
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 56, Number 3, July 2019, Pages 373–414
https://doi.org/10.1090/bull/1649

Article electronically published on November 15, 2018

STABILITY OF THE COUETTE FLOW

AT HIGH REYNOLDS NUMBERS

IN TWO DIMENSIONS AND THREE DIMENSIONS

JACOB BEDROSSIAN, PIERRE GERMAIN, AND NADER MASMOUDI

Abstract. We review works on the asymptotic stability of the Couette flow.
The majority of this paper is aimed toward a wide range of applied math-

ematicians, and there is an additional section aimed toward experts in the
mathematical analysis of PDEs.
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Here we provide a review on the stability of the two-dimensional (2D) and three-
dimensional (3D) Couette flow in the Navier–Stokes equations at high Reynolds
number, focusing mainly on the recent sequence of works [11–14, 17, 18]. Our goal
is to provide a general discussion of the wider physical context for these works and
those which are related and, specifically, to discuss how they fit into the wider
field of hydrodynamic stability. To this purpose, we have attempted to make §§1–6
accessible to a wide range of applied mathematicians and mathematical analysts,
whereas §7 is targeted toward experts in the analysis of partial differential equations
(PDEs).
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1. Hydrodynamic stability at high Reynolds number

1.1. The Navier–Stokes and Euler equations. We start by recalling the incom-
pressible Navier–Stokes equations in dimension d = 2 or 3, with inverse Reynolds
number ν := Re−1 ≥ 0,

(NS)

⎧⎨
⎩

∂tv + v · ∇v = −∇p+ νΔv,
∇ · v = 0,
v(t = 0) = vin,

where the velocity v =

(
v1

v2

)
or v =

⎛
⎝v1v2
v3

⎞
⎠takes values in R

d, the pressure p is a

scalar, and v · ∇ stands for
∑d

i=1 v
i∂i. If the Reynolds number is infinity (hence

ν = 0), then the system is known as incompressible Euler equations, which reads

(E)

⎧⎨
⎩

∂tv + v · ∇v = −∇p,
∇ · v = 0,
v(t = 0) = vin.

Both v and p are functions of the time and space variables (t, x, y) or (t, x, y, z),
in space dimensions 2 or 3, respectively. Boundary conditions and external forces
can also be added to these equations and are necessary for most nontrivial hydro-
dynamic stability questions.

This article is concerned with hydrodynamic stability at high Reynolds number
(i.e., in the singular limit ν → 0). See the texts [41, 107, 126] for reviews on the
wider theory of hydrodynamic stability; see especially [126] for an extensive review
of the literature and a detailed account of the development of the field. Here we will
only present a brief introduction especially targeting mathematicians. The basic
problem is to consider a given equilibrium1 uE for either (NS) or (E), and to study
the dynamics of solutions which are close to uE in a suitable sense (we will be more
precise later). Especially, to answer the simple question of whether or not the flow
remains close to uE in certain norms or not, and if so, which norms. Hence, if we
write the solution v = uE + u, the exact evolution equations for the perturbation
become ⎧⎨

⎩
∂tu+ uE · ∇u+ u · ∇uE + u · ∇u = −∇p+ νΔu,
∇ · u = 0,
u(t = 0) = uin,

(1.1)

where uin is the initial perturbation. For hydrodynamic stability questions, nat-
urally uin is assumed initially small in certain norms (in the limit ν → 0, the
question can be sensitive to this choice, as we will see). The vast majority of work
is focused on laminar equilibria—simple equilibria in which the fluid is moving
in well-ordered layers (as opposed to equilibria with chaotic streamlines). Typi-
cal examples include shear flows in various geometries such as pipes and channels,
vortices or vortex columns, and flows in concentric cylinders [41, 107, 126]. How-
ever, even for these simple configurations, surprisingly little is understood about
the near-equilibrium dynamics in the limit ν → 0, especially at the mathematically
rigorous level. When studying this limit, it is natural to first consider ν = 0, which,

1As remarked above, in order to get nontrivial equilibria, we usually need to impose boundary
conditions or an external force field. However, let us ignore this for the moment, as it is not
directly relevant to our discussions.
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as a general rule, will be strictly easier than studying the singular limit. Indeed,
significantly more is known about stability theory for the Euler equations (ν = 0)
than for the Navier–Stokes equations ν > 0 in the limit ν → 0.

1.2. Linear theory and its limitations. It is often implicitly presumed that
linear stability is equivalent to nonlinear stability in practical settings for physi-
cally relevant systems. However, even the very early linear studies of Rayleigh [99]
and Kelvin [70] seemed in contradiction with experimental observations, particu-
larly the famous experiments of Reynolds [102]. Indeed, in [102], Reynolds pumped
fluid through a pipe under various conditions and demonstrated that at sufficiently
high Reynolds number, the laminar equilibrium becomes spontaneously unstable.
Despite the observed nonlinear instability, to this day, there is no evidence of any
linear instabilities in 3D pipe flow for any finite Reynolds number [41,126]. Perhaps
even more troubling is that even for laminar flows for which the linearization has
unstable eigenvalues at high Reynolds numbers, experiments and computer simula-
tions normally display instabilities which are different than those predicted by the
linear theory (and at lower Reynolds numbers) [1, 28, 107, 126]. These phenomena
are known in fluid mechanics as subcritical transition or bypass transition, and are
completely ubiquitous in 3D hydrodynamics.

To understand the subtleties of subcritical transition, it is important to first be
more precise about the meaning of “linear stability” and “nonlinear stability”. The
linearization of (1.1) is obtained simply by dropping the quadratic nonlinearity in
(1.1): ⎧⎨

⎩
∂tu+ uE · ∇u+ u · ∇uE = −∇p+ νΔu,
∇ · u = 0,
u(t = 0) = uin.

(1.2)

Write (1.2) abstractly as {
∂tu = LEu,
u(t = 0) = uin.

(1.3)

The simplest notion of linear stability is spectral stability.

Definition 1.1 (Spectral stability). Given a Hilbert space H, let σ(LE) be
the spectrum of LE . The equilibrium uE is called spectrally stable if σ(LE) ∩
{c ∈ C : Re c > 0} = ∅. The equilibrium is called spectrally unstable if σ(LE) ∩
{c ∈ C : Re c > 0} �= ∅ and is called neutrally stable if it is spectrally stable but
σ(LE) ∩ {c ∈ C : Re c = 0} �= ∅.

Many classical theories of hydrodynamic stability are focused on studies of spec-
tral stability (see [126] and the references therein). In the context of shear flows at
high Reynolds number, the most famous results are Rayleigh’s inflection point the-
orem [41,99], and its refinement due to Fjørtoft [49] regarding the stability of shear
flows in the 2D Euler equations (ν = 0). These results (unfortunately) extend to
planar 3D shear flows via Squire’s theorem [40,41,110]. Squire’s theorem for invis-
cid flows states the following. If the 3D Euler equations linearized around the shear
flow uE = (f(y), 0, 0) have unstable eigenvalues, then so do the 2D Euler equations
linearized around uE = (f(y), 0) (the converse implication being obvious). There-
fore, for any shear flow of this type, spectral stability in 2D implies spectral stability
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in 3D. This is unfortunate because it gives the false impression that most of the
interesting aspects of hydrodynamic stability can be found in the 2D equations. As
we will see, hydrodynamic stability in 2D and 3D, at high Reynolds numbers, is
quite distinct.

Spectral stability is not the only relevant definition of linear stability. In partic-
ular, we have the following distinct definition, which was suggested as more natural
in fluid mechanics by Kelvin [70], Orr [95], and later Case [29]and Dikĭı [39].

Definition 1.2 (Lyapunov linear stability). Given two norms X and Y (often
assumed the same), the equilibrium uE is called linearly stable (from X to Y ) if

‖u‖Y � ‖uin‖X ,

where u solves (1.2).

Even for finite-dimensional systems of ordinary differential equations (ODEs),
Definitions 1.1 and 1.2 are not equivalent for neutrally stable, nondiagonalizable lin-
ear operators (the infinite-dimensional analogue being nonnormal operators). The
canonical example of this phenomenon, which is directly relevant for hydrodynamic
stability as we will see, is given by the linear system

∂t

(
x1

x2

)
=

(
0 −1
0 0

)(
x1

x2

)
.

The matrix

(
0 −1
0 0

)
is not diagonalizable. It has spectrum reduced to {0}, and

is therefore neutrally stable, but it is not Lyapunov stable: solutions are given by{
x1(t) = x1(0)− tx2(0),
x2(t) = x2(0),

and therefore grow. The above example can be modified to make it spectrally stable
and Lyapunov linearly stable:

∂t

(
x1

x2

)
=

(
−ν −1
0 −ν

)(
x1

x2

)
.(1.4)

As pointed out by Orr in 1907 [95], nonnormality implies that a large transient
growth is possible. As ν → 0, the system degenerates, leading to the optimal
estimate

sup
t

‖(x1(t), x2(t))‖ � ν−1 ‖(x1(0), x2(0))‖ .

Hence, while the problem is linearly stable for all ν > 0, the solutions are (in
general) growing very large as ν → 0. As Orr pointed out in [95], we could expect
that any prediction of nonlinear stability from a linear system of this type should be
problematic as ν → 0, a fact which has been greatly expanded on in modern times
(see below). Many problems of hydrodynamic stability display transient behavior
reminiscent of (1.4) in the limit ν → 0. See below and [98, 107, 113, 114] and the
references therein for more details.
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1.3. Quantitative nonlinear stability and transition thresholds. The limi-
tations of linear theory being increasingly clear, we must turn to more nonlinear
stability theories in order to connect with physical observations. The simplest no-
tion of nonlinear stability is that of Lyapunov.

Definition 1.3 (Lyapunov (nonlinear) stability). Given two norms X and Y
(often assumed the same), the equilibrium uE is called stable (from X to Y ) if,
for all ε > 0, there exists a δ > 0 such that if

‖uin‖X < δ =⇒ ‖u(t)‖Y < ε for all t > 0.

We say uE is unstable if it is not stable.

There are many works in fluid mechanics and related fields dedicated to proving
spectral instability (for the linearized problem) and to proving that spectral insta-
bility implies nonlinear instability; see, e.g., [50–52, 61, 62, 108] to name a few in
the mathematics community. This theory has led to the clearer understanding of
many physical phenomena in hydrodynamics [41, 65, 80, 100] but it does not help
us to understand the phenomenon of subcritical transition as it does not help us
explain instabilities which are not directly associated with a spectral instability.

Probably the most flexible and powerful general theory for nonlinear stability
results in hydrodynamics is that of Arnold for the 2D Euler equations, introduced in
[3], now usually called the Energy-Casimir method. This theory provides nonlinear
stability in the sense of Definition 1.4 for X = Y = H1 for certain equilibria,
such as shear flows satisfying certain convexity hypotheses and vortices [42,89,120].
Variations have been extended to a great many other settings, for example magneto-
hydrodynamics and kinetic theory; see the review article [66] and the more recent
works in stellar mechanics [63, 64] for more information. The fundamental idea
behind this technique is to use the large number of extra conservation laws available
to the 2D Euler equations, the so-called Casimirs, to find a conserved quantity
which is locally convex, coercive in H1, and for which the equilibrium is the local
minimizer. There are several limitations of the theory: it is mostly restricted to
two-dimensional settings and infinite Reynolds number (recall that, in the presence
of boundaries, one can find examples of 2D shear flows in a channel which are
stable at infinite Reynolds numbers by Arnold’s theory, but which are spectrally
and nonlinearly unstable in L2 at arbitrarily high (but finite) Reynolds numbers
[50, 62]).

The above discussion suggests that we are still lacking a good mathematical un-
derstanding of subcritical transition (recall that, for equilibria which are linearly
stable, subcritical transition refers to the spontaneous transition to a turbulent
state often observed at high Reynolds numbers in experiments and computer simu-
lations). It has also been observed, even by Reynolds [102], that at which Reynolds
number and precisely how it occurred seems unusually sensitive to the details of the
experimental setup. In [70], Kelvin suggested the idea that maybe such equilibria
are nonlinearly stable for all finite Reynolds numbers in the sense of Definition 1.3,
but that the system becomes increasingly sensitive to perturbations as the Reynolds
number increased. This suggests that what we should study is a quantification of
δ in Definition 1.3.
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Definition 1.4 (Quantitative asymptotic stability). Given two norms X and Y ,
the equilibrium uE is called asymptotically stable (from X to Y ) with exponent
γ if

‖uin‖X � νγ =⇒
{

‖u(t)‖Y � 1 for all t > 0,
‖u(t)‖Y → 0 as t → ∞.

