
Persistent Bloom Filter:
Membership Testing for the Entire History

Yanqing Peng
§
, Jinwei Guo

†
, Feifei Li

§
, Weining Qian

†
, Aoying Zhou

†

§
University of Utah

†
East China Normal University

{ypeng, lifeifei}@cs.utah.edu, guojinwei@stu.ecnu.edu.cn, {wnqian, ayzhou}@dase.ecnu.edu.cn

ABSTRACT
Membership testing is the problem of testing whether an element

is in a set of elements. Performing the test exactly is expensive

space-wise, requiring the storage of all elements in a set. In many

applications, an approximate testing that can be done quickly using

small space is often desired. Bloom filter (BF) was designed and has

witnessed great success across numerous application domains. But

there is no compact structure that supports set membership testing

for temporal queries, e.g., has person A visited a web server between

9:30am and 9:40am? And has the same person visited the web server

again between 9:45am and 9:50am? It is possible to support such

“temporal membership testing” using a BF, but we will show that

this is fairly expensive. To that end, this paper designs persistent
bloom filter (PBF), a novel data structure for temporal membership

testing with compact space.

CCS CONCEPTS
•Theory of computation→Bloomfilters andhashing; Sketch-
ing and sampling; • Information systems→Query optimiza-
tion;

KEYWORDS
Bloom filter; persistent bloom filter; persistent data structure

ACM Reference Format:
Yanqing Peng, Jinwei Guo, Feifei Li, Weining Qian, and Aoying Zhou. 2018.

Persistent Bloom Filter: Membership Testing for the Entire History. In

SIGMOD/PODS ’18: 2018 International Conference on Management of Data,
June 10–15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3183713.3183737

1 INTRODUCTION
In the era of big data, it is impractical to store and access a large

amount of raw data while hoping to achieve “interactive query

processing”, since the data size is often too big to be stored in

its entirety without incurring high (storage and processing) costs.

To that end, probabilistic data structures that store raw data using

small space and answer queries approximately become an important

machinery in addressing many of the big data challenges.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00

https://doi.org/10.1145/3183713.3183737

A great example is the famous bloom filter designed for set mem-

bership testing. Very simply, the goal is to check/test if an element is

in a given set of elements, without storing the entire content of the

set; i.e., is x ∈ A for a query element x and a set A? Bloom filter [4]

is a compact, probabilistic data structure that supports membership

testing by maintaining a fix-sized bitmap, with a tunable small false

positive rate and zero false negative rate. Bloom filters are found

useful in numerous applications [6].

The same challenge is especially true for big temporal data sets,

where the same element may appear many times at different times-

tamps. Consider the following web server log example:

09:30am, 155.95.78.223
09:30am, 170.22.23.36
09:30am, 155.95.78.223
...
09:47am, 155.95.78.223
09:48am, 223.12.251.22
09:50am, 223.12.251.22
...
10:00am, 87.125.33.64

Note that the same IP address 155.95.78.223 has appeared three

times in this excerpt, and very likely appeared numerous number

of times elsewhere in this log.

For analytical purposes, an administrator may ask questions like

“has IP address 155.95.78.223 ever visited my web server?”, which is

the problem of Membership Testing. For a small universe, bitmap is

the optimal solution. When exact answers are required, one may

use compressed bitmap, binary search tree or the exact member-

ship testers proposed by Carter et al. [8]. But exact solutions may

consume too much space or become computationally expensive

unless the characteristics of the input data follow certain strong

assumptions. In practice, small error rates are often acceptable; in

which case, the most widely-used solution is bloom filter. A bloom

filter provides membership testing with constant space and time

with small errors, which is often an ideal solution in practice.

But given such temporal data, applications often ask “tempo-

ral queries” : various queries that are further conditioned on the

timestamp values in raw data. This naturally leads to the temporal
membership testing queries. For example, has 155.95.78.223 visited
my web server between 9:30am and 9:40am? And has the same IP
address visited again between 9:45am and 9:50am? The answer is yes
to both questions with respect to the above example. But we need

to store and access the raw log data to answer such queries. An in-

teresting challenge is to understand if we can do so probabilistically

with small errors using a compact structure in small space?

Definition 1.1 (Temporal membership testing). Given an upper

bound T on the time dimension, and a universeU where elements

are drawn from, a temporal set A consists of (element, timestamp)

https://doi.org/10.1145/3183713.3183737
https://doi.org/10.1145/3183713.3183737

pairs up to time T (assuming discrete timestamps). Hence, any

(a, t) ∈ A satisfies a ∈ U and t ∈ [1,T], and A is a multi-set.
Two timestamps s and e , where 1 ≤ s ≤ e ≤ T , define a temporal

range [s, e], and A[s, e] is the subset of pairs in A such that their

timestamps fall into [s, e], i.e., A[s, e] = {(a, t) ∈ A|t ∈ [s, e]}.
LetA be the set of distinct elements (without timestamp) inA, i.e.,

A = {a |(a, t) ∈ A}, and A[s, e] refers to the subset of distinct ele-

ments inA[s, e] (henceforth,A = A[1,T]), a temporal membership
testing query (tmt-query in short) q(x , [s, e]) asks if x ∈ A[s, e] for
any query element x chosen from U (or equivalently, if (x , t) ∈ A
for at least one time-instance value t ∈ [s, e]). The query length |q |
is defined by the length (e − s + 1) of the query temporal range.

A temporal set A may contain duplicate pairs, e.g., two copies

of the pair (155.95.78.223, 9:30) in A imply that the IP address

155.95.78.223 has showed up twice at 9:30.

Example 1. The temporal set A of the log excerpt above is:

{(155.95.78.223, 9:30), (170.22.23.36, 9:30),
(155.95.78.223, 9:30), (155.95.78.223, 9:47),
(223.12.251.22, 9:48), (223.12.251.22, 9:50),
(87.125.33.64, 10:00)}.

The corresponding element set A is:

{155.95.78.223, 170.22.23.36, 223.12.251.22, 87.125.33.64};

and A[9:45,9:50]={155.95.78.223, 223.12.251.22}.

Given an element x and a time range [s, e] ⊆ [1,T], we want to
query if there exists an element x that arrives within time range

[s, e]. As an example, a system administrator for a website would

like to know if a given IP address has visited the website, or whether

a page is accessed, within a time range of interest. Many other use

cases for membership testing can easily find similar applications

for temporal membership testing. For example, membership testing

using bloom filter has been applied in distributed storage to reduce

disk lookups for non-existent rows (columns) [21]. Assuming that

this is for a multi-version database [3] and we want to find rows

(columns) with certain values that were inserted/updated during a

time range, then temporal membership testing is required.

Since membership testing is a special case of temporal member-

ship testing, as discussed above concerning the limitations of exact

solutions for membership testing, there will be similar limitations

of designing exact solutions. Thus, a probabilistic data structure

that produces an approximate answer with high accuracy using

small space and time is an appealing solution.

To the best of our knowledge, there is no prior study on design-

ing an efficient probabilistic data structure with compact space to

support tmt-queries. To address this problem, we propose a new

data structure called Persistent Bloom Filter (PBF). In a nutshell,

a PBF is a set of carefully constructed bloom filters. Each bloom

filter is responsible for a carefully selected subset of elements. PBF

processes a tmt-query by decomposing the query to a number of

different classic membership testing queries, and sends each mem-

bership testing query (mt-query in short) into a different bloom

filter. PBFs have the following properties:

• Restricted to one-sided error: there is no false negatives.

That is, if a PBF answers no for a tmt-query q(x , [s, e]), then
x < A[s, e], i.e, (x , t) < A for any t ∈ [s, e].
• Efficient space usage: PBF usesm bits in total, wherem is a

user parameter.

• Fast to update and query: Inserting a new pair (a, t) into a
PBF is done via a few insertions to different bloom filters.

Answering a tmt-query takes only sublinear time of the

temporal range length (i.e., O (log(|e − s |)) for q(x , [s, e]).
• High accuracy: false positive rate is adjustable by setting the

total number of bitsm and the number of bits for each bloom

filter within a PBF.

2 PRELIMINARIES
2.1 An Overview of Bloom Filter
A standard bloom filter[4] is used to represent a set of elements

S = {a1,a2, . . . ,an } from a big universeU . The number of elements

in S (called members), n = |S |, is usually much smaller than the size

of the universe,M = |U |.
A bloom filterb is anm-bit array with a hash familyH = {h1, . . . ,

hk } using k independent, uniformly random hash functions, where

each bit is initialized to 0. We use b[i] to denote the ith bit in the

bloom filter b. Each hash function maps an element fromU to the

range {1, 2, ...,m}, i.e., hi : U → [m] for any hi ∈ H .

An element a ∈ S sets h1 (a)-th, . . ., hk (a)-th bits in b to 1. To

answer a mt-query q(x), i.e., check if x ∈ S for an element x ∈ U :

q(x) =

1, if b[h1 (x)] ∧ b[h2 (x)] ∧ · · · ∧ b[hk (x)] = 1

0, otherwise.

It is easy to see that the answer to q(x) using b will never return

a false negative, but may return a false positive (when x < S , but
the k bits tested for x are set jointly by more than one element in

S). After inserting all n members of S into b, the probability that a

specific bit in b remains ‘0’ is simply:

Pr[b[i] = 0] =

(
1 −

1

m

)kn
≈ e

−kn
m , for any i ∈ [1,m]. (1)

Let z = Pr[b[i] = 0], the probability of a false positive is:

p (b) = Pr[x < S ∧ q(x) = 1] = (1 − z)k ≈
(
1 − e

−kn
m

)k
. (2)

One can tune the false positive rate of b by settingm and k properly.

In typical scenarios,m is given by memory constraint and desirable

space usage. We can choose a k value that minimizes the false

positive probability by setting the derivative of p (b) to zero:

k =
m

n
ln 2, and p (b) =

(
1

2

)k
= 2
−mn ln 2 ≈ 0.6185

m
n . (3)

Lastly, bloom filter works for a multi-set (i.e., S having duplicates)
as well, since inserting the same element multiple times always sets

the same k bits to 1. The above analysis stays the same except that

n represents the number of distinct elements in S ,

2.2 Frequently Used Notations
We use N (A) to denote the total number of pairs in a temporal set

A, and n(A) as the number of distinct pairs inA. Similarly, we use

N ′(A) to denote the number of elements in an element set A, and
n′(A) to denote the number of distinct elements in A. Note that by
definition 1.1, N ′(A) = n′(A) for any element setA. Hence, we only
use n′(A) in the rest of this paper. In most cases N (A) > n(A) and
n(A) ≫ n′(A) for A’s corresponding temporal set A.

When context is clear, we simply use N ,n,n′ to represent N (A),
n(A), n′(A) respectively. For example, N = 7, n = 6, and n′ = 4 in

Example 1 from Section 1. We also use N (s, e), n(s, e), and n′(s, e)
to denote N (A[s, e]), n(A[s, e]) and n′(A[s, e]) respectively. Table
1 summarizes the frequently used notations in this paper.

U Universe of elements.

T Upper bound on the discrete time range.

M Size of the universe, M = |U |.
a An element fromU .

t A discrete timestamp from [1, T].
[s, e] A temporal range from timestamp s to e .
A Temporal set of pairs (a, t) (a multi-set).

A (Distinct) Element set of A: A = {a |∃(a, t) ∈ A}.
A[s, e] Pairs in A with timestamps in time range [s, e].
A[s, e] Element set of A[s, e].

N (A) (N (s, e)) Number of pairs in A (A[s, e]).
n (A) (n (s, e)) Number of distinct pairs in A (A[s, e]).
n′ (A) (n′ (s, e)) Number of elements in A (A[s, e]).

m Total number of bits in a bloom filter or PBF.

mi Number of bits in the i th bloom filter in a PBF.

k Number of hash functions in a hash family.

b (S) Bloom filter for multi-set S (or simply b).
b[i] The i th bit in a bloom filter b .
q (x) A standard membership testing query (mt-query).

q (x, b) Answering q (x) using a bloom filter b .
β (A) (β) Persistent bloom filter of temporal set A.

bi The i th bloom filter in a PBF β .
L(β) Total number of levels in a PBF β .
u (β) Total number of bloom filters in a PBF β .

д A time granularity.

q (x, [s, e]) A temporal membership testing query (tmt-query).
q (x, [s, e], β) Answering q (x, [s, e]) using a PBF β .

p (b) (p (β)) False positive rate of a bloom filter b (PBF β).

