


simplifies the application of hydraulic load on crack sur-
faces as opposed to complex thermodynamic formulations
needed when cracks are implicitly modeled by a phase field
fracture model [13] or other similar approaches. Moreover,
the necessity of an explicit approach magnifies when the
interaction of hydraulically loaded with in-situ cracks is
considered [14]. In §5 as a future work, we proposed a hy-
brid approach that would combine the advantages of both
explicit and implicit approaches.

In [15, 16], it is shown that incorporating material in-
homogeneity plays an important role in predicting realis-
tic fracture patterns. For rock, material anisotropy also
plays a crucial rule; the existence of bedding planes not
only affects the elastic properties, but also makes the rock
weaker parallel to these planes; that is when the tensile
load is normal to the direction of bedding planes. There
are two main approaches to model the anisotropy of rock
fracture properties. In [17, 18], a failure criterion is ex-
pressed in terms of invariants of stress tensor and a sec-
ond order so-called microstructure tensor. While based on
sound continuum mechanics theories, it is not straightfor-
ward to extract the fracture strength of rock for a given
direction. In the second approach, typical failure crite-
ria such as Mohr-Coulomb or Hoek-Brown are generalized
such that for each direction, the parameters of these mod-
els are angle dependent; see for example [19].

We propose two approaches to model rock hetero-
geneities. In the explicit realization approach, we use cer-
tain statistics for microcrack density, location, and length
to generate random realizations that contain a large num-
ber of microcracks. In the implicit realization approach,
rather than using SVEs to homogenize effective proper-
ties, we use the phenomenological Weibull model to sample
fracture strength values at the vertices of a discrete finite
element mesh. As for modeling rock anisotropy, we adopt
the second general approach described above for implicit
realizations, in that the parameters of a failure criterion
(Mohr-Coulomb) are angle dependent. For explicit real-
izations, the realized cracks are heavily oriented around a
given angle. The problem specifically studied is the frac-
ture of rock under dynamic uniaxial compressive load. For
an isotropic model, the friction angle of rock dictates a
preferable angle for the formation of cracks. However,
when anisotropy is included, the competition of the nat-
ural angle of fracture under compressive load and the an-
gle corresponding to weakest plane results in interesting
fracture patterns for both explicit and implicit methods.
The underlying elastodynamic problem is solved by an h-
adaptive asynchronous Spacetime Discontinuous Galerkin
(aSDG) method [20–22]. The fracture is modeled using
an interfacial damage model [23]. A brief overview of the
contact/fracture models and certain extensions for mod-
eling anisotropic fracture based on Mohr Coulomb failure
criterion are presented in the next two sections. Finally,
§4 the effect of fracture strength anisotropy is studied for
a problem where rock is under compressive dynamic load.

2 A RATE-DEPENDENT INTERFA-

CIAL DAMAGE MODEL

This section provides an overview of the damage model
presented in [23]. One difference will be the use of an ef-
fective stress model that is appropriate for the compressive
mode fracture analysis presented in §4.

Instead of a traditional cohesive model, we present an
interfacial damage model to represent fracture and contact
modes on a crack surface. A scalar damage parameter, D,
is used to interpolate between fully bonded (D = 0) and
debonded (D = 1) states of an interface. It should be noted
that in the majority of damage formulations, the stiffness
of the bulk is degraded by the damage value. However, in
our formulation, the damage model degrades the state on
an interface. The contact modes include contact–stick and
contact–slip modes as described in [24] as well as a separa-
tion mode which corresponds to fracture or crack opening.
The use of Riemann solutions ensures that correct interface
kinematic compatibility conditions are satisfied without re-
sorting to penalty methods that are often combined with
traditional cohesive models.

The formulation of traction and velocity values on a
fracture section is comprised for two stages: First, the so-
lutions within each of the three contact modes are pre-
sented in §2.1. Second, by using interpolation values such
as D interface traction and velocity are obtained by form-
ing a weighted average of individual contact mode solu-
tions. This is described in §2.2. Finally, an effective stress
model for fracture under compressive stress is presented in
§2.3.

ξ1, e1

ξ2, e2

x1

x2

t

Γ P

(s−,v−)

(s+,v+)

(s̆, v̆±)

Figure 1: Local coordinate frame at an arbitrary lo-
cation P on a spacetime fracture surface Γ .