We say uE is unstable if it is not stable.

We remark that the polynomial dependence νγ , as well as the necessity of two
norms ‖ · ‖X and ‖ · ‖Y , is dictated in part by empirical observation. As we will
see, the choice of final norms ‖ · ‖Y is severely constrained by linear dynamics,
however, the initial norms ‖ · ‖X are not. In fact, there is no unique, natural
physical choice of X. Moreover, numerical experiments [101] and weakly nonlinear
heuristics suggest that γ should depend nontrivially on the choice of norms X and
Y . While this has not yet been proved for the Navier–Stokes equations, it has been
proven that in the 2D Euler equations, the nonlinear dynamics is sensitive to the
regularity. Specifically, in [37] it was recently shown that the earlier work on the
Euler equations [14] cannot be extended to any Gevrey classes not already covered
in the original work. A closely related result had also already been established
for the Landau damping of the Vlasov–Poisson equations in a periodic box [9]; see
§8.2 below for more discussion on how Landau damping is related to hydrodynamic
stability questions.

We also remark that this definition should be adapted in situations where there is
a continuum of equilibria, and the solution might relax, as t → ∞, to an equilibrium
different from the one which is initially perturbed (as is for instance the case for
the 2D Euler equation [14], which will be briefly discussed below).

In case an equilibrium is asymptotically stable, the above definition raises the
following question (given X and Y ):

What is the smallest exponent γ > 0 for which uE(Q1)

is quantitatively asymptotic stable?

As suggested above, the motivation for Definition (1.4) and Question (Q1) go all
the way back to Kelvin; however, modern authors have expanded on these concepts
further (see, e.g., [101,107,114] and the references therein). Another very important
question, which is a little more vague, is to understand precisely how the instability
occurs near the stability threshold.

If γ is the optimal exponent in (Q1),(Q2)

for a γ′ < γ, classify all solutions satisfying

νγ � ‖uin‖X � νγ
′

and sup
t≥0

‖u(t)‖Y � 1.(1.5)

When considering only the question of spectral stability or instability of planar
shear flows, Squire’s theorem suggests that one can focus exclusively on the 2D
case (see, e.g., [41]). However, one gets very different answers in 2D and 3D when
considering the nonlinear questions (Q1) and (Q2). Indeed, it is often observed
that subcritical instabilities appear at lower Reynolds numbers than eigenvalue
instabilities, and that even when 2D eigenvalue instabilities are present, fully 3D,
nonmodal instabilities are often still observed to be dominant [107,126]. Similarly,
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we see major differences when comparing our 2D and 3D works on planar Couette
flow for sufficiently smooth data (see below and [14,17] for the 2D works and [11,12]
for 3D). One cannot escape the reality that any study of 2D hydrodynamic stability
at high Reynolds number is of very limited physical relevance to 3D flows.

1.4. Inviscid damping and asymptotic stability at infinite Reynolds num-
ber. While question (Q1) explicitly concerns only ν > 0, it is natural to ask, if
γ = 0, whether some kind of stability holds for the inviscid problem ν = 0. For
nontrivial shear flows, one can verify that this is not possible unless d = 2 (see §4
for more discussion); indeed, it is reasonable to imagine that every nontrivial, lam-
inar 3D equilibrium is nonlinearly unstable in the 3D Euler equations (regardless
of how strong one is willing to choose the initial norm X). However, for d = 2, it
turns out in some cases to be possible not only to have Lyapunov stability, but also
to identify the long-term dynamics and have a kind of asymptotic stability even
if ν = 0. In [14], it was demonstrated that near the shear flow uE = (y, 0) (with
(x, y) ∈ T×R), for uin sufficiently small and sufficiently smooth, there exists some
u∞ such that

u(t, x, y) →
(
u∞(y)

0

)
as t → ∞

strongly in L2 and weakly in H1 (and analogously also limt→−∞ u(t) = (u−∞(y), 0)
for some u−∞). Notice that this is much stronger than the kinds of stability results
one derives via the Energy-Casimir method. See also the recent work [69] which
proves similar results for a bounded channel in y.

This convergence back to equilibrium can seem surprising, since it does not fol-
low from one of the classical relaxation mechanisms—energy dissipation or decay
through dispersion of waves. This particular mechanism is known as inviscid damp-
ing and is a close relative of Landau damping in plasma physics. It was proved that
Landau damping provides a similar stability for the Vlasov–Poisson equations in T

d

in Mouhot and Villani’s breakthrough work [93]; (see §8.2 for more discussion on
Landau damping). Inviscid damping was observed in the linearized Euler equations
first by Orr in 1907 [95]; see §2 for more discussion on this effect. Landau damping is
considered fundamental to understanding the dynamics of collisionless and weakly
collisional plasmas by the physics community [26, 105] and it has been speculated
that inviscid damping should play a related role in understanding the dynamics of
the 2D Euler equations [6,56,91,106,128], with applications to cyclotron dynamics
[31] and atmospheric sciences [90, 109, 121]. See [21, 81, 82, 123–125, 127, 133, 135]
for mathematical works on inviscid damping in the linearized 2D Euler equations.

1.5. The Couette flow. It turns out that the simplest equilibrium to study is the
plane periodic Couette flow:

uE(x, y) =

(
y
0

)
(if d = 2), uE(x, y, z) =

⎛
⎝y
0
0

⎞
⎠ (if d = 3).

Here “plane” differentiates this flow from the Taylor–Couette flow, the analogous
equilibrium between concentric, rotating cylinders [41], while “periodic” refers to
the choice x ∈ T (the circle, which we identify with [0, 2π] with periodic boundary
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conditions). Specifically, we consider the following geometry for the domain:

• In dimension d = 2, (x, y) ∈ T× R.
• In dimension d = 3, (x, y, z) ∈ T× R× T.

From now on we will simply refer to this flow as the Couette flow.
Why study the Couette flow in this domain specifically? There are several good

reasons:

• The Couette flow is a canonical problem and has played the role of a bench-
mark for different approaches to understanding hydrodynamic stability for
well over a century (see [41, 107, 126] and the references therein). This is
due in part to its simplicity and to the fact that it is a solution of the
Navier–Stokes equations for all ν ≥ 0.

• The domain of infinite extent in the y direction avoids the presence of
walls, which can add very subtle complications to hydrodynamic stability
problems (see also §9.2 for more discussion).

• The shear gives rise to a mixing phenomenon (sometimes referred to as
“filamentation”) which has profound implications for the dynamics and is
mostly a stabilizing effect; however, this effect is very weak at low wave
numbers in x. The periodic domain in the x direction removes such prob-
lematic wave numbers. The periodicity is most similar to the mixing which
occurs around a radially symmetric vortex; however, studying the stabil-
ity of vortices at high Reynolds number is significantly more difficult (see
[21, 54, 77]).

• The reduction to periodic boundary conditions in x and infinite extent in y
is common in the physics literature both for formal asymptotic analysis [32,
107, 114] and (at least the periodicity in x) for numerical studies.

1.6. Summary of the known stability results on the plane periodic Cou-
ette flow. Many works have studied the stability of the plane periodic Couette
flow and its variants in attempt to get answers to Questions (Q1) and (Q2). For
experiments on Couette flow, see [24, 35, 112], and for computational studies, see,
e.g., [45, 96, 101]. In [114], the authors suggested a weakly nonlinear toy model
which couples transient growth in the linear problem to a caricature of the nonlin-
earity in an attempt to capture some of the aspects of subcritical transition. For
more work along this general line, see, e.g., [4, 5, 32, 55, 84, 119]. As far as rigorous
analysis goes, there is the work of Romanov [104] who first proved nonlinear stabil-
ity at all Reynolds number for the Couette flow in an infinite pipe geometry. Later,
the works [73, 79] estimate γ rigorously assuming numerically obtained resolvent
estimates. See [126] for further references on Couette flow as well as references
focusing on related flows, such as the plane Poiseuille flow and the cylindrical pipe
flow.

The series of works [11–14,17,18] gives values of γ for which the answer to (Q1)
is positive, but it also gives a very fine description of the perturbed flow, and how
it relaxes to zero. Results depend on the topology which is considered,2 either

2Roughly speaking, a finite Gevrey Gλ;s norm requires an average decay slightly stronger than

e−λ|ξ|s in frequency, while a finite Sobolev norm requires an average decay slightly stronger than
|ξ|−s.
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Table 1

X References

dimension d = 2
Sobolev [18]
Gevrey [14, 17]

dimension d = 3
Sobolev [13, 122]
Gevrey [11, 12]

Sobolev norms Hs or Gevrey norms Gλ;s:

‖f‖Hs =

(∑∫ ∣∣∣f̂(ξ)∣∣∣2 (1 + |ξ|)2sdξ
)1/2

,

‖f‖Gλ;s =

(∑∫ ∣∣∣f̂(ξ)∣∣∣2 e2λ|ξ|sdξ)1/2

.

Due to the fast mixing of the Couette flow, one cannot hope to obtain uniform-in-ν
stability with Y in higher Hs spaces besides H1 in two dimensions (due to the
vorticity transport equation); in 3D, one cannot expect uniform-in-ν stability in
any Hs with s > 0. However, if one rewinds the dynamics by the mixing of the

shear flow y + 1
2π

∫ 2π
0

u1(τ, α, y, z)dα, one can hope to obtain uniform stability in
arbitrarily high norms. Below we refer to the profile

f(t, x, y) = u

(
t, x+ ty +

∫ t

0

1

2π

∫ 2π

0

u1(τ, α, y, z)dαdτ, y, z

)
.(1.6)

The terminology is from dispersive equations, where the idea of rewinding by the
leading order oscillatory linear behavior is classical. Control of the profile in high
regularity precisely characterizes the dynamics, for example, localizing the solution
in frequency.

The obtained results are summarized in Table 1.
We want to draw attention to the very recent work of Wei and Zhang [122],

which proved asymptotic stability in velocity variables and enhanced dissipation
at H2 regularity with γ ≤ 1. These results were not expected (at first they seem
inconsistent with numerical simulations [101]) and were quite impressive. In [13],
optimal Hs estimates on the profile were obtained for γ ≤ 3/2, and it is possible
that the methods of Wei and Zhang might extend to obtain optimal Hs estimates
for γ ≤ 1. In two dimensions, the γ is known to depend on regularity: the results
of [37] show that the Gevrey results of [14, 17] cannot be extended to Sobolev
spaces (though the γ ≤ 1/2 estimate in [18] might not be sharp). However, it is
possible that in 3D, Sobolev vs Gevrey changes only the method of transition; e.g.,
γ = 1 in both Sobolev and Gevrey, but in Gevrey only streaks are possible slightly
above the threshold as proved in [12] but in Sobolev perhaps other, more nonlinear,
instabilities are also possible (such alternative instabilities are indeed observed in
experiments [101]).

Physicists were in agreement that (for 3D) γ ≥ 1, and the only question they
considered is whether γ = 1 or γ > 1; each has been conjectured (see §5.1 and
[32,101,107,114]). However, strictly speaking, a full mathematical proof that γ ≥ 1
is not currently carried out to our knowledge. Computer simulations of “smooth”
initial perturbations have often returned values slightly over-estimating the (sus-
pected) answer of γ = 1 for Gevrey spaces (see [45,101] and the references therein).
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Indeed, the general trend has been a steady decrease down to 1, which was only
reported relatively recently in [44]. However, γ = 31/20 was reported for “rough”
initial perturbations in [101]; this exponent seems more robust to computation—
and matches closely the value 3

2 appearing in [13]—but interestingly, does not match
[122]. We are not currently aware of any 2D simulations of this type.

