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Abstract—IoT devices influence many different spheres of
society and are predicted to have a huge impact on our future.
Extracting real-time insights from diverse sensor data and
dealing with the underlying uncertainty of sensor data are two
main challenges of the IoT ecosystem In this paper, we propose
a data processing architecture, M-DB, to effectively integrate
and continuously monitor uncertain and diverse IoT data. M-DB
constitutes of three components: (1) model-based operators (MBO)
as data management abstractions for IoT application developers
to integrate data from diverse sensors. Model-based operators
can support event-detection and statistical aggregation operators,
(2) M-Stream, a dataflow pipeline that combines model-based
operators to perform computations reflecting the uncertainty of
underlying data, and (3) M-Store, a storage layer separating
the computation of application logic from physical sensor data
management, to effectively deal with missing or delayed sensor
data. M-DB is designed and implemented over Apache Storm
and Apache Kafka, two open-source distributed event processing
systems. Our illustrated application examples throughout the
paper and evaluation results illustrate that M-DB provides a real-
time data-processing architecture that can cater to the diverse
needs of IoT applications.

Index Terms—IoT, Real-time Processing, Abstractions, Predic-
tion

I. INTRODUCTION

Internet connected devices such as smart cars, wearables
like health monitors and fitness trackers, and smart home ap-
pliances like surveillance cameras, thermostats etc. are slowly
becoming ubiquitous and are the future of the Internet. Such
devices are collectively referred to as Internet of Things (IoT).
Gartner has predicted [5] that there would be 26 billion IoT
devices by the end of year 2020. One of the most challenging
aspects for the IoT ecosystem is to get insights from data,
which is being continuously collected and transmitted from
diverse sensors connected to such physical devices [14], [35].

On one hand, integrating data from multiple diverse ho-
mogeneous or heterogeneous sensors over time will facili-
tate the ability to extract deeper insights about the physical
environment [9], [28]. On the other hand, the underlying
uncertainty of sensor data needs to be taken into account;
the sensed data may have errors due to the underlying device
errors or a failure in the communication pipeline. Additionally,
sensor data might be delayed or missing because of network
connectivity issues, failure of the IoT devices, or energy saving
mechanisms at IoT devices. To deal with such an uncertainty,
an IoT framework must be able to first, predict the delayed
or missing values and second, output confidence guarantees

for the computation results. In addition, it is desirable for an
IoT framework to provide higher-level abstractions for the
application developers to express the integration of data from
different sensors.

While over the last decade, applications have employed
stream processing architectures [11], [26], [36], [37] for the
continuous real-time processing of data ingested from multiple
sources, these architectures can sometime act as bottlenecks
for the IoT data use-case. The push based processing model of
stream processing does not fit well with continuous monitoring
requirements and the nature of sensor data. As described
above, sensor data can be missing or delayed. Push-based
architectures might delay or block processing while waiting
for delayed or missing sensor data. From the IoT application
point of view, processing has to be performed in real-time.
Some recent systems [1], [6], [13] can support data delays
and pipeline errors by defining triggers, which can be used
to produce results based on time-based or data arrival based
conditions. However, even these systems do not define how
to deal with missing or delayed sensor values nor express the
uncertainty of the underlying data in the computation results.

Furthermore, current data management systems do not pro-
vide any abstractions to the application developer to express
the integration of sensor data. Any logic for integration or
expressing computation on sensor data needs to be written by
the developer. Developers building applications which interact
with IoT devices, should not have to deal with the device API’s
or individual sensors. Currently, data management systems
provide either simple key-value operations which burden the
application developer with the complexity of writing entire
solutions or transactional abstractions, which are not suited for
IoT data. Traditional SQL-based databases [7], [8] provide a
transaction abstraction over multiple requests reading and up-
dating the data. Execution of a transaction implies the atomic
execution of its composed sub-requests. Many IoT applications
on the other hand have to deal with the uncertainty of the
sensor data, and cannot be certain of all the encompassing
observations. Additionally, the abstractions provided should
be able to efficiently support event detection and statistical
aggregation operators.

In this paper, we propose a data processing architecture, M-
DB, to effectively integrate and continuously monitor uncertain
and diverse IoT data. M-DB constitutes three components:
abstractions to integrate sensor data, a dataflow pipeline to



perform computations reflecting the uncertainty of the under-
lying data, and a storage layer separating the computation of
business logic from the physical sensor data management.

First, Model-based Operators are proposed as abstractions
for the IoT application developer, to express the integration
of diverse sensor data. Model-based Operators (MBO) can
integrate data in spatial, temporal or spatio-temporal domains,
and support event-detection and statistical aggregation opera-
tors. MBOs are defined by specifying a model of execution
using threshold-based, aggregate or user-defined functions to
integrate data, and output a degree of confidence in the
execution to express the underlying uncertainty of sensor data.

Second, we propose a computation framework named M-
Stream, which represents the processing pipeline of the ap-
plication by combining model-based operators in the form of
a dataflow graph and continuously executing the model-based
operators at defined time intervals.

Third, a datastore interface, M-Store, is employed to hide the
complexity of sensor data aggregation from the real-time data
processing in M-Stream. M-Store provides access to sensor
and non-sensor data, and gives M-DB the ability to employ
prediction models to incorporate missing or delayed values.

The paper makes the following contributions:
• Model-based operators are proposed as abstractions to

IoT applications to integrate data from diverse sensors,
and enable temporal, spatial or spatio-temporal inte-
gration. MBOs provide support for event-detection or
statistical aggregation like operations, and their execution
reflects the uncertainty in the underlying data.

