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Abstract
Ensemble clustering generally integrates basic par-
titions into a consensus one through a graph par-
titioning method, which, however, has two limita-
tions: 1) it neglects to reuse original features; 2)
obtaining consensus partition with learnable graph
representations is still under-explored. In this pa-
per, we propose a novel Adversarial Graph Auto-
Encoders (AGAE) model to incorporate ensem-
ble clustering into a deep graph embedding pro-
cess. Specifically, graph convolutional network
is adopted as probabilistic encoder to jointly in-
tegrate the information from feature content and
consensus graph, and a simple inner product layer
is used as decoder to reconstruct graph with the
encoded latent variables (i.e., embedding repre-
sentations). Moreover, we develop an adversarial
regularizer to guide the network training with an
adaptive partition-dependent prior. Experiments on
eight real-world datasets are presented to show the
effectiveness of AGAE over several state-of-the-art
deep embedding and ensemble clustering methods.

1 Introduction
Ensemble clustering (EC) [Strehl and Ghosh, 2003; Fred and
Jain, 2005] takes as input a set of basic partitions (BPs) and
targets to deliver a robust clustering result by integrating all
the BPs into a consensus one. One representative and effec-
tive way to achieve consensus is based on the tool of co-
association matrix [Fred and Jain, 2005], which in essence
encodes the pairwise similarity between data points upon
the categorical data (i.e., BPs), and builds a tight link to
the graph partitioning problem. In this paper, we call the
graph defined by co-association matrix as consensus graph.
Previous works [Fred and Jain, 2005; Luo et al., 2011;
Lancichinetti and Fortunato, 2012] show that the consensus
graph is able to capture various cluster structures by exploit-
ing the diversity among basic partitions.

However, although EC methods on consensus graph have
achieved appealing performance, there still exits two limi-
tations. First, as consensus graph is only built with cate-
gorical BPs, it neglects to reuse the rich information inside
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Figure 1: Illustration of the proposed AGAE. Adversarial training is
adopted as a regularizer to guide the learning of embedding repre-
sentations Z, where we treat Z sampled from the encoded distribu-
tion qφ as fake samples and Z from our adaptive partition-dependent
prior as the real ones.

original features, which could badly degrade the clustering
performance on some cases [Tao et al., 2017a; Domeniconi
and Al-Razgan, 2009]. Second, existing methods mainly
conduct graph partitioning algorithm on a consensus graph
directly, e.g., spectral graph partitioning [Liu et al., 2015],
yet without considering to learn discriminative and low-
dimensional graph representations. Nevertheless, recent re-
search efforts [Xie et al., 2016; Yang et al., 2017] have shown
that learning an easy-partitioning embedding space is quite
crucial for data cluster analysis.

To address the above challenges, we propose a novel Ad-
versarial Graph Auto-Encoders (AGAE) model in this study
(see Fig. 1), where graph convolutional network (GCN) [Kipf
and Welling, 2017] is used as a probabilistic encoder to model
the posterior distribution over latent variables (i.e., embed-
ding representations), and a simple inner product layer is em-
ployed as decoder to reconstruct graph from the encoded dis-
tribution. By leveraging GCN, our model jointly encodes the
consensus graph and original features, which not only ex-
ploits rich information from feature content, but also inherits
a good cluster structure from ensemble clustering. Moreover,
we develop an adversarial regularizer, where the probabilistic
encoder plays the role of generator and a multi-layer neural
network works as discriminator. By this means, an adaptive
partition-dependent prior is imposed on the embedding rep-
resentations to explicitly involve the clustering task.
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The proposed AGAE model is built on the top of varia-
tional graph auto-encoders [Kipf and Welling, 2016] and ad-
versarial learning [Makhzani et al., 2016; Goodfellow et al.,
2014]. Some recent works [Dai et al., 2018; Wang et al.,
2018; Pan et al., 2018] also learn graph representations with
adversarial training, which has shown promising performance
in several tasks such as link prediction and node classifica-
tion/clustering. However, they all focus on network embed-
ding tasks and require input as graph-structured data. Differ-
ent from these methods, we introduce AGAE to solve ensem-
ble clustering (for generic data without real graph structure)
in a learnable graph embedding way, and specifically design
our model for the clustering purpose.