From a mathematically rigorous perspective, we have significantly less infor-
mation regarding the classification of instabilities (Q2). In general, this problem
appears to be significantly harder than (Q1). The only (rigorous) results in this
direction are that of [12], which consider the Gevrey norm in 3D with initial data
ν � ‖uin‖Gs,λ � ν2/3+δ for δ > 0 small. In this work, we prove that only one
instability is possible. The instability is driven by a distinctly 3D, linear, nonnor-
mal transient growth known as the lift-up effect [46, 74]; see §4 below for more
discussion. A related work is that of [82], in which the authors prove that invis-
cid damping matching the linearized problem is false in general for the nonlinear
2D Euler equations with perturbations of Couette flow arbitrarily small in Hs for
s < 3/2.

Remark 1.5. It is inaccurate to suggest that all physical settings should be compared
to Gevrey or Sobolev (or L2) norms. One should instead measure the size of the
perturbations in the various norms after restricting to scales larger than a suitable
dissipative length-scale. Essentially, below this scale, viscosity dominates and the
difference between the norms is no longer relevant.

1.7. Notations and Fourier analysis conventions. Given two quantities A and
B, the notation

A � B

means that there exists a constant C such that A ≤ CB, while

A � B

means that A ≤ cB for a constant c which is sufficiently small (depending on the
context).

We will use the Fourier transform frequently in 2D and 3D. In 2D we use

f̂(k, η) =
1

2π

∫
T×R

ei(kX+ηY )f(X,Y, Z) dX dY,

and in 3D we use

f̂(k, η, 
) =
1

(2π)3/2

∫
T×R×T

ei(kX+ηY+�Z)f(X,Y, Z) dX dY dZ.

Note that k, 
 ∈ Z whereas η ∈ R. It will be very important in the following to
distinguish between zero and nonzero frequencies in x and X (k = 0 or k �= 0). We
will denote the orthogonal projection onto the modes f0 and f�=, respectively,

f0 =
1

2π

∫
T

f dX and f�= = f − f0.(1.7)

2. Linear dynamics in dimension d = 2

In two dimensions, it is most natural to consider the problem in the vorticity
formulation. Recall that the vorticity ω of the perturbation is given by

ω = ∂xu
2 − ∂yu

1.
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We will also use the stream function φ, which satisfies

(2.1) Δφ = ω, u = ∇⊥φ.

The equation in vorticity form reads{
∂tω + y∂xω +∇⊥φ · ∇ω = νΔω,
Δφ = ω.

(2.2)

2.1. Coordinate transform. For small data and small ν, we expect the transport
by the Couette flow in (2.2) to be dominant. Hence, it is natural to switch to
coordinates in which this transport is canceled or “modded out”. To that effect,
set

(2.3)

{
X = x− ty,
Y = y.

We will follow the convention that dependent variables which are capitalized are
taken in the new coordinates (X,Y ), whereas lowercase is reserved for the original
coordinates (x, y). Hence, for instance

U(t,X, Y ) = u(t, x, y),(2.4a)

Ω(t,X, Y ) = ω(t, x, y).(2.4b)

Under this change of coordinates, differential operators transform as{
∇u = ∇LU,
Δu = ΔLU,

where ∇L =

(
∂X

∂Y − t∂X

)
and ΔL = ∇L · ∇L = ∂2

X + (∂Y − t∂X)2.

In the new coordinates (2.3), the equation satisfied by Ω reads{
∂tΩ+∇⊥Φ · ∇Ω = νΔLΩ,
ΔLΦ = Ω.

(2.5)

Note that there was a crucial cancellation: the terms involving ±t∂XΦ∂XΩ can-
cel. Such a fortuitous cancellation will not hold in 3D. Linearizing this for small
perturbations gives the very simple

∂tΩ = νΔLΩ.(2.6)

2.2. Enhanced dissipation. The fact that the dissipation of a passive scalar can
be enhanced via advection by an incompressible velocity field is a well-known ef-
fect, going sometimes by the names “shear-diffuse mechanism”, “relaxation en-
hancement”, and “enhanced dissipation”. It has been studied previously in linear
problems in both the mathematics literature [7,8,19,20,33,68,77,118,137] (see also
[53]) and in the physics literature [22, 43, 76, 85, 103]. We remark that Lundgren
[85] considered possible implications for the behavior of vortex filaments in turbu-
lent flow, whereas Dubrulle and Nazarenko [43] suggested the possibility that the
enhanced dissipation effect could have an important impact on Questions (Q1) and
(Q2). This effect can be explained as follows: the advection transfers enstrophy to
very high frequencies where it is then more rapidly dissipated. It was Kelvin [70]
who first made the observation when he solved (2.6) via Fourier analysis in 1887.

First, the zero frequencies in X are governed by the simple heat equation (recall
that Ω0 =

∫
Ω dX),

∂tΩ0 = ν∂Y Y Ω0.
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Note that Ω0(t, y) defines the vorticity of a shear flow by the Biot–Savart law in
(2.6). The dissipation time-scale is ∼ ν−1 and there is obviously no enhancement
for these modes.

Next, we consider the nonzero frequencies in X. Applying the Fourier transform
to (2.6) gives

∂tΩ̂(k, η) = −ν
[
k2 + (η − kt)2

]
Ω̂(k, η).

If k �= 0, then integrating the above ODE gives

Ω̂(k, η, 
) = exp

(
−ν

∫ t

0

(k2 + (η − ks)2) ds

)
Ω̂in(k, η)

=⇒ |Ω̂(k, η, 
)| � exp(−cνk2t3)
∣∣∣Ω̂in(k, η)

∣∣∣
for a fixed, small constant c > 0 (1/12 suffices). Using that x ∈ T, this implies
that, in any reasonable norm (by the Biot–Savart law U = ∇⊥

LΔ
−1
L Ω),

‖Ωk(t)‖+ ‖Uk(t)‖ � e−cνk2t3 ‖Ωin‖ .

The exponent νk2t3 gives a dissipation time-scale ∼ ν−1/3. This is very short
compared to the dissipation time-scale ν−1 which is observed for zero frequencies in
X. In more general linear advection-diffusion problems or linearized Navier–Stokes
equations, precise, quantitative estimates on this enhanced dissipation effect are
significantly harder to obtain; see, e.g., [8, 19, 33, 68, 77]. Notice that the effect
becomes weak at low wave numbers; see §9.2 for more discussion.

The mixing effect that gives rise to enhanced dissipation is a very common phe-
nomenon in high Reynolds number fluid mechanics. One can see it when stirring
milk into coffee as shown in Figure 1.

Figure 1. Milk mixing into an approximately axisymmetric vortex

2.3. Inviscid damping and the Orr mechanism. The enhanced dissipation
already implies that the Couette flow should have a stabilizing effect. However,
there is an additional, more subtle, inviscid effect. This was discovered by Orr in
1907 [95] and is often known now as inviscid damping, in part due to its connection
with Landau damping in the kinetic theory of plasmas (see §8.2). From the Biot–
Savart law, we have

Û(t, k, η) = −i

(
kt− η

k

)
1

k2 + (η − kt)2
Ω̂(t, k, η).



STABILITY OF THE COUETTE FLOW 385

We saw above that the vorticity experiences enhanced dissipation; since the full

formula is a bit long, we will be content with the approximation Ω̂ �=(t, k, η) ∼
e−cνt3Ω̂in(k, η). Therefore, the above leads to

for k �= 0, Û(t, k, η) ∼ −i

(
kt− η

k

)
1

k2 + (η − kt)2
Ω̂in(k, η)e

−cνk2t3 .

This formula captures two important effects observed by Orr—one stabilizing and
one destabilizing—together known as the Orr mechanism [95]:

(a) As t → ∞, it is clear from the above formula that Û�=, hence U�=, converges
to 0 uniformly in ν (see below for quantitative statements).

(b) On the other hand, the denominator is minimal for t = η
k , which corre-

sponds to a transient amplification if νt3 � 1.

Let us first discuss the damping (a). One can be more precise about the rate of
decay and obtain the following estimates pointwise-in-time:

‖U1
�=(t)‖Hs � 1

〈t〉 ‖Ωin‖Hs+1 ,(2.7a)

‖U2
�=(t)‖Hs � 1

〈t〉2 ‖Ωin‖Hs+2 .(2.7b)

Notice crucially that this damping is independent of Reynolds number, and indeed,
clearly holds also if ν = 0; it would, however, depend on the size of the torus,
were it not fixed. By undoing the coordinate change, the above gives decay for
u�= in L2, or in spaces with sufficiently small Sobolev exponent. After undoing the
coordinate transform (2.3), this implies similar decay in L2, however, higher Hs

norms in general experience slower decay (for s < 1) or no decay at all (s ≥ 1).
Like enhanced dissipation, the inviscid damping is weak at low wave numbers in x.
In 2D fluid mechanics, the inviscid damping can be easily interpreted as being due
to the vorticity being mixed rapidly by the Couette flow, which sends enstrophy to
high frequencies. Since the Biot–Savart law damps high frequencies, these become
less relevant to the velocity field and, eventually, only the shear flow remains.
The mixing of the vorticity is often called “filamentation”, and we remark that it
results in a kind of inverse cascade of energy as the energy in the x-dependent modes
disappears (in a finite energy, nonlinear problem, this energy would necessarily move
into the x-independent modes; an analogous effect happens in Landau damping
which causes plasmas to heat up as they undergo Landau damping).

In regard to the transient amplification alluded to in (b) above, observe that
before the onset of enhanced dissipation, the vorticity Ω is essentially constant, so
that

if k �= 0 and νt3 � 1,
Û(t = η

k , k, η)

Ûin(k, η)
∼ |η|+ |k|

|k| .

Therefore, if |η| � |k|, the velocity field is amplified by a large factor between
t = 0 and the critical time t = η

k . In physical terms, this transient growth is
due to the fact that the mode of the vorticity in question is initially well mixed
and then proceeds to unmix under the Couette flow evolution. See Figure 2 for
how this mixing/un-mixing effect appears on each Fourier mode of the vorticity.
The relevance of the Orr mechanism to hydrodynamic stability has been debated
over the years; see, e.g., [95], [25], [83], and [126] for a detailed account of how



386 J. BEDROSSIAN, P. GERMAIN, AND N. MASMOUDI

Figure 2. A visualization of the Orr mechanism: the stripes rep-
resent the level sets of a function on the torus, which is advected by
the Couette flow, represented by the arrows (in analytical terms,
represented are the level sets of the function eik(x−ty)+iηy with
η/k � 1). The five pictures represent different moments of the
evolution, with time increasing from left to right. One can see how
the Couette flow first unwraps the field before wrapping it up again
on the torus.

the literature on the topic developed. The importance of the Orr mechanism for
nonlinear problems is discussed further in §3.2.

3. Nonlinear dynamics in dimension d = 2

3.1. Shear flows as metastable states. As we just saw on the linear level,
nonzero frequencies in x (k �= 0) of the velocity field are suppressed (in L2 topology)
via:

(a) inviscid damping, with a polynomial decay on a time scale ∼ 1 (with respect
to ν);

(b) enhanced dissipation, with an exponential decay on a time scale ∼ ν−1/3.

Both effects imply that, at the linear level, the dependence of u on x is erased in L2

as time goes by; by the divergence-free condition, this implies that u approaches a
shear flow rapidly in L2. Convergence of u to a shear flow in higher norms follows
after the enhanced dissipation time-scale ν−1/3. However, damping of modes k = 0
is felt on the much longer time scale ∼ 1

ν (which ensures at least the ultimate
convergence of the perturbation u to 0). As a conclusion, on a linear level, shear
flows are metastable states, or intermediate attractors, for the velocity field in L2

on the time range
1 � t � ν−1.

More specifically, for uMS(y) = (u1
0(y), 0), it holds that

‖u(t)− uMS‖L2 � ε

〈t〉 for 1 � t � ν−1.

Moreover, we have the following estimate for all s > 0 for some c > 0,

‖u(t)− uMS‖Hs � ε〈t〉s−1e−cνt3 for 1 � t � ν−1.

Both of these estimates are sharp for the linear problem and involve implicit con-
stants which are independent on ν. Notice that for large s there is a large transient
growth before the decay ultimately dominates. This is a result of the transfer of
enstrophy from low to high frequencies due to the mixing.

