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Abstract

Powerdemandsaresettoincreasebytwo-foldwithinthecurrentcenturyandahighfraction

ofthatdemandshouldbemetbycarbonfreesources.Amongtherenewableenergies,

solarenergyisamongthefastestgrowing;therefore,acomprehensiveandaccuratedesign

methodologyforsolarsystemsandhowtheyinteractwiththelocalenvironmentisvital.This

paperaddressestheenvironmentaleffectsofsolarpanelsonanunirrigatedpasturethat

oftenexperienceswaterstress.Changestothemicroclimatology,soilmoisture,water

usage,andbiomassproductivityduetothepresenceofsolarpanelswerequantified.The

goalofthisstudywastoshowthattheimpactsofthesefactorsshouldbeconsideredin

designingthesolarfarmstotakeadvantageofpotentialnetgainsinagriculturalandpower

production.MicroclimatologicalstationswereplacedintheRabbitHillsagrivoltaicsolar

arrays,locatedinOregonStatecampus,twoyearsafterthesolararraywasinstalled.Soil

moisturewasquantifiedusingneutronprobereadings.Significantdifferencesinmeanair

temperature,relativehumidity,windspeed,winddirection,andsoilmoisturewereobserved.

AreasunderPVsolarpanelsmaintainedhighersoilmoisturethroughouttheperiodofobser-

vation.Asignificantincreaseinlateseasonbiomasswasalsoobservedforareasunderthe

PVpanels(90%morebiomass),andareasunderPVpanelsweresignificantlymorewater

efficient(328%moreefficient).

1Introduction

Globalenergydemandwillbedoubledbymid-centuryduetopopulationandeconomic

growth[1,2].Renewableandenvironmental-friendlyenergieswillplayavitalroletomeetthis

demand.

Amongallrenewableenergies,solarpoweristhemostabundantandavailablesource[3].

Solarpowerisalsobecomingmoreaffordable.Thecostofsolarpanelshasfallenby10%per

yearforthepastthirtyyears,whileproductionhasrisenby30%peryear.Ifcostscontinueto

bereducedbasedonthishistoricrate,solarenergywillbelessexpensivethancoalby2020[4].

Theimpactofwide-spreadsolarinstallationsisanareaofincreasinginterest.Regional
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climatologymaybeinfluencedbylargescalesolarinstallations,butsimulationshaveprovided

conflictingresults:3–4̊Cincreaseinairtemperatureoversolarpanelscomparedtowildlands

atnight[5],0.1–0.5̊Cdecreaseinairtemperature[6],26̊Cincreaseintheshadedrooftop

temperaturecomparedwithunshadedrooftop[7],1–2.5̊Cincreaseinregionalandglobal

temperaturesinurbanarea[8]anda5.2̊Cincreaseinairtemperatureundersolarpanels[9].

Solarinstallationscanoccupylargelandareasandsometimescompetewithagriculturefor

thelandresource[10].Agrivoltaicsystemsarecreatedwhensolarandagriculturalsystemsare

co-locatedformutualbenefit.Theformalintroductionofagrivoltaicsystemsiscreditedto

Duprazin2011[11].Landdemandforenergyproductiondecreasesprofoundlywhenagrivol-

taicsareused[10].Notallagriculturalcropsaresuitable,butplantswithlessrootdensityand

ahighnetphotosyntheticrateareidealcandidates[11].Agrivoltaicsystemshavebeenshown

toincreaselandproductivityby60–70%[12],andincreasethevalueofenergyproductionsys-

temby30%[13].Verylimitedexperimentalresearchwasfoundontheimpactsofasolar

arraysonagriculturalproduction.Marrouetal.[14]measuredsoilwaterpotentialandsoil

watergradient(differencebetweenuptakeanddrainage)incucumberandlettuceandrevealed

lowersoilwaterpotentialunderthepanels.Thiswaterpotentialledtoanincreaseinharvested

finalfreshweight.AnotherexperimentbyMarrouetel.[15]foundthatplantscoversoilfaster

undertheshadeofsolarpanels.AnexperimentalstudybyDuprazetal.demonstratedthat

summercropsbenefitedofsolarshademorethanwintercropssuchaspeaandwheatcrops

[16].Co-locatingagaveplantbelowsolarpanelsincreasedyieldperm3ofwaterusedinthe

SanBernardinoCountyinCalifornia[17].Non-beneficialeffectshavealsobeenobservedin

Welchonionfieldswhere,photovoltaicsreducedthefreshanddrymatterharvestweight[18].