2.1 Riemann Contact Solutions

Figure 1 shows a local coordinate system at an arbitrary
location P on contact interface Γ in spacetime. The lo-
cal coordinate (ξ1, ξ2, t) is chosen such that ξ1-direction is
normal to Γ . The quantities from opposite sides of Γ , dec-
orated with superscripts + and −, define the initial data
for the Riemann problem. Distinct velocity traces, v

±,
and tractions, s

±, defined by s = σ · n in which the same
spatial normal vector, n, is used to compute s

+ and s
−

from the traces of the stress tensor field on the interface,
σ

±. The Riemann solutions include the traction vector s̆
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and velocity vectors v̆
± that act on the interface. The

Riemann solutions are obtained by preserving the charac-
teristic values of the elastodynamic problem on each sides
of the fracture interface and enforcing the appropriate type
of kinematic compatibility (relation between v̆

+ = v̆
−) for

each type of contact solution. The Riemann solutions de-
pend on material impedance values from the two sides ±,

Zi± :=

{

(cdρ)± i = 1

(csρ)± i = 2, 3
(1)

in which the index i corresponds to spatial directions in
the local frame shown in fig. 1 and the longitudinal and
shear wave speeds are given by,

cd =

√

λ + 2µ

ρ
, cs =

√

µ

ρ
. (2)

where ρ is mass density and λ, µ are Lamé parameters.
The Riemann solutions for contact–stick and bonded

modes, decorated with subscripts ST and B respectively,
are

s̆i

B = s̆i

ST = s̆i =
si+Zi− + si−Zi+

Zi− + Zi+
+

Zi−Zi+

Zi− + Zi+
(v+

i
− v−

i
)

(3a)

v̆B
i

= v̆ST
i

= v̆i =
si− − si+

Zi− + Zi+
+

v+
i

Zi+ + v−

i
Zi−

Zi− + Zi+
(3b)

In separation mode, v̆
+ and v̆

− are independent. The
target tractions are, however, set to S, which in particular
is obtained by the particular fracture model used at the
interface. Similar to [15] we set S = 0. The Riemann
solutions for the separation case, decorated by S, are,

s̆i

S = s̆i = Si (4a)

v̆S
±

i
= v̆±

i
= v±

i
± Si − si±

Zi±
(4b)

In contact mode, a friction model determines which of the
two contact–stick or contact–slip modes holds. This re-
quires the definition of the magnitude of tangential traction
for bonded Riemann solutions as,

τ̆B :=

{
√

(s̆2
B

)
2

+ (s̆3
B

)
2

d = 3

|s̆2
B| d = 2

(5)

where d is the spatial dimension. For the transition be-
tween contact–stick and contact–slip modes we use the
Mohr–Coulomb friction law, which states that contact–slip
mode holds if,

|τ̆B| > k
〈

−s̆1
B

〉

+
(6)

in which k is the friction coefficient and 〈.〉
+

is the positive
operator. Under these conditions, the magnitude of target
shear traction is given by k

〈

−s̆1
B

〉

+
. The normal compo-

nent of the traction and velocity vectors are enforced using
the bonded Riemann solutions Eq. (3) (for i = 1) and the
tangential velocities are obtained by preserving the charac-
teristic values in directions i 6= 1 and using Mohr-Coulomb
model for the tangential traction. For brevity, these solu-
tions are not presented here and can be found in [24].

2.2 Macroscopic Target Values

The macroscopic, i.e., averaged, solutions on Γ are ob-
tained by interpolating between bonded and debonded so-
lutions, using the damage parameter D,

s
∗ := (1 − D)s̆B + Ds̆D (7a)

v
∗± := (1 − D)v̆B + Dv̆

±

D
(7b)

in which subscripts B and D denote Riemann values for
bonded and debonded conditions.

The bonded solutions (s̆B , v̆B) are obtained from
Eq. (3), while any of the separation, contact–stick, or
contact-slip solutions can hold for the debonded values
s̆D, v̆

±

D
. First, it should be determined whether the

debonded part is in contact or separation model. Sep-
aration mode holds if the normal bonded traction s̆1

B is
positive or the normal displacement jump is positive at P
on Γ . Physically, the separation to contact mode tran-
sition is nonsmooth. Hence, a regularization scheme is
proposed in [24] where the relative contact fraction tran-
sitions debonded solutions from complete separated val-
ues at η = 0 to full contact values at η = 1. On the
other hand, [24] shows that stick to slip transitions are in
fact smooth. Thus, the binary state relative stick frac-
tion, γ ∈ {0, 1} is used to transition between contact–stick
(γ = 1) and contact–slip (γ = 0) modes. The Mohr–
Coulomb condition Eq. (6) is used to determine whether
stick or slip conditions hold.

In summary, s̆D and v̆
±

D
are interpolations of sepa-

ration solutions Eq. (4), bonded/contact–stick solutions
Eq. (3), and contact–slip [24] solutions. Considering the
three relative fractions, D, η, and γ, it is easy to show that
s

∗ and v
∗± in Eq. (7) can be expressed as linear sums of

the Riemann solutions from three distinct response modes,
bonded/contact–stick (B), contact–slip (SL), and separa-
tion (S):

s
∗ := aBs̆B + aSLs̆SL + aSs̆S (8a)

v
∗± := aBv̆B + aSLv̆

±

SL
+ aSv̆

±

S
(8b)

with the coefficients

aB = 1 − D + Dηγ (9a)

aSL = Dη(1 − γ) (9b)

aS = D(1 − η) (9c)

2.3 Damage Evolution Law

Bulk damage models that lack an intrinsic length scale,
may result in non-convergent numerical solutions where
damage localizes to layers whose width continues to shrink
without limit as the mesh is refined [25,26]. Similar prob-
lems exist for the interfacial damage models that lack a
length scale. Instead of directly incorporating a length
scale in the model, a length scale can be introduced
through a time scale in the damage evolution law, as in [27]
for a bulk model and [26, 28] for an interfacial model. We
follow a similar approach and adopt the model in [29],

Ḋ =

{

1

τ̃
[1 − H(〈Dt − D〉)] D < 1

0 D = 1
, (10)
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in which τ̃ is a relaxation time, and Dt is a target damage
value that corresponds to the damage value under quasi-
static loading conditions. The function H has unit value
at zero and decreases to zero at infinity. Following [29], we
use H(x) = exp(−ax). From the form of H, a maximum
damage rate of 1/τ̃ is implied by Eq. (10).