• M-DB provides the ability to express the uncertainty
of computational results in a data-processing pipeline
via confidence values provided by MBOs. M-Stream
combines MBOs in a dataflow graph, which ensures that
the underlying uncertainty in the data can flow along the
computation pipeline.

• M-DB’s architecture generates real-time results, even in
the presence of missing or delayed sensor values, first, by
separating the execution in M-Stream from the physical
handling of sensor data in M-Store, and second, by
utilizing prediction models in M-Store to fill in missing
or delayed sensor data.

The rest of the paper is organized as follows. Section II gives
an overview of M-DB. The details of model-based operators
are presented in Section III. Section IV introduces M-DB’s
architecture. The implementation of M-DB over Apache Storm
and Apache Kafka is described in Section V. Experimental
results are presented in Section VI and Section VII discusses
the related work. The paper concludes in Section VIII.

II. M-DB OVERVIEW
M-DB supports event-detection and statistical aggregation

use-cases, by building on model-based operators, and com-
bining and executing them via dataflow pipelines. Figure 1
illustrates M-DB’s architecture. M-DB builds on the Model-
based operators abstraction, and employs a computational
pipeline, M-Stream. A storage abstraction, M-Store, is used
for accessing and managing sensor and non-sensor data.

Fig. 1: M-DB Architecture

M-DB employs the model-based operation abstraction to
integrate sensor, as well as non-sensor data. Offering a model-
based operator abstraction to the application developer at
the data management layer provides the advantage of hiding
the complexity of integrating data from multiple sensors.
Furthermore, it allows for better modularity and code re-use as
multiple IoT applications can be built using the same model-
based operator abstractions. Model-based operators are of 4
different types, to support temporal, spatial, and two varieties
of spatio-temporal integration respectively. Different model-
based operators can be defined, based on the needs of the
particular application. Following are three applications to show
different use-cases for model-based operators.

• Detecting abnormal vibration in a turbine where a pre-
defined percentage of sensor values in a given period
exceed a pre-defined threshold [21] (Event-detection via
Temporal Integration of Homogeneous sensors).

• A fitness app that tracks aggregate statistics like distance
run, time elapsed etc. over a group of runners (Statistical
Aggregation via Spatio-temporal Integration of Homoge-
neous sensors).

• Making decision to provide drug doses to patients based
on multiple medical sensors calculating, blood pressure,
heart rate etc. (Event-detection via Spatial Integration of
Heterogeneous sensors).

M-Stream provides the ability to combine the defined
model-based operation executions in a processing pipeline in
the form of a dataflow graph, to represent the computational
needs of IoT applications. In Figure 1, MBO1 illustrates a
model-based operator, which integrates data from two sensors,
s1 and s2 and outputs the outcome with confidence c1. Model-
based operator MBO2 integrates values from sensors s2, s3,
a non-sensor input value, x, and the output from MBO1’s
execution, c1, and outputs c2. Finally, MBO3 integrates values
from sensor s4, with the the output of MBO2. If MBO3

succeeds, which is determined by the definition of MBO3 (in
case of a thresholding operation), then data item y will be
updated in the datastore.

M-Stream’s design aids M-DB in dealing with missing
or uncertain sensor data. To capture the uncertainty of the
underlying data, M-Stream utilizes the confidence in the com-
putation of model-based operations. The confidence function
associated with the model-based operator definition is used to
reflect the certainty in the computation as a function of the



input data. The dataflow pipeline in M-Stream then ensures
that the uncertainty in a MBO computation captured by its
confidence can flow through the data processing pipeline, as
an input to connected model-based operators. This way, the
uncertainty can be reflected in downstream computations.

M-Stream employs a continuous processing model to com-
pute the model-based operations periodically after a defined
time period. A continuous processing and pull-based model
is combined with the traditional push-based stream processing
model to perform computations.

To separate sensor data management from the continuous
real-time dataflow computations defined on corresponding
data, M-DB employs M-Store. M-Store stores, processes and
provides API access to sensor and non-sensor data in M-
Stream. The separation of concerns also gives M-Store the
ability to incorporate prediction models to fill in missing or
delayed sensor data values. M-Stream can then use the confi-
dence values to reflect the uncertainty of MBO computations
on predicted data.

III. MODEL-BASED OPERATOR ABSTRACTION

Model-based operators provide the ability to integrate data
from homogeneous or heterogeneous sensors in both spatial
and temporal domain. In this section, we introduce four differ-
ent model-based operators to integrate data over the temporal,
spatial, and spatio-temporal domains. We mainly focus on
two classes of applications: event detection and statistical
aggregation. In event detection applications, a thresholding
function is defined to determine whether an event occurs or
not, and in statistical aggregation, an aggregation function
is defined to integrate data over the temporal or spatial
domain. Note that aggregation functions are mainly targeted
for homogeneous sensors, where all the sensor values are of
the same type. In addition to event detection and statistical
aggregation application classes, we allow developers to define
their own (user-defined) functions to integrate data.

We first define two functions ρ and ψ to integrate data over
the temporal and spatial domains respectively and then define
model-based operators.

Function ρ is defined on the values received from a sensor
over a time period. The definition of ρ depends on the
application class. For event detection applications, ρ is a
function with an input consisting of four elements: a set of
sensor values, a threshold τ , an inequality operator σ (σ is
<, >, ≤, ≥, =, or 6=), and a percentage p. ρ returns true
if at least p percent of the values received from the sensor
satisfy the threshold τ based on the operator σ. In statistical
aggregation use-cases, ρ is an aggregation function, e.g., sum,
average, min, and max, with a set of sensor values as input and
an aggregated value as output. In general-purpose applications,
ρ is a user-defined function with a set of sensor values as input
and a user-specified output.