Inthispaper,afieldstudywasperformedtomeasuretheeffectsofasix-acreagrivoltaic

solarfarmonthemicroclimatology,soilmoistureandpastureproduction.Theexperimental

setupincludedmicroclimatologicalandsoilmoisturemeasurementsfromMaytoAugust

2015inRabbitHillsagrivoltaicsolararrays,locatedontheOregonStateUniversitycampus.

ThefielddataforthisstudyisaccessiblethroughOregonStatelibrarysystem[19].

2Materialandmethods

Thefieldstudywasperformedonasixacreagrivoltaicsolarfarmandsheeppasturenearthe

OregonStateUniversityCampus(Corvallis,Oregon,US.).ThePhotoVoltaicPanels(PVPs)

havebeenarrangedineast–westorientatedstrips,1.65mwideandinclinedsouthwardwith

atiltangleof18o.PVPshavebeenheldat1.1metersaboveground(atlowestpoint)and

thedistancebetweenpanelsis6metersasshowninFig1)e.Thewholesolararraysystem

hasacapacityof1435kilowatts(http://fa.oregonstate.edu/sustainability/ground-mounted-

photovoltaic-arrays).AsshowninFig1,thedatawerecollectedfromlocalizedzones(descri-

bedhereafter)includingareasbelowsolarpanelsandacontrolareaoutsidetheagrivoltaicsys-

tem.Thepasturebelowthesolarpanelsandthecontrolareaswereinthesamepaddockthat

wasactivelygrazedbysheep.Exclusionaryplots,toeliminategrazingpressure,weremain-

tainedwithfencing.Thetotalsizeofthefencedareaswaslimitedbyagriculturalactivities.The

pasturewasnotirrigated,andtypicallyexperienceswaterstressmid-summer.Thesoilclassifi-

cationfor>70%ofthepasturearea(controlandagrivoltaicsystem)isWoodburnSiltclay

[20].ThecontrolandtreatmentplotswerelocatedwithinWoodburnSiltclayclassification

areas.Theintentofthefieldmeasurementswastominimizeuncontrollabledifferences

betweenthetreatmentsandcontrol(e.g.solarforcing,soiltypes)andminimizeimpacton

agriculturalactivities.Thus,thedistancebetweenthetreatmentsiteandthecontrolsitewas

keptminimum.Theobservationswithinthetreatmentsitewerefurtherdividedintothree

sub-treatments(Fig2):(1)SkyFullyOpenareabetweenpanels(SFO),(2)SolarPartiallyOpen
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Fig1.a)Aerialphotoof35thStreetagrivoltaicsolararray,OregonStateUniversityCorvalliscampus(thisphotoistakeninwinterandshadowpattern
isdifferentfromthemeasurementswhichheldinsummer)Copyright:OregonStateUniversity,b)Solarpanelsetup,c)Controlareasetup,d)Shade
zonesinsolarpanel,e)Schematicdrawingofshadezones(HisobjectheightandLisshadowlength).

https://doi.org/10.1371/journal.pone.0203256.g001
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betweenpanels(SPO)and(3)SolarFullyCoveredareaunderpanels(SFC).SFOareasare

betweentheedgesofinstalledPVpanelsandexperiencedfullsun.Shadowlengthcalculation

alsoconfirmsnoshadecoverstheSFOzone[21].SPOareasareinthepenumbraandexperi-

encedepisodicshade.SFCareasaredirectlybeneaththePVpanelsandexperiencedfullshade.

Datafromthesesub-treatmentswerecomparedtothedatacollectedfromthecontrolareaout-

sidetheagrivoltaicarray,whereeachmeasurementwasreplicated.

Shadowlength(L)iscalculated[20]basedonthesunlatitude,solarpanelheight,dayand

timeoftheyeartheanditchangesfrom1.1metersto1.4metersforMay,June,Julyand

Augustof2015whichmakestheSFOnoshadowzone.Datawerecollectedcontinuouslyinall

areasfromMay-August2015.Airtemperature,relativehumidity,windspeedandwinddirec-

tionmeasurementswerecollectedon1minuteintervals.Soilmoistureprofileswerecollected

threetimeseachweek,andbiomasssampleswerecollectedattheendoftheobservation

period.Detailsassociatedwitheachsetofmeasurementsareexplainedinthefollowingsub-

sections.

