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Abstract

The attention of a deep neural network obtained by back-
propagating gradients can effectively explain the decision
of the network. Therefore, attention maps can further be
used to explicitly access to the network response to a spe-
cific pattern. Considering objects of the same category but
from different domains share similar visual patterns, we
propose to treat the network attention as a bridge to connect
objects across domains. In this paper, we use knowledge
from the source domain to guide the network’s response
to categories shared with the target domain. With weights
sharing and domain adversary training, this knowledge can
be successfully transferred by regularizing the network’s re-
sponse to the same category in the target domain. Specifi-
cally, we transfer the foreground prior from a simple single-
label dataset to another complex multi-label dataset, lead-
ing to improvement of attention maps. Experiments about
the weakly-supervised semantic segmentation task show the
effectiveness of our method. Besides, we further explore
and validate that the proposed method is able to improve
the generalization ability of a classification network in do-
main adaptation and domain generalization settings.

1. Introduction
Since Convolutional Neural Networks (CNN) have

achieved a lot of progress in many areas, various meth-
ods have been proposed recently to explain how they work
[3, 37, 49]. Visual attention [35, 50] is one effective method
to locate image regions that can contribute to the final pre-
diction of the network. Attention maps can be obtained for
a given input with back-propagation of the decision signal
on a CNN [35]. They act as an effective way to analyze the
network response and explain its decision.

Because of the close correlation with the network deci-
sion and response, attention maps can further be used to
explicitly access to the network response to a specific pat-
tern or category. Considering objects of the same category
but from different domains share similar visual patterns, the
network is likely to have similar responses to them. We are
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Figure 1. The proposed Attention Bridging Network (AttnBN)
transfers the foreground prior from a simple single-label dataset
(source domain) to another complex multi-label dataset (target do-
main), resulting in significant improvements of attention maps. By
covering more complete regions of objects, these maps 1) help
boost the performance of weakly-supervised semantic segmenta-
tion, and 2) guide the classification network to learn complete vi-
sual patterns of objects leading to better generalization ability.

willing to explore the possibility of using network attention
as a bridge to connect objects from different domains and
transfer knowledge through it.

Domains here could be datasets with different knowl-
edge or priors. Transferring useful knowledge from one to
the other could benefit the task of interest. Suppose there
are two domains, the source and the target. Based on the
understanding of network attention mechanism, we can use
knowledge from the source domain to guide the network’s
response to categories shared with the target domain. With
weights sharing and domain adversary training, this knowl-
edge can be successfully transferred by regularizing the net-
work’s response to the same category in the target domain.
We define this property as attention bridging mechanism
and apply it in our model design.

We rely on two roles of network attention to design ex-
periments accordingly to validate the effectiveness of at-
tention bridging mechanism. (1) On the one hand, using



image-level labels for training, attention maps of a classi-
fication network can provide localization information with-
out extra labeling efforts. However, these attention maps
often only cover most discriminative regions of target ob-
jects [15, 23, 39, 42, 45]. While these attention maps can
still serve as reliable localization cues for tasks like weakly-
supervised semantic segmentation [16], having integral at-
tention maps that cover the target foreground objects com-
pletely have potential to further improve the performance.
(2) On the other hand, network attention reflects the net-
work’s response and is related to the network’s decision. in-
tegral attention, which covers complete regions of an object
of interest, can guide the network to learn complete visual
patterns of the object. This leads to the potential of boost-
ing generalization ability of a classification network in both
domain adaptation and domain generalization settings.

To this end, we propose Attention Bridging Network
(AttnBN) for knowledge transfer across domains. As shown
in Figure 1, taking weakly-supervised semantic segmenta-
tion as a task of interest, we aim to transfer useful informa-
tion from a single-label dataset (simple source domain) to
another multi-label dataset (complex target domain) to im-
prove the attention maps. In the source domain, foreground-
background prior, such as saliency information, can almost
represent complete regions of objects in an image. How-
ever, this is not applicable for the target domain with multi-
label images, whose foreground map may include multiple
objects from different categories. Therefore, the foreground
prior is regarded as advantageous knowledge in the source
domain. AttnBN can transfer this knowledge across do-
mains, resulting in a significant improvement of attention
maps. By covering more complete regions of objects, these
maps can act as better localization cues and help boost the
performance of weakly-supervised semantic segmentation
methods. Besides, they can also guide a classification net-
work to learn more complete visual patterns of objects lead-
ing to better generalization ability.