Function ψ is defined in a similar way on values received
from a set of sensors at one time-point (one value per sensor).
Since values are from different sensors, for event detection
applications, we need to define a threshold τ and an inequality
operator σ for each sensor (value). Same as before, function

ψ returns true, if at least p percent of the values received
from the sensors satisfy their own threshold τ based on their
own operator σ. In statistical aggregation applications, ψ is an
aggregation function. Finally, in general-purpose applications,
ψ has sensor values as input and a user-specified output. We
now proceed to define different model-based operators.

A. Temporal Model-based Operator
We first provide an abstraction to integrate the data from

a single sensor in the temporal domain. The values are
considered as real numbers which are received on a regular
basis. The time domain is modeled as an ordered, infinite set
of discrete time points where each time point is basically a
sequence number. A temporal model-based operator T−MBO
integrates received values at each time period. To specify
time periods we use time-based sliding windows [32]. Note
that sliding windows are generic enough to express windows
with arbitrary progression steps or even tumbling windows
(fixed-sized, non-overlapping time intervals). When a time
window is finished, the operator integrates received values
in that time window using function ρ. In the case of event
detection applications, the model-based operator is said to be
executed if function ρ returns true (at least p percent of the
values received from the sensor in the time window satisfy
threshold τ ). The confidence c of execution is determined by
a user-defined function ϕ. O is also a finite set of outputs of
the model-based operator if the operator is considered to be
executed successfully. The outputs may either be written to the
datastore or might be inputs to other model-based operators.
Note that model-based operators can fuse non-sensor inputs
with sensor inputs as well. A non-sensor input such as a data-
item with key k and value val can be represented as input
from sensor k with value val.

Definition: A Temporal Model-based Operator is a tuple
T−MBO = (s,V, w, T , γ, ρ, ϕ, c, O) where

• s is a single sensor,
• V ⊂ R is a set of (sensor) values,
• w is the length of each time window,
• T is a set of time-points,
• γ : V→T is a mapping that assigns time points to values,
• ρ is the temporal integration function that integrates data

over each time window,
• ϕ is a (user-defined) mapping that returns the execution

confidence c ∈ [0, 1] for each time window based on the
mappings γ and ρ, and

• O is a set of outputs.

For example, in the case of the vibration detection use-case
described earlier, the application developer wants the detection
to be made based on values received from a single sensor over
a time period. Consider a MBO with a time window of length
6. where V = {5, 7, 10, 9, ..} is the set of received values
and γ(5) = 1, γ(7) = 3, γ(10) = 5, and γ(9) = 7 are the
time-points within the two first time windows (data is received
from the sensor every 2 time units). Since vibration detection
is an event detection application, ρ is defined as a thresholding



function. Let τ = 8, p = 0.6 and the inequality operator be
“<” (a sensor value satisfies the threshold if it is less than τ ).
Here, in the first time window, since 0.66 of the time-points
(time-points 1 and 3) have values less than 8, the threshold
condition is satisfied, function ρ returns true and the model-
based operator executes successfully, but in the second time
window, only time-point 3 (with value 7) satisfies the threshold
condition, so function ρ returns false and the operator fails.
The user-defined function ϕ can be specified as the ratio of
values that satisfy the threshold τ to the total number of values
(time points) in a time window. Using this definition, ϕ returns
0.66 as the execution confidence for the first time window
in the above example. The definition of ϕ given here is one
way of computing the confidence. Applications might use a
different definition based on the context.

B. Spatial Model-based Operator

The next model based operator is defined to integrate data
over multiple sensors. Note that we use the term spatial
referring to different physical sensors being usually present at
different locations. Values from different sensors can represent
values from different related locations, like soil moisture
readings from different locations on a farm. Alternatively, they
might provide information about different physical attributes
of a single location, e.g., integrating data from multiple sensors
that send information about a patient’s blood pressure, heart
rate, insulin level etc. to perform continuous health monitoring
and administer medicines.

The Spatial Model-based Operator is composed of n sen-
sors, s1, s2, ..., sn. Each sensor si has a value associated
with it, vi, which is emitted periodically. The spatial model-
based operator, S−MBO, receives values from all sensors
at each time point ti ∈ T and immediately integrates them
using function ψ (unlike the temporal model-based operator
where we wait till the end of a time window). To handle non-
synchronized sensor values, a time interval δ is also defined.
Value v is considered to be received at time point t if v arrives
in [t−δ, t+δ]. In the case of event detection applications, a
spatial model-based operator executes successfully if function
ψ returns true (at least p percent of the n sensors values satisfy
their defined thresholds). Similar to the temporal operator, the
confidence c is determined by a user-defined function ϕ.

Definition: A Spatial Model-based Operator is a tuple
S−MBO = (S,V, T , δ, γ, ψ, ϕ, c, O) where

• S is a finite set of sensors,
• V ⊂ R is a set of (sensors) values,
• T is a set of time-points,
• δ is a time interval that is used to synchronize values,
• γ : S × T → V is a partial mapping that assigns a value

to each sensor at each time point,
• ψ is the spatial integration function,
• ϕ is a (user-defined) mapping that returns the execution

confidence c ∈ [0, 1] based on mappings γ and ψ, and
• O is a set of outputs.