2.1Microclimatologicalmeasurements

Twoatmosphericprofilingstationswereinstalled70metersapart:oneinthecontrolareaand

onenearthecenterofthesolarpanelarea.Micrometeorologicalvariableswerecollectedat

fourlevels(0.5,1.2,2.0and2.7maboveground)in1minuteintervals.Thegatheredvariables

were(1)airtemperature(VP-3DecagonDevices),(2)windspeedanddirections(DS-2Deca-

gonDevices),(3)relativehumidity(VP-3DecagonDevices)and(4)netradiation(PYR

Fig2.Planviewofexperimentalsetupinsolararrayareashowinglocationsoftowersandneutronprobeaccess
tubesfor:SolarFullyCovered(SFC),Solarpartiallyopen(SPO),SkyFullyOpen(SFO),solarmeasurementsare
almost70metersapartfromcontrolarea.

https://doi.org/10.1371/journal.pone.0203256.g002
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DecagonDevices).DatawereloggedonEM50dataloggers(DecagonDevices).Temperature

andhumiditydeviceswerecalibratedinachamber,andwindsensorswerecalibratedina

windtunnelpriortoinstallation.AKolmogorovSmirnovtestwasusedtodetectdifferencesin

distributionsoftemperature,humidity,windspeed,winddirection,anddownwellingradia-

tionbetweenthesolararrayareaandthecontrolarea.Atwotailedt-testwasusedtodetectdif-

ferencesinthemeantemperature,humidity,windspeed,winddirection,anddownwelling

radiationbetweenthesolararrayareaandthecontrolareaandstandarddeviationresultswas

measuredtoquantifytheamountofdispersionofasetofdatavalues.

2.2Soilmoisturemeasurement

Thesoilmoisturewasobtainedusinganeutronprobedevice(503DRhydro-probeCampbell

PacificNuclearInternationalInc.BoartLongyearCorporation(CPN),Concord,California,

USA).Thesedataweregatheredatsixdepthsforeachsamplinglocation(0.1mto0.6min0.1

mintervals).Fig2showsaplanviewwherenineneutronprobeaccesstubesforsoilmoisture

measurementswereinstalledinthesolararea.Threeaccesstubeswereinstalledineachsub-

treatment:SFO,SPO,andSFCrespectively.Threeaccesstubeswerealsoinstalledinthecon-

trolarea.NeutronProbereadingsweretakenapproximatelyeverythreedays.Astandard

countwastakenpriortosamplingeachdaytocalibratedatareadings.Threeneutroncounts

wereaveragedforeachindividualmeasurement(asingledepthinasingletube).Thiscount

wasnormalizedbythestandardcount,andthenormalizedcountwascalibratedtosoilmois-

ture.Withineachsub-treatment,dataatthesamedepthsareaveragedtodeterminethesoil

moistureprofileanderror-bars.Theresultisasoilmoistureprofilewithmeasurementsat0.1,

0.2,0.3,0.4,0.5,and0.6mforeachsub-treatmentandthecontroleverythreedays.Neutron

probereadingsatthe0.1mdepthforallsub-treatmentsandthecontrolwereadjustedto

accountforpossibleneutronlossestotheatmosphere[22].Two-wayANOVAwasusedtotest

theindependenceofthesoilmoisturemeasurementswithrespecttozoning(thecontrol,SFO,

SPO,andSFC)anddepth.

2.3Biomassmeasurements

Above-groundbiomasswascollectedonthe28thofAugust.Six1mby1mquadrantswerecol-

lectedfromwithinthefencedareasforeachsub-treatmentandthecontrol.Harvestedbiomass

wasdriedfor48hoursina105oCovenandweighed.TheDaubenmiremethod[11]wasused

tostudygrassspeciesdiversityattheendofJuly.Sixtransectsinthecontrolandonetransect

inthesolararraywereperformed.Foreachtransect,arandomnumberwasdrawn(from

1–10)todeterminethefinallocationofeach1mx1mquadrant.Sixquadrantswerecollected

ineachtransectresultinginatotalof42samples.Ineachquadrant,thecoverage,byspecies,

wasdeterminedvisually.

