ a Traction-Separation
Relation (TSR) to related the separation vector ∆u = P+ − P− to the
traction s∗. In lieu of a TSR we employ an interfacial damage model [12].
A damage parameter D linearly interpolates between fully bonded (D = 0)
and debonded (D = 1) states; thus, s∗ is given by,

s∗ := (1−D)s̆B +Ds̆D, (1)

where s̆B and s̆D are dynamic traction solutions for perfectly bonded and
debonded interfaces obtained by a local Riemann solution [50]. A similar
equation interpolates target velocity values for each side of the interface.

At point P , s̆Bn(θ) and s̆Bs (θ) denote the normal and shear components
of bonded traction s̆B, along x′ and y′ directions, respectively. The effective
stress, defined by

s̆(θ) :=

√

〈s̆Bn(θ)〉
2 + (β(θ)s̆Bs (θ))

2, (2)

drives the damage evolution. The positive part operator 〈.〉 ensures that
compressive normal traction does not contribute to damage evolution, and
β(θ) is the macroscopic mode mixity at angle θ [12]. A time-delay model
similar in form to that in [51, 52] is used to govern the damage evolution,

Ḋ =
1

τ̃
G(〈Dt −D〉) (3)

where Dt is the damage value that would have been realized under quasi-
static conditions and G is a monotonically increasing function satisfying
D(0) = 0 and G(〈Dt −D〉) ≤ 1. The form of (3) implies that 0 ≤ Ḋ ≤ 1/τ̃
and Ḋ → 0 when D → Dt. Damage evolution is stress-driven in that Dt is
a function of the ratio of s̆(θ) to quasi-static tensile strength s̃n(θ) at angle
θ. Thus, (2) implies that mode mixity is given by,

β(θ) :=
s̃n(θ)

s̃s(θ)
. (4)

where s̃s(θ) is the quasi-static shear strength at angle θ.
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2.3. SVE-homogenized properties for macroscopic fracture analysis

The fracture response of quasi-brittle materials is highly sensitive to their
microstructure. Specially in fragmentation, due to the lack of macroscopic
stress concentration points, inhomogeneity of material properties greatly af-
fects the fracture response. For example, it has been shown in [3] that un-
realistic patterns are observed when homogeneous fields are used for elastic
and fracture properties. In contrast, if inhomogeneities are resolved at a
sufficiently small scale, expected dynamic brittle fracture features such as
microcracking and crack branching are successfully captured. Similarly, [53]
demonstrates the importance of using an inhomogeneous strength field for
some dynamic fracture problems.

To accommodate material inhomogeneity at the RVE-level, we adopt a
numerical homogenization approach, in that homogenized material properties
are subsequently used as input parameters to a macroscopic problem. This
process is depicted in fig. 1. The 800µm×800µm RVE is covered by non-
overlapping SVEs of a certain size. Through the homogenization of an SVE,
for any given field, a value is assigned at the centroid of SVEs. These values
are used to linearly interpolate the given field at any other point in the
original domain. The second subfigure in fig. 1 shows a fracture strength field
constructed based on a 1/32× 1/32 division of RVE. Thus, this process can
be viewed as an averaging and upscaling of microscale properties to within
a level of inhomogeneity determined by the size of SVEs used to subdivide
the RVE; the finer the SVEs, the more variation of material properties are
maintained in constructed homogenized fields.

In principle, elastic properties and angle-dependent strengths s̃n(θ) and
s̃s(θ), homogenized in SVEs, can be used to construct such homogenized fields
for the macroscopic fracture analysis. However, in the present work first we
only consider the inhomogeneity of fracture properties. This is justified by
less variations of homogenized elastic properties, which will become evident
in §4. In addition, fracture strength has been the field that is considered
inhomogeneous in majority of similar studies, see for example [54, 55, 56, 57,
53].

Moreover, instead of maintaining the angular dependency of fracture
strengths, we use S̃n and S̃s, defined by,

S̃n := minθ∈[0, π]s̃n(θ), (5a)

S̃s := minθ∈[0, π]s̃s(θ). (5b)
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as conservative minimum values of s̃n(θ) and s̃s(θ) over all angles of loading;
note that s̃n(θ+π) = s̃n(θ) and s̃s(θ+π) = s̃s(θ). Finally, to further simplify
the macroscopic analysis, only S̃n is treated as inhomogeneous and instead
of a space- and angle-dependent mode mixity β (4), its mean value over all
space and angle positions is considered. As will be observed in §4.3.1, this
simplification is acceptable due to the weak anisotropy of fracture strengths.