Fig. 2: Two Applications of Spatio-temporal Operators

C. Spatio-Temporal Model-based Operators

The last two model based operators are defined to integrate
data over both spatial and temporal domains where the system
is composed of n sensors, s1, s2, ..., sn and each sensor si
sends a set of values vi1, vi2, ..., vim over m time-points within
a time window. We define two different operators ST−MBO
and TS−MBO. In ST−MBO, the operator first integrates
data over the spatial domain (using function ψ) and then
over the temporal domain (using function ρ). Whereas, in
TS−MBO, the operator first integrates data over the temporal
domain and then over the spatial domain. The confidence c is
also returned by a user-defined function ϕ using the values
returned by ψ and ρ.

In ST−MBO, a function ψ integrates data at each time-
point ti and returns some value vi. Theses values are then
integrated over the temporal domain using a function ρ. Then,
a user-defined function ϕ is used to determine confidence c.
Similar to Spatial operator, a time interval δ is also defined to
handle non-synchronized sensor values (value v is considered
to be received at time-point t if v arrives in [t−δ, t+δ]).

Definition: A Spatio-Temporal Model-based Operator is a
tuple ST−MBO =(S,V, w, T , γ, δ, ψ, ρ, ϕ, c,O) where

• S is a finite set of sensors,
• V ⊂ R is a set of (sensor) values,
• w the length of each time window,
• T is a set of time-points,
• γ : S × T → V is a partial mapping that assigns a value

to each sensor at each time-point,
• δ is a time interval that is used to synchronize values,
• ψ is a (spatial) function that integrates values at each time

point and returns a single value,
• ρ is a (temporal) function that integrates values resulted

from ψ and returns the final value,
• ϕ is a (user-defined) function that returns the execution

confidence c ∈ [0, 1] using the values from functions ψ
and ρ, and

• O is a set of outputs.

Here since we use both ρ and ψ functions, two classes of
applications can be combined. However, the combination of
different application classes might not be always meaningful,
e.g., if ψ is a thresholding function (returns true/false), then
ρ cannot be a thresholding or an aggregation function.



Figure 2(a) shows a rainfall measurement application where
a set of sensors are distributed in different regions. For
simplicity, we consider a set of 3 sensors (S = {s1, s2, s3})
and one time window consisting of time-points t1, t2, and t3.
Let ψ be a function that returns the average rainfall at each
time-point (since the sensors are homogeneous, we can have
such a function), so ψ(t1) = 1.8(mm), ψ(t2) = 2.0, and
ψ(t3) = 1.6, and ρ be a sum function over the values resulted
by ψ, so ρ returns 5.4 that means, on average, we had 5.4 mm
rainfall per region.
ST−MBO is useful for applications where all sensors send

values in all the defined time-points. In such situation, the ψ
function can be computed for each time point as soon as its
values are received and does not need to wait till the end of
the time window. However, if each sensor sends data in some
(not all) of the defined time-points, integrating data at each
time point might not be possible. To capture those situations,
TS−MBO is introduced. TS−MBO is defined similar to
ST−MBO, except it changes the order of execution of ψ
and ρ. First, ρ integrates data received from each sensor over
the temporal domain and then ψ plays its role to integrate the
resulted values of ρ and return the final value.

Figure 2(b) represents a running tracker application that
keeps track of running distances per day and returns the most
active runner among a group of users. This value could be
used later for some health care analysis. TS−MBO can be
used in this scenario. For simplicity we consider a group of 3
users (s1, s2, and s3) and sensors send data every 15 minutes.
Here each user’s device has a sensor and the time window
duration is a day. The figure only shows the time points that
data is received from any of the users. As can be seen user 1
runs from 8 to 9 at morning (the values are sent at time-points
8:15, 8:30, 8:45 and 9:00), user 2 runs from 11 to 11:30, and
user 3 runs from 8 to 8:30 at morning and then 11 to 11:30.
Let ρ be a sum function, so ρ(s1)= 6.6(miles), ρ(s2)= 1.8,
and ρ(s3)= 5.2, and ψ be a “Max” function over the values
resulted by ρ, so ψ returns 6.6.

D. Delayed or Missing Sensor data

As described earlier, one of the major challenges for sensor
data integration is that some of the values needed for integra-
tion of sensor values can be delayed or missing. As M-DB
employs model-based operators to encode the computations
needed by the applications, it is well suited to handle delayed
or missing sensor data. To deal with delayed or missing data
we can either ignore the missing values or use statistical
Prediction Models.

In the presence of a thresholding function, the model-based
operator can ignore the missing data and continue processing
assuming that the missing data does not satisfy the threshold.
The confidence of the model-based operator execution is then
used to reflect the uncertainty of the underlying data and
decisions. We can ignore the missing values in statistical
aggregation operators as well. For example, if the aggregation
function is average, the operator returns the average of the
received values (and ignores the missing ones). Similar as

before, the confidence of the model-based operator execution
can be used to reflect the uncertainty of the underlying data.

A more appropriate approach to deal with delayed or miss-
ing data is to use statistical prediction models. A prediction
model can be used to predict any missing input to the node at a
particular time stamp with a probability. If some of the values
are missing or delayed, and do not arrive up-to a defined grace
period (δ) after the periodic computation interval, the operator
is executed using the predicted values.

For event detection applications, the prediction model re-
turns the estimation of the predicted value satisfying the
threshold, i.e., for each missing value, the prediction model
returns a probability. In that way function ρ returns true if
the number of values that satisfy threshold τ based on the
operator σ plus sum of the probabilities that are returned by
the prediction model for missing values over the total number
of values (received and missing) is greater than or equal to
percentage p. Similarly, we can define ψ, with the above
technique used for computing each of the thresholds in the
set of thresholds (one per sensor).