To summarize, our contributions are: (1) We propose At-
tnBN that transfers knowledge across domains using net-
work attention as a bridge. (2) Specifically, we transfer the
saliency prior from a simple single-label dataset to another
complex multi-label dataset to improve attention maps, so
that these maps can cover the object holistically. (3) Exper-
iments on PASCAL VOC benchmark [6] show that the im-
proved attention maps can serve as better cues for weakly-
supervised semantic segmentation models. (4) We also val-
idate that AttnBN can improve the generalization ability of
a classification network in both domain adaptation and do-
main generalization settings.

2. Related work
Network attention. Since Convolutional Neural Net-

works (CNN) have achieved great progress in many areas

[20, 21, 48], a lot of methods have been proposed to an-
alyze and explain deep neural networks [3, 25, 37, 49].
Based on them, visual attention is proposed to locate im-
age regions that can contribute to the final prediction of the
network. Inspired by a human visual attention model, [46]
proposes a new back propagation method, Excitation Back-
prop, to hierarchy pass top-down signals downwards in the
network. In [37, 40], error back-propagation based meth-
ods are proposed to visualize relevant regions for the acti-
vation of a hidden neuron or the network decision. CAM
[50] shows that using an average pooling layer instead of
fully-connected layers can help obtain attention maps which
highlight task-related regions. Recently, CAM is extended
by Grad-CAM [35] to various commonly used network ar-
chitectures for tasks like visual question answering, image
captioning and image classification. It generates reasonable
visual explanations for various kinds of model decisions.
Inspired by these methods that successfully model the re-
sponse of the network, we explore the possibility of taking
network attention as an interface to regularize the network’s
learning and response to a specific pattern.

Knowledge transfer. Transferring knowledge across
datasets to benefit the task of interest has been widely stud-
ied in tasks of domain adaptation and transfer learning
[22, 30]. Domain adaptation aims to solve the mismatch
problem that data in different domains is sampled from dif-
ferent distributions. According to the specific application
case, the transferred knowledge could be in the form of
model parameters, feature representation or instances [30].
Different from these existing methods, we are trying to ex-
plore using attention of deep neural network as a bridge to
transfer knowledge across domains. This is based on the
hypothesis that objects of the same category but from dif-
ferent domains share similar visual patterns, therefore, the
network is likely to have similar responses to them.

Weakly supervised methods. Weakly supervised learn-
ing [3, 37] aims to address the problem about labeled data
scarcity and has recently attracted a lot of attention. Learn-
ing from image-level labels, attention maps of a classifica-
tion network can provide localization information without
extra labeling efforts for weakly-supervised semantic seg-
mentation [2, 16, 23, 24, 45], object localization [47, 50],
object detection [44] and etc. However, the attention map of
a trained classification network only cover most discrimina-
tive regions of target objects, which is not good enough for
these tasks that aim to localize complete, interior and dense
regions. To reduce this gap, [39] proposes to randomly hide
patches in each training image, so that the network would be
forced to discover other relevant regions when the discrim-
inative parts are missing. It can be treated as a useful data
augmentation method. However, it relies on a strong as-
sumption that foreground objects would not be completely
hidden by patches. More recently, [23, 42, 47] use the



Target complex domain
(multi-label)

“Motorbike”C
O
N
V

C
O
N
V

C
O
N
V

C
O
N
V

C
O
N
V

Source simple domain
(single-label)

FC

…

Domain advantage
knowledge

C
O
N
V

C
O
N
V

C
O
N
V

C
O
N
V

C
O
N
V

FC

…

Share Weights

“Motorbike”
“Person”

“Car”
Pascal VOC

StargetSsource

Lsource-cl Ltarget-cl

Caltech-256
& ImageNet

Lac

C
O
N
V

C
O
N
V

C
O
N
V

C
O
N
V

Improved Attention
Discriminator NetworkFeature Map

Adversarial Learning

Ladv
Foreground Prior

Figure 2. AttnBN includes one discriminator network and two streams of classification networks. Attention map are end-to-end trainable
and jointly optimized by four loss functions. Advantageous knowledge (saliency prior here) from the source domain guides the network’s
response to categories shared with the target domain. With weights sharing and domain adversary training, this advantageous knowledge
can be successfully transferred by regularizing the network’s response to the same category in the target domain.

adversarial erasing strategy to guide the attention maps to
cover more complete foreground objects. In [45], dilated
convolutional blocks with various dilation rates are added
to a classification network. Experiments validate that dif-
ferent dilation rates could help transfer the surrounding dis-
criminative information to non-discriminative object parts.
Different from these approaches, we explore the attention
bridging mechanism to transfer knowledge across domains
to get more complete attention maps, which can benefit the
semantic segmentation task.

