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ABSTRACT

The uprise of Bitcoin and other peer-to-peer cryptocurren-
cies has opened many interesting and challenging problems
in cryptography, distributed systems, and databases. The
main underlying data structure is blockchain, a scalable fully
replicated structure that is shared among all participants and
guarantees a consistent view of all user transactions by all
participants in the system. In this tutorial, we discuss the
basic protocols used in blockchain, and elaborate on its main
advantages and limitations. To overcome these limitations,
we provide the necessary distributed systems background in
managing large scale fully replicated ledgers, using Byzan-
tine Agreement protocols to solve the consensus problem.
Finally, we expound on some of the most recent proposals to
design scalable and efficient blockchains in both permission-
less and permissioned settings. The focus of the tutorial is on
the distributed systems and database aspects of the recent
innovations in blockchains.
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1 INTRODUCTION

Bitcoin [26] is considered the first successful global scale
peer-to-peer cryptocurrency. The Bitcoin protocol explained
by the mysterious Nakamoto allows financial transactions
to be transacted among participants without the need for a
trusted third party, e.g., banks, credit card companies, or Pay-
Pal. Bitcoin eliminates the need for such a trusted third party
by replacing it with a distributed ledger that is fully repli-
cated among all participants in the cryptocurrency system.
This distributed ledger is referred to as blockchain.
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Figure 1: Blockchain is a chain of blocks of transac-
tions linked by hash pointers.

Blockchain, as shown in Figure 1, is a secure linked list
of blocks containing financial transactions that occur in the
system and linked by hash pointers. The main challenge that
Bitcoin addresses is to maintain a consistent view of this
replicated blockchain in a secure and fault-tolerant manner
in a permissionless setting and in the presence of malicious
participants. Unlike permissioned settings where all the par-
ticipants in the system are known a priori, a permissionless
setting allows participants to freely join and leave the system
without maintaining any global knowledge of the number
of participants. To address these challenges, Bitcoin builds
on foundations developed over the last few decades from
diverse fields [27], but primarily from the fields of cryp-
tography [5, 30], distributed systems [8, 20, 21] and data
management [6, 24, 33] as illustrated in Figure 2. Figure 2
shows the space of techniques that are used in Bitcoin to
implement a permissionless decentralized payments. Digital
signatures and hashing are the cryptographic foundations
that are used in Bitcoin to support distributed transactions
stored in a ledger that is replicated across globally distributed
sites in the presence of malicious faults.
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Figure 2: The space of techniques that are used to im-
plement permissionless decentralized cryptosystems.

In spite of its current success, Bitcoin suffers from scala-
bility performance limitations represented by the number of
transactions executed per second, especially when compared
with commercially successful On Line Transaction Process-
ing (OLTP) financial systems, such as credit card companies.
Bitcoin uses a notion of miners who need to perform a com-
putationally challenging Proof of Work (PoW) puzzle before
they can add any block of transactions to the replicated
blockchain. Since the PoW puzzle is computationally hard,
very few miners can successfully solve the puzzle, and hence
a successful miner can add a block to the blockchain and be
guaranteed, with very high probability, to be unique. Many
concerns have been raised about the wasted massive energy
requirements to mine one Bitcoin block. In addition, the dif-
ficulty of Bitcoin’s Proof of Work (PoW) discourages miners
from mining independently and pushes them to form few
powerful mining cartels. Concentrating most of the mining
power in few hands, or pools, risks to derail the whole idea
of decentralization.