For statistical aggregation as well as general-purpose ap-
plications, the prediction model estimates the missing values
where for each missing value, the prediction model returns a
set of intervals [αi, βi] with the probability of each interval.
These interval values and the concrete (received) values are
then integrated using the function ρ or ψ.

IV. MDB
M-DB is a data processing architecture, combining model-

based operators to continuously integrate and execute real-time
computations on diverse sensor data. In this section M-DB’s
major components: M-Stream and M-Store, are described.

A. M-Stream
M-Stream is a computational pipeline, that provides the

ability to write the business logic of IoT applications. The
computation pipeline is represented as a directed acyclic graph.
Each node in the graph represents a Model-based Operator
(MBO) computation. For a particular node in the graph, any
of the four model-based operators defined in Section III can
be used. Each node has incoming and outgoing edges. The
incoming edges are inputs to the model-based operator, which
can be inputs from external sensors, from other model-based
operators or from non-sensor outputs. The outgoing edges are
the outcome of the model-based operations: the outputs of the
operators and the confidence in the computation. M-Stream
accesses M-Store for processing input and output values.

Each model-based operator can perform either a spatial,
temporal or a combined spatio-temporal integration of sensor
values. Each model-based operator is computed continuously
after a defined time period. After the pre-defined period, each
MBO pulls the required inputs from M-Store and is executed.
A pull request to M-Store comprises the timestamp of the
request, type of the model-based operator along with the
sensor-id of the sensor to be read. Once the inputs are read,
the operator is computed, and the confidence in the operator
execution is produced as output. This can be an input to other



model-based operator executions. Additionally, the operator
execution can have other outputs, like writing to M-Store.
The reading and writing can be executed as a transaction to
ensure that other concurrent operations accessing the datastore
have not modified the accessed items. Transaction isolation
guarantees might be required for applications.

B. M-Store

M-Store gives access to input data in M-Stream. M-Store is
responsible for managing sensor, as well as non-sensor data,
accessed by computations in M-Stream. M-Store provides an
interface to access sensor data. M-Stream can access the data
from a sensor using M-Store’s interface. By employing a sep-
arate datastore interface, M-Store can expose the underlying
uncertainty of the data, and incorporate prediction models for
missing or delayed sensor data. Model-based operators can
handle such uncertainty and M-Stream’s dataflow then ensures
that the uncertainty flows through the computations.

M-Store exposes an interface for reading and writing values.
M-Store internally manages data as key and values. Both
sensor and non-sensor data items have a key associated with
them. Additionally, sensor data items also have a timestamp
associated with them. M-Store uses the timestamp to ascertain
whether a particular sensor value is delayed or missing. For a
non-sensor data item, each key only has one value associated
to it. A sensor data item can have multiple values associated
to the key, indexed by the timestamp of the value. Values
associated to a sensor data item also have a configurable expiry
period, after which they can be garbage collected.

Each read request to M-Store comprises keys to be read,
and the timestamp of the request. Read requests from M-
Stream will query with the timestamp corresponding to when
a particular model-based operator is invoked. For non-sensor
values, the timestamp is ignored and the data associated to the
key is returned. For reading a sensor-value, M-Store checks
whether there is a value which is within the defined δ period
of the timestamp requested. If so, the corresponding value is
returned. Otherwise, the value is considered as missing.

Missing values are treated either by ignoring these values,
or by using a prediction model to fill them in, as specified
in Section III-D. If a prediction model is employed by M-
Store, then the processing of missing values also depends on
the type of model-based operation. The type of the operation,
i.e. whether it is a thresholding or an aggregate operation,
determines the value to the returned. In case of a thresholding
operation, the model returns the probability with which the
predicted value satisfies the threshold. For an aggregation
operator, the model returns a set of confidence intervals and
the probabilities associated with the interval.

M-Store specifies the interfaces of the prediction model, to
support the two different operators described above. Appli-
cation developer can implement and integrate any prediction
model to handle missing values. For example, to return the
probability of a missing value satisfying a threshold, a de-
veloper might implement a weighted-moving average over a
defined period to predict the missing values corresponding to

Fig. 3: M-DB Implementation over Apache Storm and Kafka

a particular sensor. As M-Store internally stores timestamp-
indexed values, the implementation can use the sensor values
from the past to predict the current value. If no prediction
model is specified, the values are ignored, and the model-based
operator is executed as described in Section III-D.

Each write request to M-Store comprises the key and the
corresponding value to be written, and the timestamp of the
request. Each write to a sensor key creates a new version
indexed by the timestamp. Whereas, for a non-sensor key,
the timestamp is ignored and only a single version of the
value is maintained. The writes to a non-sensor key from a
particular MBO execution in M-Stream, can be transactional.
A transactional write request also specifies the keys and
corresponding values read as input to the MBO execution.
The write in this case would ensure that the inputs read have
not been modified. If the items read have been modified, the
transaction is considered to be failed, and is aborted.

V. M-DB’S DESIGN AND IMPLEMENTATION

M-DB is architected and implemented over Apache
Storm [4], [37], Kafka [3], [25] and Cassandra [2], three
open-source systems. Developing the computation framework
of M-DB over a mature distributed stream processing system
like Storm enables use of basic stream processing constructs,
and provides applications the ability to define topologies using
Storm’s APIs. It also enables the use of Storm for scheduling
tasks and jobs in a distributed setting. Kafka and Cassandra
are used for processing and storing incoming sensor data.