What about the nonlinear problem? Shear flows solve the 1D heat equation for
ν > 0 and are stationary solutions for ν = 0, but are they metastable states? A
positive answer to this question is one of the main results in [17, 18] (and in some
sense [14]). One of the most important differences between the linear and nonlinear
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dynamics is the fact that the perturbation itself causes a small adjustment to the
background shear flow. Specifically, the zero frequency of the first velocity com-
ponent u1

0(t, y) is unaffected by the enhanced dissipation or inviscid damping and
hence decays only on the very long O(ν−1) time-scale. It follows that over long
time-scales, this adjustment to the shear flow can have a very large effect on the
solution. As a result, (2.3) is no longer necessarily the natural coordinate trans-
formation (this problem is vaguely analogous to a quasi-linear scattering problem
in dispersive equations, especially for the 2D Euler equations [14]). As discussed
further below, this is one of several major difficulties in the proofs of [14, 17]. The
situation in 3D is even more complicated.

3.2. Nonlinear resonances. The frequency cascade scenario. Now we arrive at
the most fundamental difficulty in understanding the nonlinear dynamics near shear
flows at high Reynolds number, specifically, the nonlinear resonances associated
with the nonnormal transient growth in the linear problem. These are not “true”
resonances as they are not associated with the spectrum of the linear problem, but
rather, with the pseudo-spectrum (see, e.g., [113, 114]). We will not dwell on such
abstract questions, but rather take a direct, hands-on approach to understanding
them. These nonlinear interactions are much simpler and much better understood
in the 2D case—in 2D there is essentially one leading order nonlinear resonance,
whereas the 3D case is far more complicated, and it is not clear precisely which
interactions will dominate in which situations.

We shall use the coordinate transform conventions defined in §2. As we saw in
the previous section, the (k, η) mode of Ω (the vorticity in the new variables) has a
large effect on Φ (which is the stream function φ, defined in (2.1), expressed in the
new variables) at the critical time t = η/k, as can be seen from

Φ̂(t, k, η) = − Ω̂(t, k, η)

k2 + |η − kt|2

(which is simply the Biot–Savart law). Physically, if kη > 0, then the mode in the
vorticity undergoes a transient unmixing at the critical time η/k before ultimately
mixing. One then intuitively separates the modes into those for which η/k < t and
those for which η/k > t: the unmixing and mixing modes.3 Then, one imagines
a three-wave nonlinear interaction which continues to transfer information from
mixing to unmixing modes to sustain a nontrivial velocity field for long times.
This effect was first demonstrated in 1968 in collisionless plasmas by the famous
plasma echo experiments [88]. Similar hydrodynamic echoes were observed in the
2D Euler equations near a radially symmetric vortex via experiments on a pure
electron plasma in a strong magnetic field [130]. Figure 3 appeared originally in
[88].

An echo is a nonlinear oscillation in which the velocity field (or electric field in
the case of plasmas) decays after an initial disturbance but spontaneously becomes
large again later as high-frequency information generated by nonlinear interactions
unmixes. Notice that this is essentially a strong interaction between the linear
transient growth coming from the Orr mechanism and the nonlinearity. Specifically,

3In plasma physics these are sometimes referred to as “phase mixing” and “antiphase mixing”
modes.
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Figure 3. An experiment showing a hydrodynamic echo in the
2D Euler equations near a radially symmetric vortex. In other
words, the geometry is circular rather than toroidal, and a vortex
replaces the Couette flow, but the echo phenomenon remains valid.
At the initial time (a), the Fourier mode 2 (in the angular variable)
is excited by an exterior force, before Landau damping erases it in
(b) and (c). At time (d), a new exterior force is applied to excite the
Fourier mode 4, and it is subsequently erased by Landau damping
in (e). But a nonlinear echo phenomenon (interaction between
the modes 2 and 4) is responsible for the observation, at the later
time (f), of a strong signal at the Fourier mode 2. Reproduced
with permission of AIP Publishing from Physics of Plasmas 12,
055701, (2005); https://doi.org/10.1063/1.1885006 ([130, Figure
5]).

the scenario we are most concerned with is the following cascade:

• Around the critical time t = η
k , the mode Φ̂(k, η) is linearly amplified.

• Through a nonlinear interaction, it causes the mode Ω(k− 1, η) to grow. . .

• . . . which, in turn, linearly amplifies Φ̂(k − 1, η) around time t = η
k−1 .

• And so on!

In order to understand and estimate more quantitatively the growth which can
result from this scenario in the 2D Euler equations, we will next develop a toy
model. Closely related studies have been done previously for the 2D Euler equations
[116,117], and in some ways our toy model is simpler but also better suited to getting
mathematically rigorous estimates on the dynamics.

The toy model. The echoes involve the interaction of a mode which is well mixed
and a mode which is near the critical time. In terms of Ω, the vorticity in the
shifted coordinates, the well-mixed mode will be at a low wave number and the
critical mode will be at a high wave number (since we are interested in long times).
Hence, let us formally consider solutions to (2.5) of the form Ω = ΩL +ΩH , where
ΩL consists only of low frequencies and ΩH is a much higher frequency perturbation
(but has much less enstrophy). Let us assume here that neither have contributions
to the zero mode in X; let us further think of the low frequencies as a background



STABILITY OF THE COUETTE FLOW 389

that we are not so interested in, and we then linearize the equation on high fre-
quencies to obtain

∂tΩH +∇⊥ΦH · ∇ΩL +∇⊥ΦL · ∇ΩH = νΔLΩH ,

ΔLΦH = ΩH .

We argue now that most terms can be dropped in the above: First, we set ν = 0,
since the frequency cascade behavior which preoccupies us would typically occur
before dissipation kicks in. Second, since ∇⊥ΦL is decaying rapidly and long-
term dynamics are of interest, we drop the term ∇⊥ΦL · ∇ΩH . Finally, since

Φ̂H(t, k, η) = − ̂ΩH(t,k,η)

k2+|η−kt|2 , we see that the term involving ∂Y ΦH is the most prob-

lematic in ∇⊥ΦH ·∇ΩL, as near the critical time t ∼ η/k, ∂̂Y ΦH ∼ −ktΩ̂H . Hence,
we reduce to the (linear in ΩH) model equation

∂tΩH − ∂Y ΦH∂XΩL = 0,(3.1a)

ΔLΦH = ΩH .(3.1b)

Taking the Fourier transform of (3.1), the model becomes

∂tΩ̂H(t, k, η) = −
∑
k′ �=0

∫
η′(k − k′)

(k′)2 + (η′ − k′t)2
Ω̂H(t, k′, η′)Ω̂L(k − k′, η − η′) dη′.

As ΩL is concentrated at low frequencies, let us make the simplifying approximation
that η ≈ η′ and k′ = k ± 1. This gives us the model

(3.2) ∂tΩ̂H(t, k, η) = −
∑

k′=k±1

η(k − k′)

(k′)2 + (η − k′t)2
Ω̂H(t, k′, η)ΩL(k − k′, 0).

The idea is that this model might be useful in estimating the leading order, long-
time dynamics of how enstrophy in the high frequency perturbation ΩH is trans-
ferred between modes in X as a result of the interactions with the low frequencies.
For a general solution, the simplifying assumptions we made in deriving (3.2) are
all inaccurate, and we will not be able to say that (3.2) is necessarily an accurate
model for the dynamics. Nevertheless, in [37] it was shown that at least in certain
regimes, the toy model provides an accurate picture of the leading order nonlin-
ear behavior. The echo construction for the Vlasov–Poisson equations [9] similarly
shows that the analogous toy model there can be an accurate approximation; see
§8.2. However, in [14,17], we instead use (3.2) to estimate the worst case scenario,
that is, we use (3.2) to get an upper bound on how much enstrophy can be trans-
ferred from low frequencies to high frequencies. See §7.2 for a discussion of how
this is done to enable the proofs in [14, 17].

4. Linear dynamics in dimension d = 3

4.1. Coordinate transform. In three dimensions, the vorticity formulation seems
less advantageous (especially for the nonlinear problem; see [11] for a brief discus-
sion). One reason for this is that, unlike the 2D case in (2.2), the linear evolution of
the vorticity is not a passive transport equation but instead also involves a nonlocal
term giving rise to vortex stretching. Even in the limit t → ∞, it is not true that
the dominant dynamics are passive scalar transport uniformly in ν. Nevertheless,
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it will still be advantageous to begin by factoring out by the transport as in (2.3).
Hence, we set ⎧⎨

⎩
X = x− ty,
Y = y,
Z = z.

As above, we capitalize the physical variables taken in this new set of coordinates:

U(X,Y, Z) = u(x, y, z), and denote ∇L =

⎛
⎝ ∂X
∂Y − t∂X

∂Z

⎞
⎠ and ΔL = ∇L · ∇L for

the differential operators in the new coordinates. In these new coordinates, the
equation satisfied by U reads

(4.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tU + U · ∇LU =

⎛
⎝−U2

0
0

⎞
⎠−∇LP + νΔLU,

∇L · U = 0,
U(t = 0) = Uin.

Linearizing this for small perturbations gives the system

(4.2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tU =

⎛
⎝−U2

0
0

⎞
⎠−∇LP + νΔLU,

∇L · U = 0,
U(t = 0) = Uin.

Notice that in (4.2) the pressure is given by

ΔLP = −2∂xU
2.(4.3)

4.2. Inviscid damping and enhanced dissipation of U2. As it happens, in-
viscid damping is still relevant in 3D, despite the vortex stretching. Interestingly,
[11] is the first work known to the authors that explicitly points out the relevance
of inviscid damping to 3D fluid mechanics. This is likely because it, at first, ap-
pears to be a relatively minor detail in the overall physical picture of the dynamics.
However, as discussed below in Remark 5.1, the presence of inviscid damping will
be absolutely critical to the proof of the results in [11–13]. In order to see the effect
in 3D, we introduce a new variable, Q2 = ΔLU

2. This unknown is well known
in the hydrodynamic stability of shear flows (see, e.g., [107]) and was apparently
introduced by Kelvin [70] (more precisely, the unknown q2 = Δu2 is normally the
unknown studied). A small computation reveals that Q2 solves

∂tQ
2 = νΔLQ

2(4.4)

(this calculation is actually easier to carry out in (x, y, z) and then transfer to
(X,Y, Z) afterward). Since

U2(t) = Δ−1
L Q2(t),

we derive the following, which is independent of Reynolds number and is analogous
to (2.7): ∥∥U2

�=(t)
∥∥
Hs � 1

〈t〉2
∥∥Q2

in

∥∥
Hs+2 .(4.5)
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Similarly, the Orr mechanism manifests on U2 similar to the way it manifests in
2D. By an analogous computation using (4.3), we also have the rapid decay of the
pressure

‖P (t)‖Hs � 1

〈t〉4 ‖Ωin‖Hs+4 .(4.6)

Finally, since (4.4) is the same as (2.6), it is clear that Q2 experiences the same
enhanced dissipation effect as Ω does in 2D (see §2.2).

4.3. Vortex stretching and enhanced dissipation of U1,3. From (4.5) and
(4.6), we see that the P and U2 terms in

∂t

(
U1

U3

)
=

(
−U2

0

)
−
(
∂XP
∂ZP

)
+

(
νΔLU

1

νΔLU
3

)
,

0 = ∂XU1 + (∂Y − t∂X)U2 + ∂ZU
3,

decay rapidly on O(1) time-scales (O(1) relative to the Reynolds number). It is
therefore acceptable to choose u2

in = 0 (this does not alter the generic behavior),
for which on time-scales 1 � t, the above becomes

∂t

(
U1

U3

)
=

(
νΔLU

1

νΔLU
3

)
,

∂XU1 + ∂ZU
3 = 0.

There are two main observations here: (A) U1
�= and U3

�= experience the same en-

hanced dissipation as U2, but (B) they do not experience any inviscid damping.
In fact, for time-scales 1 � t � ν−1/3, the definition of the coordinate transform
gives that for some fixed, time-independent U1,3

∞ ,

u1(t, x, y, z) ∼ U1
∞(x− ty, y, z),

u3(t, x, y, z) ∼ U3
∞(x− ty, y, z);

see [11]. Hence, in general, the vorticity ω = ∇× u grows (e.g., in L2) linearly in
time as O(ε〈t〉) until the dissipation time-scale ν−1/3 and u1,3 experience a matching
linear-in-time kinetic energy cascade. This vortex stretching adds extra complexity
to both the proofs and the actual nonlinear dynamics in 3D vs 2D (for example, see
the complexity difference between the 2D work [18] and the analogous 3D work [13]).
Moreover, the Orr mechanism in 3D not only involves the unmixing of enstrophy
from small-to-large scales as originally observed by Orr, but now also involves a
more subtle vorticity stretching effect which is anisotropic in (X,Y ) frequencies
(see, e.g., [98]). This will ensure that the 3D resonances are significantly more
complicated than 2D.