Table 1: Notation used in the paper.

h1(x, t) h2(x, t)

insert(x,t)

query(x, [s,e])

hk(x, t)

query(x,s)V query(x,s+1)V …V query(x,e)

h1(x, s) h2(x, s) hk(x, s)

11 1

Figure 1: SBF: insert A as a multi-set to a single BF.

3 BASELINE
3.1 Naive Approach Using a Single Bloom Filter
A naive approach to answer tmt-queries is to construct a standard

bloom filter for the temporal set A, by simply treating A as a

standard multi-set. More specifically, we construct a familyH of

hash functions, such that each hash function hi ∈ H maps a pair

(a, t) to {1, . . . ,m}, where e ∈ U and t ∈ [1,T]; i.e.,hi : U×T → [m].

Each (distinct) pair (a, t) ∈ A is treated as a unique element and

inserted into a bloom filter b (A).
To answer a tmt-query q(x , [s, e]), we ask (e − s + 1) number of

mt-queries using b (A). More specifically, the following mt-queries
are posed against b (A):

q1 = q((x , s)),q2 = q((x , s + 1)), . . . ,qe−s+1 = q((x , e)).

It is easy to see we have:

q(x , [s, e]) =

1, if q1 = 1 ∨ q2 = 1 ∨ · · · ∨ qe−s+1 = 1.

0, if q1 = 0 ∧ q2 = 0 ∧ · · · ∧ qe−s+1 = 0.

We dub this baseline method SBF (single bloom filter), and use

β0 (A) to denote the resulting PBF (or simply β0), and p (β0) as its
false positive rate with respect to q(x , [s, e]). We have:

p (β0) = 1 − (1 − p (b))e−s+1 . (4)

Since each mt-query into b (A) never returns a false negative,
β0 (A) returns no false negative. It is a standard bloom filter over

the universe U ′ = U × T , which can be easily maintained in a

streaming fashion. Figure 1 illustrates the idea of SBF.

Performance analysis. The query cost of this baseline method is

10-3

10-2

10-1

100

101

102

103

104

 0 200 400 600 800 1000 1200

E
st

im
a
to

r:
 f^

(x
,
[s

,e
])

Query Length

= =0.005 Δ=0.05

ε=δ=0.01 Δ=0.1

ε=δ=0.1 Δ=0.3

Figure 2: Estimation of PCM Sketch when f (x, [s, e]) = 0.
linear to the size of the query time range, i.e., O (e − s) = O (T). Its
false positive rate also depends on the value of (e − s) as shown
above. As the query time interval enlarges, the accuracy drops

exponentially and the query cost becomes very expensive too.

3.2 Using a Persistent Sketch
A Count-Min (CM) sketch [12] is a probabilistic data structure that

returns an approximation f̂ (x) for the frequency of x (f (x)) in
a multi-set S , using small space. A persistent Count-Min (PCM)

sketch [37] (aka persistent sketch) extends it to support temporal

frequency queries over a temporal set, i.e., what’s the frequency of x
in A[s, e] for a query temporal range [s, e] (denoted as f (x , [s, e])).

One may use a PCM sketch to get an estimation f̂ (x , [s, e]) for

f (x , [s, e]). To answer a tmt-queryq(x , [s, e]), we ask for f̂ (x , [s, e])
using the PCM sketch. Then we can estimate:

q(x , [s, e]) =

1, if f̂ (x , [s, e]) ≥ 1.

0, if f̂ (x , [s, e]) < 1.

As a sketching algorithm, PCM can be maintained in a streaming

fashion. Note that unlike a CM sketch, which never underestimates

(most likely it will overestimate due to collision) an item’s frequency,

a PCM sketch [37] may actually either underestimate or overes-

timate f (x , [s, e]) because it uses a piece-wise linear curve for its
estimation. Its estimation is made with respect to the gradient of

the piece-wise linear curve. Hence, using a PCM sketch to answer

a tmt-query may lead to both false positives and negatives.

Performance analysis. PCM sketch cannot approximate low fre-

quency values accurately enough for it to be useful to answer

tmt-query. In our case, when f (x , [s, e]) = 1 or f (x , [s, e]) = 0,

we need f̂ (x , [s, e]) to be able to distinguish if f (x , [s, e]) = 1

or f (x , [s, e]) = 0, and the false positive rate can be arbitrarily

large since PCM sketch only provides an additive error bound

(defined with respect to the total frequency of the stream, i.e.,

Pr[| f̂ (x , [s, e]) − f (x , [s, e]) | < εN + ∆] > 1 − δ), rather than a

relative error bound (relative to f (x , [s, e])). As a result, the above
PCM method is very likely to produce high false positive rates.

To verify this, we did a test where x < A[s, e], i.e., f (x , [s, e]) = 0,

with a dataset that N is about 5 million. We varied the query range

length (e −s) to see the values of the estimator f̂ (x , [s, e]) as shown
in Figure 2. No matter what parameter values were set for a PCM

sketch, f̂ (x , [s, e]) keeps increasing when the query length enlarges.
That is because when the query length increases, there are more

collisions on the cells at each level of a PCM sketch (where each

cell maintains a piece-wise linear curve), which result in higher

degrees of inaccuracy. Even through f (x , [s, e]) = 0, when there is

a collision on majority of the cells corresponding to x (i.e., where x

is hashed to in each level), using f̂ (x , [s, e]) to answer a tmt-query
is likely to produce a high rate of false positives.

3.3 Other Baselines
There are other possible alternatives, such as using a persistent

binary search tree, or exploring the possiblity of building a mul-

tiversion bloom filter. But none of these methods is effective in

answering the tmt-queries. In the interest of space, please refer to

Appendix A for more details.

4 PERSISTENT BLOOM FILTER
A major inefficiency of SBF is resulted from the way we decom-

pose a query: if a tmt-query has a query length ℓ, then it will be

decomposed into ℓ mt-queries to a standard Bloom filter. It not

only consumes linear time, but also raises the probability of false

positive to the ℓ-th power.

In what follows, we will describe two different PBFs: PBF-1 and
PBF-2. We focus on their constructions in this section, and present

the detailed analysis to their performance and optimizing their

configurations in next section. For the dynamic case, we assume

only insertions and do not support deletions.

4.1 PBF-1
Intuition. To reduce the number of mt-queries, we can decom-

pose a temporal query range using dyadic ranges. In particular, we

maintain a binary decomposition of A with respect to the time

dimension, and build a bloom filter for the corresponding element
set of each temporal range resulted from the binary decomposition.

Insertions and query processing are similar to classic segment

tree operations. Specifically, in PBF-1, when inserting an element x
with timestamp t , we use depth-first search (DFS) over the binary

decomposition tree to find a path from the root to the leaf containing

t , and insert x to every bloom filter along the path. For a query

q(x , [s, e]), we use DFS to find the canonical cover of the range [s, e]
(i.e., a binary decomposition of [s, e]), and query each bloom filter

of these intervals. We answer YES only if at least one bloom filter

returns YES for the membership testing on x .
Lastly, a full binary decomposition can be expensive, leading to

many bloom filters to maintain. Thus, we restrict the time-span

of the leaf level to be at least д to control the number of intervals

in the tree. To handle any operation that needs to query at a time

granularity less than д, we also use another bloom filter to maintain

a SBF to take over those queries.

For ease of illustration, we present the structure of PBF-1 under
the static case first, and then discuss its construction and mainte-

nance in streaming setting.

Static case. For ease of discussion, assume for now that T is a

power of 2. Letд denote a time granularity that is a multiple of 2, but

less than logT (log
2
by default). A binary decomposition of [1,T]

consists of L = ⌈log(⌈T /д⌉)⌉ + 1 levels, indexed by ℓ = 0, · · · ,L − 1.
Level 0 is the root level with a single interval [1,T], and level L − 1
is the leaf level with ⌈T /д⌉ intervals of length д each. Level ℓ for

ℓ ∈ [0,L − 1] contains 2ℓ intervals of length T /2ℓ each.

More specifically, level 0 contains {[1,T]}, level 1 contains {[1, T
2
],

[
T
2
+1,T]}, and level ℓ contains {[1, T

2
ℓ], [

T
2
ℓ +1,

2T
2
ℓ], . . . , [T −

T
2
ℓ +

1,T]}. This leads to a total of u = (2T /д − 1) temporal intervals

and their corresponding temporal sets (each of which is a temporal

subset of A). These temporal intervals form a binary tree, and we

will index them by a breadth-first search fashion (aka level-order),

which leads to an interval set I = {I1, I2, . . . , Iu }. Level ℓ ∈ [0,L−1]

𝑏4 𝐼4 = [1,2]
𝑏5 𝐼5 = [3,4]
𝑏6 𝐼6 = [5,6]
𝑏7 𝐼7 = 7,8

𝑏8 𝑆𝐵𝐹

Timeline

𝑥, 𝑦, 𝑧

𝑏2 𝐼2 = [1,4]
𝑏3 𝐼3 = [5,8]

𝑏1 𝐼1 = [1,8]

𝑥, 1 , 𝑥, 2 , 𝑦, 2 , 𝑦, 4 , 𝑥, 5 , (𝑧, 7)

𝑏1

𝑦
𝑥 𝑥 𝑦 𝑥 z

1 2 3 4 5 6 7 8

Query 𝑞(𝑦, 1,6)

Elements

𝑥, 𝒚 𝑥, 𝑧
𝒃𝟐 𝑏3

𝑥, 𝑦 𝑦 𝑥 z

𝑏4 𝑏5 𝒃𝟔 𝑏7

𝑙 = 0

𝑙 = 1

𝑙 = 2

Figure 3: Example of PBF-1: д = 2, T = 8, L = 3.

contains the following subset of I : {I
2
ℓ , . . . , I

2
ℓ+1−1}.

We denote the temporal sets associated with these temporal in-

tervals asA1,A2, . . . ,Au , and their corresponding element sets as

A1,A2, . . . ,Au . PBF-1 is organized into the same L levels, and con-

sisted of bloomfiltersb1 = b (A1),b2 = b (A2), . . . ,bu = b (Au), such
that level ℓ, for ℓ ∈ [0,L−1], contains bloomfilters {b

2
ℓ , . . . ,b

2
ℓ+1−1}.

PBF-1 also adds an additional bloom filter bu+1 that’s simply

the SBF from Section 3. In summary, PBF-1, denoted as β1 (A) (or
simply β1 when context is clear), is {b1,b2, . . . ,bu ,bu+1}.

We require β1 to use onlym bits in total. Suppose the bloom filter

bi in β1 usesmi bits,m1 + · · · +mu +mu+1 =m. By default, each

bloom filter in β1 uses the same number of bits (i.e.,m1 = · · · =

mu+1 =m/(u + 1). An example of PBF-1 is shown in Figure 3.

Query.We first define the cover C ([s, e]) for an interval [s, e]. For
any interval Ii ∈ I , define its parent interval P (Ii) as the interval
in the level above that fully contains Ii . Similarly, we refer to the

two intervals in the level below that are fully contained by Ii as its
children intervals.

C ([s, e]) contains all intervals from I that are fully contained by

[s, e], but whose parent intervals are not. Formally, let C ([s, e]) =
{Iα1
, . . . , Iαf }, where αi ∈ [1,u] are the index values of intervals

from I that are contained in the cover. There are two cases.

(1)C ([s, e]) ⊂ I and intervals inC ([s, e]) are disjoint (i.e., αi , α j
for i, j ∈ [1, f]);

(2) For any Ii ∈ I , if Ii ⊆ [s, e] and P (Ii) ⊈ [s, e], then Ii ∈
C ([s, e]).

For example, with respect to the example in Figure 3, the cover

C ([1, 6]) is {I2, I6}, and the cover C ([1, 5]) is {I2}.
For any cover, its span interval I (C) refers to the temporal range

spanned by intervals in C . For example, I (C ([1, 6])) = [1, 6] and

I (C ([1, 5])) = [1, 4]. The definition of the cover C ([s, e]) immedi-

ately implies that I (C ([s, e])) ⊆ [s, e].
It is also easy to show that the number of intervals f = ⌈log(e −

s+1)⌉ if д = 1; in fact, when д = 1, the cover of [s, e] is its canonical
cover [13]. In the general case, f ≈ ⌈log(e − s + 1)/д⌉.