Figure 3 shows the implementation of the M-DB architec-
ture in Figure 1 where the components of M-Stream and M-
Store are implemented using Storm, Kafka and Cassandra. In
this section, M-DB’s implementation including M-Stream, M-
Store, and Model-based operators, are described in detail.
A. M-Stream

M-Stream builds over the stream processing constructs of
Storm. It combines model-based operators to define data pro-
cessing. These model-based operators are implemented using
stream transformation interfaces in Storm (bolts). The stream
generator elements of Storm, spouts, are used to process sensor
data from M-Store and emit them to the defined MBOs. Like in



Storm, a computation topology is used to specify the data pro-
cessing pipeline. The topology comprises connections among
the model-based operators and data generating elements.

M-Stream employs Storm for scheduling the execution of
defined topologies. The topology of execution in M-Stream is
a directed acyclic graph. The graph comprises nodes and the
connections among the nodes. Each node defines a computa-
tion. The M-Stream framework consists of two different types
of nodes: Data Generation Nodes and Computation Nodes.
1) Computation Nodes

Each computation node is defined by a model-based oper-
ator computation. M-Stream implements computation nodes
using bolts in Storm. Each computation node receives stream
of tuples as input, which are MBO inputs. Figure 3 shows
three computation nodes mbo1, mbo2, and mbo3.

Each computation node receives the tuples from other data
generation and computation nodes and continuously executes
the defined operation after every computation interval.

The outgoing edges of the computation node constitute a
stream combining confidence of the execution, and other con-
tinuous values (streaming outputs). Apart from the streaming
outputs, the operation execution can also have outputs which
are to be written to M-Store.
2) Data Generation Nodes

Data generation nodes are the nodes responsible to process
and read sensor data from M-Store. The data generation nodes
are implemented using the spouts interface in Storm. The
application developer defines a data generation node for each
computation node by specifying the sensors values to be read,
and a periodic time period after which the data generation
node will send a read request to M-Store’s interface. The
data generation node execution periodically reads the specified
sensors’ values, and the corresponding timestamps from M-
Store and emits them to the corresponding computation node.
Figure 3 shows a M-Stream comprising three data generation
nodes, i.e, Spout1 to Spout3, reading and emitting data
periodically. For example, Spout1 reads values v1 and v2
coming from the first two sensors and sends them to MBO1.
B. M-Store

M-Store manages sensor and non-sensor data. M-Store’s
implementation has three main components: incoming sensor
data management, persistent datastore and a prediction model.

M-Store exposes an interface where the incoming sensor
data from the devices, or continuous inputs produced from
other systems, can be written and read. Internally, M-Store
employs Kafka for ingesting and accessing the incoming data
from sensors. Data is ingested through Kafka producers. Kafka
producers write sensor data to different Kafka topics, with each
topic corresponding to a particular sensor. The read requests
for sensor values from the data generation nodes are served by
M-Store through the Kafka consumers. Consumers read sensor
data from the appropriate topic for each sensor.

As described in Section IV, M-Store stores data as key
and values. Additionally, the sensor values are also indexed
with timestamps. For persisting such key and values, M-Store

employs Cassandra [2], an open-source persistent NOSQL
key-value store. The Kafka producer ingests sensor data into
Cassandra, and the consumer reads the data.

For the prediction model, M-Store provides an interface to
the different accesses that needs to be supported by the pre-
diction model (for event detection and statistical aggregation
operations). By default, M-Store’s implementation predicts the
values using a weighted moving-average scheme.

C. Execution of Model-based Operators
Each computation node comprises a model-based operator.

The model-based operator is executed periodically every com-
putation interval, which is defined by the application developer
when instantiating the computation node. The model-based
operator might be integrating values from multiple sensors
(spatial), a single sensor value over time (temporal), or mul-
tiple sensors over a time period (spatio-temporal).

The computation node continuously gets the data from other
computation nodes, and from data generator nodes, which pull
the data from M-Store. Depending on the type of the model-
based operator, computation nodes integrate the data. Note
that for T, TS and ST MBOs, values corresponding to the
time period of the integration are stored in-memory at the
computation node. Once the inputs have been processed, the
model-based operation is executed and generates its outputs.

Before emitting the streaming outputs, a defined set of
the outputs are written to the datastore in M-Store. If the
processing of the non-sensor outputs is specified as transac-
tional, the outputs are written only if the transaction isolation
guarantees are satisfied. The transactional guarantees are pro-
vided using the compare-and-set guarantees in Cassandra. If
the transactional writes fail, then the model-based operator
execution is considered unsuccessful. After the model-based
operator execution, the computed confidence of execution and
the streaming outputs are sent to the next computation nodes

VI. EVALUATION

Depending on the context, IoT applications differ in their
settings in terms of the number of sensors, the required amount
of computations, and the frequency of sensor data arrival.
Extensive experimental evaluation is carried out to study M-
DB’s performance in various configurations.

M-DB is implemented over Apache Storm, Kafka and
Cassandra, and deployed over a cluster of machines. Kafka
topics are also distributed across different machines. Each
machine in the cluster runs its own Cassandra instance. A
data generator utility is implemented to simulate sensors. The
data generator generates data representing a set of sensors
continuously sending data at a defined time-interval. It sends
the input data to M-Store. Internally, these requests are written
to Kafka producers, as described in Section V-B.