This mining approach to determine the process eligible
to add a new block to the block chain is in contrast to the
distributed systems approach, that has been promoting the
use of Byzantine Agreement or consensus, which is efficient
and more egalitarian. In fact, consensus protocols such as
Paxos have been quite successful in recent years in laying
the foundations of large global scale data management sys-
tem. Unfortunately, Paxos has many limitations, especially
from a global cryptocurrency point of view, including the
requirement of a permissioned setting, and that participants
can only fail by crashing. An alternative to Paxos that toler-
ates malicious failures is Practical Byzantine Fault-Tolerance
(PBFT) [8]. Although it tolerates malicious failures, PBFT still
requires a permissioned setting, and requires a large num-
ber of message exchanges, hence does not scale to the large
number of participants expected in modern day permission-
less cryptocurrencies. Recently, the security and distributed
systems communities have been aggressively exploring al-
ternative scalable solutions. These systems attempt to solve
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the Bitcoin protocol shortcomings in permissionless, e.g., Bit-
coinNG [13], Byzcoin [18], Elastico [22], and Algorand [15],
or permissioned, e.g., Tendermint [19], Hyperledger Fabric
[4], and Quorum [25], settings using efficient and practical
solutions that integrate cryptographic and consensus mech-
anisms.

In this tutorial, our goal is to present to the database com-
munity an in-depth understanding of state-of-the-art solu-
tions for efficient scalable blockchains. We progress towards
this goal by starting from a detailed description of the proto-
cols and techniques underlying the design of Bitcoin. Since
most recent innovations in blockchain design depend criti-
cally on consensus protocols in malicious settings, we outline
the basic foundations of distributed fault-tolerant consensus
protocols. This is followed by a discussion of the most re-
cent proposals to solve the blockchain design problem using
scalable fault-tolerant solutions.

2 TUTORIAL OUTLINE
2.1 Background

Consensus and Byzatine Agreement (BA) are well studied prob-
lems that were first proposed by Lamport, Shostak and Pease
in 1982 [21]. Any solution to the BA problem tries to reach
agreement among a well defined set of processes on a single
value. The distributed systems community has extensively
explored this problem in both synchronous and asynchro-
nous systems. In an asynchronous system, the Fisher Lynch
and Patterson (FLP) impossibility result states that consen-
sus is not guaranteed to terminate in the presence of even
a single crash failure [14]. This led to many BA protocols
for synchronous systems, where the lower bound requires
that the number of maliciously faulty processes is at most
one third of the total number of processes. Synchronous BA
protocols require multiple rounds of communication and
extensive message passing. On the other hand, several effi-
cient asynchronous BA protocols have been developed based
on Lamport’s Paxos protocol [20]. The main challenge such
asynchronous protocols face is that they do not guarantee ter-
mination. However, many systems have been designed that
depend on Paxos, and have been practically successful [7, 9].
Paxos, however, assumes that processes may only fail by
crashing. In a cryptocurrency setting, processes may act in a
malicious manner. In 1999, Castro and Liskov proposed the
Practical Byzantine Fault Tolerance (PBFT) algorithm [8],
which is similar to Paxos in that it uses a small number of
message rounds and assumes an asynchronous system. How-
ever, it tolerates malicious faults. During the tutorial, we will
provide a general overview of the consensus problem and
a high level description of various BA protocols. In particu-
lar, we will provide a detailed description of PBFT, given its
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particular relevance to many recent cryptocurrency propos-
als, as discussed in the next section. We will also highlight
the main advantages and limitation of these distributed BA
protocols.

2.2 Bitcoin and Nakamoto’s Consensus
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Figure 3: A fork in the blockchain.

The problem of double spending is one of the main chal-
lenges of the Bitcoin protocol. Double spending happens
when a coin owner signs two concurrent transactions trying
to spend the same coin twice. This concurrency anomaly can
easily be prevented if transactions are serialized [6]. Bitcoin
relies on a network of miners to achieve serializability. Every
financial transaction is broadcast to all sites/miners in the
system. Each miner receives these digitally signed transac-
tions and groups them into a new block. A miner "mines"
to add this block to the blockchain but before doing that,
these transactions need to be verified. The verification pro-
cess ensures that the transactions in a new block are neither
conflicting with each other nor conflicting with other trans-
actions in any preceding block in the current blockchain.

