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ABSTRACT

The microstructural design has an essential effect on the

fracture response of brittle materials. We present a stochas-

tic bulk damage formulation to model dynamic brittle fracture.

This model is compared with a similar interfacial model for ho-

mogeneous and heterogeneous materials. The damage models

are rate-dependent, and the corresponding damage evolution in-

cludes delay effects. The delay effect provides mesh objectiv-

ity with much less computational efforts. A stochastic field is

defined for material cohesion and fracture strength to involve

microstructure effects in the proposed formulations. The sta-

tistical fields are constructed through the Karhunen-Loeve (KL)

method. An advanced asynchronous Spacetime Discontinuous

Galerkin (aSDG) method is used to discretize the final system of

coupled equations. Application of the presented formulation is

shown through dynamic fracture simulation of rock under a uni-

axial compressive load. The final results show that a stochastic

bulk damage model produces more realistic results in compari-

son with a homogenizes model.

1 INTRODUCTION

Brittle materials have a wide range of applications in various

areas–from the geological application, such as rock, to biological

applications, such as bone. The failure response of this kind of

material is susceptible to a sudden rupture by initiation, propaga-

∗Address all correspondence to this author.

tion, and fragmentation of many cracks. The main reason of such

a brittle rupture derives from the complex microstructure of these

materials which consist of many microdefects and microcracks.

The most challenging task in the numerical analysis of brittle

materials is the modeling of fracture behavior. In the context of

conventional continuum mechanics, there exist two frameworks

for fracture modeling; Interfacial and Bulk models.

Interfacial models represent explicit sharp fractures in the

computational domain. Three main models in this context are:

the linear elastic fracture mechanics (LEFM) model, cohesive

models [1, 2], and interfacial damage models [3–7]. Interfacial

models explicitly track the real pattern of fractures, but their

implementation is cumbersome and their computational cost is

high. In applications such as multiscale methods, it is hard to

track explicit discontinuities in all scales of interest. If it is even

possible, the computation cost will be extremely high. However,

the most important issue of these models is the need for addi-

tional criteria to predict the initiation and propagation direction

of fractures.

Bulk models apply continuum damage mechanics to approx-

imate the presence of explicit fractures with an implicit damage

variable indicated the level of failure in an equivalent continuum

domain. One of the earliest studies in this area refers to Smeared

Crack approach in [8] where a continuum model is presented to

simulate fractures in concrete. Phase Field approaches are the

enhanced alternatives for bulk models [9–13]. Bulk models rem-

edy the issues above in regard to fracture initiation, additional
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criteria for propagation direction, and challenges in fragmenta-

tion in interfacial models. Also, they provide several benefits

from numerical aspects: Simple integration with other numerical

methods, fast implementation, and straightforward utilization in

multiscale analysis. The main drawback of bulk models is the

overestimation of fracture sharpness which is much better han-

dled by phase field approaches.

The effect of the microstructure is one of the important as-

pects of fracture response in quasi-brittle material. Al-Ostaz and

Jasiuk [14] observed different fracture patterns in different sam-

ples with the same set-ups. The reason for this stochastic behav-

ior is the high sensitivity of quasi-brittle materials to their mi-

crostructure defects. Similar observations are reported in [15],

especially for responses after ultimate load capacity of the ma-

terial when fractures are initiated and propagated. Another con-

sequence of the high sensitivity of responses to microstructure

is the size effect [16, 17]. One of the widely accepted models

for studying the size effect is the Weibull’s weakest link model.

The efficiency of the Weibull method in capturing the size effect

and statistical variation of fracture strength in interfacial mod-

els is shown in [18, 19]. We have used the Weibull model in the

context of an interfacial damage model to capture statistical frac-

ture response of rock, in hydraulic fracturing [20], fracture under

dynamic compressive loading [21], and in fragmentation stud-

ies [7, 22]. However, these models are computationally expen-

sive due to the use of a sharp interfacial model. In this study, we

first use a random field approach, rather than the Weibull model,

to represent material randomness. Second, in addition to a sharp

damage model, we formulate a bulk damage model, where ma-

terial cohesion is treated as a random field.

We will incorporate microstructural randomness in dynamic

failure of brittle material through a stochastic approach. In the

proposed stochastic approach, model parameters are constructed

based on statistical fields. In the current study, we generate a re-

alization of the statistical field for the fracture strength and ma-

terial cohesion based on the well-known Karhunen-Loève (KL)

method [23, 24]. In this regard, a recent study in [25] demon-

strates the motivation of statistical models in high rates of load-

ing in that the entire spatial domain fails in a short time period

for problems that lack macroscopic stress concentration points.