Finally, we clarify that the damage model from §2.2 is only partially
calibrated, because from its two intrinsic scales of strength S̃n and time τ̃
only S̃n is treated as an inhomogeneous field. Given that fracture energy φ̃
scales linearly with the product of fracture strength and time scales, cf. [58],
this implies that by taking a constant value for τ̃ , φ̃ proportionally varies
with S̃n. The same type of approximation is observed in TSR-based models
in [55, 56, 57, 53] where again S̃n is treated as inhomogeneous, while the
intrinsic separation of TSR is considered constant. Similar to the proposed
damage model, φ̃ linearly scales with S̃n for these TSR-based models. Note
that ideally both intrinsic scales of an interfacial fracture model should be
homogenized. However, it has been shown in [53] that even by considering
S̃n alone to be inhomogeneous, realistic fragmentation patterns are captured
and macroscopic measures such as ultimate load and fracture energy are
rather insensitive to the macroscopic mesh gradation and the scale at which
inhomogeneity is considered.

2.4. Mesh-adaptive aSDG method for macroscopic fracture analysis

At the macroscale a crack is nucleated at a position such as N in fig. 3
if the condition s̆(θ) ≥ s̃n(θ) holds for any angle θ ∈ [0, 2π). Similarly, an
existing crack propagates from its tip, such as position Q in fig. 3, at an angle
θ0 for which s̆(θ0)/s̃n(θ0) takes a maximum value greater than unity over all
angles θ ∈ [0, 2π). These are collectively called the principal of maximum
effective circumferential stress for crack nucleation and propagation. Once
a crack propagates, the evolution model (3) is used to determine the rate
at which D increases to unity to model the process of interface debonding.
For all processes of crack nucleation, propagation, and damage evolution
on existing crack surfaces, rather than s̃n(θ), s̆(θ) is compared against the
angle-independent and inhomogeneous strength S̃n.

A major challenge in computational dynamic fracture is tracking com-
plex fracture patterns such as those shown in the last subfigure in fig. 1.
Extended Finite Element Methods (XFEMs) [59, 60], Generalized Finite Ele-
ment Methods (GFEMs) [61, 62], and Discontinuity-Enriched Finite Element
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Methods (DE-FEMs) [63] are a few of the approaches that enrich the element
solution space to model the crack propagation, nucleation, and bifurcation
within elements. Herein, we take a different approach, where by mesh adap-
tive operations in spacetime, element boundaries are aligned with proposed
crack propagation directions [64].

We employ the asynchronous Spacetime Discontinuous Galerkin (aSDG)
method [65] for macroscopic dynamic fracture simulations. Various error
indicators and spacetime adaptive operations ensure the accuracy of results.
Dual error indicators in the bulk and on fracture interfaces control the energy
dissipation and satisfaction of fracture constitutive relations, respectively
[66]. The h-adaptive scheme [67] adjusts element sizes in the spacetime to
efficiently satisfy the two aforementioned error conditions. Finally, cracks are
nucleated at vertices of the space domain when the effective stress (2) reaches
the (inhomogeneous) value of S̃n sampled at a given vertex. The principal
of maximum effective circumferential stress is employed to determine the
direction of crack propagation. The latter set of adaptive operations are
particularly critical in capturing realistic fracture patterns. A more detailed
review of this adaptive method for fracture simulations and its comparison
with aforementioned enriched methods can be found in [12].

3. Microscopic analyses

3.1. Automated mesh generation

The domain shown in fig. 2, with edge size L = 800 µm, is used for the
construction of SVEs. Square SVEs are constructed with four different edge
sizes of lSVE = 12.5 µm, 25 µm, 50 µm, and 100 µm. The non-dimensional
size of an SVE is defined as,

l :=
lSVE

L
. (6)

Thus, the non-dimensional sizes of sampled SVEs are 1
64
, 1

32
, 1

16
, and 1

8
.

For these sizes, the RVE is divided into 4096, 1028, 256, and 64 SVEs,
respectively.

The homogenization-based fracture analysis presented in §4 relies on the
FE approximation of the stress field in all the 5440 SVEs sampled above.
Clearly, performing such a large number of simulations would not be feasible
without an utter automation of the modeling process, i.e., converting the ge-
ometrical model corresponding to each SVE into an appropriate conforming
mesh. Further, it is equally important to create a high-quality conforming
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mesh for each SVE (small element aspect ratios and negligible discretization
error) to accuracy approximate sites of stress concentrations along material
interfaces. It is also highly desirable that the mesh is adaptively refined in
such regions to maintain an acceptable computational cost without compro-
mising the accuracy.