To add a block to the blockchain, miners need to perform a
computationally challenging Proof of Work (PoW) puzzle be-
fore they can add their block of transactions to the replicated
blockchain. Since the PoW puzzle is computationally hard,
very few miners can successfully solve the puzzle, hence a
successful miner can add a block to the blockchain and be
guaranteed, with very high probability to be unique. Serial-
izability is ensured by adding verified blocks one at a time.
After a block is added, the miner who "mined" this block
broadcasts it to all other miners. Miners are incentivized to
accept the first received block, add it to their copy of the
blockchain, and immediately start mining for the next block.
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Figure 4: Miners join the longest chain to resolve
forks.
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The difficulty of PoW aims to minimize the probability
that two miners solve the puzzle at the same time. However,
with low probability, more than one miner can concurrently
reach a solution to the puzzle causing a fork in the blockchain
as shown in Figure 3. Forks are a violation of serializability
and cause double spending as transactions in the two added
blocks can have conflicts with each other. Forks divide the
miners network into two groups and each group indepen-
dently mines for the next block. Once a block is added to
either of the fork branches, miners in both groups join the
longest chain and drop the other branch of the fork as shown
in Figure 4. Transactions in the dropped block are considered
aborted and need to be resubmitted to the network again. As
blocks can be dropped after being added to the blockchain,
transactions should not be considered committed unless their
blocks are buried deep in the blockchain, typically a depth
of 6 blocks. A block that is buried in the chain for more than
6 blocks is guaranteed with very high probability not to be
dropped, and hence transactions in that block will probably
not be aborted. However, if 51% of the mining power mali-
ciously collude, they can redo the whole blockchain risking
the safety of the network and causing committed transac-
tions to be dropped even if they were deeply buried in the
blockchain. This is widely known as the 51% attack [10].

2.3 Enhancing Permissionless Blockchain
Performance

This section discusses some recent state-of-the-art proposals
in permissionless crytocurrency, i.e., any server can attach
(or detach) itself from the network of servers that are mining
the currency. Bitcoin executes 7 transactions per second [11]
whereas trusted, centralized systems such as Visa execute
thousands of transactions per second [11]. The recent works
are focused on tackling the performance limitation posed by
Bitcoin.

BitcoinNG [13] separates the blocks in the chain into
key-blocks, which is created using proof-of-work and micro-
blocks, which contains transactions chosen by the latest key-
block miner. BitcoinNG increases the throughput of Bitcoin
by allowing the key-block miner to be a leader who then
can publish many micro-blocks, until the next key-block is
mined. But allowing one miner to be a leader, even for a brief
interval, presents many concerns. ByzCoin [18] identifies
that issue and instead of having a single miner act as a leader,
forms a dynamically changing group of trustees, who col-
lectively decide on the micro-blocks. Each time a key-block
is mined, the trustee group changes by one member. The
trustees run traditional PBFT [8] to obtain consensus on the
next micro-block and use Collective Signing (CoSi) [31] to
collectively sign the chosen block. Elastico [22] is another
distributed ledger solution with a key idea of splitting all the



Tutorial

servers in the system into smaller sized groups called com-
mittees, each of which is responsible for processing a subset
or a shard of transactions. Every committee runs classical
PBFT to agree on a set of transactions; these transactions
are sent to a special committee called the final committee,
which then aggregates the transactions obtained from differ-
ent committees and runs another round of PBFT to make a
global, final decision on the next block that is appended to
the blockchain.

After discussing some of the distributed ledger solutions
that use PBFT as a way to achieve Byzantine consensus, we
now explore Algorand [15] which proposes a novel Byzan-
tine Agreement protocol (BA*). As with the previously dis-
cussed approaches, Algorand also uses smaller committees
to obtain consensus. It uses a cryptographic sortition method
to randomize committee member selection. Each committee
then uses BA", a priority based protocol, to choose the next
block to be appended to the chain. With this new byzantine
agreement protocol, Algorand attains throughput 125x of
Bitcoin’s throughput.