To answer a tmt-query q(x , [s, e]), there are two cases:

Case 1: I (C ([s, e])) = [s, e]. In this case, intervals in C ([s, e])
cover the query interval [s, e] exactly. We answer q(x , [s, e]) using
β1 as follows, where q(x ,bi) means answering a mt-query q(x)
using a bloom filter bi :

q(x , [s, e]) = q(x ,bα1
) ∨ q(x ,bα2

) · · · ∨ q(x ,bαf). (5)

For example, consider q(y, [1, 6]) in Figure 3, C ([1, 6]) = {I2, I6}
where I2 = [1, 4] and I6 = [5, 6]. This is a case whereC ([s, e]) covers

[s, e] exactly, since I (C ([1, 6])) = I2 ∪ I6 = [1, 6]. So β1 answers

q(y, [1, 6]) by probing into b2 and b6 respectively. And in this case

q(y,b2) guarantees to return 1, and q(y,b6) guarantees to return 0.

Hence, β1 will guarantee to return 1 given (5).

Case 2: I (C ([s, e])) ⊂ [s, e].Whenд , 1 in the construction of β1,
it is possible thatC ([s, e]) does not cover [s, e] exactly. For example,

consider the case in Figure 3, C ([1, 5]) = {I2} and I (C ([1, 5])) =
[1, 4]. It is even possible that C ([s, e]) is an empty set. For example,

C ([4, 5]) is ϕ with respect to Figure 3.

In this case, we find the set of intervals in the leaf level of I that
overlaps with [s, e] − I (C ([s, e])). It is easy to see that there are at

most two such intervals for any [s, e] − I (C ([s, e])); otherwise, two
of them can be merged into their parent interval which must be

fully contained by [s, e], hence included inC ([s, e] and they cannot

be part of [s, e] − I (C ([s, e])).
Suppose it is either Io1 or {Io1 , Io2 } who overlaps with [s, e] −

I (C ([s, e])). We answer q(x , [s, e]) with the following routes:

(route 1) If q(x ,bα1
) ∨ q(x ,bα2

) · · · ∨ q(x ,bαf) ∨ q(x ,bo1) ∨

q(x ,bo2) = 0, returns 0.

(route 2) If q(x ,bα1
) ∨ q(x ,bα2

) · · · ∨ q(x ,bαf) = 1, returns 1.

(route 3) If q(x ,bα1
)∨q(x ,bα2

) · · · ∨q(x ,bαf) = 0, but q(x ,boi)

= 1 for i = 1 and/or 2, we send a tmt-query q(x , [s, e] ∩ Ioi) to SBF
β0 contained in β1 (which is bu+1), and q(x , [s, e]) returns 1 if β0
returns 1 and returns 0 otherwise.

When [s, e] − I (C ([s, e])) has only one overlapping interval, the

term involving Io2 is simply omitted.

In (route 1), if all bloom filters for intervals that are either fully

contained by [s, e] (C ([s, e]) or overlappingwith [s, e] (Io1 , Io2) assert
that their element sets do not contain x , we know for sure that

x < A[s, e], since bloom filters report no false negative.

In (route 2), if a bloom filter bαi for any one interval Iαi from
C ([s, e]) reports that its element set Aαi contains x , it is highly
likely that x ∈ A[s, e] since Iαi ∈ C ([s, e]) is fully contained by

[s, e], which implies that Aαi ⊆ A[s, e]. Note that since bαi may

report false positive with a low false positive rate, this step can only

assert that x ∈ A[s, e] with high probability.

Lastly, in (route 3), if all bloom filters for intervals in C ([s, e])
assert that x does not belong to their element sets, we know with

certainty that x < A[I (C ([s, e])].
But if bo1 for overlapping interval Io1 reports 1, we know with

high probability x ∈ A[Io1]. Hence, it is possible that x ∈ A[[s, e] ∩
Io1]. However, since Io1 only overlaps with [s, e] and is not fully con-
tained by [s, e], bo1 cannot tell us if this high probability occurrence

of x ∈ A[Io1] is from x ∈ A[[s, e] ∩ Io1] or x ∈ A[Io1 − [s, e] ∩ Io1].
Henceforth, we need to initiate a probe into β0 = bu+1, using a

tmt-query q(x , [s, e] ∩ Io1). Note that the same steps need to be

taken for Io2 if it exists and bo2 also reports 1 in this case.

For example, to answer q(z, [5, 7]) with respect to the example

in Figure 3. We first find the cover C ([5, 7]) = {I6}, and I (C ([5, 7]))
= [5, 6] and Io1 = I7. In this case,q(z,b6) will report 0 with certainty,
and q(z,b7) will guarantee to report 1. Note that Io1 ∩ [s, e] = [7, 7]

and Io1 − Io1 ∩ [s, e] = [8, 8]; to find out if it is z ∈ [7, 7] that leads
to q(z,b7) = 1, we send the query q(z, [7, 7]) to b8 = β0, which will

ask q((z, 7)) against the standard bloom filter b it maintains over

A using the universeU ×T . In this case, q((z, 7),b8) guarantees to
return 1, so β1 will return 1 for q(z, [5, 7]).

Algorithm 1: Query PBF-1: q(x , [s, e], β1)

1 Function query(x, s, e)
2 qRecursion(x, s, e, 1, 1, T);
3 end
4 Function qRecursion(x , s, e, j, sj , ej) /* on Ij = [sj , ej] */
5 if s ≤ sj ∧ e ≥ ej then

/* Iαi ∈ C[s, e] is found, where αi = j */

6 return q(x , bj);

7 else if (|[sj , ej]| == д) ∧ ([sj , ej] ∩ [s, e] , ∅) then
8 return q(x , [sj , ej] ∩ [s, e], bu+1);

9 else
10 mid = ⌊(sj + ej)/2⌋;

11 if [sj ,mid] ∩ [s, e] , ∅ then
/* Ij’s left child interval is I2j */

12 return qRecursion(x , s, e, 2 · j, sj ,mid);

13 end
14 if [mid + 1, ej] ∩ [s, e] , ∅ then

/* Ij’s right child interval is I2j+1 */

15 return qRecursion(x , s, e, 2 · j + 1,mid + 1, ej);

16 end
17 return false;

18 end
19 end

The query algorithm can be easily implemented through a top-

down recursion over the binary decomposition of β1. The pseu-

docode of this algorithm is shown in Algorithm 1. The search starts

from the root I1 (Line 2). At any node, if its interval Ii is entirely
covered by [s, e] , we initiate q(x ,bi) (Line 5-6); or if it is a leaf

node and Ii ∩ [s, e], we initiate q(x , [s, e] ∩ Ii ,bu+1) if q(x ,bi) = 1

(Line 7-8). Otherwise, if its children intervals overlap with [s, e], a
recursion starts on the corresponding children node (Line 10-16).

Performance analysis. The query cost of Case 1 in PBF-1 is sim-

ply O (f) = O (log([e − s]/д)) = O (log(T /д)). The query cost of

Case 2 in PBF-1 is slightly more involved. It has to check all bloom

filters for intervals inC ([s, e]), and in worst case has to additionally

incur q(x , Io1 ∩ [s, e]) and q(x , Io2 ∩ [s, e]) into β0. Since the time

granularity of the decomposition that forms I in β1 is д, this implies

that the length of Io1 and Io2 is at most д. Hence, the query cost

of q(x , [s, e] ∩ Io1) (and q(x , [s, e] ∩ Io2)) is at most д. Hence, the
overall query cost of Case 2 is O (f + д) = O (log(T /д) + д).

It is easy to verify that β1 returns no false negative. And given

(5) in its query Case 1 and the three possible routes in its query

Case 2, its false positive rate is given by the multiplication of the

non-false positive rates of its bloom filters being queried:

p (β1) = 1 −
∏

i=α1, ...,αf

(1 − p (bi)) · (1 − p (bu+1))

= 1 − (1 − p (b))2 log(T /д) · (1 − p (b))O (д) . (6)

The derivation of second step in (6) is only possible when we

assume that each standard bloom filter in β1 (including the one

used in β0) has the same false positive rate p (b), which may not be

the case in practice, since even if they are using the same number of

bits and hash functions, the distinct number of elements for the sets

they correspond to may still be different. Nevertheless, (6) provides

g g g g
2g 2g

4g

g g g g
2g 2g

4g
…

…
Troot

g g g
2g

insert:
t=Troot+2g+1

Figure 4: Dynamic maintenance of PBF-1: Inserting a new record
with timestampTroot+2д+1 into a full binary tree covering [1, Troot].
Purple intervals are new intervals created by the insertion.
a good estimation to PBF-1’s false positive rate. Section 5 provides

an in-depth analysis of PBF-1’s false positive rate.

Dynamic case. When elements arrive into A in a streaming fash-

ion, we can easily maintain β0 in β1 in a streaming fashion since

it is just a standard bloom filter for elements from the universe

U ′ = U ×T . Next, assuming each remaining bloom filter from β1
uses the same number of bits, we can maintain the binary decom-

position for β1 in an online fashion.

We start with an interval [1,д] at the leaf level. Every д time

instances define a new interval in the leaf level, and every 2д time

instances a new interval is introduced in the level above by “union”

the latest two intervals at the leaf level. In general, supposeTnow =
t , let Lt = ⌈log(⌈t/д⌉)⌉ + 1, at level ℓ for ℓ ∈ [0,Lt − 1], every

дLt−1−ℓ time instances leads to a new parent interval to level ℓ − 1

by union the latest two intervals in level ℓ. When a new parent

interval is introduced for the current root level (i.e., level 0 where

ℓ = 0), a new root level is introduced and every existing level’s

index value increases by 1 (e.g., existing level 2 becomes level 3).

The construction of PBF-1 ensures that given an interval I ′ in
level ℓ, and its two children intervals I ′l and I

′
r (left and right child

intervals), I ′ = I ′l ∪ I ′r and as a result their element sets satisfy

A′ = A′l ∪A
′
r , therefore their bloom filters satisfy b ′ = b ′

1
bitorb ′

2

(bitor stands for bitwise or). Hence, the “union” step described

above is easily done in a streaming fashion.

Lastly, we do not maintain the index values for intervals in I
and the corresponding bloom filters in β1, since their index values
undergo constant updates as new intervals and levels are introduced.

Instead, we maintain I and the corresponding bloom filters by levels

(within each level they are sorted by their timestamps), and only

update the level indices when needed, as described above. At any

time instance t = Tnow , the index value of any particular interval

and its associated bloom filter can be easily computed based on

their current level index value ℓ and their position in level ℓ. It

is easy to see that the insertion cost of one pair (a, t) into β1 is

O (L) = O (log(Tnow /д)).
Figure 4 illustrates the dynamic insertion procedure described

above. In this example, a full binary tree covers the temporal range

[1,Troot], and new insertions will lead to the creation of partial

binary trees in front, as illustrated in Figure 4.

The algorithm of inserting a record into a full binary tree is

shown in Algorithm 2. We omit the details of dynamic growth from

this pseudocode as illustrated in Figure 4 for simplicity.

4.2 PBF-2
Intuition. PBF-1 uses the natural idea of decomposition along

the time dimension using the dyadic ranges, but it still uses linear

number of bloom filtersO ((T /д)). Using too many bloom filters not

only leads to space overhead, but also slows down the optimization

Algorithm 2: Insert an element a with its timestamp t into
PBF-1

1 Function insert(a, t)
2 bu+1.insert(a, t);

3 insertRecursion(a, t , 0, 1,T);

4 end
5 Function insertRecursion(a, t , l , s, e)
6 Let bi be the bloom filter at level l containing interval

[s, e] ;

7 bi .insert(a);

8 if e − s + 1 > д then
9 mid = ⌊(s + e)/2⌋;

10 if t ≤ mid then
11 insertRecursion(a, t , l + 1, s,mid);

12 else
13 insertRecursion(a, t , l + 1,mid + 1, e);

14 end
15 end
16 end

process for bits allocation (to different bloom filters) as we will

present in Section 5 and affects the overall accuracy in the online

case as we will discuss in Section 7.

This motivates us to find a solution that uses fewer bloom fil-

ters. But if we reduce the number of bloom filters by too much,

it will negatively affect the performance (an extreme case will be

the naive solution SBF using just one bloom filter). Therefore, we

propose PBF-2 that uses only one bloom filter per entire level of

the decomposition (rather than one bloom filter for each interval at

each level of the decomposition). To do so, we group elements based

on their arrival timestamps and a level-specific time granularity
which doubles at every level. The insertion and query processing

in PBF-2 are similar to those in PBF-1. The only difference is that

when we are inserting into/querying any bloom filter at level i in
PBF-1, we insert into/query the i-th bloom filter in PBF-2 instead.