In order to automatically generate a high fidelity FE model for each
SVE, we implement a new non-iterative mesh generation algorithm named
Conforming to Interface Structured Adaptive Mesh Refinement (CISAMR)
[37, 39]. In 2D, CISAMR transforms a structured mesh composed of quadri-
lateral elements into a conforming mesh, in which element aspect ratios are
guaranteed to be less than 3. This is achieved by overlaying the domain
geometry (e.g., ZrB2-SiC SVE) with a structured mesh, where CISAMR can
automatically detect background elements intersecting with material inter-
faces, as well as relative position of mesh nodes with respect to each phase
(e.g., inside or outside of a particle). The transformation of the initial grid
into a conforming mesh occurs in three steps: (i) h-adaptive refinement of
background elements in the vicinity of material interfaces; (ii) r-adaptivity
of nodes of elements cut by each interface, during which some of the nodes
are moved to the interface while others maintain their original position; (iii)
subdividing nonconforming elements, as well as elements with hanging nodes
(created during the h-adaptivity phase) to build the final conforming mesh.
It must be noted that in order to facilitate the homogenization-based fracture
analysis presented in this article, the last phase is extended to all background
quadrilateral elements to obtain a mesh composed of triangular elements only.

Figure 4 illustrates a small sub-region of the conforming mesh created
for one of the SVEs studies in this work, which clearly shows proper aspect
ratios of resulting elements in the vicinity of material interfaces. For this
SVE and all SVEs studied in the following sections, initial structured meshes
with an element size of h = 1 µm and two levels of h-adaptive refinement
along particle-matrix interfaces are employed to generate corresponding con-
forming meshes. Note that additional levels of refinement might be necessary
in regions where two material interfaces are in close proximity to properly
capture stress concentrations in such areas. It is evident that CISAMR can
highly facilitate the current homogenization-based study by enabling the au-
tomated construction of FE models for thousands of SVEs, which only re-
quires overlaying a structured mesh corresponding to each SVE size with
different regions of RVE shown in fig. 2a.
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While implementing either traction or mixed BCs in an FE model to
simulate the micromechanical behavior of SVE is straightforward, unrealistic
stress concentrations caused by such BCs in the vicinity of domain bound-
aries could undermine the accuracy [70]. Alternatively, it has been shown
that using the periodic BC (PBC), together with applying εM to all elements
of SVE (rather than applying its effect along domain boundaries), can con-
siderably alleviate this problem [71]. However, a major limitation of PBC is
that it can only be utilized in a periodic FE mesh, which in turn requires
an SVE with a periodic microstructure. Thereby, because SVEs created as
subdomains of the virtual RVE depicted in fig. 2a lack this characteristic, we
cannot implement PBC in the present study.

As an alternative to PBC for problems with non-periodic microstructures,
one can implement the Minimal Kinematics BC (MKBC) [72], in which εM
is imposed on SVE edges in a weak sense, i.e.,

εMij
(xM) =

1

2|Θ|

∫

Λ

(

umi
nmj

− umj
nmi

)

dΛ, (9)

where |Θ| is the area of SVE and i, j are indicial notations. The following
degrees of freedom are also constrained at arbitrary-selected nodes A and B
on domain boundaries to prevent rigid body motion: uA

m = 0 and uB
m2

=
0. More details regarding the implementation of MKBC, together with a
comparison of its performance with PBC, is provided in [71].

A thorough study on the impact of different SVE sizes and BCs (mixed,
traction, and MKB) on corresponding PDFs, as well as the homogenization-
based fracture response of RVE is presented in §4. As a prelude to this
study, fig. 5 shows a comparison between FE approximations of the normal
stress field in the x-direction (σxx) in an SVE with lSVE = 50 µm subject
to mixed BC, traction BC, and MKBC representing a macroscopic tensile
stress in the same direction. This figure also illustrates normal stress fields
in four smaller SVEs with lSVE = 25 µm subject to different BCs, each of
which is a quadrant of the SVE with lSVE = 50 µm. In each case, a unit
value of corresponding BC (i.e., unit displacement, traction, or macroscopic
strain) is applied to SVE. Resulting stress field are then normalized to have
the same range. Note that ranges of σxx in color bars associated with mixed
BC compare to traction BC and MKBC are quite similar. However, focusing
on the left edge of SVE with lSVE = 50 µm, it is evident that using mixed BC
leads to more pronounced stress concentrations in this region. For all BCs,
differences between stress fields away from the domain edges are negligible,
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25 µm) simulated under mixed BC show a notable discrepancy with the FE
approximation of the normal stress in the lower half of large SVE.