3Resultsanddiscussions

3.1Micrometeorologicalvariables

UsingaKolmogorovSmirnovtest,atwotailedt-test,standarddeviationandWilliamWatson

test[23]forwinddirectionshowedsubtlebutstatisticallysignificantdifferences.Significant

differencesinmeantemperaturewerefoundinreadingstakenclosesttothePVpanelsurfaces

atthe1.2mand2.0melevations.Nosignificantdifferenceswereobservedatthelowest(0.5

m)orhighest(2.7m)elevations.Notethatthemagnitudeofthesemeantemperaturediffer-

encesaresmallerthanthosereportedfromsimulationstudies[5–9].Significantdifferencesin

meanrelativehumidityandwindspeedwerefoundforallmeasurementheights.Solar

Environmentaleffectsofsolarpanelonagriculturalfields
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radiationbelowthesolarpanelinstallationheightwassignificantlyreduced(asexpected)and

theincomingsolarradiationmeasuredataheightabovethesolarpanelswasfoundtobesta-

tisticallysignificant(unexpected)butthedifferencerelativelysmall.Thedistributionofwind

directionwassignificantlyalteredatallheights,andthemeanwindspeedwassignificantlydif-

ferentatallheights.Asummaryofthep-valuesfromallstatisticaltestsisshowninTable1.

Standarddeviationvalueswerebigduetodiurnalchangesofmicroclimatevariablesduring

theday.

Winddirectiondataat2.7mabovegroundlevelisshowninFig3toillustratethealter-

ationsinthewinddirection.Forthesakeofbrevity,onlyoneheightispresentedinthismanu-

script,butallheightsareshowninSupportingInformation(FigureAinS1Appendix).Fig3

showsahistogramofincidentwinddirectionplottedasafunctionofdirection.Longerspokes

indicatethatthatparticulardirectionismoreprobable.Eachspokeisdividedandcolored

accordingtothestrengthofthewind(windspeed).Forexample,alongbluespokewouldindi-

catethatlightwindsfromthatdirectionarecommon.WecanconcludefromFig3thatthe

winddirectioninthecontrolareaisdistributedamongmanyincidentangles,whilethewind

directionwithinthetreatmentisorientedpredominantlyfromthesouth.Thatis,thewind

directionwithinthetreatmentareareorientswithsolarpanelssuchthatthewindisfrom

southtonorth.Thepanelsdonotactas‘canyons’andorientthewindalongtheirrows(acom-

monoccurrenceinurbanflowsforexample)[24].Rather,thewindisreorientedperpendicular

tothesolararray’srows.Theauthorsbelievethatthelocalincreaseintemperaturenearthe

solarpanelsurfaceresultsinabuoyantforcethatcauseslocalanabaticflowupthepanelsur-

faces.EachanabaticflowoneachPVrowhasavectorcomponentperpendiculartothesolar

panelroworientation,andtheentiresolarfarmactslikea‘Fresnelslope’thatreorientsthe

flow.Thetotalbuoyantforceisenoughtoacceleratetheflowdirectionally,andcontributesthe

increaseinwindspeedabovethepanels.Flowaccelerationaroundabluffbody(PVpanel)

alsocontributestoincreasedwindspeedabovethesolarpanels.Increaseddragduetothe

Table1.Mean/Stdandp-valuesfromsolarpanelandcontrolareaTwo-sampleKolmogorov-Smirnov,ttestsandWilliamWatsontest.

Elevation(m) 0.5 1.2 2.0 2.7

Temperature
(̊C)

Mean/Std(solarpanelarea) 18.34/7.87 18.03/8.06 18.30/7.39 18.37/7.65

Mean/Std(controlarea) 18.27/7.85 18.32/8.31 18.36/7.47 18.11/7.64

p-values(KStest) 0.9964 0.9964 1.0000 1.0000

p-values(ttest) 0.1527 0.0000 0.0000 0.5996

Relativehumidity
(%)

Mean/Std(solarpanelarea) 65.62/0.226 64.17/0.252 64.29/0.209 64.92/0.230

Mean/Std(controlarea) 66.23/0.234 66.38/0.242 64.89/0.222 65.37/0.223

p-values(KStest) 0.0004 0.3611 0.7014 0.6703

p-values(ttest) 0.0000 0.0000 0.0000 0.0118

Windspeed
(m/s)