Static case. More precisely, PBF-2 contains L = ⌈logT ⌉ + 1 levels,
and the time granularityдℓ at level ℓ ∈ [0,L−1] is set toдℓ = 2

L−1−ℓ
.

Each level maintains a standard bloom filter bℓ over the universe
U ′
ℓ
: U × ⌈T /дℓ⌉. A temporal element pair (a, t) ∈ A, for any time

instance t ∈ [1,T] and element a ∈ U , is inserted into all levelswith
the following mapping:

insert (a,Mℓ (t)) into bℓ whereMℓ (t) = ⌈t/дℓ⌉ for all ℓ. (7)

To be consistent with PBF-1, we call level 0 as the root level

whose time granularity д0 = 2
⌈logT ⌉

(which isT whenT is a power

of 2 or T + 1 otherwise), and level (L − 1) (level ⌈logT ⌉) the leaf
level whose time granularity дL−1 = 1. An example for T = 8 is

illustrated by Figure 5, where we use xi to denote a pair (x , i) in
level ℓ. For example, (y, 4) ∈ A is mapped to (y, 1) inA0 from level

0, (y, 1) in A1 from level 1, (y, 2) in A2 from level 2, and (y, 4) in
A3 from level 3.

Let Aℓ be the resulting temporal set from the mapping defined

in (7). Aℓ is a temporal set from the universeU ′
ℓ
= U × ⌈T /дℓ⌉. For

example, U ′
0
= U × 1, U ′

1
= U × 2, U ′

2
= U × 4, and U ′

3
= U × 8

in Figure 5. A PBF-2 filter β2 is a collection of L filters, where the

𝑙 = 0 𝑏0 𝑔0 = 8

𝑙 = 1 𝑏1 𝑔1 = 4

𝑙 = 2 𝑏2 𝑔2 = 2

𝑙 = 3 𝑏3 𝑔3 = 1

𝑏0

𝒃𝟏

𝒃𝟐

𝑏3

𝑥1, 𝑦1, 𝑧1

𝑥1, 𝒚𝟏, 𝑥2, 𝑧2

𝑥1, 𝑥2, 𝑦2, 𝑦4, 𝑥5, 𝑧7

𝑥1, 𝑦1, 𝑦2, 𝑥3, 𝑧4

𝑞 𝑦, 1,4 → 𝑦1

𝑞 𝑦, 5,6 → 𝑦3

Timeline

𝑦
𝑥 𝑥 𝑦 𝑥 z

1 2 3 4 5 6 7 8

Query 𝑞(𝑦, 1,6)

Elements

Figure 5: PBF-2 example:T = 8; xi in level ℓ represents amap-
ping pair (x , i) in level ℓ for (x , t) ∈ A, where i = Mℓ (t) as
defined in Equation 7.
filter in level ℓ is built over Aℓ using a standard bloom filter bℓ .

Query. As shown in Algorithm 3, the query algorithm of PBF-2 is
in fact very similar to the query algorithm of PBF-1, by leveraging

the binary decomposition of the query temporal range [s, e] for
a tmt-query q(x , [s, e]). An observation is that we can achieve a

complete binary decomposition of [s, e] using the combination of

different levels in β2.
More specifically, we find the cover C ([s, e]) from a complete

binary decomposition B (T) of [1,T], where a complete binary de-

composition refers to a binary decomposition with д = 1 (time

granularity at the leaf level). Note that B (T) is a virtual structure
and nevermaterialized for anyT . SupposeC ([s, e]) = {Iα1

, . . . , Iαf }.

First of all, since B (T) is a complete binary decomposition using

д = 1 at leaf level, the cover C ([s, e]) is exactly the canonical cover
[13] of [s, e], and f = ⌈log(e − s)⌉ in the worst case. From the

discussion in Section 4.1, we know that αi ∈ [1, 2T − 1], and Iαi is

from level ℓ if 2ℓ ≤ αi ≤ 2
ℓ+1 − 1, for ℓ ∈ [0, ⌈logT ⌉]. It implies

that Iαi belongs to level ℓi = ⌊logαi ⌋ in B (T).
Suppose Iαi = [si , ei]. Since Iαi ∈ C ([s, e]) is from a complete

binary decomposition of [1,T], clearly, ei − si + 1 = дℓi (time

granularity of level ℓi), and si = (ci − 1) · дℓi + 1 and ei = ci · дℓi
for some constant ci ∈ [1, ⌈T /дℓi ⌉]. In particular, ci = ⌈si/дℓi ⌉.

Note that Iαi ’s timestamps si and ei are both mapped to time

instance ci in level ℓi with respect to Aℓi . That said, in order for x
to appear in [s, e] in A, it must be the case that (x , ci) appears in
Aℓi for at least one αi from C ([s, e]). If this is not the case for all
αi ’s in C ([s, e]), we know for sure (x , [s, e]) < A. This is to check,

for all Iαi in C ([s, e]),

qi = q((x , ci),bℓi), using bℓi ∈ β2.

Hence, β2 answers q(x , [s, e]) as follows:

q(x , [s, e]) = q1 ∨ q2 ∨ · · · ∨ qf , (8)

which is reflected by lines 5-8 in Algorithm 3.

This means that β2 returns 0 for q(x , [s, e]) as soon as there is a

level ℓi reports 0 for qi , and reports 1 for q(x , [s, e]) iff all involved

levels report 1 for q1, . . . ,qf respectively. Finally, as noted above,

B (T) is never materialized, so doesC ([s, e]). We can easily compute

αi , [si , ei], ℓi , and ci as discussed above for any Iαi ∈ C[s, e] using
[s, e]. This can be done via a top-down recursion search over a

conceptual complete binary decomposition of [1,T] denoted as

B (T). This is shown in lines 10-17 in Algorithm 3.

Algorithm 3: Query PBF-2: q(x , [s, e], β2)

1 Function query(x, s, e)
2 qRecursion(x, s, e, 1, 1, T);
3 end
4 Function qRecursion(x , s, e, j, sj , ej)
5 if s ≤ sj ∧ e ≥ ej then

/* an Iαi ∈ C[s, e] is found, where αi = j. */

6 ℓ = ⌊log j⌋ ;

7 дℓ = 2
L−1−ℓ

; // L = ⌈logT ⌉ + 1

8 return q(x , ⌈sj/дℓ⌉, bℓ);

9 else
10 mid = ⌊(sj + ej)/2⌋;

11 if [sj ,mid] ∩ [s, e] , ∅ then
12 return qRecursion(x , s, e, 2 · j, sj ,mid);

13 end
14 if [mid + 1, ej] ∩ [s, e] , ∅ then
15 return qRecursion(x , s, e, 2 · j + 1,mid + 1, ej);

16 end
17 return false;

18 end
19 end

For example, consider query q(y, [1, 6]) in Figure 5. The cover of

[1, 6] is {[1, 4], [5, 6]}, which are intervals I2 and I6 in B (T). Hence,
it will be translated into q1 = q(y, 1) against b1 in level 1 and q2 =
q(y, 3) against b2 in level 2. And in this case, clearly, q1 returns 1
with certainty and q2 returns 0 with certainty, hence, β2 guarantees
to return 1 for q(y, [1, 6]).

Performance analysis.We ask β2 to usem bits in total, and bℓ in
level ℓ usesmℓ bits. By default, b0, . . . ,bL−1 use the same number

of bits: m/L = m/(⌈logT ⌉ + 1) bits. The query cost of PBF-2 is

bounded by the size of the canonical cover of a query interval

[s, e], which in worst case is ⌈log(e − s)⌉. Hence, the query cost is

O (log(e − s)) = O (logT).
Since each bloom filter in (7) returns no false negative, PBF-2

never returns false negative. And its false positive rate is:

p (β2) = 1−

f∏
i=1

(1−p (bℓi)) = 1−(1−p (b))f ≤ 1−(1−p (b))2 logT (9)

The second step assumes that all bloom filters in β2 have the
same positive rate p (b), which may not be the case in practice.

Section 5 provides a more in-depth analysis.

Dynamic case. Maintaining β2 in an online streaming setting is

easy, as described by Algorithm 4. We initialize β2 with only 1 level,

and set д0 = 1. Let Lc be the current number of levels in β2. We

introduce a new root level whenever t = Tnow increases to a value

that leads to t > 2
Lc
. When this happens, we introduce a new level

0 and initialize its bloom filter b0 simply as the current b0 from the

existing level 0 and its time granularity д0 = 2
Lc+1

(Line 6), and

set Lc = Lc + 1 (Line 7). We then increase the level index value of

all bloom filters in β2 by 1 (e.g, b0 becomes b1, b1 becomes b2, etc.)
and double their time granularity values (Line 3-5). Regardless if

a new level is introduced or not, we insert (a, t) into β2 using the
mapping given in (7) (Line 9-12). The insertion cost of one record

(a, t) into β2 is O (Lc) = O (logTnow).

Algorithm 4: Insert an element a with its timestamp t into
PBF-2

1 Function insert(a, t)
2 if t > 2

Lc then
3 for i = Lc to 0 do
4 bi+1 = bi ;

5 end
6 b0 = b1.clone () ;

7 Lc = Lc + 1;

8 end
9 for i = 0 to Lc − 1 do

10 дi = 2
Lc−1−i

;

11 bi .insert(a, ⌈t/дi ⌉);

12 end
13 end

5 ANALYSIS AND OPTIMIZATION
We next analyze the theoretical properties of PBF-1 and PBF-2, and
show how to optimize their configurations. Proofs of all theorems

are found in Appendix B.

5.1 PBF-1
We first observe some useful properties of PBF-1. The followings
are immediate based on Section 4.1:

Theorem 5.1. PBF-1 only has one-sided error (false positive).

Theorem 5.2. The insertion cost (for one pair (a, t)) of PBF-1 is
O (log(T /д)) insertions into a standard bloom filter, and the query cost
of a tmt-query q(x , [s, e]) PBF-1 isO (log((e − s)/д) +д) mt-queries
into standard bloom filters.

In our discussion in Section 4.1, an important and interesting

challenge was left unaddressed, which is to optimize the configu-

ration of a PBF-1 β1. In particular, assuming that all bloom filters

use the optimal number of hash functions, givenm bits to use for

β1, how do we allocate bits to different bloom filters inside β1? The
default (and the simple) option is for β1 to use the same number

of bits for each bloom filter bi , i.e.,mi =m/(u + 1). However, this
is only a good approach if each bloom filter contains roughly the

same number of distinct elements.

As seen from (2), the false positive of a bloom filter b is affected

by n (number of distinct items inserted),m and k . A larger n value

leads to higher false positive rates for the same number of bits used.

Naturally, we should allocate more bits to those bloom filters that

are associated with an element set with more distinct elements.

Let the binary decomposition using time granularity д for [1,T]
be B (T ,д). Recall that B (T ,д) leads to a set of intervals I = {I1, I2,
. . . , Iu }, a set of associated temporal sets {A1, . . . ,Au } and element

sets {A1, . . . ,Au } for u = 2T /д− 1. A PBF-1 β1 builds a bloom filter

bi over the element set Ai , i.e., bi = b (Ai) for i ∈ [1,u].
The number of distinct temporal pairs and distinct elements from

these intervals are {n(A1), . . . ,n(Au)}, and {n
′(A1), . . . ,n

′(Au)}
respectively. We simply denote them as {n1, . . . ,nu }, and {n

′
1
, . . . ,

n′u }. An important observation is that the values of {n1, . . . ,nu } are
often not the same, so are the values of {n′

1
, . . . ,n′u } as well. In fact,

it is well possible that even if {n1, . . . ,nu } are roughly the same,

the values of {n′
1
, . . . ,n′u } may still be very different.

For example, consider a typical web server log, naturally the n′i
value for an interval in early afternoon would be much larger than

an interval (of the same length, i.e., from the same level in B (T ,д)
from midnight. And even for intervals around the same time period,

an interval at a higher level from B (T ,д) is likely to have a larger

n′ value than any one of its children intervals does.

There is also the (u + 1)th bloom filter bu+1 which is the SBF β0.
It is a standard bloom filter built over A as a multi-set from the

universeU ×T . The number of distinct temporal pairs and distinct

elements are nu+1 = n(A) and n′u+1 = n(A) respectively.
That said, let the number of distinct items inserted into bloom fil-

ters {b1, . . . ,bu ,bu+1} in β1 be {d1, . . . ,du ,du+1}. They are simply

{n′
1
, . . . ,n′u , n

′
u+1} respectively.