The statistical damage formulation is coupled with elas-

todynamic equations for both the bulk and interfacial models.

To solve these nonlinear systems of hyperbolic equations, we

employ the asynchronous Spacetime Discontinuous Galerkin

(aSDG) method; this method uses the Tent-Pitcher algorithm

[26] to advance the solution by solving one patch (a small col-

lection of elements) at a time until the computational spacetime

domain is completely solved. This method results in a highly

advanced numerical method with local and linear solution prop-

erties for the elastodynamic problem [27].

In the following sections, we will describe the proposed

damage models, interfacial and bulk, and KL method in §2. We

will show the effect of randomness and accuracy of the stochastic

bulk model in §3 for a compressive sample to indicate the essen-

tial role of randomness in dynamics fracture analysis. Finally,

we will discuss the novel contributions of this study in §4.

2 FORMULATION

In this section, we describe two different approaches for the

modeling of brittle material failure. These approaches have the

same origin from mathematical and physical aspects, but one rep-

resents the material failure as a localized/sharp phenomenon, and

the other considers the failure mechanism as a bulk process in the

material. After the description of the models, we will discuss a

general method based on the KL method to involve stochastic

effects into the introduced damage models.

Interfacial Model

The interfacial damage parameter D interpolated between

the fully bonded (D = 0) to fully-debonded (D = 1) state on a

contact/fracture interface. The macroscopic traction vector, s
∗, is

given by,

s
∗ = (1−D)s̆B +Ds̆D (1)

where s̆B and s̆D are dynamic Riemann solutions for bonded

and debonded (separation, contact–stick, or contact–slip) modes.

The formulas for these four states of Riemann solution are pro-

vided in [28]. The damage value is obtained by the evolution law,

τcḊ = Dsrc, (2a)

Dsrc = 1− e−a〈Dfrc−D〉+ , (2b)

Dfrc = g(s̆, δ̆ ), (2c)

where Ḋ is the time derivative of D, τc is the time-scale or de-

lay parameter, a is the brittleness factor, and 〈.〉 is the Macaulay

positive operator. Similar to [29] we assume the damage evolu-

tion be driven by an effective stress s̆ and an effective separation

δ̆ . In earlier works, e.g., [7], damage is only driven by the ef-

fective traction, but as described in [29] the inclusion of δ̆ is not

only physically motivated but also improves the response of the

model. Their definitions are motivated by the definition of effec-

tive scalar values in [30] and are given by,

s̆ :=

√

〈s̆1
B〉

2 +β 2
s (s̆

2
B)

2
(3a)

δ̆ :=
√

〈δ1〉2 +β 2
δ

δ 2
2 (3b)
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where βs and βδ are traction and displacement mode-mixity co-

efficients, and (s̆1
B, s̆

2
B) and (δ1,δ2) are the normal and tangential

components of bonded Riemann traction s̆B and displacement

jump (separation) vectors in 2D, respectively. The form of the

function g(s̆, δ̆ ) in Eqn. (2c) and the mode-mixity values for

a Mohr-Coulomb model are provided in [29] and [21], respec-

tively. The reader is also referred to [7] for a general discussion

on this class of interfacial damage models and their comparison

with conventional cohesive models.

Bulk Model

We use the same damage evolution law for the bulk model to

provide a better comparison between the two models. The bulk

model used in the current study is a nonlinear ordinary differen-

tial equation as,

τcκ̇ = κsrc, (4a)

κsrc = 1− e−a〈κfrc−κ〉
+, (4b)

κfrc =
σr +σave sinφ

ccosφ
, (4c)

where κ̇ is the time derivative of the damage variable κ , 0 ≤
κ ≤ 1, c is the material cohesion, and φ is the friction angle. σave

and σr are the center and radius of the Mohr circle in the stress

space, respectively. We define the damage force function, i.e.,

κfrc, based on the Mohr-Coulomb failure envelope. This def-

inition is appropriate for brittle material with dominant failure

modes in shear and tensile modes.

The proposed dynamics damage formulation, which is based

on the Allix’s formulation in [3, 31, 32], introduces a delay be-

havior into the damage mechanism through the time-scale pa-

rameter. The differences of our model and the Allix’s formu-

lation, particularly in relation to the definition of damage force

Eqn. (4c) based on the Mohr-Coulomb failure criterion are fur-

ther discussed in [33]. The delay effect of our model accounts for

the non-instantaneous damage mechanism which is more consis-

tent with the physical behavior of damage response in dynamic

conditions. Also, the timescale τc preserves the mesh-objectivity

of the aforementioned damage formulation by providing a non-

local behavior in spacetime domain. This (temporal) non-local

behavior and existence of an intrinsic length scale is required

for bulk damage models [34] and is comparable with the spatial

non-local characteristics in conventional gradient-based [35–37]

and integration-based non-local [38] theories where they use a

length-scale parameter. However, the delay method is preferable

to those spatially non-local schemes due to its much less compu-

tational and implementation efforts.