The overall takeaway from the above protocols is that
they all strive towards avoiding forks of the blockchain by
reaching finality in consensus on the new block to be ap-
pended. To reach immediate commitment, all these protocols
significantly reduce the size of the consensus group. Each
protocol uses different cryptographic techniques to guaran-
tee randomness in committee formation, and overall, achieve
better throughput than Bitcoin. During the tutorial, we high-
light the main advantages and limitations of each of these
approaches.

2.4 Permissioned Blockchains

A permissioned blockchain consists of a set of known, identi-
fied participants but which do not fully trust each other.
Since the participants are known and identified, permis-
sioned blockchains can benefit from many techniques devel-
oped in the area of distributed computing over decades for
reaching consensus, replicating state, and broadcasting trans-
actions. This section discusses some recent state-of-the-art
permissioned blockchains.

Permissioned blockchains mainly follow an order-execute
architecture where a set of peers (might be all of them) vali-
dates the transactions, agrees on a total order for the trans-
actions (using a consensus protocol), puts them into blocks
and multicasts them to all the peers. Each peer then validates
the block, executes the transactions, and updates the ledger.

Since the participants of a blockchain are known a pri-
ori, depending on the trust model among the participants, a
Byzantine fault-tolerant protocol, e.g., PBFT [8], or a crash
fault-tolerant protocol, e.g., Paxos [20], is used to reach agree-
ment on a total order of the transactions.
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Tendermint [19] is a permissioned blockchain that differs
from the original PBFT in two ways. First, only a subset of
nodes, called validators, participate in the consensus protocol.
To become validators, nodes have to lock their coins and once
a validator is found to be dishonest, it would be punished.
Each validator has voting power equal to the amount of the
locked coins (in contrast to PBFT where nodes have equal
voting power). Second, Tendermint uses the idea of leader
rotation where the leader is changed after every block. This
technique is first introduced by the Spinning protocol [32]
in the domain of Byzantine fault-tolerant consensus.

Blockchains execute programmable transaction logic in
the form of smart contracts [1]. Smart contracts are written in
domain specific languages, e.g. Solidity, to ensure determinis-
tic execution. In the order-execute architecture, every "smart
contract” runs on all nodes which results in confidentiality
issues. Smart contracts include the logic of applications and
it might be desired to restrict access to such contracts. While
cryptographic techniques are used to achieve confidentiality,
the considerable overhead of such techniques makes them
impractical. Furthermore the sequential execution of trans-
actions on all nodes reduces the blockchain performance in
terms of throughput and latency.

In contrast to the order-execute architecture, Hyperledger
Fabric [4] employs the execute-order architecture by switch-
ing the order of execution and ordering. Execute-order archi-
tecture is first introduced in Eve [17] in the context of Byzan-
tine fault-tolerant SMR. In Hyperledger peers (endorsers)
execute transactions concurrently and then a separate set
of peers, called orderers, orders the transactions using a con-
sensus protocol. Hyperledger is extensible as it supports
modular consensus protocols. Different consensus protocols
can be plugged to the platform depending on the trust model
among the participants. In addition, since the execution is
the first phase, Hyperledger supports non-deterministic exe-
cution. As a result, general-purpose programming languages,
e.g. Java, can be used to write smart contracts.

While Fabric guarantees the confidentiality of smart con-
tracts by executing each transaction on a specified subset
of peers and increases the performance of blockchains by
executing the transactions in parallel (instead of sequentially
as the order-execute paradigm does), it performs poorly on
workloads with high-contention, i.e., many conflicting trans-
actions in a block, due to its high abort rate. To solve this
problem in Parblockchain [3], a new paradigm, called OXII,
consisting of ordering and execution phases is presented.
In the ordering phase, a separate set of nodes establishes
agreement on the order of the transactions of different ap-
plications, constructs the blocks of transactions, and also
generates a dependency graph for the transactions within a
block. A dependency graph, on the one hand, gives a partial
order based on the conflicts between transactions, and, on
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the other hand, enables higher concurrency by allowing the
parallel execution of non-conflicting transactions. Then, the
nodes of each application execute the transactions of the
corresponding application following the dependency graph.
As long as the partial order of transactions in the dependency
graph is preserved, the transactions of different applications
can be executed in parallel.