Experimental results on eight real-world datasets demon-
strate the effectiveness of our approach for a clustering task,
compared with several state-of-the-art deep embedding and
ensemble clustering methods. Extensive model discussions
are also provided to explore the impact of different regular-
izing and graph construction methods to our network. The
contributions of this work are highlighted as follows.

• We propose a novel Adversarial Graph Auto-Encoders
(AGAE) model, which develops an adversarial regular-
izer to guide the GCN based probabilistic encoder with
an adaptive partition-dependent prior.

• We introduce an alternative objective function for train-
ing the deep graph embedding network, i.e., by consen-
sus graph reconstruction.

• The proposed AGAE encapsulates ensemble clustering
in a learnable graph embedding process, which seam-
lessly integrates consensus graph and feature content.

2 Methodology
2.1 Consensus Graph
Ensemble Clustering (EC) integrates multiple “weak” ba-
sic partitions for a high-quality and robust clustering result.
Given a set of N data points X = {x1, . . . , xN} from K
clusters C = {C1, . . . , CK}, and M input basic partitions
(BPs) Π = {π1, . . . , πM}, the goal of ensemble clustering
is to find a consensus partition that agrees with all the BPs
as much as possible. Each BP is obtained by running ex-
isting clustering algorithm and denoted as a cluster label set
πr = {πr(x1), . . . , πr(xN )}, where 1 ≤ πr(xi) ≤ Kr,
1 ≤ i ≤ N and 1 ≤ r ≤ M . Kr is the cluster number
of the rth BP, which is usually set to be different from the
true cluster number K to ensure the diversity among basic
partitions [Fred and Jain, 2005; Wu et al., 2015].

Ensemble clustering has a close connection to graph-based
methods, among which co-association matrix [Fred and Jain,
2005] is an important tool to organize X as graph-structured
data, upon the category information given by BPs. Specifi-
cally, the co-association matrix S ∈ RN×N is defined as

Si,j =
1

M

M∑
r=1

δ(πr(xi), πr(xj)), (1)

where xi, xj ∈ X and δ(a, b) is 1 if a = b; 0 otherwise. Ac-
cording to Eq. (1), S is in essence a pair-wise affinity matrix,

which represents the probability of two data points assigned
to the same cluster. However, S may have some noises and
outliers due to the disagreement between different BPs, which
may mislead the graph embedding process. To alleviate this
problem, we construct the consensus graph by

S = sign([S− τ ]+)� S, (2)

where � denotes the element-wise Hadamard product.
Eq. (2) is a simple thresholding operator parameterized by
τ as Sij = Sij if Sij > τ ; Sij = 0 otherwise. By this
means, we could remove the low-confidence edges to some
extent while holding the high-confidence ones. Using this
simple trick, we build a sparse and robust consensus graph as
the input for our AGAE model. It is worth noting that, due
to the robustness nature of ensemble clustering, the proposed
AGAE is quite insensitive to the parameter τ within a wide
range, as will be shown in the experiment.

2.2 Graph Convolutional Network (GCN)
Graph convolutional network (GCN) extends the convolu-
tional operation from low-dimensional regular grids to high-
dimensional graph-structured data. In our model, we take
GCN as a basic building block and focus on spectral graph
convolution networks [Bruna et al., 2013; Henaff et al., 2015;
Defferrard et al., 2016; Kipf and Welling, 2017]. Let G be an
undirected graph of N nodes (i.e., corresponding to X ) rep-
resented by S in Eq. (2) and X ∈ RN×d be its feature matrix.
Following [Kipf and Welling, 2017], the spectral graph con-
volution on G is defined by

Z = D̃−
1
2 S̃D̃−

1
2XW, (3)

where S̃ = IN + S, D̃ = S̃ · 1, W ∈ Rd×m is the filter
parameter matrix and Z ∈ RN×m is the convolution result.
IN denotes the identity matrix and 1 is the vector of ones
with compatible size. Upon Eq. (3), a multi-layer GCN model
could be defined with the layer-wise propagation rule as