We propose a damage-deformation relation by considering

the effect of damage on deviatoric and hydrostatic tensile com-

ponents of the elastic stress tensor as,

σσσ eff = (1−κ)(σσσd + 〈σσσh〉)+(σσσh −〈σσσh〉), (5)

where σσσd and σσσh are deviatoric and hydrostatic parts of elastic

stress tensor σσσ .

Stochastic Field Realization

The uncertainty of a material property ξ is incorporated in

the proposed damage models, bulk and interfacial, by treating a

fracture strength parameter ξ as a spatially inhomogeneous ran-

dom field ξ (x,ω) governed by probability structure ω . The ran-

dom field is developed by the imposition of a desired stationary

covariance of γ-exponential form with a prescribed correlation

length which controls the spatial variability of the field. A log-

normal Lognormal(µ,σ2) probability structure governs the dis-

tribution of the random field. This probability space has the mean

exp
(

µ +σ2/2
)

and variance [exp(σ2)−1]exp(2µ +σ2) of the

log-normal field.

There exist several methods that allow a scalar random field

approximation to be generated wherein the inherent statistics are

preserved. One such method is the KL method which approxi-

mates the random field ξ by an expansion of its covariance kernel

as the following series,

ξ (x,ω) = µξ (x)+
n

∑
i=1

√

λibi(x)Yi(ω), (6)

where the eigenvalues λi and eigenfunctions bi(x) are extracted

as solutions of the Fredholm equation, i.e., the generalized eigen-

value problem (EVP), which is detailed in [39]. The truncated

series with an appropriately chosen n number of terms can pre-

cisely represent the statics of the underlying random field, due

to the monotonically decreasing property of the eigenvalue so-

lutions. The series converges to the exact underlying statistics

when n → ∞, but the computation cost will be another factor to

consciously choose the number of terms.

The uncorrelated random variables Yi must also be indepen-

dent for practical use of the KL method. This is valid only if the

random variables and consequently the random field ξ (x,ω) are

Gaussian. This Gaussian requirement does not restrict the KL

method robustness, since the inverse transform method provides

a means of transforming one probability structure to another; this

transformation needs a prior known cumulative density func-

tion of both distributions. Therefore, the KL Gaussian random

field approximation is mapped to an approximation of the orig-

inally assumed log-normal distribution. Please refer to [40] for

an overview of the use of KL method in modeling rock fracture

strength and [22] for further elaboration on the KL and eigen-pair

solution procedures, particularly for non-Gaussian fields.
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(a) t = 20.5 µs (b) t = 26.0 µs

(c) t = 31.5 µs (d) t = 37.0 µs

FIGURE 3: CONTOURS OF THE DAMAGE EVOLUTION

AT DIFFERENT TIMES IN THE NON-ADAPTIVE BULK

MODEL WITH HOMOGENEOUS PROPERTIES. THE DE-

FORMED MESHES ARE DEPICTED BY MAGNIFICATION

FACTOR OF 250. COLORS FROM BLUE TO RED COR-

RESPOND TO BULK DAMAGE VALUES FROM ZERO TO

ONE, RESPECTIVELY.

shielded regions surrounding a propagating crack. The cracks

are mostly along the angle 45◦ − φ/2 ≈ 36.6◦ with respect to

the load orientation, which matches the predicted angle from the

Mohr-Coulomb model [21]. On the other hand, for the bulk dam-

age model fracture is rather uniform along the width of the do-

main, which does not match the localized failure zones observed

experimentally.

This investigation has two outcomes: First, it shows the

functionality of the adaptive method in the solution accuracy for

tracking crack patterns in the interfacial model; second, it pro-

vides evidence of mesh insensitivity of the damage formulation

which is a crucial problem in damage mechanics. Figure 4 de-

picts the application of the h-adaptive method in the bulk model.

It is obvious there is not any improvement in the approximated

failure zones, and the result is in an excellent agreement the re-

sult in Fig. 3 where the underlying mesh is a nonadaptive 32×64

structured grid of triangles. That is, the rather nonphysical dis-

tributed response of the bulk model is intrinsic; from its formu-

lation and unlike the interfacial model, discretization errors and

adaptive operations cannot induce localized failure zones.