In general, Dt depends on the states on both sides
of the interface. We focus on a model where damage is
mostly stress driven. In [23] we introduced a scalar effec-
tive stress, as s̆ :=

√

〈s̆1
B

〉2 + (βτ̆B)2, where as in [30] β
is the shear stress factor, and the positive operator, 〈.〉,
ensures that no damage evolute incurs under compressive
normal stress. There are two problems with this effective
stress model. First, the shear strength of rock does not
increase as the confinement pressure increases. Second, it
predicts failure along ±45◦ for a uniaxial compressive test.
As a result, in [31] we proposed an effective stress model
that is based on Mohr-Coulomb failure criterion,

s̆ := τ̆B + kσ̆1
B (11)

where k is the friction coefficient introduced in Eq. (6).
The angle of friction φ is defined as,

φ = tan−1(k) (12)

Figure 2: The compressive strength, p̄, and the criti-
cal angle, φch, for the Mohr–Coulomb model.

The condition s̆ = s̄ corresponds to the Mohr-
Coulomb failure criterion as shown in fig. 2a) and fracture
strength based on Eq. (11) corresponds to cohesion, often
denoted by c. This model also captures the correct com-
pressive strength; as shown in fig. 2b), for a compressive
loading scenario where σbb is set to the uniaxial compres-
sive strength of rock p̄, based on its corresponding stress
state in 2a), for isotropic rock the value of p̄ and the orien-
tation of fracture plane with this load are determined as,

p̄ = 2σ̄
cos(φ)

1 − sin(φ)
= 2σ̄

1√
1 + k2 − k

(13a)

φch = ±
(

π

4
− φ

2

)

(13b)

Once the effective stress is formulated based on the
Mohr-Coulomb failure criterion, Dt is determined by,

Dt =











0 s̆ < s,
s̆−s

s̄−s
s ≤ s̆ < s̄

1 s̄ ≤ s̆

, (14)

where 0 < s < s̄ are quasi-static strength thresholds for
the initiation of damage evolution and complete failure,
respectively. s̄ is referred to as the fracture strength.

3 STATISTICAL ASPECTS

3.1 Spatial Inhomogeneity

In the explicit realization approach, microcracks are ex-
plicitly incorporated in the computational domain. The
end points of these cracks are called fracture surface tips
(FSTs) In the implicit realization approach, the effect of
the in-situ defects can be homogenized to form an implicit
representation of rock strength. In this approach, cracks
can nucleation from points with lower strength and/or high
stress values. In short, the tips of all active cracks in a
computational domain, where pre-existed or nucleated af-
terward, is called a FST. In the aSDG method, used for
the analyses in §4, cracks can only propagate from FSTs.

V
θ

P
s1

s2
s̆ s̄

Figure 3: The angular distributions of effective stress
s̆ and fracture strength s̄ around the FST V. The
terms in Eq. (15) are s1 = σ̆1

B
and s2 = τ̆B.

Figure 3 shows the distribution of s̆ and s̄ around the
FSF V. The definition of effective for any arbitrary angle
θ follows the definition Eq. (11) on fracture surfaces,

s̆(θ) := τ̆B(θ) + k(θ)σ̆1
B(θ) (15)

A crack is extended for which the ratio s̆/s̄ is a lo-
cal maximum with a value greater than or equal to unity
Once a crack propagation direction is assigned to an FST,
the underlying numerical method should accommodate an
extension along the proposed direction. Unlike eXtended
finite element methods (XFEMs) [32, 33] and generalized
finite element methods (GFEMs) [34] where the underly-
ing finite element mesh is not modified, mesh adaptive
schemes, e.g., [35, 36], move finite element vertices such
that a finite element boundary is aligned with the pro-
posed direction. Herein, we take the latter approach in
that adaptive operations in spacetime can align element
boundaries with any proposed crack propagation direction;
cf. [23, 37] for more details. Once the crack is extended in
the proposed direction, the vertex V becomes inactive and
the new crack tip becomes an active FST.
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tion to many practical problems. We plan to propose a hy-
brid approach that to some extend preserves the accuracy
of an explicit approach and the efficiency of an implicit ap-
proach; cracks under a certain size will be homogenized to
an implicit representation of strength, while longer cracks
are explicitly modeled and are maintained in the problem
description. This would unify the two types of analyses
presented in this manuscript.
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