4.4. The lift-up effect. There is an additional linear effect that was discovered
in [46] (see also [74] for extensions to low wave numbers in x). This effect is active
for x-independent modes (U0): for these modes, ∇L = ∇ and ΔL = Δ, so that the
linearization is given by

∂tU0 =

⎛
⎝−U2

0

0
0

⎞
⎠+ νΔU0.
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Fortunately, this system can be solved explicitly:⎧⎨
⎩

U1
0 (t) = eνtΔ

[
U1
in,0 − tU2

in,0

]
,

U2
0 (t) = eνtΔU2

in,0,
U3
0 (t) = eνtΔU3

in,0.

This means that u1 undergoes a linear growth until time ∼ 1
ν , at which point the

viscosity will begin to slowly relax u1 to zero. In fact, the dynamics are essentially
the same as the canonical nonnormal ODE system discussed in Section 1.2:

∂t

(
X1

X2

)
=

(
−νX1 −X2

−νX2

)
.

This transient growth is called the lift-up effect and is one of the main destabiliz-
ing mechanisms in 3D (it is absent in 2D since there the divergence-free condition
imposes U2

0 = 0). This instability is one of the primary culprits for subcritical tran-
sition in 3D, and it implies that 3D flows generally have very different dynamics
from their 2D counterparts. For example, one can easily verify that every non-
trivial 3D shear flow undergoes this transient growth (this is easily seen on the 3D
Euler equations, ν = 0, where the lift-up effect becomes an unbounded, linear-in-
time algebraic instability). The lift-up effect and the nonlinear effects of vorticity
stretching together imply that, at high Reynolds numbers, the hydrodynamic sta-
bility of 2D shear flows is very different from that of 3D shear flows (consistent with
experimental observations).

5. Nonlinear dynamics in dimension three

5.1. Streaks. Observe that for uE(y) = (y, 0, 0)t, if the initial data in (1.1) is
independent of x, then this remains true for all time: u(t, x, y, z) = u(t, y, z). In
fact, u2,3(t) solves the 2D Navier–Stokes equations in (y, z) ∈ R × T, whereas u1

solves the linear advection-diffusion equation,

∂tu
1 + (u2∂y + u3∂z)u

1 = −u2 + νΔu1.

(Solutions to the Navier–Stokes equations of this type are generally called “2.5
dimensional”; see, e.g., [87].) We will refer to these solutions as streaks. Due to the
lift-up effect, the vast majority of the kinetic energy of a streak is in u1 [101]; in
experiments and computer simulations this, together with the low wave number in
x, gives them a very distinct streaky appearance [24, 72, 101, 107] (for x ∈ R, the
energy is piling into smaller and smaller wave numbers in x; see [74]). Using the
lift-up effect, it is easy to construct streaks which are initially O(ν) in L2 but at
t ≈ ν−1, satisfy

∥∥u1(t)
∥∥
L2 � 1. As solutions to the 2D Navier–Stokes equations are

global in time, this is a class of global solutions to the 3D Navier–Stokes equations
which are from equilibrium relative to ν.

If one only considers the linear problem, then recall that U�= is dissipated on the

short time-scale ν−1/3 so that streaks are potentially metastable states of the 3D
nonlinear problem that are somewhat analogous to the shear flows in 2D. There
are some important differences however. For example, due to the vortex stretching,
the velocity field is far from the streak solutions in L2 for t � ν−1/3, whereas in
2D, the inviscid damping ensures that the velocity is close to a shear flow after
times which are O(1) relative to ν (a difference with major nonlinear implications).
Assuming that the solution does not transition to a turbulent state, for t � 1

ν ,
dissipation in the k = 0 modes send U0 to zero.
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5.2. A scenario for subcritical transition. If streaks are metastable states near
the stability threshold, a possible storyline emerges:

• Start at t = 0 with a perturbation uin of size ∼ ε.

• At times t � 1

ν1/3
, enhanced dissipation kicks in and dissipates U�=. As a

result, the solution looks essentially like a streak.

• At time t ∼ 1

ν
, the maximal linear growth from the lift-up effect predicts

U1
0 could have size ∼ ε

ν
.

• There are now two possibilities:

– If
ε

ν
� 1, the maximal size of the streak is ε

ν and the dissipation of

modes k = 0 should, for times t � 1

ν
, bring u back to zero without

transitioning to a fully nonlinear state.

– If
ε

ν
� 1, we eventually leave the perturbative regime, and additional

instabilities should be expected at around the time ε−1, when the
streak becomes O(1).

If this storyline is accurate, it would lead to two conclusions: we could determine
the stability threshold is precisely γ = 1 and we would have that all instabilities
would result from the secondary instability of a streak. That is, a streak grows
such that

∥∥u1
0

∥∥
L2 = O(1), and then the slowly varying shear flow (y + u1

0(t), 0, 0)

develops a true exponential instability; e.g., if one formally freezes t [101], then one
can (formally) create an inviscid, inflection-point shear flow instability. Such an
instability would develop very rapidly relative to the time-scales on which the streak
varies, and carry the solution rapidly into a strongly nonlinear regime (though it is
not quite accurate to suggest it will necessarily go straight into a turbulent state; see
[44] and the references therein for more details on this). This secondary instability
is called streak breakdown in the fluid mechanics literature, and it has attracted a
lot of attention as it is the scenario most often observed in computer simulations
and physical experiments; see [24, 32, 45, 101, 107, 114] and the references therein.

The works [11,12] together confirm at least the beginning of this general picture
in Gevrey-s−1 with s > 1/2, that is

∥∥eλ〈∇〉suin

∥∥
2
= ε and for ε � ν2/3+δ for any

small δ > 0. Note this latter condition is simply a requirement that the data is not
“too far” above the stability threshold; it is obvious we need an assumption of this
general form, however it is an open question as to whether 2/3 should be the sharp
exponent. The two conditions are used to deduce that fully 3D nonlinear effects
are dominated by the enhanced dissipation.

5.3. Null forms and nonlinear interactions. The scenario that was just pro-
posed is relevant if the (mostly linear) heuristics which were derived in the previous
paragraphs apply. This can only be the case if nonlinear effects remain small.
One reason why this is the case in the regimes we consider goes by the name of
null form. The idea is the following: the most potentially threatening nonlinear
interactions between linear waves are ruled out by the particular structure of the
equation. These weakly nonlinear interactions are significantly more complicated
in 3D than the 2D echoes discussed in §3.2. However, the nonlinear structure of
the 3D Navier–Stokes equations near Couette flow is still very specific, and we can
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recognize a few special structures. For example, here are a few basic observations
(not at all exhaustive):

(a) Self-interactions of the lift-up effect. Recall that U1
0 grows linearly until

time ∼ 1
ν . A quadratic interaction of U1

0 with itself would be catastrophic,
but it is not allowed by the nonlinearity of the equation.

(b) Inviscid damping vs. convection. Recall that the convection term above in
(4.1) reads, when spelled out

U · ∇LU = [U1∂X + U2(∂Y − t∂X) + U3∂Z ]U.

The second summand, U2(∂Y − t∂X)U , seems quite threatening, since it
contains a linearly growing factor. Fortunately, it is paired with U2 which,
as we saw in Section 4.2, is damped independently of Reynolds number via
inviscid damping. A similar observation also damps problematic terms in
the pressure as a similar U2(∂Y − t∂X)U j structure is preserved therein as
well.

Remark 5.1. Note that observation (b) emphasizes the key relevance of inviscid
damping for understanding the nonlinear problem in 3D. Indeed, inviscid damping
might look like a minor detail in the statements of our results [11–13] or in the
general physical picture of the dynamics laid out above. However, inviscid damping
plays a crucial role in the proof due to this kind of nonlinear structure.

There are several nonlinear mechanisms which have the potential to cause insta-
bility, and many have been proposed as important in the applied mathematics and
physics literature for understanding transition; see, e.g., [34, 101, 107, 114] and the
references therein. We are particularly worried about so-called bootstrap mech-
anisms [14, 113, 114, 116, 117, 119]: nonlinear interactions that repeatedly excite
growing linear modes. We will classify the main effects by the x frequency of the
interacting functions: denote for instance 0 · �=→ �= for the interaction of a zero
mode (in x) and a nonzero mode (in x) giving a nonzero mode (in x), and similarly,
with obvious notations, 0 · 0 → 0, �= · �=→ �=, and �= · �=→ 0.

• 0 · 0 → 0: These correspond to self-interactions within the streak.
• 0 · �=→ �=: These interactions are essentially those that arise when lineari-
zing an x-dependent perturbation of a streak and so are connected to the
secondary instabilities observed in larger streaks [32,101]. The instabilities
which are most commonly observed in experiments are generally related to
secondary linear instabilities of the streaks, and so it is unsurprising that
most of the leading order interactions are of this type.

• �= · �=→ �=: These effects include the 3D variants of the 2D hydrodynamic
echo phenomenon as observed in [130, 131]: nonlinear interactions of x-
dependent modes forcing unmixing modes [14, 92, 116]—a nonlinear man-
ifestation of the Orr mechanism. In 3D, this is still important, and the
range of possible interactions is much wider; see, e.g., [34, 107, 126].

• �= · �=→ 0: These effects are the nonlinear feedback from x-dependent
modes back into x-independent modes.

All of these interactions are coupled to one another, and one can imagine bootstrap
mechanisms involving several of them (e.g., u1

0 forces a nonzero mode which unmixes
and then strongly forces u2

0 which strongly forces u1
0 via the lift-up effect, and

repeat).
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Toy models such as that derived in §3.2 can be written down for 3D; however, it is
not really practical to simultaneously include all of the leading order interactions in
the same model. Instead, in [11,12] we were content with deriving a much rougher
toy model meant only to help provide upper bounds on the nonlinear resonances.
Even then, the toy models are 6 × 6 ODEs involving many terms which contain
information involving all of the linear dynamics deduced above.

6. Statement of the theorems

For the sake of simplicity, we focus in this section on results in Gevrey regularity,
and we only give short statements of a selection of theorems, referring the interested
reader to the original papers.

6.1. The case of dimension 2.

Theorem 6.1 (Stability of Couette flow in dimension 2 [14], [17]). Consider (NS)
for ν > 0, or (E), in which case ν = 0. Fix s ∈ ( 12 , 1) and λ0 > λ′ > 0. Then, if

‖uin‖Gλ;s = ε

is sufficiently small (depending only on s, λ0, λ
′), then the unique, classical solution

u(t) to (1.1) with initial data uin is global in time and enjoys the following estimates
(all implicit constants might depend on s, λ0, λ

′, but not on ν):

(i) inviscid damping and enhanced dissipation of the velocity field,∥∥u1
�=(t)
∥∥
L2 + 〈t〉

∥∥u2(t)
∥∥
L2 � ε

〈t〉〈νt3〉10 ;

(ii) enhanced dissipation on time scales � 1
ν1/3 ,

‖ω�=(t, x+ ty + tψ(t, y))‖Gλ′;s � ε

〈νt3〉10

(here ψ(t, y) is an O(ε) correction to the mixing which depends on the
disturbance);

(iii) classical viscous decay of the zero modes

‖u0‖L2 � ε

〈νt〉1/4 .

Remark 6.2. One can also make more precise the metastability assertions in §3.1 by
showing the existence of a shear flow u∞ = (u1

∞(y), 0) such that u(t) ≈ u∞ on time-
scales 1 � t � ν−1/3. Similarly, one can prove the existence of an ω∞ = ω∞(x, y)
such that ω(t, x, y) ≈ ω∞(t, x + ty + tψ(t, y)) for times 1 � 1 � ν−1/3, which is
analogous to scattering in dispersive equations; see [14, 17] for more discussions.