Z(l+1) = g(Z(l),S) = ξ(D̃−
1
2 S̃D̃−

1
2Z(l)W(l)), (4)

where g(Z(l),S) refers to the graph convolution network, ξ(·)
represents an activation function, such as the ReLU or sig-
moid function, and W(l) ∈ Rml−1×ml (m0 = d) is the lth
layer’s filter parameters matrix. Z(l) denotes the hidden rep-
resentation given by the lth GCN layer, while Z(0) indicates
the input feature matrix X.

2.3 Adversarial Graph Auto-Encoders
The proposed Adversarial Graph Auto-Encoders (AGAE)
model could be formulated by

min
φ,H

max
D

Eqφ(Z|X,S)[− log p(S|Z)]︸ ︷︷ ︸
consensus graph reconstruction

+

Ep(Z|H)[logD(Z)] + Eqφ(Z|X,S)[log(1−D(Z))]︸ ︷︷ ︸
adversarial regularizer

,
(5)

where qφ(Z|X,S) represents the GCN based probabilistic
encoder network parameterized by φ, and D denotes a multi-
layer neural network parameterized by ψ, i.e., D = f(z;ψ) :
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Rm2 → R1. During the adversarial training, qφ(Z|X,S)
is used as the generator, and D acts as the discriminator
that tries to distinguish between true samples from the given
prior and fake samples generated by the encoder. In Eq. (5),
p(Z|H) denotes our adaptive prior and H is a soft partition
matrix that represents the cluster assignment.

Jointly considering Eq. (1) and Eq. (4), our model solves
ensemble clustering via consensus graph embedding, which
learns the data distribution in a low-dimensional manifold to
capture the discriminative information underling graph struc-
ture (i.e., cluster structure). By this means, AGAE exhibits
two benefits: 1) it jointly utilizes feature and partition infor-
mation via a learnable network; 2) the low-dimensional em-
bedding representations can facilitate the clustering task.

GCN Based Auto-Encoders
The probabilistic encoder of AGAE is modeled by a multi-
variate Gaussian distribution as

qφ(Z|X,S) =
N∏
i=1

qφ(Zi|X,S), (6)

where qφ(Zj |X,S) = N (Zi|µi, diag(σ2
i )), Zi denotes the

ith row in Z. We represent µ and σ as the matrix of mean
vectors and standard deviations, parameterized by GCN as

µ = gµ(X,S) = LSξ(LSXW(1))W(2)
µ ,

logσ = gσ(X,S) = LSξ(LSXW(1))W(2)
σ ,

(7)

where gµ and gσ represent a two-layer GCN for µ and σ, re-
spectively, LS = D̃−

1
2 S̃D̃−

1
2 and ξ(·) is set to be the Relu

function. In Eq. (7), gµ and gσ share the weight of first layer
and omit the activation function in the top layer for model-
ing the data distribution. Particularly, our encoder network
is parameterized by φ, i.e., φ = {W(1) ∈ Rd×m1 ,W

(2)
µ ∈

Rm1×m2 ,W
(2)
σ ∈ Rm1×m2}. From Eq. (6-7), the reparame-

terization trick [Kingma and Welling, 2014] is used to obtain
an explicit expression for Z as

Z = µ + σ � ε, (8)

where ε ∈ RN×m2 is an auxiliary variable with εj ∼
N (0, Im2

). Eq. (8) makes the Monte Carlo estimate of the ex-
pectation of qφ(·) differentiable w.r.t φ, which enables train-
ing AGAE with stochastic gradient descent (SGD) methods.

Following [Kipf and Welling, 2016], we simply define the
decoder network with an inner product layer as

p(S|Z) =
N∏
i=1

N∏
j=1

s(ZiZ
T
j ), (9)

where s(·) denotes the sigmoid function. By using Eq. (6-9),
we finally give the reconstruction loss LAE by

LAE = Eqφ(Z|X,S)[− log p(S|Z)]

= −
N∑

i,j=1

[yij log ŷij + (1− yij) log(1− ŷij)],
(10)

where yij = s(Sij) and ŷij = s(ZiZ
T
j ).