It is worth mentioning that, as will be shown in §4, homogenized values
for elastic moduli and fracture strengths evaluated for SVEs simulated under
traction BC and MKBC assumption will be identical. At first glance, this
might seem contradictory, as in MKBC a unit macroscopic strain is weakly
imposed in one direction (e.g., in x), while a zero macroscopic strain is main-
tained in other directions (e.g., in y and xy). On the other hand, applying
a normal traction BC in the same direction causes normal strain in the per-
pendicular direction due to the Poisson’s effect, which would clearly not be
identical to that obtained from MKBC. Note that this difference is confirmed
by the stress field depicted in fig. 5, where σxx fields associated with traction
BC and MKBC are not identical. However, since both simulations are con-
ducted under linear elastic assumption, the stress field approximated under
normal traction BC is in fact a superposition of that evaluated using MKBC
in x and y directions; hence resulting homogenized material properties would
be the same. This indicates the superiority of traction BC over MKBC for
linear homogenization analyses, as imposing the constraint (9) for a simu-
lation under MKBC leads to a high condition of the stiffness matrix, which
in turn leads to a higher computational cost and implementation complexi-
ties. Note that this would not be the case if one aims to perform a nonlinear
simulation involving plasticity or damage, where linear superposition is no
longer valid.

3.3. Effective fracture strength

3.3.1. Angle-dependency of fracture strengths

In this section, we present the derivation of the elasticity stiffness tensor
and angle-dependent tensile and shear fracture strengths of SVEs. For any
of the square SVEs and any of the three BCs discussed in §3.2, the linear
and static FE approximations are carried out subject to three load cases to
derive corresponding homogenized elasticity and fracture values. The average
macroscopic stress tensor, in Voight notation, for the load case number α can
be written as,

σ̄
α = [σ̄α

xx, σ̄
α
yy, σ̄

α
xy]

⊺, α ∈ {1, 2, 3}, (10)

where ⊺ is the transpose operator. For example, for traction BC, these three
load cases are proportional to [1, 0, 0]⊺, [0, 1, 0]⊺, and [0, 0, 1]⊺. Having the
average strains and stresses from these three load cases enables computation
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of

σ̄n(θ) = [sin2(θ), cos2(θ),− sin(θ) cos(θ)]⊺, (12a)

σ̄s(θ) = [− sin(2θ), sin(2θ), cos(2θ)]⊺. (12b)

For any of the BC modes considered in this manuscript, the three aver-
aged solutions σ̄α corresponding to the load cases used for the homogeniza-
tion provide a basis to span the stress space. Thus, by a linear combination
of them either of the stress states σ̄n(θ) or σ̄s(θ) can be formed to represent
a normal or shear average stress loading at angle θ, respectively. For the
superposition of σ̄α that forms σ̄n(θ), the microscopic stress values are de-
termined at each point in the matrix, inclusions, and their interfaces. Failure
models for each of the three phases of matrix, inclusion, and interface will be
discussed in the next section. Knowing these failure models, we can find the
smallest load factor to (12a) loading for which failure is initiated at least in
one of the phases. This load factor corresponds to fracture initiation strength
for a normal tensile loading corresponding to θ, which is associated with the
normal strength s̃n(θ). The same process is used to derive s̃s(θ) from σ̄s(θ)
in (12b). In §4.3.1, it will be shown that strengths s̃n(θ) and s̃s(θ) become
more isotropic as the SVE size increases. Except that section, we will only
analyze the statistics of S̃n and S̃s; cf. (5).

The aforementioned linear analysis at the SVE level only provides S̃n

and S̃s. For a variety of interfacial fracture models, e.g., the damage model
from §2.2 and extrinsic TSRs, they provide the stress level beyond which
debonding initiates. To fully formulate and calibrate a macroscopic interfa-
cial model, however, the entire stress response versus macroscopic fields (e.g.,
displacement jump for TSRs) is required. This entails a nonlinear analysis
of VE for stress levels beyond S̃n and S̃s, for which cracks or other forms of
weakening processes initiate from the most critical points. It is only through
the analysis of their propagation and coalescence that the energy character-
istic and the nonlinear response of the interfacial model to full debonding
can be characterized.

Limiting our SVE failure analysis to the derivation of S̃n (and S̃s) is
acceptable as the only input(s) for the macroscopic fracture model in §2.2.
First, S̃n and S̃s serve the purpose of generating an inhomogeneous field for
fracture strength, which as demonstrated in [54, 55, 56, 57, 53] can capture
key characteristics of brittle fracture. The advantage of the current approach
is that SVEs, rather than phenomenological models such as Weibull distri-
bution, are used to assign S̃n at the RVE-level. Second, since quasi-brittle
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The solid line in fig. 7a shows the modified isotropic Mohr-Coulomb fail-
ure criterion in the 2D principal stress space. The Mohr-Coulomb model is
characterized by the uniaxial tensile s̃n and uniaxial compressive s̃c strengths.
Corresponding strengths for the two phases are decorated by a superscript
α ∈ {M, I} corresponds to “Matrix” and “Inclusion” phases. Thus, s̃Mn
and s̃Mc are uniaxial tensile and compressive strengths of the (ZrB2) matrix
phase, and s̃In and s̃Ic are corresponding values for the (SiC) inclusion phase,
respectively.