To summarize, the above theorem states that the set of shear flows is asymptoti-
cally stable in Gevrey topology in the Euler equations (in a sense), and, uniformly in
ν > 0, in the Navier–Stokes equations. When viscosity is turned on, an additional
effect appears, namely enhanced dissipation, but this is a stabilizing mechanism,
and hence the result is uniform in ν.
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6.2. The case of dimension 3.

Theorem 6.3 (Below threshold dynamics [11]). Fix s ∈ (1/2, 1), and let λ0 > λ′ >
0. Then there exists c0 such that if

‖uin‖Gλ;s = ε < c0ν,(6.1)

then the unique, classical solution u(t) to (1.1) with initial data uin is global in time
and enjoys the following estimates (all implicit constants might depend on s, λ0,
λ′, but not on ν):

(i) the rapid convergence to a streak through enhanced dissipation,

(6.2) ‖u�=(t)‖L2 � ε〈t〉 1
10

〈νt3〉10

(the exponents 1
10 and 10 are not sharp and are only here to fix ideas);

(ii) transient growth of the streak for t < 1
ν through the lift-up effect,∥∥u1

0(t)−
(
eνtΔ

(
u1
in 0 − tu2

in 0

))∥∥
Gλ′;s �

( ε
ν

)2
,(6.3a) ∥∥u2

0(t)− eνtΔu2
in 0

∥∥
Gλ′;s +

∥∥u3
0(t)− eνtΔu3

in 0

∥∥
Gλ′;s �

( ε
ν

)
ε;(6.3b)

(iii) decay of the background streak for t > 1
ν ,

(6.4) ‖u(t)‖Gλ′;s � ε

ν〈νt〉1/4 .

In particular, (6.3a) (together with the other estimates) show that it is possible
to find initial data of the size ε = c0ν but such that at some finite time t� ≈ ν−1,∥∥u1

0(t)
∥∥
L2 � c0. Hence, one has arbitrarily small solutions which become O(1)

with respect to the Reynolds number. However, these solutions are not quite large
enough to trigger transition, as is evident by the fact that all the estimates in
Theorem 6.3 continue until t → ∞.

Next, one is interested in studying the dynamics of solutions above the stability
threshold. This is the content of the next theorem.

Theorem 6.4 (Above threshold dynamics [12]). Fix s ∈ (1/2, 1), and let λ0 >
λ′ > 0. Then, for all δ > 0 all ν and c0 sufficiently small (depending only on
s, λ0, λ

′, δ), if

‖uin‖Gλ;s = ε < ν2/3−δ,(6.5)

then the unique, classical solution u(t) to (1.1) with initial data uin exists at least
until time TF = c0ε

−1 and enjoys the following estimates with all implicit constants
independent of ν, ε, c0 and t:

(i) the rapid convergence to a streak through enhanced dissipation,

(6.6) ‖u�=(t)‖L2 � εt
1
10

〈νt3〉10 ;

(ii) transient growth of the streak for t < TF through the lift-up effect,∥∥u1
0(t)− eνtΔ

(
u1
in 0 − tu2

in 0

)∥∥
Gλ′;s � c20,(6.7) ∥∥u2

0(t)− eνtΔu2
in 0

∥∥
Gλ′;s +

∥∥u3
0(t)− eνtΔu3

in 0

∥∥
Gλ′;s � c0ε;(6.8)
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(iii) uniform control of the background streak for t < TF ,

1

〈t〉
∥∥u1

0(t)
∥∥
Gλ′;s +

∥∥u2
0(t)
∥∥
Gλ′;s +

∥∥u3
0(t)
∥∥
Gλ′;s � ε,(6.9)

where ψ(t, y, z) is an O(εt) correction to the mixing which depends on the
disturbance.

The key observation above is that Theorem 6.4 shows that near the transition
threshold, the only possible instability is the secondary instability of a streak as
envisioned in [32, 101, 114] and others.

7. Rigorous mathematical proofs

7.1. Nonlinear change of coordinates. We saw in Sections 2.1 and 4.1 that a
change of variable was necessary to take into account the effect of convection by
the Couette flow in the linearized equation.

7.1.1. The 2D case. In the work [18], the viscosity is (barely) large enough to
imply that the viscous effects dominate the adjustments to the shear flow over long
times, and hence in [18], (2.3) is essentially sufficient. However, in [14, 17] the
viscosity is nonexistent or arbitrarily small relative to the size of the perturbation
(respectively), and hence, the perturbation to the shear cannot be neglected. In
these cases, we use the following ansatz with a function ψ to be determined:

X = x− ty − tψ(t, y),(7.1a)

Y = y + ψ(t, y).(7.1b)

The purpose of x �→ X is to account for the mixing due to the background shear
flow and, equivalently, to find a coordinate system in which the vorticity could
have uniform-in-time higher regularity estimates. The purpose of y �→ Y is so that
∂y �→ (1+∂yψ)(∂Y −t∂X), which implies that the critical times still occur at t ∼ η/k
(see (7.5) and [14]). This ansatz is applied, and we derive

∂tΩ+

(
U1 − ∂t(tψ)

U2 + ∂tψ − ν∂yyψ

)
·
(

∂XΩ
(1 + ∂yψ)(∂Y − t∂X)Ω

)
(7.2)

= ν∂XXΩ+ ν(1 + ∂yψ)
2(∂Y − t∂X)2Ω.

Note that ψ and u are still in (x, y) coordinates. If one assumes that the linear
problem is a good approximation for the dynamics, then u1

0 is the only contribution
to the drift which is not decaying quickly. Hence, it makes sense to choose ψ in
order to eliminate this, which is the choice made in [14, 17]:{

∂t(tψ) = u1
0 + ν∂yy(tψ),

limt↘0(tψ) = 0.
(7.3)

After applying this choice and using U1 = −(1+ ∂yψ)(∂Y − t∂X)Φ and U2 = ∂XΦ,
(7.2) becomes

⎧⎨
⎩

∂tΩ+ g∂Y Ω+ (1 + ∂yψ)∇⊥Φ �= · ∇Ω = ν∂XXΩ+ ν(1 + ∂yψ)
2(∂Y − t∂X)2Ω

ΔtΦ := ∂XXΦ+ (1 + ∂yψ)
2(∂Y − t∂X)2Φ+ ∂yyψ∂yψ(∂Y − t∂X)Φ = Ω,

g = ∂tψ − ν∂yyψ = 1
t (u

1
0 − ψ).

(7.4)

Notice the crucial cancellation that eliminated powers of t from the nonlinearity;
such a nice structure is not present in 3D. The key difference between (7.4) and
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(2.5), is that the velocity field contains only Φ �=, rather than Φ: the drift due to
the slowly decaying shear flow has been removed from the equation for Ω. The
presence of this perturbation is now being felt indirectly through ψ via the forcing
term (7.3) (in particular, note that ψ is an unknown that must be solved for along
with Ω). One can liken the coordinate transform (7.1), (7.3) to a kind of gauge
transformation. Note that this coordinate change has made (7.4) significantly more
nonlinear. In the proofs of [14, 17], further governing equations are derived for
Ψ′(t, Y ) = ∂yψ(t, y) and G(t, Y ) = g(t, y) in order to obtain estimates on these
nonlinear contributions.

Notice that, like ΔL, Δt is not elliptic. Indeed, the symbol of Δt (as a pseudo-
differential operator),

σ(Δt)(Y, k, η) = −k2 − (1 + ∂yψ)
2(η − kt)2 + i∂yψ∂yyψ(η − kt),(7.5)

is degenerate at the frequency η = kt—the critical times. As alluded to above,
the precise form of the coordinate transform (7.1) was motivated by ensuring that
the loss of ellipticity in (7.5) still occurs at the same critical times as the Couette
flow. This alone is not sufficient for us to consider Δt to be a small perturbation of
ΔL; that requires ∂yψ sufficiently small and a variety of arguments which carefully
respect the precise way ellipticity is lost. Many variations of such elliptic estimates
have appeared in varying levels of complexity in all of the works on Couette flow
[11–14,17,18]. Related arguments also arise when studying the enhanced dissipation
due to the dissipative terms on the left-hand side of (7.4).

7.1.2. The 3D case. In dimension 3, the lift-up effect is so strong that the coor-
dinate transform ends up being much larger, and we need to account for it via a
refined coordinate transform. In [11, 13], the following ansatz is made in analogy
with that made above: ⎧⎨

⎩
X = x− ty − tψ(t, y, z),
Y = y + tψ(t, y, z),
Z = z.

In [12], one also needs to make a more complicated transformation in Z due to the
very large size of the streak; see [12] for details. Via a derivation similar to what
we applied above, one derives the following PDE for the evolution of ψ:

d

dt
(tψ) + U0 · ∇(tψ) = u1

0 − tu2
0 + νΔ(tψ).

Notice the nonlinear transport and especially the lift-up effect seen through the
presence of −tu2

0.

7.2. Fourier multiplier norms. One of the main technical tools employed in all
of [11–14, 17, 18], as well as [9, 134, 136] are various norms defined via carefully
designed Fourier multipliers. For example, in 3D, defining Qi = ΔLU

i,

(7.6)
∥∥Ai(t,∇)Qi

∥∥
L2 =

⎛
⎝∑

k,�

∫ ∣∣∣Ai(t, k, η, 
)Q̂i(t, k, η, 
)
∣∣∣2 dη

⎞
⎠

1/2

.

The multipliers are time-dependent and typically encode two types of estimate: one
is L∞ in time (global bound), the other L2 in time (dissipation). This follows from
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the simple identity,

∥∥Ai(t,∇)Qi(t)
∥∥2
L2︸ ︷︷ ︸

uniform bound

=
∥∥Ai(0,∇)Qi(0)

∥∥2
L2 + 2

∫ t

0

〈∂tAi(t,∇)Qi , Ai(t,∇)Qi〉 ds︸ ︷︷ ︸
dissipation term

+ 2

∫ t

0

〈Ai(t,∇)∂tQ
i , Ai(t,∇)Qi〉 ds︸ ︷︷ ︸

computed through the equation; absorbed in various ways

.

Usually, the multipliers Ai are designed as the product of several kinds of Fourier
multipliers.

It turns out that a great diversity of Fourier multipliers is needed in the estimates
of [11–14, 17, 18, 132] (and also the works in kinetic theory [9, 10]); each work uses
a specific, different combination of them. They generally can be classified into the
following types:

• Ghost multipliers. These multipliers are those which are uniformly bounded
above and below in both t and ν; a Fourier-side analogue of Alinhac’s ghost
energy method [2]. These do not alter the norm topology and are hence
relatively easy to apply. Variants have been applied throughout the works;
they have been used in, e.g., [11–13,18, 132].

• Nonlinear cascade multipliers. These multipliers become weaker in time to
allow the solution to lose large amounts of regularity due to a potential
frequency cascade. Variants have been used in [9, 11, 12, 14, 17] and have
each been designed based on weakly nonlinear toy models such as (3.2).
They are much more difficult to use than ghost multipliers, especially those
in [12, 14, 17].

• Steady loss/gain multipliers. These multipliers steadily become weaker or
stronger over long periods of time, for example, the standard Gevrey/ana-
lytic regularity multipliers such as eλ(t)|∇|s . However, the works [11–13,17]
also use a variety of other multipliers which lose or gain in an anisotropic
(in frequency and time) way.

• Singular limit multipliers. The most important multiplier in [13] is different.
This multiplier is uniformly bounded in t and frequency, but not uniformly
in ν. The multiplier was used to estimate the vortex stretching, which is
unbounded as ν → 0 (but is bounded for all ν > 0). We have elected
to make this a separate classification of multiplier because we believe that
such norms have a high probability of being useful in the future.

7.2.1. An example of a ghost multiplier: enhanced dissipation. Consider the simple
linearized PDE,

∂tQ = νΔLQ.(7.7)

As we saw in Section 2.2, this PDE is easily solved by taking the Fourier transform
and integrating. However, once the nonlinearity is added back in, such an approach
is not tenable. Indeed, semigroup methods will usually fail as ν → 0 since the prob-
lem becomes quasi-linear, whereas energy estimates seem a much more promising
tool. Therefore, it is very natural to look for an energy method approach to getting
enhanced dissipation estimates on (7.7). An approach using multipliers of the type
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we termed “steady loss/gain” was introduced in [17] and adapted in [11, 12]; how-
ever, while this approach easily yields very strong estimates, it is only suitable for
proofs involving high regularity. An alternative approach, which seems to be much
simpler and suitable for low regularity, was put forward in [13] (and later applied in
[10, 18]). To use this approach, define the multiplier via the linear ODE for k �= 0:

Ṁ

M
= − ν1/3[

ν1/3|t− η
k |
]2

+ 1
,

M(0, k, η) = 1.