Mean/Std(solarpanelarea) 0.5471/0.506 0.4880/0.427 1.3777/1.083 1.0889/0.909

Mean/Std(controlarea) 0.8752/0.665 0.6384/0.520 1.1313/0.859 0.9726/0.757

p-values(KStest) 0.9579 1.0000 0.8497 0.9964

p-values(ttest) 0.0000 0.0000 0.0000 0.0000

Solarradiation(W/m2) Mean/Std(solarpanelarea) - 59.53/96.65 - 275.72/322.59

Mean/Std(controlarea) - 328.26/407.93 - 271.58/323.34

p-values(KStest) - 0.0099 - 0.9597

p-values(ttest) - 0.0000 - 0.0054

Winddirection
(̊)

Mean/Std(solarpanelarea) 196.29/107.71 220.96/102.32 211.83/101.68 206.11/96.65

Mean/Std(controlarea) 210.54/102.29 196.82/121.16 211.87/95.91 182.13/115.97

p-values(WWtest) 0.0000 0.0000 0.0000 0.0000

https://doi.org/10.1371/journal.pone.0203256.t001
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‘solarcanopy’islikelythecauseofthereducedspeedbelowthesolarpanels.Notethatthe

mostcommonwindspeedsareweak(<2m/s),anditisunclearifthiswinddirectionshift

wouldbearobustresultforwindylocations.Higherwindspeedsarealsoobservedtoreorient

inFig3;however,thenumberofoccurrencesarelimited.

3.2Soilmoisturedatacomparisons

ThehorizontalaxisshowstheDayofYear(DoY)ofthedatacollectionin2015andvertical

axisisthevolumetricsoilmoistureinvol/vol.Independencewasdeterminedwithap-valueof

lessthan0.01foralldepthsandzonesbytwo-wayANOVAtest.Thesoilmoistureisnearsatu-

rationforalldepthsandalltreatmentsatthestartofobservation.Thatis,allareashadnearly

identicalinitialsoilmoistures.Thedifferingratesofsoilwaterdepletioninthethreesub-treat-

mentsandthecontrolledtodramaticdifferencesinlateseasonsoilmoisture.

ThesoilmoistureintheSFOareaisdepletedmorerapidlythantheSPO,SFCorcontrol

areas.ThisresultisintriguingsincetheSFOareaandthecontrolexperiencesimilarincident

solarradiation.Thus,theSFOmusthaveadifferentenergeticbalancedespitesimilarexposure

todirectsolarenergy.Wehypothesizethatthisdifferenceinrateofsoilmoisturelossisaresult

ofthelongwaveradiationtransfer.TheSFOwillexperienceincidentlongwaveradiationfrom

theadjacentPVpanels.ThesePVpanelswouldalsoreducetheskyviewfactoroftheSFO

area.Incontrast,theskyviewinthecontrolareaisunobstructed.Thus,weinferthatthetotal

netlongwaveandnetshortwaveradiationbothplayanimportantroleintheenergeticsand

evaporationintheSFOarea.Thecompletelongandshortwaveradiationbudgetswithinan

agrivoltaicsystemwillbeexploredinfuturestudy.

Timeseriesofthesoilmoistureat0.2m,0.4mand0.6marepresentedinFig4insubpan-

elsa-c.Timeseriesofsoilmoistureat0.1m,0.3mand0.5mcanbefoundinSupporting

Information(FigureAinS2Appendix).SoilmoistureismostpersistentintheSFCareaand

remainsavailableforalargerportionofthegrowingseason.Thesoilmoistureat0.6mdepth

remainedclosetosaturation(0.3vol/vol)fortheentireseasonwhichimpliesthatwateris

availableatthebottomoftherootzoneovertheperiodofobservationFig4C.OveralltheSFC

arearemainedwetterthanallotherareas,includingthecontrol.Thiswateravailabilityisin

starkcontrasttotheSFOareawhichwasnearsaturationatthestartofobservation(~0.3vol/

vol)anddepletedto~0.2vol/volattheendoftheseason.Thisstarkcontrastinthemoisture

availabilitybetweentheSFOandSFCcreatesanundesirablevariabilityacrossthefieldand

hintsthatshadeuniformitymaybeanimportantconsiderationforthedesignoffutureagri-

voltaicsystems.TheSPOareadriesatarateslowerthantheSFObutfasterthantheSFCand

thecontrol.