The dashed lines in fig. 7a correspond to an unmodified Mohr-Coulomb
model which is often characterized by the friction coefficient and cohesion pa-
rameters. However, such model overestimates the hydrostatic tensile strength
and predicts a wrong fracture angle [11]. In addition, it has no limit on hydro-
static compressive stress. There are various modified Mohr-Coulomb models,
e.g., the Hoek-Brown model [74], but the model used in fig. 7a is simple yet
addresses the aforementioned shortcomings. In addition, it predicts the same
value for uniaxial and hydrostatic tensile strengths. Finally, from fig. 7a the
shear strength is derived as,

s̃c =
s̃ns̃c

s̃n + s̃c
. (13)

For the analysis of fracture initiation along interfaces between the matrix
and inclusion phases, we employ the scalar effective stress proposed by [49],

s̆ =
√

〈sn〉2 + (βss)2, (14)

where β is the mode mixity parameter, and sn and ss are normal and shear
components of the traction vector acting on an interface.1 The failure crite-
rion for an interface, s̃ = s̃i is shown in fig. 7b, where s̃i is the strength of
the interface. Based on the form of (14) the normal and shear strengths of
the interface are s̃in = s̃i and s̃is = s̃i/β.

The use of these failure criteria in the determination of s̃n(θ) is as follows.
From (12a), the macroscopic (average) SVE stress array σ̄n(θ) corresponds to
the tensile stress σ̄y′y′ of magnitude one. As mentioned in §3.3.1, the super-
position of the three load cases of an SVE is done such that the superposed

1Equations (14) and (2) are effective stresses in the form proposed by [49]. However,
(14) is utilized along interfaces between the matrix and inclusions in each SVE, while (2)
is used at the RVE-scale and is compared to homogenized fracture strength S̃n.
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average macroscopic stress from σ̄
α is equal to σ̄n(θ). Thus, the microscopic

stress state for all points of SVE corresponding to the macroscopic loading
σ̄n(θ) is known. Figure 7a shows the principal stress state (σP

1 and σP
2 ) in

a sample point P in one of the two bulk phases. As shown, if the macro-
scopic loading σ̄n(θ) is multiplied by fP , fracture initiates at the point P .
Similarly, the traction components for a point Q at the interface between the
two phases is shown fig. 7b. For this point, the load factor fQ is required
to initiate fracture. Thus, by taking minimum values of fP and fQ over all
points in bulk phases and their interfaces we find the smallest load required
to initiate fracture in SVE. Given that σ̄y′y′ = 1 for σ̄n(θ), this load factor
in fact corresponds to s̃n, the tensile fracture initiation strength at angle θ.
The same process is used for the superposed solution corresponding to σ̄s(θ)
in (12b) to obtain s̃s. It is noted that a similar approach was implemented
in [42], however therein a simplified model with circular inclusions was used
for the composite and fracture initiation was restricted to the interface only.

4. Results and discussions

For the composite ZrB2-SiC, material properties of the ZrB2 matrix phase
are: Young’s modulus EM = 524 GPa, Poisson’s ratio νM = 0.15, tensile
strength s̃Mn = 381 MPa, and compressive strength s̃Mc = 2.5 GPa [75, 76, 77].
The inclusion phase, SiC, properties are: Young’s modulus EI = 415 GPa,
Poisson’s ratio νI = 0.15, tensile strength s̃In = 359 MPa, and compressive
strength s̃Ic = 2.1 GPa [78]. Employing (13), the shear strength of these
two phases are obtained as s̃Ms = 330.6 MPa and s̃Is = 306.6 MPa. A plane
stress mode is used for the 2D analyses reported herein. The interface tensile
strength is assumed to be 80% of the minimum of tensile strengths of matrix
and inclusion phases, which is a reasonable assumption for composites of
this type [79]. The interface fracture mode mixity is assumed to be one, that
according to (14) implies that s̃in = s̃is = 287 MPa.