Finally, the increase in the number of permissioned blockchain

platforms motivated Dinh et al. [12] to develop BlockBench,
an evaluation framework for analyzing private blockchains.
Blockbench is considered as the first benchmarking frame-
work that implements different workloads to evaluate and
compare private blockchains based on throughput, latency,
scalability, and fault-tolerance.

2.5 Off-Chain and Cross-Chain Solutions

Another way to address the scalability limitations of per-
missionless blockchains is to execute transactions off-chain.
Lightening network [29] allows untrusted peers to open di-
rect payment channels where peers execute off-chain micro-
payments without committing every micro-payment trans-
action to the underlying blockchain. A payment channel is
comprised of a contract that is committed to the blockchain
and holds the funds of the transacting peers. Micro-payments
use signatures to verify that peers agree on a transaction. In
addition, micro-payments use hashlocks and timelocks to
ensure that a malicious or uncooperative participant cannot
take advantage of a conforming participant. The tutorial pre-
sentation covers the lightening network protocol in details.
The wide adoption of permissionless open blockchain net-
works by both industry (e.g., Bitcoin [26], Ethereum [34], etc)
and academia (e.g., Bzycoin [18], Elastico [22], BitcoinNG [13],
Algorand [15], etc) suggests the importance of developing
protocols and infrastructures that support peer-to-peer atomic

cross-chain transactions. The permissionless blockchain ecosys-

tem requires infrastructure enablers and protocols that allow
users to be able to atomically exchange tokens and resources
without depending on centralized intermediaries such as ex-
changes. A two-party atomic cross-chain swap protocol was
originally proposed by Nolen [2, 28] and generalized by Her-
lihy [16] to process multi-party atomic cross-chain swaps.
Both Nolan’s protocol and its generalization by Herlihy use
smart contracts, hashlocks and timelocks to achieve atomic
cross-chain swaps. The tutorial presentation discusses the de-
tails of the atomic cross-chain swap protocol by both Nolen
and Herlihy.

3 TUTORIAL INFORMATION

This is a three hours tutorial targeting researchers, design-
ers, and practitioners interested in large scale transaction
support in both permissionless and permissioned blockchain
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consensus-based research. The target audience with basic
background about distributed consensus should benefit the
most from this tutorial. For the general audience and new-
comers, the tutorial explains the design space of distributed
consensus and blockchains. This tutorial differs from pre-
vious tutorials on the same topic in database conferences,
especially C. Mohan [23], where he explicitly states that the
scope of his tutorial "is general in nature without getting
into the nitty gritty of, e.g., cryptographic algorithms or the
distributed consensus protocols". Furthermore, Mohan’s tuto-
rial "only discuss(es) permissioned/private blockchains and
not permissionless ones". This tutorial, in contrast, focuses
on both permissionless and permissioned blockchains and dis-
cusses the distributed protocols and their interaction with
user transactions in detail. The cryptographic algorithms
will be specified and their properties will be discussed to
help understand the distributed systems and database impli-
cations.

This tutorial was presented in VLDB 2018 in Rio de Janeiro.
The tutorial differs from its last iteration in taking a holistic
view of advancements made in the Blockchain community.
Starting with the traditional consensus protocols, the tu-
torial delves into the details of Nakamoto consensus and
discusses many academic works in both permissionless and
permissioned blockchains. The tutorial then presents solu-
tions such as Atomic Swap and Lightning networks that solve
the challenges stemming from the rise of multiple blockchain
systems.
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