3. Attention Bridging Network
Foreground-background priors as well as the scene com-

plexity are unequal for the single-label dataset and the
multi-label dataset. The foreground part of a single-label
image can almost represent complete regions for the partic-
ular class. While a multi-label image may include multiple
objects from different classes in its foreground. Therefore,
transferring this advantageous knowledge across domains is
strongly motivated. In this section, we describe our Atten-
tion Bridging Network (AttnBN) to achieve this goal. Net-
work attention acts as a bridge to connect different domains.

Overview of the proposed model. Suppose we have
two datasets, Ds including images of single-label as the
source domain and Dm for images with multi-label as the
target domain. They are composed of Ks and Km images
from N classes respectively. We aim to transfer knowl-
edge about foreground-background priors and boundary
constrains from the source domain to the target domain. As
shown in Figure 2, our AttnBN includes one discriminator
network and two streams of classification networks, Source
Stream Ssource for the source domain and Target Stream

Starget for the target domain, which share parameters with
each other. Domain advantage knowledge in Ds (saliency
map here) is used to directly guide Stream Ssource to fo-
cus on more complete regions of salient foregrounds when
learning to recognize classes. This will simultaneously reg-
ularize the Stream Starget’s response to the same class in
the target domain during the training process benefit from
the weight sharing and attention mechanism. Besides, since
network attention is a reflection of the network response, it
is closely related to the learned feature space. Therefore,
we integrate the adversarial learning scheme to encourage
the network to learn domain-invariant features, which has
potential to boost the effect of attention bridging.

Obtain trainable attention maps. To make sure the
guidance from saliency maps can directly regularize the
network response to both domains, we first generate train-
able attention following [23, 35, 47]. Specifically, in stream
Ssource, for a input image I , Fi represents the activation of
feature map i in the last convolutional layer whose features
have better trade-off between detailed spatial information
and high-level semantics [37]. Class specific attention maps
can be obtained by computing the gradient of the score yc

for class c, with respect to activation maps Fi(x, y). A
global average pooling operation is then performed on these
gradients [26] to get importance weights wc

i for neurons as
follows,

wc
i =

1

H

∑
x,y

∂yc

∂Fi(x, y)
, (1)

where H is the size of the convolutional feature map Fi

(equals to 196, 14× 14 in the case of VGG [38]).
Based on recent work [50], each unit Fi is expected to



be activated by specific visual patterns within its receptive
field. Therefore, as shown in Eq. 2, the class attention map
M c is a weighted wc

i sum of these visual patterns pres-
ence at different locations Fi followed by a ReLU opera-
tion. This is equivalent to treating weight matrix wc as a
kernel and doing a 2D convolution operation over feature
maps Fi [23]:

M c = σ(
∑
i

wc
iFi) = σ (Conv (F,wc)) , (2)

where σ(·) represents the ReLU operation.
Attention bridging. In the source domain, we have

saliency maps A for these single-label images to provide
knowledge about foreground-background priors and bound-
ary constrains. A could constrain the network attention
learning to encourage it to focus on more complete regions
of salient foregrounds when recognizing classes. As shown
in Eq. 3, L2 loss is adopted to calculate the attention con-
strain loss Lac for stream Ssource to achieve this goal.

Lac = (M c −A)2, (3)

where A is the saliency map for a given image, M c is the
attention map towards its single-label ground-truth class c.

For the classification component in Ssource, the single-
label of the source domain image is converted to one-hot
vector l = {l1, l2, ..., lN}, whereN is the number of ground
truth classes. Then, a multi-label soft margin loss is used
here as Ls−cl to make sure regions within the network at-
tention will help to recognize classes. We use the same loss
denoted as Lt−cl for target domain stream Starget.

Ls−cl(o, l) = −
∑
j

lj log(pj) + (1− lj) log(1− pj), (4)

where pj = (1 + e−oj )−1, oj is the output of last fully-
connected layer for the classification component of Ssource.

For the adversarial learning part, the training objective is
to learn domain-invariant features, which can boost the ef-
fect of attention bridging. Since network attention is closely
related to the network response especially the feature map
of the last convolutional layer F in our current implementa-
tion, we forward the Fs of stream Ssource and Ft of stream
Starget to a fully-convolutional discriminator D. Then a
cross-entropy loss Ld for the two classes (source and tar-
get) is adopted to train D.

Ld = −(1− d) log(D(Fs))− d log(D(Ft)), (5)

where d = 0 if the sample comes from the target domain
and d = 1 if it is from the source domain.

Then, when training the classification network, for the
samples It from the target domain, we forward the feature

map of the last convolutional layer Ft of stream Starget to
the discriminator and use following adversarial loss to help
learn domain-invariant features by fooling the discriminator
network:

Ladv = − log(D(Ft)). (6)

Our final attention bridging loss Lab is the weighted sum
of the classification loss Ls−cl, Lt−cl and attention con-
strain loss Lac as defined in Eq. 7.