Another factor we need to consider is the query frequency of

any particular interval from I . Given a query workloadW of |W|

number of tmt-queries, we define the expected query frequency fi
for an interval Ii ∈ I as the number of times a mt-query query is

called by bi , normalized to the total number of tmt-queries inW :

fi = |{q ∈ W ∧ a mt-query is sent to bi by q}|/|W|.
In other words, fi indicates the expected number of times a single
tmt-query q(x , [t , e]) ∈ W will result into a decomposition that

either fully contains Ii in its cover C ([s, e]) or overlaps with Ii if Ii
is at the leaf level of B (T ,д), so that a mt-query is checked against

the associated bloom filter bi . Since the decomposition of each tmt-
query contains a subset of distinct intervals from I , fi is at most

1 for any Ii ∈ I (i ∈ [1,u]), and it is most likely less than 1 on

expectation with respect to a query workloadW , i.e., 0 ≤ fi ≤ 1

for i ∈ [1,u].
Note that bu+1 in PBF-1 is a special case, as it is the PBF β0.

Whenever it is involved in answering a tmt-query fromW , up to

д mt-queries may be issued against bu+1. Hence, 0 ≤ fu+1 ≤ д.
From the query algorithm for a PBF-1 β1, it is easy to see that for

any bi is involved in answering a tmt-query q, if bi has returned
a false positive, β1 will return a false positive for q. Given the fi ’s
and di ’s, we want to minimize the false positive rate for q, under
the constrain that

∑u
i=1mi =m.

Let bloom filter bi ∈ β1 use ki =
mi
di

ln 2 hash functions, to

minimize the false positive rate, we need tomaximize the probability

that none of bloom filters involved in answering q returns a false

positive, according to (3), this is

u+1∏
i=1

(1 − 2−(ln 2)mi /di)fi , subject to
u+1∑
i=1

mi =m.

Take the natural logarithm function, we get:

u+1∑
i=1

fi ln(1 − 2
−(ln 2)mi /di), subject to

u+1∑
i=1

mi =m.

Using the Lagrange multiplier, we get:

L =

u+1∑
i=1

fi ln(1 − 2
−(ln 2)mi /di) + λ1 (

u+1∑
i=1

mi −m).

We first take derivative of L with respect to eachmi :
∂L
∂mi
=

fi

1−2
−(ln 2)

mi
di

· (−2
−(ln 2)

mi
di · − ln

2
2

di
) + λ1 = 0

=⇒ mi = di ·
1

ln
2
2

· ln(1 −
fi ln2 2
diλ1

). (10)

We next take derivative of L with respect to λ1:

∂L

∂λ1
= 0 =⇒

u+1∑
i=1

mi −m = 0 (11)

If we substitute (10) into (11), we get:

u+1∑
i=1

di ln(1 −
fi ln

2
2

λ1di
) =m ln

2
2 (12)

Then we can use numerical methods to solve (12) for λ1, and then

use the λ1 value obtained to solvemi ’s using (10).

According to (10),mi grows with di and fi . This is consistent
with our intuition that a bloom filter bi in β1 with more distinct

items and higher chance of being accessed should be assigned more

bits. In another extreme case, if either fi = 0 or di = 0,mi = 0 by

(10). Intuitively, this bloom filter is useless towards helping β1 to
answer a tmt-query fromW and should not be assigned any bits.

5.2 PBF-2
The following results are immediately followed from the discussion

in Section 4.2.

Theorem 5.3. PBF-2 only has one-sided error (false positive).
Theorem 5.4. The insertion cost (for one pair (a, t)) of PBF-2 is

O (logT) insertions into a standard bloom filter, and the query cost
of a tmt-query q(x , [s, e]) PBF-2 is O (log(e − s)) mt-queries into
standard bloom filters.

Another immediate observation is that different levels in PBF-2
generally contain increasing number of distinct elements. More specif-

ically, Let dℓ be the number of distinct items inserted into the bloom

filter bℓ in level ℓ from a PBF-2 β2. Clearly, dℓ = n(Aℓ) (recall that
Aℓ is a temporal set obtained by mapping every pair (a, t) ∈ A
using (7)). For example, n0 = n(A0) = n′(A), and nL−1 = n(A),
where L = ⌈logT ⌉ + 1.

Next, we define the expected query frequency fℓ for level ℓ in
β2 using the same concept defined for the analysis of PBF-1, where
ℓ ∈ [0,L − 1]. Since a canonical cover for any interval [s, e] with
respect to a complete binary decomposition B (T) of [1,T] consists
of at most two intervals per level from B (T) [13], each tmt-query
q may access a bloom filter bℓ in β2 at most twice. Hence, with

respect to any query workloadW , 0 ≤ fℓ ≤ 2 for any level ℓ.

Once dℓ and fℓ are defined as above for all levels ℓ ∈ [0,L − 1],
the same analysis in Section 5.1 can be carried out, and we get:

L−1∑
i=0

di ln(1 −
fi ln

2
2

λ2di
) =m ln

2
2, (13)

and (10) still holds for β2. We can solve (13) for λ2 and use (10) to

obtainmℓ ’s for β2.

5.3 Space-accuracy tradeoff
In practice, we are also interested in knowing in order to keep the

false positive rate less than a desirable threshold p, how many bits

do we need? We also want to know the impacts of time granularity

and time upper bound to the space cost in order to maintain a

stable false positive rate. The following theorem summarizes the

performance of optimized PBF-1 and PBF-2 with respect to these

issues, and Appendix C provides the detailed analysis.

Theorem 5.5. For any optimized PBF-1 with д = 1 or PBF-2
instance P, assume that the time upper bound isT , and the number of
distinct pairs in the stream A is n = n(A). We needm bits to ensure
that P answers a tmt-query q with a false positive rate p, where

m = n logT ln

((
1 − (1 − p)1/(2 log |q |)

)−1) /
ln
2
2. (14)

PBF1 PBF2 PBF3 PBF4

T T T T

……

Figure 6: Streaming PBFs on partition of length T .
6 EXTENSION
To optimize the configuration of a PBF-1 β1 or a PBF-2 β2 using
the analysis from Section 5, we need to know the distributions of

distinct elements and query frequency with respect to different

decomposed intervals in a binary decomposition of [1,T] (either
B (T ,д) or B (T , 1)). This is easy to do in the offline case, but is not

possible in a streaming, online setting.

To address this challenge, we adopt a learning approach, where

partitions of length T is introduced along the temporal dimension;

see Figure 6. Within each partition, a PBF is built and maintained

using the streaming algorithm as discussed in Sections 4.1 and 4.2.

The values of di ’s and fi ’s for the latest partition are learned from

the distributions of previous partitions. Many learning algorithms

and methodologies are possible, and which strategy is most effec-

tive depends on the properties of the data sets and query workloads.

Since what learning strategy to use is not the main focus of our

work and it is orthogonal to our study, in this work we just adopt a

simple model. We assume that the values of di ’s and fi ’s are similar

to those from its preceding partition. Therefore, we can just use the

di ’s and fi ’s values learned from the previous partition to configure

the PBF for the current partition that is streaming in.

Note that a new learning method can be easily used in place

of the simple strategy above, which may incorporate knowledge

from multiple prior partitions. Also note that the partition-based

approach still supports arbitrary tmt-queries on any query temporal

range [s, e] by decomposing the query into 1 or more tmt-queries
(with smaller query temporal ranges) to the respective partition(s).

We still need efficient and effective methods to maintain di ’s and
fi ’s over a streaming partition.

Essentially, we need extra tools to estimate the number of distinct

elements inserted into a bloom filter, as well as the query frequency

of each bloom filter. Both problems are well-studied. For simplicity,

we use the most commonly used algorithms for the two problems

respectively: Flajolet-Martin (FM) sketch [17] and Count-Min (CM)

sketch [12]. Note that there are recent works that improve these

basic algorithms such as [20]. These results are orthogonal to our

study and can be easily adopted by our design.

The simple strategy. That said, using O (T /д) (or O (logT)) FM
sketches, we can approximate the distinct number of items inserted

into each standard bloom filter in β1 (or β2) for any partition, i.e., we
can approximate the values of di ’s used in the analysis of Section 5

for a partition in a streaming fashion.

Similarly, we use a single CM sketch to approximate the count

for the number of queries sent to each standard bloom filters in β1
(or β2) for any partition, i.e., we approximate the values of fi ’s used
in the analysis of Section 5 for a partition in a streaming fashion.

Given di ’s and fi ’s for any historical partitions up to now, we

can use various learning strategy to estimate the values of di ’s and
fi for the new, latest partition (the simplest method is to just use

the values from the last partition, denoted as the SIMPLE strategy),

optimize the configuration of its PBF according to the discussion in

Section 5, and build and maintain its PBF in a streaming fashion

using the dynamic update algorithms in Section 4.

Table 2: Different PBF methods.
method set up

β0 SBF

β1-opt PBF-1: optimal bits allocation through an offline pass

β1-online PBF-1: learning-based bits allocation using SIMPLE
β2-opt PBF-2: optimal bits allocation through an offline pass

β2-online PBF-2: learning-based bits allocation using SIMPLE

Assume each PBF usesm bits, as time grows, the proposed ap-

proach will use ⌈Tnow /T ⌉ ·m bits, and we will use more bits to store

these PBFs. If there is a specified space budget to support a very

large time range, we may have to merge PBFs from consecutive

partitions periodically to meet the space budget. It is easy to merge

two PBFs from two consecutive partitions when their correspond-

ing bloom filters use the same number of bits and hash functions:

two bloom filters are merged into one through the bitwise OR oper-

ator. When this is not the case, the problem boils down to merging

two standard bloom filters with different number of bits into one

(assuming they use the same number of hash functions). Suppose

the two filters are b ′ and b withm′ andm bits respectively, and

m∗ = дcd (m,m′). The following method merges b ′ and b into a

bloom filter b∗ withm∗ bits. For simplicity, assume for now that

k = 1 for both b and b ′ (i.e., they use only 1 hash function). We ask

b and b ′ to use the same meta-hash function h that mapsU → [v]
for some valuev > m,m′. Hash function hb for b is defined as: h(x)
mod m, and hash function for b ′ is defined as h(x) mod m′. We

can verify that the following merge process will successfully merge

b and b ′: for every b[i] = 1 or b ′[i] = 1 for i ∈ [1,m] or i ∈ [1,m′],
set b∗[i mod m∗] = 1. We can easily generalize this approach to

the general case by using k meta-hash functions. Lastly, since each

PBF uses small number of bits (e.g., in our experiment a PBF uses

only 6M for one day of a large data set to achieve a false positive

rate of only 1%), we expect merging PBFs is rarely needed in most

application scenarios.

7 EXPERIMENT
All experiments were executed on a single server with an Intel

Xeon E5-2670 @ 2.6GHz CPU (a total of 8 physical cores) and 32GB

RAM while running Windows 7 64bit. The hash function family

we used in our implementation is MurmurHash3.

We have implemented different PBF constructions SBF, PBF-1,
and PBF-2with various instantiation, as shown in Table 2. Note that
β1-opt and β2-opt refer to first making an offline pass over A and

a query workloadW to figure out the values of di ’s and fi ’s for all
bloom filters in PBF-1 and PBF-2 respectively, then configuring bits

allocation for PBF-1 and PBF-2 based on the discussion in Section

5, and testing the resulting PBFs through A and the same query

workloadW in a streaming setting.

For both β1-online and β2-online, they use the SIMPLE strategy

presented in Section 6 to approximate the values of di ’s and fi ’s
for all bloom filters from the preceding partition A ′ (length T)
in streaming fashion, use these values to configure the PBFs for

the current partition, and maintain the PBFs using the dynamic

update algorithms from Section 4 for the temporal set of the current

partition A (length T) in streaming fashion. The query workload

W ′
for the preceding partition and the query workloadW for

testing the current partition contain a different set of randomly
generated queries of same query length.

Datasets. We used two real datasets in our experiments. They

exhibit different characteristics. The first data set is the EDGAR
log file data set [1], which records user access statistics for the

SEC.gov website. We extracted the IP and timestamp fields to form

a temporal set. The test dataset used is from Jan 1, 2014.