4.1. Volume ratio of inclusions

The volume fraction of SiC in the 800 µm × 800 µm domain is 20%; cf.
fig. 2. However, the microscopic volume ratio of sampled SVEs, vf , is not
necessarily equal to the macroscopic value and has a certain probability dis-
tribution depending on the SVE size l. Figure 8 shows the (PDF) of SiC
volume ratio for different SVE sizes. The largest variations are observed for
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affected by elastic properties of its constituents, their relative volume ratio,
spatial arrangement of different phases, and the size of SVE. Herein, we
observe that κ is a rather linear function of vf for all SVE sizes. That is,
there is almost no variations on κ for all realized SVEs with a given vf .
Variations for l = 1

64
are slightly higher than those for larger SVE sizes,

but even for smallest SVEs variations are minimal. Given the minimum and
maximum values of vf for this SVE size, cf. fig. 9, the corresponding bulk
modulus varies from κM = 308 MPa to κI = 248 MPa as vf ranges from
unity to zero.

From this figure it is clear that the main source of lower variability of κ
in fig. 10 is lower variations of vf , cf. also fig. 9. In general, the particular
distribution of inclusions even for the same vf can have a noticeable impact
on homogenized elastic properties. As the SVE size increases, two things
happen; first vf of SVEs gets closer to the macroscopic volume ratio, as
shown in fig. 9, and second due to the large population of inclusions their
geometric effect also balances out among different SVE realizations. Herein,
we do not observe significant geometric effect even for smallest SVEs.

Another observation is the rather linear change of κ versus vf . This
effect is more pronounced for the mixed boundary condition, as for traction
BC the relation is slightly convex. The Pearson correlation coefficients of
0.8573 and 0.8567 for mixed and traction BCs confirm this observation. The
rather linear dependence of κ on vf and its weak dependence on particular
(geometric) representations of SVEs with the same vf are consequences of
the proximity of elastic moduli of two phases. It also explains the similarity
of PDFs in fig. 8 and fig. 10 and the size effect plots in fig. 9 and fig. 11,
for the fields vf and κ. Finally, this almost linear response implies that the
mean values of κ for all SVE sizes are very close and are approximately equal
to 248 MPa, the linearly interpolated value of κ from the two phases based
on the mean value of 0.2 for vf .

4.3. Fracture strength of SVEs

4.3.1. Angle-dependency of fracture strengths

The process detailed in §3.3.1 is used to characterize s̃n(θ) and s̃s(θ) for all
SVEs. The results for a sequence of four nested SVEs are shown in fig. 13 in
that the SVE corresponding to fig. 13a is the lower left quadrant of the SVE
corresponding to fig. 13b and so forth. Several observations can be made.
First, in all cases the shear strength is lower than the normal strength. The
smaller shear strength of both phases, e.g., s̃Mn = 381 vs. s̃Ms = 330.6 MPa,
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more inclusions are included in the SVE, resulting in a more isotropic re-
sponse. This effect holds for the elastic and fracture properties and is re-
ported herein for fracture strengths. From here we focus on the conservative
strengths S̃n and S̃s defined in (5).

4.3.2. Zone of fracture initiation

As discussed in §3.3.2, fracture can initiate in the bulk or in the matrix,
both based on the Mohr-Coulomb fracture model. In addition, fracture can
initiate along interfaces based on the definition of effective stress (14). As our
results demonstrate, for the material considered, almost no failure is initiated
in the inclusion phase for either normal or shear strength evaluations. Thus,
only the percentages of failure in the matrix and interface phases are shown
in fig. 14 and fig. 15 corresponding to S̃n and S̃s, respectively. We first
study the dominant zone of failure for normal strength in fig. 14. For the
SVE size l = 1

64
, the failure is almost entirely initiated in the interface,

except 2.39% and 2.29% of failures being initiated in the matrix for mixed
and traction BCs, respectively. The very small percentage of failures in the
bulk are associated with SVEs containing no inclusion (hence no interfaces),
comprising ≈ 1.5% of SVEs of this size, as well as SVEs with very low vf .
For l = 1

32
, the matrix failure percentage drops further to 0.1% and 0.03% for

mixed and traction BCs, respectively. For all larger SVEs, this percentage is
zero.

The failure zone percentages for the shear strength S̃s are presented in fig.
15. It is observed that failure initiates in the matrix phase for a significantly
larger percentage of SVEs compared to that for S̃n. Under macroscopic
normal and shear loading the local stress state within the two bulk phases
are also mostly in normal and shear modes, except at some locations in the
vicinity of the inclusions. The interface tensile and shear strengths s̃in =
s̃is = 359 MPa are much closer to shear strengths of the bulk phases (s̃Ms =
330.6 MPa and s̃Is = 306.6 MPa) than their tensile strengths (s̃Mn = 381 MPa
and s̃In = 359MPa). Thus, the fracture is more likely to initiate in the
bulk phases under a shear loading compared to a tensile loading on an SVE.
This explains higher percentages of the failure in the matrix case in fig. 15
compared to fig. 14. As for the results of mixed BC in fig. 15a, a higher rate
of failure is observed in the matrix compared to fig. 15b.
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lSVE = 12.5 µm SVEs as its corresponding fields provide the closest approxi-
mation of the actual microstructure and its corresponding correlation length.
Moreover, it has been shown in [3] that if relatively large SVEs are used for
homogenization, the inhomogeneity is lost to an extent that certain features
of brittle fracture, such as microcracking, are not captured in fragmentation
simulations.