Inotherwords,formosttimesandsoildepths,theSFChadthathighestsoilmoisturefol-

lowedbytheSPO,controlandSFOrespectively.Itshouldbenotedthatthemeansoilmoisture

acrosstheSPO,SFOandSFCregionsissimilartothecontrol.But,thesolarpanelsincrease

thelocalheterogeneityofsoilwaterconditions,whichresultsinsomeareas(SFC)having

morepersistentstoresofsoilwaterthroughoutthegrowingseason.

ThesoilprofilesatthebeginningandendoftheobservationperiodareshowninFig5All

areaswerenearsaturationforalldepthsinitially.Bytheendoftheobservationperiod,thesoil

moistureintheSFCzonewasnearlytwicetheSFO.Thesemeasurementsareseparatedbyless

thantwometersspatially.AllmeasuredsoilmoistureprofilesareavailableinSupporting

Information(FigureAinS3Appendix).

Fig3.Windroseplotsforcontrol(upper)andsolarareas(lower)forMay-Augustaveragewinddirections.Thedataare
forelevation2.7m.

https://doi.org/10.1371/journal.pone.0203256.g003
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Fig4.Soilmoisturetimeseries(a)0.2m,(b)0.4mand(c)0.6m.Formoreinformation:therewas40mmprecipitation
overtheobservationperiod,i.e.May-Aug2015.

https://doi.org/10.1371/journal.pone.0203256.g004

Environmentaleffectsofsolarpanelonagriculturalfields

PLOSONE|https://doi.org/10.1371/journal.pone.0203256 November1,2018 9/15



Environmentaleffectsofsolarpanelonagriculturalfields

PLOSONE|https://doi.org/10.1371/journal.pone.0203256 November1,2018 10/15



3.3Vegetation

Eightgrasstypeswereidentifiedinthecontrolpastureandfivewereidentifiedinthesolar

farmarea.AsummaryoftheresultsispresentedinTable2.Themostcommonspeciesinthe

solarpanelareawasAlopecurus,along-livedperennialthatthrivesinmoistconditions.Alope-

curusprovidesa“succulentandpalatableforage”[25].Themostprevalentgrasstypeincon-

trolareaisHordeumthathasspikeletclustersthatcanenternostrilsandearcanalsin

mammals.ThreetypesofgrassesCalamagrostis,CirsiumandDactyliswereobservedonlyin

thecontrolarea.Thesegrassesareonlyfavoredbysheepandcattleintheearlystageofthe

grassbeforespinedevelops[26].Thecausalfactorforthediversitychangebetweencontrol

andtreatmentrequiresfurtherinvestigation.

TheharvesteddrybiomassattheendoftheobservationperiodisshowninFig6Results

show126%moredrybiomassintheSFCzonerelativetotheSFOzoneand90%moredrybio-

massintheSFCzonerelativetothecontrol.Althoughthesamplesizeissmall,difference

betweentheSFCandthecontrolwerefoundtobesignificant,(p-value=0.007).Inaddition,

thedifferencebetweentheSFCandtheSFOwerefoundtobesignificant,(p-value=0.007).

3.4Waterusage

Waterusagewascalculatedbasedondifferenceindepthaveragedsoilmoisturebetweenthe

beginning(Fig5(A)andend(Fig5(B))oftheobservationperiod.Averagesarecalculatedby

integratingsoilmoistureoversoildepthfrom10cmto60cm.WaterUseEfficiency(WUE)is

thencalculatedasthebiomassproducedperunitofwaterused.Wateruseefficienciesinkg

biomass/m3ofwateragainstthebiomassweightincontrolandSFOandSFCtreatmentsare

presentedinFig7(WUE SFCWUE Controlarea
WUE Controlarea

).ThehigherproducingSFCtreatmentwasalsosignifi-

cantlymorewaterefficient(328%).