The granularity of timestamp is one second. Therefore, T is

bounded by the total seconds in a day, 86, 400. Figure 7(a) shows

the characteristics of this data set on Jan 1, 2014, using the CDF

(cumulative count) over time on N (A), n(A), and n′(A), which
implies the total number of log entries, the total number of distinct

temporal pairs (visits by the same client at the same timestamp

are considered as duplicates; visits by the same client at different

timestamps are considered as unique pairs), and the total number

of distinct IPs. At the end of the day, there are 5, 582, 073 log entries

from 25, 497 different clients, while 2, 127, 749 of them are distinct

visits. Since people from all over the world visited the website

throughout the 24-hour period, the CDF of N (A), n(A), and n′(A)
witnessed steady increase throughout the day.

The second dataset is a temporal set from the network trace

going into a local network. It contains a day’s worth of network

trace coming into this network. We use source IP and timestamp

(in second) to construct temporal pairs, and denote this dataset

as Network. The statistics of this data set is shown in Figure 7(b).

Clearly, its characteristics is very different from EDGAR. Note that
the timestamp starts around midnight; naturally, we see very little

activities initially until they pick up during morning hours, and

slow down again when it gets close to evening time. At the end

of the day, there are 2, 546, 560 log entries from 124, 427 different

clients, while 2, 199, 573 of them are distinct visits.

0

1

2

3

4

5

6

0 14400 28800 43200 57600 72000 86400

C
o
u
n
t
(×

1
0
6
)

Timeline

N(A)

n(A)

n'(A)

(a) EDGAR.

0

1

2

3

4

5

6

0 14400 28800 43200 57600 72000 86400

C
o
u
n
t
(×

1
0
6
)

Timeline

N(A)

n(A)

n'(A)

(b) Network.
Figure 7: CDF for N (A), n(A), and n′(A) over T .

Set up. All queries in a testing query workloadW are of same
query length, denoted as |q |, in order to show the effect of query

length. The number of queries inW is denoted as |W|. For all

PBF methods, and any tmt-query q(x , [s, e]), if ∃(x , t) ∈ A for at

least one value t ∈ [s, e], they will definitely return 1, i.e., all PBFs

return no false negative. Hence, we focus on the non-trivial cases

when (x , t) < A for any t ∈ [s, e]. For a given pair of values for

|q | and |W|, we randomly generate |W| number of such queries,

where each query’s query temporal range (e − s + 1) is |q |. Since
we observe that |W| has little impact towards the average false

positive rate, we fix |W| to be 10, 000 in all experiments. In the

online case, since we assume that the workload patterns are stable,

we generate the training data simply by adding a random noise

into the testing data.

Once the number of bits, mi , is determined for a bloom filter

bi in a PBF, we use ki = ⌈
mi
di

ln 2⌉ number of hash function for

bi . In practice, the number of hash functions, k , affects directly
the operation performance in a standard bloom filter. In order to

limit the overhead of a operation, we use kmax to denote the upper

Table 3: Parameters and tested values.
parameter tested values

m, total bits 2 · 107, 3 · 107, 4 · 107, 5 · 107, 6 · 107

|q |, query length 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192
T , # of timestamps 14400, 28800, 57600, 86400

threshold for k . In this experiment, we set kmax = 16. We have

already discussed how the value di is defined and calculated for

β1-opt, β2-opt, β1-online, and β2-online methods. For both β1-opt
and β1-online, the default value of д is 4.

All PBFs use the same number of bits, denoted as m. Table 3

summarizes the key parameters and their values tested in our ex-

periments, where the default value of a parameter is shown in bold.
In each experiment, we vary the values of one parameter, while

using the default values for all other parameters, to understand its

effect. For all experiments concerning false positive rate and query

efficiency, we show the average of one query fromW .

7.1 Effectiveness Analysis

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6

Fa
ls

e
po

si
tiv

e
ra

te
: p

(
)

Number of bits: m (×107)

0

1-online

2-online

1-opt

2-opt

(a) EDGAR.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6

Fa
ls

e
po

si
tiv

e
ra

te
: p

(
)

Number of bits: m (×107)

0

1-online

2-online

1-opt

2-opt

(b) Network.
Figure 8: False positive rate with differentm values.

 0

 0.2

 0.4

 0.6

 0.8

 1

 16 32 64 128 256 512 1024 2048 4096 8192

Fa
ls

e
po

si
tiv

e
ra

te
: p

(
)

Query length: |q|

0

1-online

2-online

1-opt

2-opt

(a) EDGAR.

 0

 0.2

 0.4

 0.6

 0.8

 1

 16 32 64 128 256 512 1024 2048 4096 8192

Fa
ls

e
po

si
tiv

e
ra

te
: p

(
)

Query length: |q|

0

1-online

2-online

1-opt

2-opt

(b) Network.
Figure 9: False positive rate with different |q | values.

105

106

107

108

109

 16 32 64 128 256 512 1024 2048 4096 8192

N
u
m

b
e
r

o
f

m
t-

q
u
e
ri
e
s

Query length: |q|

β0 β1 β2

Figure 10: Query efficiency:
vary |q |, EDGAR.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 14400 28800 57600 86400

F
a
ls

e
 p

o
si

ti
v
e
 r

a
te

:
p
(β

)

Time range upper bound: T

β0
β1-online
β2-online
β1-opt
β2-opt

Figure 11: Impact ofT values:
EDGAR.

Since the basic versions of PBF-1 and PBF-2 without using the
optimization for bits allocation (β1 and β2 respectively where they

allocate bits uniformly to all bloom filters) are always strictly dom-

inated by the improved versions with optimized bits allocation

schemes presented in Section 5, in terms of their false positive rates.

We omitted β1 and β2 from the following results on effectiveness.

Impact ofm. As we increase the space budget, i.e.,m, all methods

gain better performance. Figure 8 illustrates this trend. Clearly, the

baseline approach SBF (β0) has very high false positive rate (FP

rate) initially when given insufficient space, since it has to perform

128 mt-queries (the default value of |q | is 128). Asm increases, it

gains better performance, but still performs much worse compared

to PBF-1 and PBF-2. On the other hand, the performance of PBF-1
and PBF-2 is significantly better; β1-opt has the lowest FP rate and

β2-opt shows a similar performance with much less number of

bloom filters. Using a very small space for maintaining the CM

and FM sketches, β2-online shows an almost as good performance

as that of β2-opt with a FP rate as low as approximately only 1%,

whereas β1-online’s FP rate does have a notable gap from that of

β1-opt due to the fact that PBF-1 has more bloom filters to deal

with in figuring out a good bit allocation strategy, but still β1-online
also demonstrates good performance.

All methods exhibit slightly higher FP rates on Network com-

pared to EDGAR, due to the fact that Network has more fluctuation

in its data arrival patterns over time as shown in Figure 7.

Impact of |q |. The FP rate of β0 grows exponentially with the query
length. Therefore, it cannot handle queries of longer query intervals,

as clearly shown in Figure 9. Its FP rate becomes higher than 80%

when |q | is 1024 seconds (approximately only 17 minutes). PBF-1
and PBF-2 also demonstrate a deteriorating performance as |q |
increases, but the FP rates of PBF-1 and PBF-2 increase only slightly
as |q | increases exponentially and stay as low as less than 5% even

when |q | is over 1000 seconds on both datasets, with the exception

of β1-online which has reached 20% FP rate when |q | = 1024. β2-
online once again shows excellent performance and matches almost

the same performance provided by β1-opt and β2-opt.
Figure 10 shows that the query processing cost grows dramati-

cally in the case of β0 for small |q |. For large |q |, the FP rate of β0 is
very high, and the short-circuit evaluation on β0 slows down the

growth of cost of β0. The cost grows slightly in β1 and β2. Note
that β1 (β2), β1-opt (β2-opt), and β1-online (β2-online) have the

same query costs. They are both more than one order of magnitude

efficient than SBF β0. The trend for Network is similar.

Impact of T . Next, we vary the upper bound of time limit T to

observe its impact on the FP rate. Figure 11 illustrates this result. A

larger T value leads to more distinct elements, hence, all methods

will have higher FP rates for one single mt-query. For β0, since
its FP rate is the FP rate of single mt-query raised to the power of

|q | (default value is 128), its FP rate increases sharply. For PBF-1
and PBF-2, the FP rate of one single mt-query increases quickly

as T increases, so they are also deteriorating. Nevertheless, we

can see that β1-opt, β2-opt and their online versions have shown
significantly better performance than β0. In particular, β2-online
demonstrates superior performance and matches well against the

two offline, optimal versions. The result on Network is similarly,

and hence omitted for the interest of space. Note that, a standard

bloom filter b also suffers from deteriorating FP rates as T grows,

which leads to more distinct elements inserted into b.

7.2 Efficiency Analysis
To investigate the efficiency of different methods, we measured the

insertion time and query time for different constructions. For this

experiment, we used a randomly generated data set with 50,000

items, since the insertion cost is not related to the distribution of

values, rather, is only determined by the structure of the underlying

PBF. We used the default number of bits for all PBFs (m = 5 ×

10
7
). The structure of SBF is fixed, but the structures of PBF-1 and

PBF-2 are affected by the maximum timestamp value T . Hence, we
investigate the insertion cost by examining the amortized cost of

inserting one item when we vary the value of T .
We first investigate the basic PBF-1 and PBF-2 without online

optimization, i.e., allocating bits uniformly to all bloom filters. We

 0

 5

 10

 15

 20

 14400 28800 57600 86400

In
se

rt
io

n
 t

im
e
 p

e
r

it
e
m

 (
u
s)

Time range upper bound: T

β0 β1 β2

(a) Insertion.

 0.1

 1

 10

 100

 0 200 400 600 800 1000

Q
u
e
ry

 t
im

e
 (

u
s)

Query length: |q|

β0 β1 β2

(b) Query.
Figure 12: Efficiency of β0, β1, β2.

compared them against SBF β0. Figure 12(a) shows that even though
the amortized insertion costs per item for β1 and β2 are higher

than that of β0, both of them still enjoy excellent efficiency for

insertion: their insertion costs per item are less than 20 µs in all

cases. Another observation is that asT grows, the insertion costs of

β1 and β2 slightly increase due to the fact that more bloom filters

are to be maintained due to their constructions.

In terms of query time, we investigate their performance with

different query lengths. To avoid the effect of false positives on

query execution time, we turn off the short circuit evaluation, i.e.,

SBF and PBFs execute all mt-queries regardless of the result of

each query. Figure 12(b) shows that the basic versions of PBF-1 and
PBF-2 are much more efficient to query than that of SBF. Further-
more, their query costs are less influenced by the increase of query

length (a logarithmic growth rate) than that of SBF (a linear growth
rate). Both PBF-1 and PBF-2 exhibit excellent query efficiency with

less than 1 µs response time.

 0

 2

 4

 6

 8

 10

 14400 28800 57600 86400

In
se

rt
io

n
 t

im
e
 p

e
r

it
e
m

 (
u
s)

Time range upper bound: T

0 1-online 2-online

(a) Insertion.

 0.1

 1

 10

 100

 0 200 400 600 800 1000

Q
u
e
ry

 t
im

e
 (

u
s)

Query length: |q|

0 1-online 2-online

(b) Query.
Figure 13: Efficiency of β0, β1-online, β2-online.

Next, we repeated the same experiment but for the online opti-

mization version of PBF-1 and PBF-2, i.e., β1-online and β2-online.
The results are shown in Figure 13. The general trends for both

insertion costs and query costs of various methods are similar to

the results above, except that the insertion costs for both β1-online
and β2-online are smaller than their basic versions β1 and β2 (i.e.,
they are more efficient). This is due to the fact that with bits alloca-

tion optimization certain bloom filters in some levels in PBF-1 and
PBF-2 are skipped during an insertion.

7.3 Additional results
Additional results on the scalability for the accuracy-space tradeoff,

efficiency under different workloads, and the impact of merging and

the performance of the sketching and our simple learning method

used by PBF-1 and PBF-2 are available in Appendix D.

8 RELATED WORK
Since the design of bloom filter by Burton Howard Bloom in 1970, it

has found numerous applications, and many extensions have been

introduced.Weighted bloomfilter [7] and data-popularity conscious

bloom filter [38] were proposed to reduce the false positive rate in a

bloom filter by exploring the skew distribution of query frequency

for different elements. The main idea is to customize the number

of hash functions used for inserting an element a based on its

query frequency. More hash functions are used for a more popular

element, to reduce the probability of collision.