The analysis of fracture properties demonstrate their weak anisotropy,
justifying the use of conservative strengths S̃n and S̃s rather than the angle-
dependent strengths s̃n(θ) and s̃s(θ); cf. §4.3.1. The use of SVE-homogenized
values is similar to the approach in [83], with the difference that herein instead
of elastic properties, the fracture strength is treated as the inhomogeneous
field. Various measures of elastic anisotropy, cf. e.g., [84], range less than
3% for the homogenized stiffness tensors. This justifies the use of the elastic
modulus and Poisson’s ratio to characterize the homogenized isotropic ma-
terial. For this material, the mean value of the elastic modulus is 502 GPa,
which is very close to that obtained by linear interpolation of elastic mod-
uli of the matrix and inclusion phases using the volume ratio of 0.2; cf. the
results in §4.2. Aside from the aforementioned statistical aspects, fracture
strength is the most important field to be considered inhomogeneous for the
problems considered herein; cf. the discussion in §2.3.

4.4.1. Fracture under tensile loading

Figure 21 shows the results for a simple tensile loading on the 800 µm×
800 µm domain. Roller boundary condition is used on all the four edges
of the domain, meaning that the normal displacement and shear traction
are specified. These values are all zero except the normal velocity of the
right edge which ramps up from zero to its terminal value of v̄ = 5.4 m/s in
t̄ = 35 ns. The boundary conditions correspond to a 1D tensile loading on the
domain in the horizontal direction for a homogeneous and isotropic material.
However, right after the nucleation of the first crack, and specifically due to
the inhomogeneity of the fracture strength the response of the problem is
genuinely two dimensional.

Parameters of the loading on the right boundary are chosen to demon-
strate the effect of the inhomogeneous field for S̃n on dynamic fracture pat-
terns. The longitudinal wave speed is cd = 9.80 km/s, meaning that it takes
tW = 81.7 ns for the wave to traverse the domain width. Thus, the ratio
t̄/tW = 0.429 means that the wave travels about half of the domain width
until it reaches its terminal value. This corresponds to a moderately fast
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rate of loading. The magnitude of the stress carried by the wave before be-
ing reflected on the left boundary is σ̄ = 291 MPa, while the mean value of
S̃n across the whole domain is mean(S̃n) = 293 MPa; cf. fig. 20a. Thus, if
the fracture strength S̃n were homogeneous in the domain, no crack would
have been nucleated in the first pass of the elastic wave. The first cracks
would have been nucleated everywhere in the domain as the elastic wave re-
flected with twice the magnitude in stress (2σ̄ = 582 MPa > mean(S̃n)) had
traversed the domain from the left to the right boundary.

In fig. 21 the strain energy density is mapped to color, with blue to red
colors corresponding to zero to high values. Figure 21a shows the solution
at t = 39 ns, which is slightly after the inward propagating elastic wave has
reached its terminal stress value of σ̄ = 291. The first crack nucleation is
observed behind the wave front, slightly below the vertical central line of the
plate. In fig. 21b this crack has further propagated and two new cracks have
propagated behind the wave front. In fig. 21c, shortly after the nucleation
of the first crack, the region behind the wave front is highly cracked and
stress waves are significantly relaxed. Due to this relaxation and reduced
transmittance of wave through the damaged zone, the amplitude of left-
propagating elastic wave subdues. The lower density of crack nucleations
in the middle region of the plate in fig. 21d is a direct consequence of the
formation of this initial damaged zone.

The first reflection of the wave is observed in fig. 21e to fig. 21h, where
upon reflection the normal stress magnitude would have doubled for an intact
elastic material. The evolving high strain energy density region close to the
left boundary reflects this doubling effect of the stress wave. Similar to
the initial stage, where the wave entered the domain, the increased wave
magnitude leaves a highly damaged region behind. Further, as shown in fig.
21g and fig. 21h, the stress relaxation shields the regions inside the domain
as the reflected wave farther propagates inward.

For a fully homogeneous material the response would have been com-
pletely different; first there would have been no cracks nucleated in the first
pass of the elastic wave from the right to the left boundary. Second, upon
the reflection of the wave the entire height of the domain behind the dou-
bled wave would have failed simultaneously. The response predicted by the
inhomogeneous material model is clearly more realistic as cracks nucleate
from the weaker sites of the material and through stress relaxation shield the
neighboring areas from new crack nucleations.