Algorithm 1. Training of Adversarial Graph Auto-Encoder
Input: Dataset X and consensus graph S.
Initial: Initialize φ and ψ

1: while not converged do # pre-training
2: Sample Z̃ from N (0, I)
3: Update φ by minimizing LAE in Eq. (10) with fixed ψ;
4: Update ψ by minimizing LD in Eq. (14) with fixed φ;
5: Update φ by minimizing LG in Eq. (13) with fixed ψ;
6: end while
7: Compute Z by Eq. (8);
8: Update θ by running K-means with Z;
9: Calculate H by Eq. (12);

10: Update p(Z|H) by fitting GMM with Z and H;
11: while not converged do # fine-tunning
12: Sample Z̃ from p(Z|H);
13: Update {φ, ψ} by repeating Step 3-5;
14: Update p(Z|H) by repeating Step 7-10;
15: end while
Output: φ, ψ and partition H.

Adaptive Partition-Dependent Prior
Recent deep generative models [Kingma and Welling, 2014;
Makhzani et al., 2016] mainly employ a fixed isotropic Gaus-
sian prior over the latent variables, which lacks an explicit
guidance from the clustering task. Hence, we formulate our
partition-dependent prior as a mixture of Gaussians by

p(Z|H) =

K∑
c=1

p(Z|c)p(c|H), (11)

where p(Z|c) = N (µc, σ
2
cI), p(c|H) = Cat(c|π) represents

the categorical distribution, and π is directly determined by
H. Inspired by [Xie et al., 2016], the soft partition dis-
tribution H is defined by Student’s t-distribution as follow-
ing [v. d. Maaten and Hinton, 2008], which is given by

Hik =
(1 + ‖Zi − θk‖2/α)−

α+1
2∑K

k′=1(1 + ‖Zi − θk′‖2/α)−
α+1
2

, (12)

where θ ∈ RK×m2 denotes the cluster centers, α decides
the degrees of the freedom of Student’s t-distribution, and
1 ≤ i ≤ N , 1 ≤ k ≤ K. In this paper, we set α = 1 as
the default setting. According to Eq. (12), Hik represents the
probability of the ith data point belonging to the kth cluster.

By using Eq. (11), the proposed AGAE tries to disentan-
gle the embedding space into distinct regions. Moreover, our
Gaussian Mixture Model (GMM) prior is adaptively updated
with the partition result H, which leverages Eq. (12) to fur-
ther push towards learning a well-separated clustering struc-
ture (i.e., a sharper distribution).

Adversarial Regularizer
The last part in our AGAE model is given by generative ad-
versarial training [Goodfellow et al., 2014], which directly
regards our encoder network as the generator G, and em-
ploys a multi-layer neural network f(z;ψ) as the discrimi-
nator D. Following [Makhzani et al., 2016], we also conduct
a min-max adversarial game between D and G, where D is
trained to distinguish between the samples from p(Z|H) and
qφ(Z|X,S), while G tries to fool the discriminator to think-
ing the encoded representations in Eq. (8) are sampled from
the given prior in Eq. (11).
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The adversarial regularizer of AGAE is defined with dis-
criminative loss LD and generative loss LG as the following:

LD =
N∑
i=1

(log f(Z̃i;ψ) + log(1− f(Zi;ψ)) (13)

LG =
N∑
i=1

− log f(Zi;ψ), (14)

where Z̃ represents the latent representations sampled from
p(Z|H), and Z is given by qφ(Z|X,S) through Eq. (6-8).