Standard bloom filters only support element insertions and mem-

bership queries. Counting bloom filters [16] support element dele-

tions by replacing the bits of bloom filters with counters. Guo et

al. designed the dynamic bloom filter [19] that also supports dele-

tions in addition to insertions. Spectral bloom filters [10] improve

bloom filters by supporting frequency-based queries. Attenuated

bloom filters [30] store routing path information using arrays of

bloom filters. Bloomier filters [9] generalize bloom filters to support

function encoding and evaluation. Exponentially decaying bloom

filters [21] encode probabilistic routing tables in a compressed man-

ner that allows for efficient aggregation and propagation of routing

information in unstructured peer-to-peer networks. Lastly, a com-

pressed bloom filter can be used to reduce the communication cost

of transmitting a bloom filter [25].

Pagh et al. [27] proposed a variant of bloom filter that consumes

less space than classic bloom filters. Putze et al. [29] proposed

several variants that are either faster or use less space than classic

bloom filters. Fan et al. [15] proposed cuckoo filter, which is an

alternative sketch that not only achieves better space efficiency

than bloom filter but also support deletion. These variants and

alternatives, however, explore various tradeoffs and assumptions

that limit their usage in the general case.

We refer interested readers to an excellent survey and analysis

paper on bloom filters by Tarkoma et al. [35].

A closely related area is persistent data structure [14], that always

preserves the previous version of itself when it is modified. Many

efforts have been made to extend a base structure to a persistent

data structure, including Time-Split B-tree [24] and Multiversion

B-tree [3, 5, 36]. Persistent data structures are also used in multiver-

sion databases such as Microsoft Immortal DB [22, 23], SNAP [33],

Ganymed [28], Skippy [32] and LIVE [31]. Wei et al. [37] introduced

persistent data sketching, which extends the Count-Min sketch [12]

to support temporal frequency queries. But it cannot be used to

answer tmt-query effectively, as shown in Section 3.2.

Our study is also related to the topic of sketching, building syn-

opses and other probabilistic succinct data summaries for massive

data, and in particular, for streaming data. An excellent review is

available by Cormode et al. [11].

Tao et al. studied the problem of finding quantiles for a query

temporal range over a temporal set [34]. But the proposed methods

are designed for quantile queries and not useful for tmt-queries.
Lastly, a similar topic is the approximate range emptiness prob-

lem, whose goal is to determine whether a set of keys does not con-

tain any keys that are part of a specific range. Alexiou et al. [2] pro-

posed ARF to solve approximate range emptiness problem in data-

base applications, which is analyzed in further details by Goswami

et al. [18]. However, these studies refer to a range over the element

key space, rather than a temporal range.

9 CONCLUSION
This paper presents Persistent Bloom Filter, a probabilistic data

structure to support temporal membership testing using compact

space. An interesting future work is to extend our design over a

temporal set, i.e., support range membership testing over a temporal
range. For example, if A[t = 10, t = 16] contains any keys from

[140, 200]. Another interesting direction is to support deletions.

REFERENCES
[1] Edgar log file data set. https://www.sec.gov/data/edgar-log-file-data-set.
[2] K. Alexiou, D. Kossmann, and P. Larson. Adaptive range filters for cold data:

Avoiding trips to siberia. PVLDB, 6(14):1714–1725, 2013.
[3] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymptotically

optimal multiversion b-tree. VLDB J., 5(4):264–275, 1996.
[4] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-

munications of the ACM, 13(7):422–426, 1970.

[5] G. S. Brodal, K. Tsakalidis, S. Sioutas, and K. Tsichlas. Fully persistent b-trees. In

SODA, pages 602–614. SIAM, 2012.

[6] A. Z. Broder and M. Mitzenmacher. Survey: Network applications of bloom filters:

A survey. Internet Mathematics, 1(4):485–509, 2003.
[7] J. Bruck, J. Gao, and A. Jiang. Weighted bloom filter. In 2006 IEEE International

Symposium on Information Theory. IEEE, 2006.
[8] L. Carter, R. W. Floyd, J. Gill, G. Markowsky, and M. N. Wegman. Exact and

approximate membership testers. In STOC, pages 59–65. ACM, 1978.

[9] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The bloomier filter: an efficient

data structure for static support lookup tables. In SODA, pages 30–39, 2004.
[10] S. Cohen and Y. Matias. Spectral bloom filters. In SIGMOD Conference, pages

241–252. ACM, 2003.

[11] G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for mas-

sive data: Samples, histograms, wavelets, sketches. Foundations and Trends in
Databases, 4(1-3):1–294, 2012.

[12] G. Cormode and S. Muthukrishnan. An improved data stream summary: the

count-min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.
[13] M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf. Computational

geometry. In Computational geometry. Springer, 2000.
[14] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures

persistent. J. Comput. Syst. Sci., 38(1):86–124, 1989.
[15] B. Fan, D. G. Andersen, M. Kaminsky, and M. Mitzenmacher. Cuckoo filter:

Practically better than bloom. In CoNEXT, pages 75–88. ACM, 2014.

[16] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder. Summary cache: a scalable

wide-area web cache sharing protocol. IEEE/ACM TON, 8(3):281–293, 2000.
[17] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base

applications. Journal of computer and system sciences, 31(2):182–209, 1985.
[18] M. Goswami, A. G. Jørgensen, K. G. Larsen, and R. Pagh. Approximate range

emptiness in constant time and optimal space. In SODA, pages 769–775. SIAM,

2015.

[19] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo. The dynamic bloom filters. IEEE
Trans. Knowl. Data Eng., 22(1):120–133, 2010.

[20] D. M. Kane, J. Nelson, and D. P. Woodruff. An optimal algorithm for the distinct

elements problem. In PODS, pages 41–52. ACM, 2010.

[21] A. Kumar, J. J. Xu, and E. W. Zegura. Efficient and scalable query routing for

unstructured peer-to-peer networks. In INFOCOM, pages 1162–1173. IEEE, 2005.

[22] D. B. Lomet, R. S. Barga, M. F. Mokbel, G. Shegalov, R.Wang, and Y. Zhu. Immortal

DB: transaction time support for SQL server. In SIGMOD Conference, pages 939–
941. ACM, 2005.

[23] D. B. Lomet and F. Li. Improving transaction-time DBMS performance and

functionality. In ICDE, pages 581–591. IEEE Computer Society, 2009.

[24] D. B. Lomet and B. Salzberg. Access methods for multiversion data. In SIGMOD
Conference, pages 315–324. ACM Press, 1989.

[25] M. Mitzenmacher. Compressed bloom filters. In PODC, pages 144–150. ACM,

2001.

[26] C. Okasaki. Purely functional data structures. Cambridge University Press, 1999.

[27] A. Pagh, R. Pagh, and S. S. Rao. An optimal bloom filter replacement. In SODA,
pages 823–829. SIAM, 2005.

[28] C. Plattner, A. Wapf, and G. Alonso. Searching in time. In SIGMOD Conference,
pages 754–756. ACM, 2006.

[29] F. Putze, P. Sanders, and J. Singler. Cache-, hash-, and space-efficient bloom filters.

ACM Journal of Experimental Algorithmics, 14, 2009.
[30] S. C. Rhea and J. Kubiatowicz. Probabilistic location and routing. In INFOCOM.

IEEE, 2002.

[31] A. D. Sarma, M. Theobald, and J. Widom. LIVE: A lineage-supported versioned

DBMS. In SSDBM, volume 6187 of Lecture Notes in Computer Science, pages
416–433. Springer, 2010.

[32] R. Shaull, L. Shrira, and H. Xu. Skippy: a new snapshot indexing method for

time travel in the storage manager. In SIGMOD Conference, pages 637–648. ACM,

2008.

[33] L. Shrira and H. Xu. SNAP: efficient snapshots for back-in-time execution. In

ICDE, pages 434–445. IEEE Computer Society, 2005.

[34] Y. Tao, K. Yi, C. Sheng, J. Pei, and F. Li. Logging every footstep: quantile summaries

for the entire history. In SIGMOD, pages 639–650, 2010.
[35] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz. Theory and practice of bloom

filters for distributed systems. IEEE CST, 14(1):131–155, 2012.
[36] P. J. Varman and R. M. Verma. An efficient multiversion access structure. IEEE

Trans. Knowl. Data Eng., 9(3):391–409, 1997.

[37] Z. Wei, G. Luo, K. Yi, X. Du, and J. Wen. Persistent data sketching. In SIGMOD
Conference, pages 795–810. ACM, 2015.

[38] M. Zhong, P. Lu, K. Shen, and J. I. Seiferas. Optimizing data popularity conscious

bloom filters. In PODC, pages 355–364. ACM, 2008.

ACKNOWLEDGMENTS
Feifei Li and Yanqing Peng are supported in part by NSF grants

1443046 and 1619287. Feifei Li is also supported by NSFC grant

61729202. Jinwei Guo, Weining Qian and Aoying Zhou are sup-

ported by National Hightech R&D Program (863 Program) under

grant number 2015AA015307, and NSFC under grant numbers

61432006 and 61672232. The authors greatly appreciate the valuable

feedback provided by the anonymous SIGMOD reviewers.

A OTHER ALTERNATIVES
A.1 Using a Persistent Binary Search Tree
The classic binary search tree (BST) is widely used to maintain a

map, and it can be used to answer frequency counting, in which

case it maintains a mapping from elements to their counters.

A persistent binary search tree (PBST) keeps all historical ver-

sions after each insertion. Therefore, it can be used to answer a

tmt-query by calculating the difference between the frequency val-

ues of an element at different timestamps. On a query q(x , [s, e]),
we simply retrieve the PBST versions at time instances (s −1) and e ,
and query the counters of element x at both trees. If the difference

is non-zero, then x must have appeared in [s, e].
PBST provides exact answers to tmt-queries. It stores the entire

input stream and thus uses much more space than approximate

solutions. As shown in Figure 14, PBST needs a large number of

bits to answer tmt-queries for a dataset with roughly 20 insertions

per second, and its space cost increases linearly as time increases,

making it impractical for answering tmt-queries in many cases.

 1.6x109

 1.8x109

 2x109

 2.2x109

 2.4x109

 2.6x109

 2.8x109

 3x109

 3.2x109

 14000 16000 18000 20000 22000 24000 26000

S
p
a
ce

 c
o
st

 (
b
it
s)

Time upperbound

Figure 14: Space cost of PBST
for answering tmt-queries.

A.2 Using a Multiversion Bloom Filter
A purely functional implementation of a data structure uses only

immutable objects for the data structure. This restriction ensures

that the data structure always preserve all previous versions [26],

and thus making the data structure persistent. However, preserving

all previous versions in a bloom filter is not helpful for answering

temporal membership testing.

Assume that we are able to retrieve any historical version of a

bloom filter with a purely functional implementation. Then we can

retrieve its content at any timestamp t , which represents the set of

elements arriving not later than t .
Given a tmt-query q(x , [s, e]). If x has NOT appeared before s ,

but has then appeared between s and e , using the two versions of

the bloom filter at (s − 1) and e respectively, we will be able to

assert the appearance of x in [s, e] with high probability (unless

the bloom filter version at (s − 1) returns a false positive, in which

case we are not sure if x appeared in [s, e] or x appeared before s).
Similarly, if x has NOT appeared before s , AND has also NOT

appeared between s and e , using the two versions of the bloom

filter at (s − 1) and e respectively, we will be able to assert the non-

appearance of x in [s, e] with high probability (unless the bloom

filter version at either (s − 1) or e has returned a false positive).

But this breaks down for the case when x had appeared before

timestamp s or the bloom filter version at timestamp (s − 1) already
reports a false positive when being queried for x . In either of these

two cases, whether or not x appears in [s, e], all bits in any subse-

quent versions of the bloom filter corresponding to x always remain

1 after timestamp s . We are not able to tell if x has appeared in

[s, e] or not. Therefore, the idea of answering temporal membership

testing by a purely functional bloom filter (or a multi-version bloom

filter) doesn’t work.

B PROOFS
B.1 Proof of Theorem 5.1

Theorem B.1. PBF-1 only has one-sided error (false positive).