Lab = Ls−cl + λ1Lac + Lt−cl + λadvLadv, (7)

where Lt−cl is the classification loss for target domain
stream Starget which uses the same function with Ls−cl.
Hyper-parameters λ1 and λadv balance the four losses. We
set λ1 = 2 and λadv = 10−3 in all of our experiments.

Based on weights sharing and attention mechanism, Lab

can transfer knowledge from the source domain to the target
domain to improve attention maps.

4. Experiments for semantic segmentation
The proposed AttnBN transfers knowledge across do-

mains to improve attention maps, so that these maps can
cover more complete object of interest. To verify this, we
take the semantic segmentation as the task of interest to
validate the effectiveness of AttnBN. (1) We first conduct
ablation studies to incrementally validate each component
of AttnBN (Eq. 7). To directly evaluate attention maps of
each ablation model, we combine attention maps of differ-
ent classes as semantic segmentation results (Section 4.2).
(2) We also take attention maps as localization cues to train
weakly-supervised semantic segmentation models and gen-
erate results for further evaluation (Section 4.3).

4.1. Experimental setup

Datasets. We use PASCAL VOC 2012 segmentation
dataset as the target domain dataset which includes multi-
label images of 20 categories. The images are split into
three sets: training, validation, and testing (denoted as train,
val, and test) with 1464, 1449, and 1456 images, respec-
tively. Following the common setting [5, 16], we use the
augmented training set provided by [9], which leads to
10582 weakly annotated images for the training set of the
target domain. Then, subsets of Caltech-256 [8] and Ima-
geNet CLS-LOC [34] within these 20 VOC categories are
combined together, resulting in around 20K single-label im-
ages as the source domain dataset. We train our model using
images in both source and target domain with only image-
level class labels and evaluate it on PASCAL VOC 2012
segmentation benchmark val. and test sets. The standard
mean intersection-over-union (mIoU) metric is used to re-
port quantitative results.
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Figure 3. Qualitative results of attention maps. AttnBN focuses on more complete regions belonging to the class of interest than the baseline
model Grad-CAM [35].

Methods b.g. plane bike bird boat bott. bus car cat chair cow table dog hors. moto. pers. plant sheep sofa train tv mIoU
Results on the val. set:
Lt−cl (Grad-CAM) [35] 74.0 34.2 19.5 33.1 18.6 25.0 41.7 27.9 36.1 11.4 26.3 20.7 30.4 29.0 41.5 40.2 21.6 32.8 18.2 23.6 35.3 30.2

Lt−cl + Ls−cl 74.9 38.1 20.3 34.2 21.1 26.8 38.5 31.6 34.9 10.0 31.7 25.5 29.1 30.7 41.0 41.2 21.9 32.5 19.7 23.5 37.5 31.7
Ls−cl + Lac 78.2 57.2 24.1 48.2 36.3 37.2 48.5 45.3 37.2 10.8 34.6 13.7 34.8 35.0 41.4 34.9 21.5 38.7 20.4 39.2 31.7 37.5

Ls−cl + Lac, Lt−cl 80.5 60.9 26.5 47.5 37.9 37.8 51.3 46.1 36.9 11.1 34.4 13.3 37.1 37.7 43.8 36.5 19.9 40.2 19.6 41.3 31.0 39.4
Ls−cl + Lac + Lt−cl 82.8 64.4 26.8 59.7 44.0 48.5 65.1 56.3 58.8 10.3 53.8 17.2 59.6 50.3 49.5 54.9 27.3 60.1 25.4 56.7 38.6 46.2

AttnBN 83.7 68.6 25.4 62.3 47.4 52.4 66.9 61.7 63.2 10.5 57.3 18.7 62.8 53.1 52.3 58.2 30.2 63.9 28.1 60.7 42.2 50.9
Results on the test set:
Lt−cl (Grad-CAM) [35] 76.2 36.6 20.0 32.3 15.6 30.8 39.3 26.1 37.6 12.3 25.0 27.7 30.3 30.6 43.8 41.2 24.7 35.7 23.4 19.8 38.5 31.7

Lt−cl + Ls−cl 76.9 36.8 19.9 34.8 15.0 29.2 38.1 28.0 35.8 12.7 32.2 30.5 29.6 31.0 38.4 41.3 27.6 35.2 25.0 18.9 38.3 32.2
Ls−cl + Lac 78.7 58.5 24.7 49.4 30.8 31.6 49.3 47.1 37.7 11.3 35.8 14.3 36.4 35.6 42.8 36.2 20.7 39.8 21.9 44.7 32.4 38.7