Upon the adversarial training, we except to leverage the
discriminator D to regularize the training of our inference
model (i.e., qφ(Z|X,S) to learn a good graph-structured fea-
ture embedding space. This adversarial regularizer effectively
avoids model over-fitting and leads to robust graph repre-
sentations [Dai et al., 2018; Pan et al., 2018]. Moreover, it
could better match the given prior compared with regular-
izing the encoded distribution with Kullback–Leibler diver-
gence [Makhzani et al., 2016]. The entire training procedure
of our AGAE model is summarized by Algorithm 1.

3 Experiment
3.1 Experiment Setting
Datasets. Table 1 summarizes the statistics of all these
datasets. We briefly introduce each dataset as follows. 1)
Low-level features: Pendigits1 consists of 0-9 pen-written
numbers, USPS2 is a handwritten digit database of 16×16
images, Classic3 collects abstracts from 4 sources related
to information retrieval, and TDT2 [Cai et al., 2009] is a
document corpus of 30 topics. 2) Middle-level features:
Dslr [Kulis et al., 2011] dataset collects office environment
images taken by a DSLR camera, each of which is pre-
sented by a SURF BoW histogram feature. 3) High-level fea-
tures: AWA4K is a subset of Animal with Attributes (AWA)
dataset [Lampert et al., 2009], which includes 50 kinds of
animal images. We randomly select 80 images from each
class and eventually get 4000 images in total. FRGC is a
three-dimension (3D) face image dataset, where we use the
subset of FRGC with deep convolutional features provided
by [Yang et al., 2016]. STL-104 is a dataset of 96×96 RGB
images from 10 objects, which provides 13K labeled images.
In the experiment, we employ the VGG network [Simonyan
and Zisserman, 2014] pre-trained on ImageNet as a feature
extractor to encode each image in AWA4K and STL-10.

Baseline Methods. We compare the proposed AGAE
model with three kinds of methods. 1) Two traditional clus-
tering algorithms such as K-means and Spectral Clustering
(SC) [Ng et al., 2001]; 2) Four state-of-the-art ensemble
clustering (EC) methods, including K-means based Consen-
sus clustering (KCC) [Wu et al., 2015], Spectral Ensemble

1https://archive.ics.uci.edu/ml/datasets
2http://www.cad.zju.edu.cn/home/dengcai/
3http://glaros.dtc.umn.edu/gkhome/
4https://cs.stanford.edu/∼acoates/stl10/

Dataset #Instance #Class #Feature Type

AWA4K 4000 50 4096 Image
Dslr 157 10 800 Image

FRGC 2462 20 160 Image
Pendigits 10992 10 16 Image
STL-10 13000 10 4096 Image
USPS 9298 10 256 Image
Classic 7094 4 41681 Text
TDT2 9394 30 36771 Text

Table 1: Dataset details

Clustering (SEC) [Liu et al., 2015], Infinite Ensemble Clus-
tering (IEC) [Liu et al., 2016], and Simultaneous Cluster-
ing and Ensemble (SCE) [Tao et al., 2017a]. 3) Five recent
deep embedding models, such as Adversarial Auto-Encoder
(AAE) [Makhzani et al., 2016], Variational Graph Auto-
Encoder (VGAE) [Kipf and Welling, 2016], Deep Embed-
ding Clustering [Xie et al., 2016], Deep Clustering Network
(DCN) [Yang et al., 2017], and Adversarially Regularized
Variational Graph Autoencoder (ARVGA) [Pan et al., 2018].
All the compared methods are fed with the same features and
tested by giving the true cluster number K. For all the EC
methods, we generate Basic Partitions (BPs) with random
parameter selection strategy [Fred and Jain, 2005]. Specifi-
cally, given N data samples, we obtain M BPs by running K-
meansM times with randomly selecting cluster number from
[K,
√
N ]. We implement AAE according to [Makhzani et al.,

2016], with encoder/decoder using two hidden layers, and ob-
tain the clustering result by running K-means with the output
of the bottleneck layer. To make VGAE and ARGA adapt
to generic data, we run the authors’ code with recommended
parameters and take as input a k-NN graph as following [Def-
ferrard et al., 2016], where the number of nearest neighbors is
set to be 8 and the edges are weighted with Gaussian kernel.
For DCN and DEC, we directly running the codes provided
by the authors, and tune the parameters by following authors’
suggestion. Two quantitative metrics are used to evaluate the
clustering performance, which are Average Clustering Accu-
racy (ACC) and Normalized Mutual Information (NMI). Both
ACC and NMI are positive metrics ranged from 0 to 1, where
a higher value indicates better performance.