Notice that there is a constant c (independent of k, η, t, and ν) such that c <
M(t, k, η) ≤ 1, and hence this multiplier is of type we termed “ghost multiplier”.
In particular, its presence does not change a norm:

‖M(t,∇)〈∇〉σf‖L2 ≈ ‖〈∇〉σf‖L2 .(7.8)

The crucial property that M satisfies is

1 � ν−1/6

(√
−ṀM(t, k, η) + ν1/2|k, η − kt|

)
for k �= 0,(7.9)

which implies that

‖f�=‖2L2 � ν−1/3

(∥∥∥√−ṀMf�=

∥∥∥2
L2

+ ν ‖∇Lf�=‖2L2

)
.(7.10)

Now consider the following simple energy estimate on (7.7),

1

2

d

dt
‖M(t,∇)Q �=‖2L2 = −

∥∥∥√−ṀMQ�=

∥∥∥2
L2

− ν ‖∇LMQ�=‖2L2 ,(7.11)

hence,

1

2
‖M(t,∇)Q�=(T )‖2L2 +

∫ T

0

∥∥∥√−ṀMQ�=

∥∥∥2
L2

dt+ ν

∫ T

0

‖∇LMQ�=‖2L2 dt

=
1

2
‖M(0,∇)Q�=(0)‖2L2 .

(7.12)

Applying (7.8) and (7.10) gives us the decay estimate∫ ∞

0

‖MQ�=(t)‖2L2 dt � ν−1/3 ‖Q(0)‖2L2 .(7.13)

Hence, this estimate scales with the correct ν−1/3 characteristic time-scale observed
using the Fourier approach. Further, one can adapt this method to obtain expo-

nential decay rates such as e−δν1/3t for sufficiently small δ [10].

7.2.2. An example of a nonlinear cascade multiplier: decay vs. regularity in the
simple 2D case. We build here on the toy model derived in Section 3.2 to derive a
multiplier which will control the frequency cascade scenario. We focus on the 2D
case since the 3D case is significantly more technical. Recall that in §3.2, we came
up with the simplified model,{

∂tΩ+∇⊥ΦH · ∇ΩL = νΔLΩ,
ΔLΦ = Ω.

(7.14)
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By repeating calculations from §2.3, we have the following decay estimate for the
effective velocity field due to inviscid damping:∥∥∇⊥Φ �=

∥∥
Hs � ‖Ω(t)‖Hs+3

〈t〉2 .(7.15)

It follows that if we have a uniform-in-time bound on Ω in a suitable Hs space,
then the nonlinearity decays rapidly and the nonlinear dynamics match the linear
dynamics predicted by (2.6). The metastability discussed in §3.1 will also hold ac-
cordingly (at least after we quantify the enhanced dissipation in a suitable sense).
However, due to the regularity loss in (7.15), it is not clear how to obtain this
uniform bound—the loss is far too large even to get a uniform bound in analytic
regularity via a Cauchy–Kovalevskaya style argument (even to get t−1 decay re-
quires the loss of two derivatives, whereas a Cauchy–Kovalevskaya argument could
handle at most the loss of one).

We see that the estimate (7.15) is too simplistic to accomplish anything (though
it is optimal if one restricts oneself to standard Hs norms and pointwise-in-time
estimates). Let us return to (3.2) and try to more precisely estimate the kind of
regularity loss that could occur. As we are only interested in an upper bound, we
will drop the signs in (3.2). If we assume that t ∼ η/k, then (3.2) simplifies further
to the following, assuming that ΩL = O(κ):

∂tΩ̂H(t, k, η) = κ
η

(k − 1)2 + (η − (k − 1)t)2
Ω̂H(t, k − 1, η),

∂tΩ̂H(t, k − 1, η) = κ
η

k2 + (η − kt)2
Ω̂H(t, k, η).

We will further assume that η � k2 (so that the coefficient in the second equation
is large) and that |t− η/k| � η

k2 , which implies that t is near the critical time η/k
and away from the critical time η/(k−1). Applying these simplifications, we derive
the toy model of [14]:

∂tΩ̂H(t, k, η) = κ
k2

η
Ω̂H(t, k − 1, η),(7.16a)

∂tΩ̂H(t, k − 1, η) = κ
η

k2 + (η − kt)2
Ω̂H(t, k, η).(7.16b)

It is possible to find an approximate supersolution of the coupled ODE system
(7.16), which, after iterating over all critical times, quantifies precisely how bad
the echo cascade can be [14]. Next to a critical time t ∼ η

k , the supersolution
wC controls the critical frequency k, and the supersolution wNC the noncritical
frequency k − 1:

|ΩH(t, k, η)| � wC(t, k, η),

|ΩH(t, k − 1, η)| � wNC(t, k, η),

where wC and wNC are functions which satisfy the following (near t ≈ η/k):

wC

(η
k
+

η

k2
, k, η
)
≈ wNC

(η
k
+

η

k2
, k, η
)
≈
( η

k2

)1+O(κ)

wNC

(η
k
− η

k2
k, η
)

and

wNC(t, k, η)

wC(t, k, η)
≈ η

k2(1 +
∣∣t− η

k

∣∣) .(7.17)
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The first approximate identity shows that the supersolution estimates that the total
growth of the two modes is roughly comparable. That is, both the critical and
noncritical frequencies grow by a factor of about O( η

k2 )
c for some fixed c. Iterating

over all critical times satisfying η � k2 predicts a growth in the mode (1, η) by time
t ≥ η like the following (applying Stirling’s formula; see [14] for more details):(

η
√
η

(
√
η!)2

)c

∼ η−c/2e2c
√
η.

Hence, (7.16) precisely predicts that the amount of enstrophy at frequencies compa-
rable to η can be amplified by roughly e2c

√
η. This large amplification suggests that

Gevrey-2 regularity might be necessary in order to control the nonlinear effects for
long times (if one does not have viscosity). This is the origin of the high regularity
requirement in [14, 17].

On the other hand the approximate identity (7.17) shows that, very close to
η ≈ tk, the noncritical frequencies could potentially be much larger than the critical
frequencies. This regularity imbalance is only possible due to the fact that the
critical frequency does not interact directly with itself in the leading order dynamics
predicted by (7.16). This special noninteraction can be considered a null form which
is absolutely crucial to the proof of [14,17] (it arises from the ∇⊥Φ · ∇ structure in
the original equations). Such null forms, which dictate the precise way information
moves between different frequencies, also prove to be essential to the 3D works,
though there the structures are more complicated [11–13].

The proof of [14] is based on a weighted norm roughly of the form A =
eλ(t)|∇|s 1

w(t,k,η) with s ∈ (0, 1) and w designed to resemble the above supersolu-

tion near the critical times t ∼ η/j for any j with |j|2 � |η| (after accounting for
the subsequent multiplicative amplification through each critical time). That is,
for k = j, w ∼ wC and k �= j, we take w ∼ wNC . The motivation for this choice
can be interpreted as follows: w(t, k, η) roughly predicts the “worst-case” transfer
of information from low-to-high frequencies, and, if the enstrophy transfer is of
roughly the same type as that predicted, we can expect that

|Ω(t, k, η)| � w(t, k, η),

which ensures that the norm gets weaker at precisely the rate necessary to ensure
AΩ remains uniformly bounded.

In the 3D works, the analogues of the toy model are far more complicated [11,12];
however, these can be upper bounded by multipliers which are similar to the above
w. In the work on the Vlasov–Poisson equations, a multiplier analogous to the
above w is used, however, it is also a singular limit (in the size of the data ε), and
so it is in some ways more complicated but in other ways simpler, as the resonances
in the Vlasov–Poisson equations have a simpler structure [9].

7.2.3. An example of a singular limit multiplier. When deriving estimates, it is
natural to define Q1 = ΔLU

2 and Q3 = ΔLU
3 in a similar way to Q2 = ΔLU

2. A
caricature of the linearized problem for Q1 and Q3 is

(7.18) ∂tQ− νΔLQ+ 2∂XY Δ
−1
L Q = 0.

Taking the Fourier transform, it reads

∂tQ̂+ ν(k2 + (η − kt)2 + 
2)Q̂+ 2
k(η − kt)

k2 + (η − kt)2 + 
2
Q̂ = 0.
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This can be seen as a competition between the second term above (dissipation) and
the third term (stretching, which causes Q to grow if k(η − kt) < 0). In order to
quantify how much growth the stretching can generate, define the multiplier m in
such a way that first, m(t = 0,∇) = 1; and second, if Q satisfies 7.18, then

d

dt
‖m(t,∇)Q‖L2 ≤ 0.

With an appropriate choice of m,

ν2/3 � m(t, k, η, 
) ≤ 1

(and this bound is sharp). This means that the maximal linear growth which Q
can undergo is � ν−2/3. More importantly, the multiplier m will be key in closing
nonlinear estimates.

7.3. Paraproducts and Gevrey regularity. The paraproduct, introduced by
Bony in [23], has been a ubiquitous tool in the analysis of the stability of the
Couette flow. In order to explain its principle, consider functions f and g of a
real variable, and recall that the Fourier transform of their product is given by the
convolution of their Fourier transforms

f̂g(ξ) =

∫
f̂(ξ − η)ĝ(η) dη.

The idea is now to use a smooth cut-off function χ such that

χ(ξ, η) =

{
1 if |η| � |ξ − η|,
0 if |ξ − η| � |η|,

in order to split the product

f̂g(ξ) =

∫
χ(ξ, η)f̂(ξ − η)ĝ(η) dη +

∫
[1− χ(ξ, η)]f̂(ξ − η)ĝ(η) dη.

In the right-hand side, the first summand corresponds to interactions between high
frequencies of g and low frequencies of h. This explains the following shorthand for
the above decomposition:

fg = fLo gHi + fHi gLo.

In this way the decomposition of all products turns out to be very convenient, in
that it allows us to use different estimates for different interactions. Consider for
instance the paraproduct decomposition of the convection term

u · ∇u = uLo · (∇u)Hi + uHi · (∇u)Lo.

The second term should be better behaved, since the derivative hits low frequencies.
This can be quantified through the estimate

‖uHi · (∇u)Lo‖Hs � ‖u‖2Hs .

As a consequence, this particular term does not lose derivatives, as opposed to the
low-high interaction.

Basic paraproduct methods provide a straightforward proof of the product rule
for fractional Sobolev spaces (see, e.g., the appendix of [111]), and hence it is
reasonable to expect that they also provide a useful tool for deducing product
rules in Gevrey class. Indeed, one has the following very useful product rule which
emphasizes one of the very convenient properties of Gevrey regularity. Specifically,
only one of the two factors is measured in the highest norm in each of the two
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terms (analogous to the situation in Sobolev spaces). We remark that this is false
in analytic regularity s = 1.

Theorem 7.1. Let s ∈ (0, 1), let p > d/2, and let λ > 0. There exists a c = c(s) ∈
(0, 1) depending only on s, such that

‖fg‖Gλ,s �s,p ‖f‖Gλ,s ‖〈∇〉pg‖Gcλ,s + ‖g‖Gλ,s ‖〈∇〉pf‖Gcλ,s .(7.19)

This theorem can be proved using paraproducts together with elementary in-
equalities of the general type |x− y|s < c(s) (|x|s + |y|s) (see, e.g., [14] for a proof).
We remark that when working in Gevrey class, it is necessary to split into three
regions of frequency rather than two: |ξ| � |η − ξ|, |η − ξ| � |ξ|, and |η − ξ| ≈ |ξ|.