Ls−cl + Lac, Lt−cl 82.3 60.0 25.5 52.4 33.7 34.7 50.6 46.8 39.7 10.3 36.1 16.4 40.7 34.5 43.1 38.6 21.0 40.7 20.8 47.0 31.1 39.8
Ls−cl + Lac + Lt−cl 83.4 60.2 27.5 60.8 35.2 49.2 65.7 56.9 59.2 11.0 50.2 17.8 59.2 51.5 52.1 55.4 29.8 57.8 29.4 57.2 38.9 47.5

AttnBN 84.7 63.3 26.8 63.0 39.2 51.6 68.9 60.9 62.1 13.0 52.7 18.8 62.2 59.3 56.4 57.7 34.3 59.5 34.5 62.4 43.4 51.2

Table 1. Ablation studies on VOC 2012 segmentation val. and test sets. We directly evaluate attention maps of each ablation model. This
is achieved by combining attention maps of predicted classes as semantic segmentation results for evaluation (Section 4.2).

Implementation details. We use VGG [38] pre-trained
from the ImageNet [34] as the backbone classification net-
work for our AttnBN. For the discriminator network, we
adopt a similar architecture from [33] but use all fully-
convolutional layers to retain the spatial information. An
up-sampling layer with a scale factor of 5 is used to re-
scale the last convolutional layer features from both do-
mains as the input to the discriminator. We use λ1 = 2 and
λadv = 10−3 in Eq. 7 in all of our experiments and jointly
train the discriminator with the AttnBN network. Saliency
maps for the source domain dataset are obtained by using
the method and trained model provided by [27]. We use
Pytorch [1] to implement our model and use the stochastic
gradient descent (SGD) to train it for 30 epochs. We start
training with learning rate of 10−4 for 20 epochs, and then
lower the learning rate to 10−5 for the rest 10 epochs.

4.2. Ablation studies with direct evaluation

Quantitative results. To directly evaluate attention map
quality, we combine attention maps of classes which are
predicted by the trained model as semantic segmentation
maps. When there are overlaps between attention maps
of different classes in a single image, we choose the one
with the largest prediction score. No post-processing is
used. Better segmentation results are expected to be ob-
tained when complete and accurate attention maps are com-
bined. Ablation studies on PASCAL VOC 2012 segmenta-
tion val. set and segmentation test. set are shown in Table 1.
We start from the baseline model only using classification
losses Lt−cl and the target domain data for training, which
is actually Grad-CAM [35] model. It achieves mIoU of 30.2
on val. set and 31.7 on test set. We then add classification
losses Ls−cl and source data for training. The improvement
is around (around 1% of mIoU. This shows that a mere in-
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Figure 4. Qualitative results of attention maps obtained by the
baseline model Grad-CAM [35] and AttnBN. AttnBN can guide
the network focus less on the background contents that always
come together with the objects and are helpful for the recognition,
like water with boats, the rail with trains and road with cars.

Methods Training Set val. test
AttnBN 10K (T) + 2K (S) 45.1 45.7
AttnBN 10K (T) + 10K (S) 49.2 50.3
AttnBN 10K (T) + 20K (S) 50.9 51.2

Table 2. Direct evaluation of AttnBN on Pascal VOC 2012 dataset
with different amount of source domain data available. T and S
denote target and source domain respectively. Numbers are mIoU.

creasing of data from the source domain only is of trivial
benefit. We also test the model trained with Ls−cl + Lac on
the source domain. It achieves much better improvement,
which benefits from the guided attention learning mecha-
nism in our model. However, the improvement is still not
good enough due to the domain shift between the source
and target. Then we take use of the target domain data and
perform ether fine-tuning (noted as Ls−cl + Lac, Lt−cl) or
two-domain joint training (noted as Ls−cl + Lac + Lt−cl).
Results validate the importance of joint training and weight
sharing strategies in attention bridging mechanism. Finally
we add adversary training Ladv (noted as AttnBN in the
table) to further help learn domain-invariant features and
boost the effect of attention bridging. AttnBN achieves
mIoU of 50.9 on val. set and 51.2 on test set, which shows a
huge improvement upon the baseline model Grad-CAM by
successfully transferring knowledge across domains.

Qualitative results. As shown in Figure 3, AttnBN fo-
cuses on more complete regions belonging to the class of in-
terest than the baseline model Grad-CAM [35]. This mainly
because AttnBN learns concepts of integral objects from
the images with simple scenes in the source domain, and
successfully transfers this knowledge to the target domain,
where images include complex scenes.