Implementation Details. The proposed AGAE was imple-
mented with TensorFlow toolbox. In Eq. (2), we set τ = 0.4
as default. In our model, we employed a two-layer GCN net-
work as the probabilistic encoder (i.e., the generator), and a
two-layer MLP network as the discriminator, where we set
network dimensions of encoder as d-64-32 (i.e., m1=64 and
m2=32) and discriminator as 32-128-1. We set the activa-
tion function of all the hidden layers as Relu function, yet
omitted the activation function of the top layer for encoder
and used sigmoid function for the top layer of the discrim-
inator network. The weights of all the layers were initial-
ized by Xavier [Glorot and Bengio, 2010] approach. We
adopted Adam [Kingma and Ba, 2014] with the default hyper-
parameters as our optimizer, and conducted full-batch gradi-
ent descent to hold the structure of input graph. To achieve
a good initialization and avoid random cluster assignment,
we first pre-train our model with the fixed Gaussian prior
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Methods AGAE Deep Embedding Methods Ensemble Clustering Methods Baselines

DCN DEC VGAE AAE ARVGA SCE IEC SEC KCC K-means SC

AWA4K 0.6790 0.3910 0.4092 0.5340 0.6553 0.6002 0.5952 0.5743 0.6467 0.6182 0.6244 0.6306
Dslr 0.5554 0.3950 0.4319 0.4420 0.3882 0.3911 0.5016 0.5089 0.5290 0.5229 0.4137 0.4293
FRGC 0.5114 0.4000 0.4124 0.4712 0.4976 0.5084 0.4665 0.4691 0.4529 0.4519 0.4638 0.4926
Pendigits 0.7817 0.7200 0.5640 0.7556 0.7314 0.6605 0.7092 0.7156 0.7109 0.6049 0.7108 0.7088
STL-10 0.9325 0.8930 0.8413 0.8842 0.8653 0.9168 0.6694 0.6240 0.7976 0.7278 0.7723 0.8558
USPS 0.7357 0.6085 0.7762 0.6617 0.7121 0.6634 0.7319 0.6145 0.6815 0.5607 0.6320 0.6809
Classic 0.8674 0.6769 0.7990 0.5839 0.7512 0.6465 0.6713 0.5640 0.5066 0.4606 0.6644 0.6765
TDT2 0.6052 0.4279 0.4178 0.4417 0.2346 0.6104 0.4644 0.4475 0.4510 0.4511 0.3357 0.3000

Table 2: Clustering performance on eight datasets by ACC (red color denotes the best and blue the runner-up)

Methods AGAE Deep Embedding Methods Ensemble Clustering Methods Baselines

DCN DEC VGAE AAE ARVGA SCE IEC SEC KCC K-means SC

AWA4K 0.7669 0.4682 0.5698 0.6917 0.7232 0.7345 0.7393 0.7444 0.7601 0.7557 0.7490 0.7242
Dslr 0.5841 0.3680 0.4449 0.4403 0.3662 0.3810 0.5415 0.5456 0.5548 0.5628 0.4212 0.4117
FRGC 0.6493 0.4536 0.4933 0.5930 0.6309 0.6381 0.5916 0.6288 0.6160 0.6086 0.6150 0.6349
Pendigits 0.7415 0.6900 0.5938 0.7165 0.6856 0.6839 0.7017 0.7244 0.7270 0.6604 0.6870 0.6632
STL-10 0.8741 0.8163 0.8578 0.8258 0.7796 0.8608 0.7924 0.7446 0.7830 0.7873 0.8153 0.8241
USPS 0.7415 0.5943 0.7996 0.6551 0.6018 0.7301 0.6863 0.6266 0.6529 0.6385 0.5954 0.6447
Classic 0.6477 0.4699 0.6226 0.5595 0.5749 0.3169 0.5028 0.4623 0.4006 0.3427 0.4336 0.4667
TDT2 0.7632 0.5345 0.4780 0.6793 0.3668 0.7809 0.7280 0.6929 0.7083 0.6994 0.4017 0.5098