(a) t = 20.5 µs (b) t = 26.0 µs

(c) t = 31.5 µs (d) t = 37.0 µs

FIGURE 4: CONTOURS OF THE DAMAGE EVOLUTION

AT DIFFERENT TIMES IN THE ADAPTIVE BULK MODEL

WITH HOMOGENEOUS PROPERTIES. THE DEFORMED

MESHES ARE DEPICTED BY MAGNIFICATION FACTOR

OF 250. COLORS FROM BLUE TO RED CORRESPOND TO

BULK DAMAGE VALUES FROM ZERO TO ONE, RESPEC-

TIVELY.

Inhomogeneous Material Property

In this section, we show how the consideration of the mate-

rial randomness results in more realistic responses of the bulk

model. We consider random effects of the cohesion value in

the bulk model and the tensile strength in the interfacial model.

These material properties can significantly affect the failure re-

sponse of the material as they control the initiation of the degra-

dation process.

Figure 5 presents the KL realization of a random field with

the correlation length of 5 mm, unitary mean value, and 25%

variance for the standard normal form of the fracture strength

field. This random distribution is used for the cohesion and frac-

ture strength in the domain with the reported mean values in Tab.

1, i.e., 4.7 MPa and 7 MPa, respectively. Other parameters are

assumed homogeneous with the same previous values, and the

boundary conditions are kept the same as before.

Figures 6 and 7 show the damage response and fracture

propagation at different times for the interfacial and bulk models,

respectively. The response of the bulk model indicates that weak-

est zones in the material have a dominant effect on the evolution
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(a) t = 10.25 µs (b) t = 20.5 µs

(c) t = 26.0 µs (d) t = 37.0 µs

FIGURE 7: CONTOURS OF THE DAMAGE EVOLUTION

AT DIFFERENT TIMES IN THE BULK MODEL WITH HET-

EROGENEOUS COHESION. THE DEFORMED MESHES

ARE DEPICTED BY MAGNIFICATION FACTOR OF 250.

COLORS FROM BLUE TO RED CORRESPOND TO BULK

DAMAGE VALUES FROM ZERO TO ONE, RESPECTIVELY.

We showed the most critical factor to get more realistic re-

sponses from bulk models is the consideration of randomness

effects. Although for this high amplitude loading problem the

response of the interfacial model did not change considerably

with random fracture strength, the response of the bulk model

was significantly affected by a random cohesion field. There-

fore, a homogeneous fracture strength field is not an appropri-

ate alternative for bulk models for certain problems. The mesh

objectivity of the proposed damage formulation is proven by a

comparison between a fixed-mesh and h-adaptive refined mesh

results.

In this work, we assumed an artificial statistics for corre-

sponding random variables in the statistical analysis. In future

works, we aim to use statistical volume elements (SVEs) to ho-

mogenize random properties of brittle material at different length

scales. We will characterize fracture related parameters as ran-

dom variables with load angle dependence similar to [47].

ACKNOWLEDGMENT

The authors gratefully acknowledge partial support for this

work via the U.S. National Science Foundation (NSF), CMMI -

Mechanics of Materials and Structures (MoMS) program grant

number 1538332 and CCF - Scalable Parallelism in the Extreme

(SPX) program grant number 1725555.

REFERENCES

[1] Dugdale, D. S., 1960. “Yielding of steel sheets containing

slits”. Journal of the Mechanics and Physics of Solids, 8,

pp. 100–104.

[2] Barenblatt, G. I., 1962. “The mathematical theory of equi-

librium of cracks in brittle fracture”. Advanced Applied

Mechanics, 7, pp. 55–129.

[3] Allix, O., Feissel, P., and Thévenet, P., 2003. “A delay dam-

age mesomodel of laminates under dynamic loading: basic

aspects and identification issues”. Computers & structures,

81(12), pp. 1177–1191.

[4] Alfano, G., 2006. “On the influence of the shape of the

interface law on the application of cohesive-zone models”.

Composites Science and Technology, 66(6), pp. 723–730.

[5] Parrinello, F., Failla, B., and Borino, G., 2009. “Cohesive-

frictional interface constitutive model”. International Jour-

nal of Solids and Structures, 46(13), pp. 2680 – 2692.

[6] Nguyen, V. P., 2014. “Discontinuous galerkin/extrinsic co-

hesive zone modeling: Implementation caveats and appli-

cations in computational fracture mechanics”. Engineering

Fracture Mechanics, 128, pp. 37–68.

[7] Abedi, R., Haber, R. B., and Clarke, P. L., 2017. “Effect of

random defects on dynamic fracture in quasi-brittle materi-

als”. International Journal of Fracture, 208(1-2), pp. 241–

268.
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