Analysis of classes with huge improvements. We fur-
ther analyze the detailed quantitative results for each class
and get some interesting findings. For classes with huge
improvements like boat (28.8% for val.), train (37.1%) and
car (33.8%). We show several qualitative results in Figure
4 and find that Grad-CAM would focus on background con-
tents when predicting classes. That is because these back-

Method Supervision Sal. val. test
MIL-seg(CVPR′15) [31] 700K W 7 40.6 42.0
SEC(ECCV′16) [16] 10K W 7 50.7 51.7
STC(PAMI′16) [43] 50K W 3 49.8 51.2
TransNet(CVPR′16) [10] 10K W+60K P 7 52.1 51.2
AF-MCG(ECCV′16) [32] 10K W+1.4K P 7 54.3 55.5
TPL(ICCV′17) [15] 10K W 7 53.1 53.8
AE-PSL(CVPR′17) [42] 10K W 3 55.0 55.7
Oh et al.(CVPR′17) [29] 10K W 3 55.7 56.7
CrawlSeg(CVPR′17) [11] 970K W 7 58.1 58.7
WebS-i2(CVPR′17) [14] 19K W 7 53.4 55.3
DCSP(BMVC′17) [4] 10K W 3 58.6 59.2
MEFF(CVPR′18) [7] 10K W 7 - 55.6
AffinityNet(CVPR′18) [2] 10K W 7 58.4 60.5
Shen et al.(CVPR′18) [36] 86.7K W 7 58.8 60.2
DilConv(CVPR′18) [45] 10K W 3 60.4 60.8
GAIN(CVPR′18) [23] 10K W 3 55.3 56.8
MCOF(CVPR′18) [41] 10K W 3 56.2 57.6
DSRG(CVPR′18) [13] 10K W 3 59.0 60.4
AttnBN (ours) 12K W 3 61.7 62.3
AttnBN (ours) 30K W 3 62.1 63.0

Table 3. Comparison with state-of-the-art weakly-supervised se-
mantic segmentation methods on Pascal VOC 2012 dataset. “W”
means weak supervision from image-level labels and “P” means
strong supervision from pixel-level labels. “Sal.” represents using
saliency prior. Results shown are based on VGG backbone.

ground contents always come together with the objects and
are helpful for the recognition, like water with boats, the
rail with trains and road with cars. With these bias informa-
tion within the dataset, only constrained by classification
loss will make the network consider these background con-
tents as one of the most prominent feature characterizing
the classes. Our AttnBN can well handle this problem by
transferring knowledge of foreground prior from the source
domain to guide the network to learn the correct concept.

Using different amount of source domain data. We
are also interested in finding out the influence of using dif-
ferent amount of source domain data. Therefore, we ran-
domly sample from the source domain dataset with a ratio
of 0.1 and 0.5 to obtain two new source domain subsets. We
train AttnBN on these two subsets separately. Following
directly evaluation mentioned before, we still combine at-
tention maps as semantic segmentation results and do eval-
uations. Quantitative results on PASCAL VOC 2012 are
shown in Table 2. We find that the performance of AttnBN
improves when more source domain data is available. Be-
sides, only using 10% source domain data with about 2K
images can already improve upon Grad-CAM by 14.9% and
14.0% of mIoU on the val. and test sets. This shows the ef-
fectiveness of AttnBN for transferring advantageous knowl-
edge (foreground prior here) across domains.

4.3. Act as priors for weakly-supervised framework

In the weakly-supervised setting, recent methods [13,
15, 16, 42, 45] mainly rely on localization cues obtained
by Grad-Cam [35] or CAM[50], and consider other con-



Methods b.g. plane bike bird boat bott. bus car cat chair cow table dog hors. moto. pers. plant sheep sofa train tv mIoU
SEC [16] 82.4 62.9 26.4 61.6 27.6 38.1 66.6 62.7 75.2 22.1 53.5 28.3 65.8 57.8 62.5 52.5 32.5 62.6 32.1 45.4 45.3 50.7

TransferNet [10] 85.3 68.5 26.4 69.8 36.7 49.1 68.4 55.8 77.3 6.2 75.2 14.3 69.8 71.5 61.1 31.9 25.5 74.6 33.8 49.6 43.7 52.1
AE-PSL [42] 83.4 71.1 30.5 72.9 41.6 55.9 63.1 60.2 74.0 18.0 66.5 32.4 71.7 56.3 64.8 52.4 37.4 69.1 31.4 58.9 43.9 55.0
DilConv [45] 89.5 85.6 34.6 75.8 61.9 65.8 67.1 73.3 80.2 15.1 69.9 8.1 75.0 68.4 70.9 71.5 32.6 74.9 24.8 73.2 50.8 60.4
GAIN [23] 86.9 69.3 29.7 64.0 49.1 51.4 65.8 67.8 73.4 22.0 57.4 20.0 68.7 60.4 63.9 68.1 34.2 63.1 30.0 63.6 52.4 55.3
DSRG [13] 87.5 73.1 28.4 75.4 39.5 54.5 78.2 71.3 80.6 25.0 63.3 25.4 77.8 65.4 65.2 72.8 41.2 74.3 34.1 52.1 53.0 59.0