Table 3: Clustering performance on eight datasets by NMI (red color denotes the best and blue the runner-up)

and then finetune the network with our adaptive prior, as fol-
lowing the similar optimization strategy in [Xie et al., 2016;
Yang et al., 2017; Li et al., 2017]. We performed 200 epochs
pre-training and fine-tuning on the USPS and STL-10 dataset,
and 50 epochs for the remainder. The learning rate was set to
be 1e-3 for pre-training and decayed to 1e-4 in fine-tuning.

3.2 Clustering Performance
Table 2 and Table 3 summarize the clustering performance
of our approach and 11 strong baseline methods. As can be
seen, we achieve the best performance in the majority cases,
which shows the effectiveness of AGAE for clustering task.

Compared with ensemble clustering. As shown in Table 2
and Table 3, there are two important observations between
ensemble clustering and other clustering algorithms. First,
EC methods show impressive clustering performance on sev-
eral datasets, such as on AWA4k and Dslr, even compared
with recent deep clustering algorithms. This demonstrates
the great potential of taking partition information as an ef-
fective supervision signal, and also justifies our motivation to
learn a good graph embedding feature with consensus graph.
Second, ensemble clustering methods degrade badly on some
cases. For example, KCC, SEC and IEC all perform worse
than traditional clustering methods on STL-10 and Classic.
This is mainly due to the fact that ensemble clustering only
takes as input multiple basic partitions, yet ignores the rich
information from original features. To alleviate this problem,
our approach jointly encodes features and consensus graph
within a graph auto-encoder framework. The comparison re-
sults between AGAE and other EC methods demonstrate the
superiority of using two-source information.

Compared with deep embedding. AAE [Makhzani et al.,
2016], VGAE [Kipf and Welling, 2016] and ARVGA [Pan
et al., 2018] are three recent deep generative models which
mainly learn a probability distribution over embedding space
via data/graph reconstruction; while DEC [Xie et al., 2016]
and DCN [Yang et al., 2017] are two deep clustering mod-
els that simultaneously conduct feature learning and cluster-
ing process. Compared with deterministic mapping, gen-
erative model can better reveal data structure in the latent
space, whilst enhance model generalization. As can be seen,
AAE, VGAE and ARVGA achieve comparable results and
sometimes even perform better than DEC and DCN, which
indicates generative model could be a powerful alternative
for the deep clustering task. On another hand, VGAE and
ARVGA achieve competitive results compared to AAE with
the utilization of graph structure. Different from these meth-
ods, our approach encapsulates ensemble clustering in a deep
embedding process, by jointly using adversarial regularizer
and GCN network, as well as an adaptive partition-dependent
prior. As a result, the proposed AGAE achieves a clear im-
provement on the majority case.

3.3 Model Discussion

Ablation Study. The proposed AGAE introduces the ad-
versarial training as a regularizer for the Graph Auto-Encoder
(GAE) network, which is able to guide the probabilistic en-
coder to disentangle the latent space. We carry out an ab-
lation study to validate the efficacy of our adversarial regu-
larizer. Specifically, we compare our model with a vanilla
GAE (i.e., GCN based encoder and inner product decoder by
only training with LAE in Eq. (10)) and VGAE [Kipf and
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Methods Average Clustering Accuracy (ACC) Normalized Mutual Information (NMI)