8. Related questions

8.1. Scattering and weak turbulence. Scattering is a typical behavior for (de-
focusing) nonlinear dispersive equations set in the whole space: global solutions
look asymptotically linear. To be more specific, consider for instance the nonlinear
Schrödinger equation

(NLS)

{
i∂tψ −Δψ = −|ψ|2ψ,
ψ(t = 0) = ψ0,

set on the whole space R
3: ψ = ψ(t, x) ∈ C, with (t, x) ∈ R × R3. As t → ±∞,

ψ(t) converges locally to zero, and looks increasingly like a linear solution,∥∥ψ(t)− eitΔf±
∥∥
H1 → 0 as t → ±∞

(in general, f+ and f− are different).
Recall that, in dimension 2, for ν = 0, and for small Gevrey data,

ω(t, x, y) ≈ ω±∞(t, x− ty − tu±∞(y), y) as t → ±∞.(8.1)

The similarities with scattering for (NLS) are striking: in both cases there is point-
wise decay (ψ → 0 and u2 → 0, respectively); the system relaxes as t → ±∞
(to a linear solution), though no dissipation appears in the system, which is fully
time-reversible; and the scattering states ω±∞ differ in general.

The mechanism of relaxation for (NLS) is the spreading of waves, which causes
them to decay and ultimately suppresses nonlinear interactions. No such mechanism
is available for (E), since the domain is compact in X (and very little spreading in
Y occurs). However, the energy is spreading in frequency : the drift toward high
frequencies (and the Biot–Savart law) is the cause of inviscid damping.

This is very reminiscent of a phenomenon called weak turbulence. It is expected
for (NLS) set on a compact domain, and it consists of a drift of energy toward
high frequencies as t → ∞, causing the system to relax. However, no mathematical
evidence is known for this phenomenon, which, furthermore, should be valid in a
statistical sense only.

8.2. Landau damping. The Vlasov–Poisson equation is a kinetic model describ-
ing the evolution of a density of particles f(t, x, v), which, at time t, has position x
(usually taken x ∈ Td

x or x ∈ Rd
x) and velocity v ∈ Rd

v:

(VP)

⎧⎨
⎩

∂tf + v · ∇xf + E · ∇vf = 0,
E(t, x) = ∇xΔ

−1
x (
∫
Rd fdv − ρ),

f(t = 0) = fin,
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where ρ is a neutralizing background density (usually fixed to be a constant) which
models the presence of the ions in the plasma [26]. At least to start, in phys-
ical applications, one studies disturbances of spatially homogeneous background
f(t, x, v) = f0(v)+h(t, x, v) with the mean-zero condition

∫
Td

∫
Rd h(t, x, v)dvdx = 0

and ρ =
∫
f0(v)dv. The equations hence become

(8.2)

⎧⎨
⎩

∂th+ v · ∇xh+ E ·
(
∇vf

0 +∇vh
)
= 0,

E = ∇xΔ
−1
x

∫
Rd hdv,

h(t = 0) = hin.

If h solved the free transport equation with smooth data

∂th+ v · ∇xh = 0,

then it is easy to see that E → 0 as t → ∞ (it suffices to take the Fourier transform
and proceed exactly as in the Couette flow). This phenomenon is called Landau
damping ; just like inviscid damping, it gives decay in the absence of a dissipative
mechanism. We also remark that it is a variant of velocity averaging in a slightly
different guise; see, e.g., [59, 60]. In 1946, Landau proved that Landau damping
holds for the linearized Vlasov equations on x ∈ Td for f0 a Maxwellian [75], and
Penrose [97] later extended this to a wide class of other backgrounds; see, e.g.,
[36, 57, 58, 115] for other studies on linearized Vlasov equations. We remark that
it was apparently Van Kampen [115] who first pointed out that Landau damping
is related to mixing in phase space. It is one of the most fundamental effects in
the kinetic theory of plasmas [26, 105] and is also potentially relevant to stellar
mechanics [86].

It was first proved that there exist solutions to the nonlinear Vlasov equations
(8.2) on x ∈ T which display Landau damping by Caglioti and Maffei [27]; later, this
was extended further in [67]. A major breakthrough came in Mouhot and Villani’s
work [93], which showed that on x ∈ Td, the dynamics of all sufficiently small and
(sufficiently smooth) Gevrey class solutions matched that of the linearized Vlasov
equations for all t (and hence, all such solutions display Landau damping at es-
sentially the same rate as that predicted by Landau and Penrose’s work). The
proof was later simplified and extended to a wider range of Gevrey regularity by
Mouhot and two of the authors in [16], which was later adapted to the relativistic
plasma case [129]. In [47, 48] Landau damping in Sobolev regularity was proved
for variants of the Vlasov–Poisson model which have much weaker resonances (see
also [38]). Later, dispersion and phase mixing were combined to prove Landau
damping on R

3
x×R

3
v in Sobolev regularity for Vlasov–Poisson in [15]. In particular,

it was proved that dispersive effects are able to limit the effect of the plasma echo
resonances. However, in [9], it was proved that on Tx × Rv there exists solutions
arbitrarily close to homogeneous equilibrium in Sobolev spaces which deviate arbi-
trarily far from the linearized Vlasov predictions due to long chains of plasma echo
resonances. Recently in [10], it was shown that nonlinear collisions can suppress
these resonances in a manner analogous to the results of [13, 18].

9. Open problems

The results of [11–14, 17, 18] study what is essentially the easiest problem in
hydrodynamic stability at high Reynolds number in the absence of unstable spectra
in the linearization. However, now that this case has been studied, it makes sense to
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ask what harder problems can be considered. Moreover, despite the rather in-depth
studies, there are still some unanswered questions, even on Couette flow.

9.1. Nonlinear instabilities and transition thresholds: open questions on
Couette flow. One of the most important directions to explore further is the role
of nonlinear instabilities in subcritical transition, and moreover, how the regularity
of initial data may or may not affect the dynamics. In particular, an important
problem regarding Couette flow would be to prove the sharpness of the transition
thresholds estimated in 2D [18] and 3D [13] for Sobolev regularity data. Similarly,
one could evaluate carefully how things change in still lower regularity; for example,
see [82] for the 2D Euler equations. At least for the case of the 3D Couette flow,
there is a variety of quantitative and anecdotal evidence to suggest that, indeed,
regularity does play an important role in the subcritical transition. The numerical
studies of Reddy et al. [101] suggest specifically that the threshold in [13] is sharp;
however, numerical studies of these problems are very difficult and prone to overes-
timating the transition thresholds so it is difficult to say confidently either way. It
makes sense to try to connect any such analysis to existing formal asymptotic works,
such as [116,117] and physical experiments [107,126]. Finally, one would naturally
wish to understand better the secondary instabilities of streaks and the role played
in the next step in the transition from nearly linear to nonlinear dynamics.

9.2. Influence of boundaries and low wave numbers. The physical experi-
ments most closely approximating the Couette flow setting are in bounded channels
y ∈ [−1, 1] and long channels better modeled by x ∈ R. The boundary conditions
at the top and bottom are naturally u = (1, 0, 0) at y = 1 and u = (−1, 0, 0) at
y = −1 after proper normalization (we will refer to this case as the infinite chan-
nel problem). It has been observed that the presence of physical boundaries could
potentially introduce a variety of new kinds of nonlinear instabilities (see [107,126]
and the references therein). Moreover, the presence of long wave numbers in x
presents another challenge. It has been proved that many planar shear flows in
the channel that are not Couette flow suffer from long-wave instabilities at high
Reynolds number; see [50, 62] and the references therein. Understanding both (or
either) the long wave effects and the boundary effects in 3D is an important goal
moving forward. Even at the level of the 2D Euler equations in a channel, it has
been observed that boundaries can add new complications [69, 123, 134].

Remark 9.1. Studying nonlinear stability for the 2D Navier–Stokes equations at
high Reynolds number or the 2D Euler equations in a bounded channel (e.g., T×
[−L,L] or R× [−L,L]) may not be of direct physical relevance. As discussed above,
real 3D shear flows undergo strong 3D instabilities at high Reynolds number—the
2D dynamics are rarely observed. Applications of 2D fluid mechanics to plasma
physics (via drift-kinetic or gyro-kinetic scenarios) or atmospheric dynamics would
generally not involve such boundaries, or, would have boundary conditions (and
boundary layers) which are different from the usual no-slip and no-penetration
conditions. Nevertheless, this case is very interesting and important to study from
a mathematical viewpoint, as one can use this case as an intermediate result on
the path to understanding the case of 3D boundaries (which is of high physical
interest).

9.3. Stability and subcritical instability for more general problems. A va-
riety of other settings in fluid mechanics are of more direct physical relevance than
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the Couette flow. In two dimensions, the most important configuration to study are
vortices in the 2D Navier–Stokes and Euler equations (that is, radially symmetric
configurations of vorticity). In analogy with shear flows, for the Euler equations
all such configurations are equilibria whereas for the Navier–Stokes equations all
such solutions reduce to the heat equation; see [21,54,77] and references therein for
progress. In three dimensions there are several configurations of major relevance.
Perhaps the most famous of the problems is the pipe flow studied by Reynolds in his
original experiments [102]: the equilibrium corresponds to pressure-driven flow in a
cylindrical pipe (preferably an infinite pipe, but the periodic model would likely be
studied first). Other good examples are wall-bounded shear flows (e.g., semi-infinite
domains with a parabolic shear flow above a flat plate), Couette flow in an infi-
nite channel (bounded in y), or other planar shear flows in an infinite channel [41].
Naturally, one could also study vortex columns. For each of these problems, one
can formulate analogues of Questions Q1 and Q2 in various regularities and pursue
questions similar to those we studied in the Couette flow. Similarly, various kinds
of subcritical instabilities will arise in these problems, and it would be important
to isolate them and study them in more detail. Moreover, many similar problems
exist in kinetic theory and magneto-hydrodynamics problems, for example, under-
standing Landau damping in galactic dynamics or in plasmas in the presence of
magnetic fields.

As we saw above, the stability of the Couette flow has been analyzed in depth
(though some questions remain). One of the important reasons why this was
possible is that the linearized problem can be solved explicitly. For more gen-
eral problems this is no longer possible, and indeed, even the resulting linear
problems are extremely difficult to analyze in detail. Linear works studying en-
hanced dissipation and inviscid damping in the 2D Navier–Stokes and Euler equa-
tions have been quite technical and the theory is still in its infancy; see, e.g.,
[21,54,68,77,78,123–125,134,136]. Moreover, our works on Couette flow show that
nonlinear results do not easily follow from linear results. However, it is our hope
that the ideas and methods which were put forward in the analysis of the Cou-
ette flow can lead to a much more general understanding and eventually lay the
groundwork for a wider theory.

9.4. Large-time behavior of the Euler equations for d = 2. The existence
of global solutions of the Euler equations (E) in dimension d = 2 is known under
weak assumptions on the data. However, very little is known qualitatively about
these solutions. Until recently, the only known solutions whose asymptotic behavior
could be established were stationary or explicit solutions! Gevrey solutions close
to Couette flow are the first nontrivial solutions whose behavior can be described
precisely [14]. The works of, e.g., [71, 94] and related norm growth results also
provide glimpses into interesting long-term dynamics, though significantly less in-
formation is obtained on solutions in these regimes. Moreover, the work of, e.g.,
[30] constructs a variety of interesting smooth, rigidly rotating solutions. Any so-
lutions of these types clearly do not involve vorticity mixing as t → ∞, and so we
can expect a large set of solutions which do not display any mixing. On the other
hand, results of [14] show that all sufficiently smooth solutions in the vicinity of
Couette flow which are not shear flows experience some vorticity mixing as t → ∞
and in particular, are not precompact in L2(T × R). In light of [14], statistical
mechanics considerations, and a variety of numerical simulations, it is potentially
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reasonable to make the following, somewhat vague, conjecture which suggests that
this situation is generic in a suitable sense. This conjecture was first communicated
to us by Vladimir Sverak.

Conjecture 9.2. The generic solution to the 2D Euler equations in vorticity form
on T

2 is such that the orbit {ω(t)}t∈R
is not precompact in L2(T2). Here “generic”

could be interpreted in the sense of Baire category or in an appropriate probabilistic
sense, such as randomizing initial data in a suitable manner.
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model, Ann. Henri Poincaré 17 (2016), no. 7, 1793–1823, DOI 10.1007/s00023-015-0450-

9. MR3510470
[49] R. Fjørtoft,Application of integral theorems in deriving criteria of stability for laminar flows

and for the baroclinic circular vortex, Geofys. Publ. Norske Vid.-Akad. Oslo 17 (1950), no. 6,
52. MR0053717
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