M-DB is evaluated with varied MBO topologies and dif-
ferent input sensor configurations. Four different sets of ex-
periments are performed. In the first scenario, we employ a
topology where each MBO has multiple input sensors, and
then vary the frequency of sensor data arrival. In the second
scenario, a topology with a relatively smaller number of
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Fig. 4: Measuring (a) Throughput and (b) Latency with varying
the frequency of events

model-based operators is employed, and the number of sensors
are varied. The third scenario evaluates the scalability of M-
DB by increasing the number of machines while the number of
sensors, the frequency of sensor data arrival, and the topology
are fixed. Finally, the performance of M-DB is measured in the
presence of missing values. To this end, we employ the simple
prediction model implemented in M-Store (Section V-B). To
simulate missing data, we modify the data generator utility to
skip sending a defined percentage of sensor values.

The experiments measure both the throughput, in terms of
the number of sensor events processed, and the latency of
M-Stream and M-Store. The experiments are conducted on a
cluster of machines where each machine has 8-core Intel Xeon
E31235 processor clocked at 3.20 GHz and 16 GB of RAM.

Unless otherwise mentioned, we employ a topology with
90 sensors and 10 MBOs, one spatial, eight spatio-temporal
(TS and ST), and one temporal, which are connected to each
other serially. The first node is a spatial MBO that receives
data from 10 sensors and also reads a non-sensor tuple from
Cassandra. The next eight MBOs are spatio-temporal ones
where each MBO receives data from 10 homogeneous sensors
and the previous MBO. The last operator is a temporal one
that gets input values from the ninth operator. Each sensor
value is input to only one model-based operator. The first
spatial operator uses the average function for integration.
The eight spatio-temporal operators employ a combination
of aggregation and thresholding functions, and the temporal
MBO uses a thresholding function. The framework is deployed
on a cluster of five machines and the model-based operators
are equally distributed on the cluster.
A. Varying the Frequency of Data Arrival

In this experiment, the interval of sensor data arrival is
varied from 1000 ms to 2 ms to increase the number of
events. The duration of each experiment is 60 seconds. The
computation interval of the model-based operators are the
same as the time interval of the sensors and the time window
for all spatio-temporal and temporal operators is 6 times the
time interval of sensors. As a result, the number of events
increases from around 500 to 250, 000.

Figure 4(a) shows the throughput of M-DB when the total
number of events is increasing. As can be seen, the system
can process upto 127K events per second.

Figure 4(b) represents the average pipeline latency to pro-
cess a tuple. Note that as the computation interval of the
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Fig. 5: Measuring (a) Throughput and (b) Latency with varying
the number of sensors

model-based operators is the same as the time interval of the
sensors, by increasing sensor data arrival frequency, the latency
should decrease. For example, if sensors send data every 1
second, ideally, it takes 10 seconds for a tuple to go through
all 10 operators. However, if the sensors interval becomes
10 ms, the ideal computation will take 100 ms. Therefore,
the latency decreases till a point and then increases due to
a higher number of unprocessed events. The results illustrate
that M-DB achieves sub-second latency even for 160K events,
efficiently supporting a high frequency of sensor data arrival.
B. Varying the Number of Input Sensors

In this experiment, we use a simpler topology with five
spatio-temporal model-based operators and vary the number
of sensors from 5 to 1000, distributed equally between the
operators. The sensor data arrival frequency is set to 8 ms and
the time window of the model-based operators is 16 ms (at
each time window two values are received from each sensor).
Thus, the number of events increases from 1250 to 250, 000.

Figure 5(a) shows the system throughput when the number
of sensors (and as a result the total number of events)
increases. As the number of input sensors processed increases,
the throughput increases upto 600 sensors, to a value of 122K
events per second. Further increasing the number of sensors
does not increase throughput due to the increased load.

Figure 5(b) illustrates the event processing latency. Unlike
the previous experiments, since the computation interval of the
model-based operators does not change, increasing the number
of sensors increases the latency. However, upto 620 sensors the
framework has sub-second latency which illustrates that M-DB
is able to efficiently support a large number of sensors.
C. Varying the Number of Machines

The number of machines are varied from 1 to 10 to evaluate
the performance of M-DB while scaling-out. The topology
comprises of 10 MBOs as before, distributed equally among
the machines. The interval of sensor data arrival is 2ms and
the time window of the model-based operators is set to 8ms
(in total 200, 000 events are generated each second).

Figure 6(a) illustrates that by scaling-out, the throughput of
M-DB increases upto 181 thousand events per second.

Figure 6(b) shows the event processing latency. Since the
sensors value arrive at a very high frequency, a small number
of machines leads to overloading and the latency increases due
to the unprocessed events. Increasing the number of machines
distributes the load between them and decreases the latency.
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Fig. 6: Measuring (a) Throughput and (b) Latency with varying
the number of machines

D. Employing a Prediction Model
M-DB’s performance is now studied in the presence of

missing values. The prediction model predicts a missing value
using a weighted moving average over the past values. We
repeat the experiments for varying the data arrival frequency,
with the data generator utility skipping 20% of the values.

Figure 7(a) presents the throughput of the system. The
prediction model helps the framework to process more events
by filling-in the missing values. Each predicted value goes
through a number of MBOs, thus the number of events
and consequently, the throughput is increased. Note that the
number of events here is the expected number of events, in the
absence of any missing values. Figure 7(b) shows the average
pipeline latency to process a tuple in the topology. While with
small number of events the behaviour of both approaches is
similar, by increasing the number of events, in the presence
of a prediction model, the latency increases more. This is
expected because the model predicts the missing values and as
a result the framework has to process more events (as shown
in 7(a)), resulting in increased latency. In addition, the output
of the model using the prediction model is comparable to the
output of the same model with no missing sensor values.