AWA4K Dslr Pendigits TDT2 avg AWA4K Dslr Pendigits TDT2 avg

GAE (GCN w/o regularizer) 0.6410 0.5363 0.6761 0.5470 0.6001 0.7381 0.5566 0.7010 0.7451 0.6852
VGAE (GCN + KL regularizer) 0.6557 0.5325 0.7193 0.5431 0.6127 0.7491 0.5601 0.7170 0.7440 0.6926
AGAE (GCN + adversarial regularizer) 0.6790 0.5554 0.7817 0.6052 0.6553 0.7669 0.5841 0.7415 0.7632 0.7139
AGAE over GAE 0.0380 0.0191 0.1056 0.0582 0.0552 0.0288 0.0275 0.0405 0.0181 0.0287
AGAE over VGAE 0.0233 0.0229 0.0624 0.0621 0.0427 0.0178 0.0240 0.0245 0.0192 0.0214

Table 4: Ablation study on four datasets by NMI and ACC (red color denotes the best and blue the runner-up)
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Figure 2: Exploration of different input graphs to the proposed AGAE. We test AGAE with (a) multiple graph construction methods and (b)
different thresholding parameters on datasets of AWA4K, FRGC and Pendigits.

Welling, 2016] (i.e., variational GAE regularized by the KL
divergence between approximate posterior distribution and
isotropic Gaussian prior) on four datasets. For a fair compar-
ison, all these three models are fed with the same consensus
graph, and training with the same GCN network architecture.
As shown in Table 4, two important observations could be
made. 1) VGAE generally performs better than GAE, imply-
ing that Gaussian prior is useful to guide the learning of latent
space. Thus, it is reasonable for AGAE to pre-train the net-
work with Gaussian prior to seek for a good initialization for
the partition-dependent prior. 2) AGAE clearly improves the
clustering performance over GAE and VGAE. This provides
a strong empirical evidence to support the effectiveness of our
adversarial regularizer for the clustering task.
Multiple Graphs. The proposed AGAE could be used as
a general model that works with different graphs. Follow-
ing [Li and Fu, 2015], we test our algorithm with other three
common graphs, including 1) k-NN-I and 2) k-NN-II graph,
which construct graph by using k = 5 and k = 8 nearest
neighbors with Gaussian kernel; 3) b-matching graph [Jebara
et al., 2009], which builds a weighted and balance graph.
Fig. 2(a) shows the performance of AGAE under these three
graphs and the consensus graph provided by Eq. (2). As can
be seen, consensus graph generally performs better than the
other graphs (especially by NMI), which again demonstrates
the superiority of partition information to original features.
On another hand, we can also achieve comparable results
with other kinds of graphs, which shows the potentiality of
using AGAE for the general graph learning task, as well as
multi-view learning [Ding et al., 2019; Zhao et al., 2017;
Tao et al., 2017b].
Thresholding Parameter. We employ a thresholding oper-
ator (parameterized by τ ) to alleviate noises and outliers for
constructing the consensus graph in Eq. (2). Fig. 2(b) shows

the performance of AGAE on four datasets by varying τ from
0 to 0.8. Note that, τ = 0 means we directly use the consen-
sus graph given by Eq. (1). As can be seen, the performance
of AGAE generally goes up in the first steps, gets steady when
τ ∈ [0.3, 0.5], and degrades when τ ≥ 0.6. This indicates
the thresholding operation is useful to highlight the cluster
structure of consensus graph. On the other side, Fig. 2(b)
demonstrates the robust nature of ensemble clustering. Even
by setting τ with a high value, consensus graph can still hold
a good structure.

4 Conclusions
In this paper, a novel model named Adversarial Graph Auto-
Encoders (AGAE) was proposed to incorporate ensemble
clustering into a deep graph embedding process, which is
trained by consensus graph reconstruction under the guid-
ance of an adversarial regularizer. By leveraging graph con-
volutional network, AGAE jointly encodes the input features
and consensus graph to capture the distribution of latent vari-
ables; and meanwhile, adversarial training with an adaptive
partition-dependent prior is performed to further disentan-
gle the embedding space. Experiments conducted on eight
real-world datasets showed the effectiveness of our approach
compared with several state-of-the-art deep embedding and
ensemble clustering methods. Extensive model discussions
were provided to showcase the proposed AGAE as a general
framework applicable to different graphs, and validate the su-
periority of adversarial regularizer over two strong baselines.
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