AttnBN 89.5 82.0 30.1 76.2 57.9 65.3 80.7 75.6 79.5 16.8 68.9 19.7 76.4 70.4 67.7 71.8 40.1 72.1 37.2 73.1 53.7 62.1

Table 4. Detailed results of state-of-the-art weakly supervised semantic segmentation methods on VOC 2012 segmentation val. set.

Methods b.g. plane bike bird boat bott. bus car cat chair cow table dog hors. moto. pers. plant sheep sofa train tv mIoU
SEC [16] 83.5 56.4 28.5 64.1 23.6 46.5 70.6 58.5 71.3 23.2 54.0 28.0 68.1 62.1 70.0 55.0 38.4 58.0 39.9 38.4 48.3 51.7

TransferNet [10] 85.7 70.1 27.8 73.7 37.3 44.8 71.4 53.8 73.0 6.7 62.9 12.4 68.4 73.7 65.9 27.9 23.5 72.3 38.9 45.9 39.2 51.2
AE-PSL [42] 85.3 66.9 32.2 77.8 39.1 59.2 63.5 61.4 73.1 17.3 60.9 36.4 70.2 56.8 75.9 52.8 38.7 68.5 34.6 51.2 48.5 55.7
DilConv [45] 89.8 78.4 36.2 82.1 52.4 61.7 64.2 73.5 78.4 14.7 70.3 11.9 75.3 74.2 81.0 72.6 38.8 76.7 24.6 70.7 50.3 60.8
GAIN [23] 88.0 67.0 30.0 66.3 41.4 60.4 66.8 65.1 71.7 25.5 58.7 22.4 72.3 65.8 68.0 72.0 39.9 64.1 33.4 62.2 52.7 56.8
DSRG [13] 87.9 69.5 32.1 74.2 33.7 59.4 74.9 71.5 80.1 21.9 66.8 32.7 76.4 72.5 76.6 73.4 49.9 73.8 43.4 42.0 55.2 60.4

AttnBN 89.9 75.7 32.9 73.5 49.9 60.4 78.1 76.5 77.4 19.9 72.0 27.4 73.8 72.7 77.2 72.3 51.2 77.3 37.9 73.5 53.6 63.0

Table 5. Detailed results of state-of-the-art weakly supervised semantic segmentation methods on VOC 2012 segmentation test set.

Ground Truth DSRG OursImage

Figure 5. Qualitative weakly-supervised semantic segmentation
results of DSRG and our method.

straints like object boundaries to train a segmentation net-
work. The performance of these methods is highly influ-
enced by the quality of localization cues. Compared with

attention maps obtained by Grad-Cam and CAM that only
cover small and the most discriminative regions, attention
maps of AttnBN can locate more complete regions belong-
ing to the class of interest. Therefore, they have poten-
tial to help improve the performance of weakly-supervised
segmentation methods. To validate this, we take attention
maps from AttnBN as foreground localization cues for the
existing weakly-supervised semantic segmentation method
DSRG [13] and use [12] to obtain background cues. We
then train DSRG with VGG as the backbone to generate
segmentation results using the same inference procedure,
as well as parameters of CRF [17].

We report quantitative results on Pascal VOC 2012
dataset in Table 3. Our results are noted as AttnBN. We
make extensive comparisons with state-of-the-art weakly-
supervised semantic segmentation solutions with different
configurations. From the results, we can find AttnBN ob-
tains the best performance with 62.1% and 63.0% in mIoU
on val. and test sets respectively. Compared with baseline
model DSRG, AttnBN provides a performance gain with
3.1% on val. set and 2.6% on test set. Note that our training
of semantic segmentation network follows the same setting
and training data (only PASCAL VOC 2012) with DSRG
as well as other recent works. Different amount of source
data is only used when training the attention map genera-
tion model (AttnBN). Consider ablation studies in Table 1,
results ofLt−cl + Ls−cl show that a mere increasing of data
from the source domain only is of trivial benefit. The main
improvement is due to effectiveness of knowledge transfer
and better attention maps. This verifies that AttnBN can
generate high quality attention maps as cues to improve the
performance of weakly-supervised methods.