Theseasonalclimatepatternatthesiteproducesaninitiallysaturatedpastureandaadry

growingseason.Initialwaterstoresaredepleted,throughevapotranspiration(ET),andwater

scarcityoccursinthecontrolandSFOareas.Theshadedtreatments(SFCandSPO)experi-

encelowerpotentialevapotranspiration(PET)duetodecreasedsolarradiationthroughoutthe

observationperiodwhichresultedinaslowerdry-downofthestoredsoilwater.Thedecreased

rateofdry-downintheSFCandSPOareasleftsoilwaterstoresavailablethroughoutthe

observationperiodandallowedpasturegrassesintheSFCandSPOtoaccumulateasignifi-

cantlygreaterbiomass.ThereducedPETintheSFCandSPOtreatmentsalsocontributedto

Fig5.Selectednormalizedsoilmoistureprofilesfromdatasamplingtoshowthechangeinsoilmoisturethroughgrowingseason,(a)
May06–2015and(b)August27–2015.

https://doi.org/10.1371/journal.pone.0203256.g005

Table2.Theresultsofbiomassmonitoringfordifferentgrasstypesinsolarandcontrolarea.

Grassscientificname(commonname) Solararea(%) Controlarea(%)

Hordeum(Foxtailbarely) 10 25

Agrostis(Redtopbentgrass) 30 20

Alopecurus(Meadowfoxtail) 50 7

Schedonorus(Tallryegrass) 5 9

Bromus(Foxtailbrome) 5 22

Calamagrostis(Reedgrass) 0 6

Cirsium(Thistle) 0 10.5

Dactylis(Orchardgrass) 0 0.5

https://doi.org/10.1371/journal.pone.0203256.t002
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Fig6.DrybiomasscomparisoninthreeplacesSolarFullyCovered(SFC),SkyFullyOpen(SFO)andcontrolarea.

https://doi.org/10.1371/journal.pone.0203256.g006

Fig7.Biomassproductivityinkg/m3ofwater.

https://doi.org/10.1371/journal.pone.0203256.g007
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anincreaseinwateruseefficiencyofthepasturegrasses.Thatis,a‘waterlimited’area,ina

Budyiko[27]sense,couldbeconsideredasanareaof‘solarexcess.’Byharvestingthissolar

excesswithsolarpanels,PETisreduced.Takentoanextremeitispossibletoshiftthearidity

suchthattheshadedareabecomesenergylimited.Thustheremustexistashadinglevel,fora

waterlimitedarea,wherePETandAETwouldbeinbalance.Wewouldnotexpectasimilar

outcomein‘energylimited’areas(Budykosense)asobservedbyArmstrongetal.[8].Inthis

case,thereisnosolarexcessandthePETisalreadyequaltotheAET.Ifsolararrayswere

placedabovegrowingplantsin‘energylimited’conditionswewouldexpectthatthetotalbio-

massproductionwoulddecrease,consistentwiththefindingsofArmstrongetal.[16].

4Conclusion

Typicalagriculturaloperationsmanagemultipleon-farmresourcesincludingsoil,nutrients

andwater.Thisstudysuggeststhattheon-farmsolarresourcemanagementcouldalsobe

implementedforproductivebenefits.Waterlimitedareasaremostlikelytobenefitassolar

managementreducesPETandconsequentlythewaterdemand.Notallcropswillbeamenable

tosolarmanagement,andtheeconomicsofactivesolarmanagementwithPVpanelsneeds

furtherstudy.But,semi-aridpastureswithwetwintersmaybeidealcandidatesforagrivoltaic

systemsassupportedbythedramaticgainsinproductivity(90%)observedovertheMay-Aug

2015observationperiodattheRabbitHillsagrivoltaicsolararray.Thesenetbenefitswere

largelyachievedthroughanincreasedwateruseefficiencyintheshadedareasofthefield

whichleftwaterstoredinthesoilcolumnavailablethroughouttheentireobservationperiod.

Extremeheterogeneityandspatialgradientsinbiomassproductionandsoilmoisturewere

observedasaresultoftheheterogeneousshadepatternofthePVarray.Futureagrivoltaic

designsshouldeliminatethisheterogeneitybyoptimizingPVpanelplacementtocreateaspa-

tiallyuniformshadowpattern.Aspatiallyuniformshadowpatternwouldfosteruniformbio-

massaccumulationbenefits.Theagriculturalbenefitsofenergyandpastureco-locationcould

reducelandcompetitionandconflictbetweenrenewableenergyandagriculturalproduction.

ReducedoreliminatedlandcompletionwouldopennewareasforPVinstallation.Localcli-

maticeffectsofagrivoltaicinstallationswerestatisticallysignificantbutsubtle,howeverthe

regionalclimaticimpacts(e.g.rainfallpatterns)oflargescaleagrivoltaicinstillationsarestill

unclearandshouldbethesubjectoffurtherstudy.
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