VII. RELATED WORK

M-DB is motivated by and related to a wide range of re-
search in the areas of database procedures, stream processing,
dataflow models and wireless sensor networks.

Traditional database systems expose transactions [19] as
abstractions to the application developer. The developer can
express that an event would be considered executed only
if all the sub-events comprising the transaction take place
atomically. Stored procedures [10] are used by developers
to express a set of functions to be executed on the data.
They allow the expression of the business requirements and
lead to consolidation of logic. Triggers [33] allow a set of
functions to be executed, in response to a certain event, like
data insertion. Model-based operators, like stored procedures
and triggers, are executed when a set of defined conditions
are met, and allow for code-reuse, ease in programmability,
and pushing the computation to the data management layer.
However, each model-based operator execution also outputs a
confidence value to reflect the uncertainty of the underlying
data and is designed to deal with uncertain sensor data.

Stream processing architectures [11], [26], [37] have been
employed to perform continuous real-time data processing.

0 0.5 1 1.5 2 2.5

·105
0

0.3

0.6

0.9

1.2

·105

Number of Events

T
hr

ou
gh

pu
t

[p
er

se
c] with prediction

no prediction

0 0.5 1 1.5 2 2.5

·105
0

2

4

6

8

10

Number of Events

L
at

en
cy

[s
ec

]

with prediction
no prediction

Fig. 7: Measuring (a) Throughput and (b) Latency in the
presence of a prediction model

Systems like Storm [26] use a dataflow architecture and push-
based processing, to perform computation and push the results
on data arrival. However, Storm can lead to blocking process-
ing when data is delayed or missing, and can not reflect the
underlying sensor data uncertainty in computed results. M-DB
builds on the stream-processing model and defines each node
in the dataflow graph to be executed at defined time periods,
so as to not block for missing or delayed sensor values. M-DB
is implemented on top of an open-source distributed stream-
processing architecture like Storm, so as to reuse the basic
dataflow constructs and communication between components.
Architectures to combine traditional transaction processing
and stream processing have been proposed as well [16]. Like
the traditional stream processing architectures, they are not
suitable for handling the underlying uncertainty of sensor data.

Akidau et al. [13] propose the dataflow model, which
deals with unbounded data by providing trade-offs between
correctness, latency, and cost. Dataflow model handles delayed
or missing data, by introducing triggers and separating it from
defined windows. Using triggers, applications can define when
to emit results (based on estimates of data processed, or at
particular time periods etc). The model provides the ability
to retract or discard old results when the entire data comes
in. This model is the basis of Apache Beam [1] and Google
Cloud Dataflow [6]. M-DB also aims to produce real-time
results, while dealing with uncertain data, by providing devel-
opers with model-based operators abstraction. These operators
can reflect the uncertainty in the underlying data used for
computation, which can then flow through the data-processing
pipeline. Furthermore, by having a datastore interface, M-DB
allows different prediction models to be employed for filling-in
delayed or missing sensor data. Some tailored solutions have
also been proposed for dealing with uncertain data streams for
applications like clustering [23] and skyline queries [41].

Macrobase [15] is an analytical engine which combines
streaming and learning capabilities to detect anomalies in
data streams. Macrobase exposes transformation, classification
and explanation operators, and focuses on learning techniques
to automatically analyze outliers. Analogous to model-based
operators, these analytic operators are aimed at providing
abstractions over high frequency data streams.

Previous works in the context of wireless sensor networks
have proposed techniques to optimize communication with
sensor devices for energy efficiency. Techniques have been



proposed for probabilistic event detection [12], model-based
sensor data acquisition [17], [18], [29], [34] and approximate
querying over sensor data [18], [38]. Traub et al. [39] tailor
data streams for supporting real-time analytics, by optimiz-
ing the data transfer from sensor devices. They propose
user-defined sampling functions based on data-demand from
queries and multiple queries share sensor reads and data
transfers. Trigoni et al. [40] propose a hybrid push and pull
approach for data dissemination from sensor nodes. Sensor
data is proactively pushed into gateways nodes and then pulled
based on queries. Guo et al. [20] propose a interval index
to efficiently query over modeled sensor data. Many of these
techniques are complementary to M-DB. Data transfer reduc-
tion techniques [39], [40] can by used in conjunction with
MBO definitions, based on certainty of results desired. As M-
DB virtualizes a sensor in M-Store, the proposed probabilistic
models [18], [27] could be used to design statistical models
to provide probabilistic values of missing sensor data.

Several other optimizations have been proposed to support
IoT data management: native integration of signal processing
operators [31], faster ingestion of time-series data into analyt-
ical systems [30], data cleaning support [24] and fusion of
time-series DB writes with relational queries [22].

VIII. CONCLUSION

In this paper, we propose M-DB, a real-time data-processing
and monitoring framework for IoT applications. On one hand,
M-DB proposes abstractions for IoT application developers to
integrate data from diverse sensors, and on the other hand, it
deals with the uncertainty of the underlying data. To provide
abstraction, different types of model-based operators are in-
troduced for temporal, spatial, or spatio-temporal integration
of sensor values to support event-detection and aggregation
operations. M-DB deals with the sensor data uncertainty
in two ways. First, a confidence value that expresses the
uncertainty of computational results is assigned to the model-
based operator computation. These confidence values flow
along the computation pipeline (M-Stream). Second, M-Store,
a storage layer separating the computation of business logic
from the physical sensor data management, is introduced. M-
Store employs a prediction model to predict the missing or
delayed sensor data.
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