Besides, comparing with methods also focusing on
knowledge transfer, such as Shen et al. [36], CrawlSeg [11],
WebS-i2 [14], TransNet [10], our methods achieve better



Methods Setting mAP on Target test
Ls−cl Generalization 61.3
Ls−cl + Lac Generalization 66.7
Ls−cl + Ladv Adaptation 64.5
Ls−cl + Lac + Ladv Adaptation 71.0

Table 6. Quantitative results for classification in unsupervised
domain adaptation and domain generalization settings between
single-label domain and multi-label domain. “Target test” repre-
sents the VOC 2012 testing set.

Methods Source: C I V I V C
Target: I C I V C V

Training setting: Generalization
Ls−cl 0.77 0.98 0.87 0.83 0.97 0.62
Ls−cl + Lac 0.83 0.99 0.90 0.88 0.98 0.71
Training setting: Adaptation
Ls−cl + Ladv 0.81 0.98 0.88 0.85 0.98 0.67
Ls−cl + Lac + Ladv 0.87 0.99 0.91 0.89 0.99 0.74

Table 7. Quantitative results for classification in domain adaptation
and domain generalization settings between PASCAL VOC2007,
Caltech-101 (C), and ImageNet (I). Numbers shown are accuracy.

performance using less extra data. Furthermore, AttnBN
outperforms AE-PSL [42] by 7.1% and 7.3%, DilConv [45]
by 1.7% and 2.2%, GAIN [23] by 6.8% and 6.2% on val
and test set respectively. These methods are also proposed
to generate better attention maps and they also take use of
saliency priors.

Table 4 and Table 5 show detail results of each class on
PASCAL VOC 2012 segmentation val. set and segmenta-
tion test. set. Figure 5 shows qualitative results of seman-
tic segmentation obtained by DSRG and AttnBN. From the
first three rows, we can find that AttnBN can help to gen-
erate better segmentation results based on more complete
attention maps. From the last two rows, our results include
less background than DSRG. It is mainly because AttnBN
can guide the network focus less on the background con-
tents that always come together with the objects and are
helpful for the recognition, like water with boats, the rail
with trains. This is consistent with the analysis in Figure 4.

5. Experiments for domain adaptation and do-
main generalization

In addition to serving as localization cues for weakly-
supervised method, attention maps also reflect the network
responses and related to network’s predication. Integrate at-
tention can help to learn the complete visual pattern of ob-
jects and has potential to boost generalization performance
of the network. Therefore, we further validate this by de-
signing experiments for the classification task in the domain
adaptation and domain generalization settings.

For the domain generalization setting, we treat one of
the dataset as the source domain and the other two unseen
datasets as unseen domains. Only data and label in the

source domain are available during training. For the domain
adaption setting, we take one of the dataset as the source do-
main and one of the other two datasets as the target domain.
Only data and labels in the source domain as well as data
in the target domain is available during training, no label in
the target domain is used.

We first do experiments using the two domains as de-
scribed in Section 4.1 to explore the adaptation and domain
generalization from the single-label domain to the multi-
label domain. The baseline model here is VGG [38] trained
with classification loss Ls−cl defined in Eq. 7. We test our
model trained with Ls−cland attention constrain loss Lac

for domain generalization setting. We also report results
of the models trained with Ls−cl + Lac + Ladv or with
Ls−cl+Ladv for the domain adaptation setting, where Ladv

is the adversary training loss. For all these four models, no
labels in the target domain are used during training. From
Table 6, we find AttnBN can help learn domain invariant
features benefiting from an integral attention.

We further validate the effectiveness of AttnBN in more
general cases. Following [18, 19, 28], we use images of 5
common object categories (bird, car, chair, dog, and per-
son) of the PASCAL VOC2007 (V) [6], Caltech-101 (C)
[8], and ImageNet (I) [34] datasets to design experiments
in two settings. We test the same four models defined in
our last experiment and report results in Table 7. We can
find AttnBN helps to improve the generalization ability of
the classification network. This validates the advantage of
the integral attention and the strength of attention bridging
mechanism.

6. Conclusion

We propose AttnBN that can transfer knowledge across
domains using network attention as a bridge. This is based
on our understanding that network attention can be used to
explicitly access to the network response to objects of the
same category but from different domains. Experiments for
weakly-supervised semantic segmentation demonstrate the
effectiveness of the proposed method. We also validate that
our method can help improve the generalization ability of
a classification network in both domain adaptation and do-
main generalization settings. In the future, since the source
domain is quite simple in our case, we will try to use unsu-
pervised or weakly-supervised saliency detection methods
to generate foreground prior for the source domain. We will
also explore more knowledge transfer scenarios that are re-
lated to the network attention.
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