The final stage of crack propagation is illustrated in fig. 21i. As observed,
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crack nucleation and propagation for this problem is shown in fig. 23. Figure
23a illustrates the nucleation of the first crack on the lower left side of the
domain. More cracks are nucleated and propagated in figs. 23b to 23d, before
much higher density of cracks are observed in the last two figures.

5. Conclusion

A packing-optimization reconstruction algorithm was employed to virtu-
ally reconstruct the distribution of inclusions in a 800 µm× 800 µm domain
of a ZrB2-SiC composite. This domain was divided to thousands of SVEs
with relative edge sizes of 1

64
, 1
32
, 1
16
, and 1

8
. A non-iterative mesh generation

algorithm named CISAMR was then employed to create high-quality con-
forming FE meshes needed to evaluate homogenized elastic properties and
angle-dependent initiation tensile and shear fracture strengths of SVEs under
three different boundary conditions: mixed BC, traction BC, and MKBC.

The statistical analysis of SVEs revealed interesting results. For the elas-
tic response it was shown that the main factor affecting the homogenized
bulk modulus κ was the microscopic volume ratio of inclusions, vf . In fact,
effects of the SVE size and particular arrangement of inclusions were much
lower than that of vf , such that a functional relation could be observed be-
tween vf and κ. For SVEs with the relative size 1

16
, vf varied from zero to

almost unity, whereas for the largest size this range shrunk to [0.13, 0.28].
This change of the range of vf explains the size effect observed for κ, in that
its variations decreases as the SVE size increases. Furthermore, the rather
linear relation between vf and κ and the mean value of 0.2 for vf of all sam-
pled SVE sizes resulted in an approximately constant mean value for κ for
any SVE size.

Various size effects were observed for fracture strength fields. First, as
the size of SVEs increased, homogenized fracture strength fields became more
isotropic. Second, unlike κ that exhibited a rather constant mean value across
all SVE sizes, the mean of fracture strengths decreased for larger SVE sizes.
Third, similar to κ, the variation of strengths decreased as the SVE size in-
creased. The second and third observations are commonly known as the size
effect in quasi-brittle fracture. A high dependency of fracture strengths on
the particular lay-out of inclusions within an SVE was observed and unlike
κ there was no clear relation between vf and fracture strengths. In fact,
the lowest fracture strengths were obtained for the intermediate ranges of
vf , which correspond to largest interface densities in SVEs. The analysis of
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fracture zones support this observation in that, except for a very small per-
centage of smallest SVEs that did not include any inclusions, tensile failure
entirely occurred at the interfaces, rather than inside the matrix or inclusion
phases. The further proximity of bulk shear and interface strengths resulted
in a significantly higher percentage of failures in the matrix phase under the
shear loading of SVEs.

Finally, the original 800 µm× 800 µm domain was used for macroscopic
dynamic fracture simulations. The inhomogeneous S̃n field obtained by the
homogenization of SVEs was used as the tensile fracture strength in the
context of a macroscopic interfacial damage model. Various spacetime mesh
adaptive operations of the aSDG method enabled accurate resolution of frac-
ture process zones and exact tracking of crack paths. The incorporation of
material inhomogeneity was critical for the tensile stress and thermal strain
problems considered, as they lack macroscopic stress concentration points.
In fact, a completely different time-line and pattern of fracture would be pre-
dicted if a homogeneous fracture strength field were used. It should be noted
that the statistics of the SVEs can also be used to directly realize random
fields consistent with the homogenized properties; see for example [3]. Thus,
by eliminating the need to homogenize new SVEs, larger computational do-
mains can be more efficiently modeled. Moreover, the simulation of many of
such realizations enables the propagation of randomness from microscale to
macroscopic measures such as dissipated energy.

Many works demonstrate that by incorporating some level of material in-
homogeneity, certain macroscopic characteristics of dynamic brittle fracture
can accurately be captured. The approach used in this work, which is based
on the analysis of SVEs, promises to be more realistic than studies relying
on phenomenological statistical models for this purpose. Yet, the accuracy
of the macroscopic models should be further studied. Some important ex-
tensions are: Calibrating a macroscopic fracture model beyond the linear
fracture initiation limit; understanding if and how the results obtained by
SVE-homogenized properties converge to those from direct numerical simula-
tion of the microstructure; designing finite element error indicators and adap-
tive schemes that maintain or enhance such convergence properties. Given
that the main focus of this work was on deriving SVE-homogenized prop-
erties, rather than macroscopic fracture analysis, we will investigate these
questions in future research.
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