Proof. Assume there exists (a, t) ∈ A. For a tmt-query (a, [s, e])
where t ∈ [s, e], let C ([s, e]) = {[si , ei]} be the cover of [s, e] for
i ∈ [1, f]. Suppose t ∈ [si , ei]. Then a must have been inserted into

bi , and (a, t) must be inserted into the SBF in PBF-1. Since a bloom
filter has no false negatives, the algorithm will always detect that

a ∈ bi and (a, t) ∈ SBF, so it always returns YES. □

B.2 Proof of Theorem 5.2
Theorem B.2. The insertion cost (for one pair (a, t)) of PBF-1 is

O (log(T /д)) insertions into a standard bloom filter, and the query cost
of a tmt-query q(x , [s, e]) PBF-1 isO (log((e − s)/д) +д) mt-queries
into standard bloom filters.

Proof. All nodes in the same level are disjoint, and cover the

whole time range. So there is exactly one node in each level that

contains t . As a result, the element is inserted to each level for

once, and the SBF in PBF-1 for once. There are logT /д levels in the

binary tree, so the element is inserted for 1+ logT /д times. Because

the time range [s, e] is decomposed into at most 2 log((e − s)/д)
dyadic ranges, each corresponds to a standard bloomfilterwhere the

element is checked. There are at most (2д − 2) timestamps that are

covered by the dyadic range but are not in the query range, so the

SBF in PBF-1will be accessed for at most (2д−2) times. Accordingly,

O (log((e − s)/д) + д) mt-queries needs to be executed. □

B.3 Proof of Theorem 5.3
Theorem B.3. PBF-2 only has one-sided error (false positive).

Proof. Assume there exists (a, t) ∈ A, so (a, tℓ) ∈ Aℓ for ℓ ∈

[0,L − 1]. For a tmt-query (a, [s, e]) where t ∈ [s, e], let C ([s, e]) =
{[si , ei]} be the cover of [s, e] for i ∈ [1, f]. Suppose t ∈ [si , ei], so
ci = tℓi according to the mapping defined in (7). Then (a, ci) ∈ Aℓi
must have been inserted into bℓi . Since a standard Bloom filter has

no false negatives, the algorithmwill always detect that (a, ci) ∈ bℓi ,
so it guarantees to return YES. □

B.4 Proof of Theorem 5.4
Theorem B.4. The insertion cost (for one pair (a, t)) of PBF-2 is

O (logT) insertions into a standard bloom filter, and the query cost
of a tmt-query q(x , [s, e]) PBF-2 is O (log(e − s)) mt-queries into
standard bloom filters.

Proof. Since PBF-2 contains L = ⌈logT ⌉ + 1 levels and an ele-

ment needs to be inserted to each level for once, the insertion of a

pair (a, t) needs O (logT) standard Bloom filter insertions. Because

the time range [s, e] is decomposed into at most 2 log(e − s) dyadic
ranges, each one where the element is tested can be converted to

a standard mt-query, hence, the cost of tmt-query q(x , [s, e]) in
PBF-2 is O (log(e − s)) mt-queries. □

C SPACE-ACCURACY TRADEOFF
C.1 Space-false positive rate tradeoff
In practice, we are also interested in knowing: in order to keep

the false positive rate less than a desirable threshold p, how many

bits do we need? In order to derive an upper bound for PBF-1 and
PBF-2, we introduce an auxiliary structure whose space cost is easy

to analyze, and show that PBF-1 and PBF-2 always outperform it

(in terms of accuracy) when given the same number of bits.

Definition C.1. For a PBF-1 (or PBF-2) P, we define a correspond-
ing auxiliary structure S. S is a single Bloom filter with m bits,

wherem is the total number of bits used by P. Whenever we insert

an element o into the i-th bloom filter of P, we insert o′ = (o, i)
into S instead. Whenever we have to query o on the i-th bloom

filter of P, we query o′ = (o, i) on S instead.

Lemma C.2. For any optimized P, its corresponding structure S
always has worse performance than P in terms of false positive rates.

Proof. We will show that if we assign the number of bits pro-

portional to the distinct number of elements di for each bloom

filter bi in P, then S and P will have the same false positive rates.

Henceforth, a PBF-1 (PBF-2) instance P with optimal bits alloca-

tion as discussed in Sections 5.1 and 5.2 will always have lower

false positive rates than S .
More specifically, let θ = m/

∑
di where di is the number of

distinct elements in the i-th bloom filter of P. In other words, θ is

the ratio between the total number of bits and the total number of

distinct elements from all bloom filters in P. Now, assume that for

each bloom filter bi in P, we allocatemi = θ × di bits to bi .
In this allocation scheme, all bloom filters in P have the same

false positive rates, which equals to the false positive rate of S. For

a query that needs to access t bloom filters in P, it is converted to

access S for t times, so the false positive rates of any query to P

and its corresponding query to S are the same. In other words, S

and P have identical false positive rates in this allocation scheme.

Clearly the above allocation scheme is a special case, and the

instance of P with the optimal bit allocation scheme will thus

always outperform S (using the same number of bits). □

Note that this lemma works for both PBF-1 and PBF-2, therefore
we can derive the space upper bound, in order to meet a desirable

false positive rate, for both PBF-1 and PBF-2 by analyzing S.

Theorem C.3. For any optimized PBF-1 with д = 1 or PBF-2
instance P, assume that the time upper bound isT , and the number of
distinct pairs in the stream A is n = n(A). We needm bits to ensure
that P answers a tmt-query q with a false positive rate p, where

m = n logT ln

((
1 − (1 − p)1/(2 log |q |)

)−1) /
ln
2
2. (14)

Here for simplicity we assume д = 1 for PBF-1. For д > 1, the

2 log |q | term becomes (2 log |q/д | + д − 1).

Proof. We construct the auxiliary structure S as described in

Definition C.1. Since S is actually a classic bloom filter, its false

positive rate for a single query can be derived by Equation 3, which

is 2
− ln 2 m

n logT
. Therefore, the false positive rate for S to answer

q is at most (note that a tmt-query q is decomposed into at most

2 log |q | queries into PBF-1 or PBF-2):

1 −

(
1 − 2

− ln 2 m
n logT

)
2 log |q |

= p. (15)

Rearranging this equation will lead to Equation 14. By Lemma C.2,

this gives an upper bound for the space cost of P. □

C.2 Impact of time granularity
Time granularity affects the number of time instances that PBF-1
and PBF-2 need to deal with. It is possible that in certain applica-

tions, raw timestamps can be as small as a microsecond. But often

times, we don’t necessarily need such a high resolution for queries.

Next, we study the tradeoff between the time granularity and the

number of bits needed for a desirable false positive rate.

For a PBF, using 2x granularity (i.e., split each time unit into

two) is equivalent to enlarge the time upper bound from T to 2T ,
while keeping the same number of insertions. Furthermore, a query

q = (x , [s, e]) for the original granularity will be mapped to q′ =
(x , [2s, 2e]) under the 2x granularity, and its length doubles.

We can formally analyze the impact to false positive rates of

PBF-1 and PBF-2 by Equation 14. Clearly, the number of distinct

pairs n is unchanged. The change in the log |q | term is small (in-

crease by 1 under 2x granularity even in the worst case analysis),

so we can ignore its effect for simplicity. As a result, the number of

bitsm grows at roughly O (logT). Remember that this valuem is

an upper bound on number of bits needed to achieve a desirable

false positive rate p. Therefore, the space cost grows at most loga-

rithmically when using a finer granularity (e.g., the logT term in

Equation 14 becomes log 2T).

C.3 Impact of time upper bound
We are also interested in how many bits we have to use for a time

span T , in order to achieve a desirable false positive rate p.
Again, by looking at Equation 14, the space cost grows at roughly

O (T logT), assuming in the general case that n = O (T) (i.e., there
is at least one pair arriving at each time instance so that the distinct

number of pairs grows over time). In practice, the time upper bound

is unlikely to be extremely large (say larger than 2
64
). Therefore,

this growth rate is just slightly greater than linear growth in most

cases. Note that this is an upper bound, and the actual number of

bits needed grows only linearly as T (and hence n) grows in order

to maintain a stable false positive rate, as shown in Section D.1.

In fact, linear increase ofm is required to maintain a good false

positive rate while T (and hence n) grows. Assume that there is a

structure that only requires a sub-linear growth ofm while keeping

a stable false positive rate, then the information encoded in each bit

(i.e. the compression ratio) grows super-linearly, and finally reaches

infinity when T is large enough. That’s clearly impossible.

This also implies that in streaming setting where the time upper

bound is potentially unbounded, we have to choose an appropriate

time upper bound T to maintain a desirable error (false positive)

rate with reasonable space cost. But this is true for any other proba-

bilistic data structures designed for streaming settings. For example,

if we use a bloom filter with fixed number of bits for an unbounded

stream, its performance deteriorates when the stream grows and

inserts increasingly more distinct number of elements.

D ADDITIONAL EXPERIMENTAL RESULTS
D.1 Scalability of accuracy-space tradeoff
In our earlier experiments, we’ve assumed that the time granularity

is 1 second and the time span is one day (T ≤ 86400 in seconds).

Next, we will investigate the impacts of the time granularity and

the time upper bound. In particular, we want to understand the

accuracy-space tradeoff as finer time granularity are used or the

time span has increased to very large values.

That said, we experimented with the Network dataset and set

the target false positive rate to 5%. Other parameters are set to the

default values in Table 3 unless otherwise specified.

We first show what happens when we pick a finer time granular-

ity. In this experiment, we refine the time granularity by randomly

mapping a timestamp to a value in the corresponding finer time

range (e.g., map 1s to a random value in [1000ms, 2000ms) if we use
ms instead of s as the time granularity). The finest granularity we

use in this experiment is 1ms .
Figure 15(a) shows the impact of time granularity. As shown in

Appendix C.2, the bits needed to maintain a desirable, stable false

positive rate for all PBFs grow in a sub-logarithmic speed.

Next, we discuss the case for larger time span (time upper bound)

T . We enlarge T by duplicating the dataset for up to 7 times, and

tested how many bits we have to use in order to maintain roughly

the same false positive rate. The trend is shown in Figure 15(b). As

discussed in Appendix C.3, we showed that all PBFs will have, in

the worst case, at most T logT growth of bits with T . Figure 15(b)
indicates that in practice we only need a roughly linear growth on

the number of required bits as T (and hence n) increases.
Lastly, as we have already pointed out above, the accuracy of

many probabilistic data structures depends on the length of the

stream when used in a streaming setting (or more accurately, de-

pending on certain properties of the stream which often change

as the stream grows, e.g., distinct number of elements). More bits

are needed if a desirable accuracy is required as the underlying

stream grows indefinitely. For example, consider a standard bloom

filter. When it is used in a streaming setting, as the stream grows,

there will be increasingly more distinct number of elements being

inserted into the bloom filter and its false positive rate will start to

increase unless more bits are used.

D.2 Efficiency under different workloads
We next study the overall efficiency of PBFs with different work-

loads. In this experiment, we fix the number of operations (insertion

 0

 5x107

 1x108

 1.5x108

 2x108

 2.5x108

10-0 10-1 10-2 10-3

Nu
m

be
r o

f b
its

 re
qu

ire
d

Time granularity (s)

0
1-online
2-online

1-opt
2-opt

(a) Finer granularity.

 0

 2x108

 4x108

 6x108

 8x108

 1x109

1T 2T 3T 4T 5T 6T 7T

Nu
m

be
r o

f b
its

 re
qu

ire
d

Upper bound of time range (T=86400)

0
1-online
2-online

1-opt
2-opt

(b) Larger time span.

Figure 15: Scalability tests for space-accuracy tradeoff.

or query) to be 1million, and all other parameters (e.g., query length,

time upper bound, etc.) to be the default parameter values in Table

3. We then gradually increase the ratio of query operation.

We test the throughput on SBF, basic PBFs and online PBFs.

Figure 16 shows that the throughput of PBF-1 and PBF-2 drops,

whereas the throughput of SBF increases, when the percentage

of insertion (query) operations in a workload increases (drops).

The performances of SBF and PBFs reach a tie when the ratio of

insertions increase to about 40% for the base case of PBFs, and

when the ratio of insertions increase to 70% for online PBFs. In the

extreme case that all operations are insertions, the PBFs only have

throughput 1/17 of the SBF (because for each insertion in SBF it

takes �1 + log(86400)� = 17 insertions for PBF). However, when

the ratio of query operations is higher than this point (i.e., more

than 60% query operations for the base PBFs and more than 30%

query operations for the online PBFs respectively), the throughput

of PBFs raises dramatically and outperforms SBF significantly. The

online PBFs are more efficient than their base cases, which confirms

our earlier analysis. Note that we expect that having more than

30% query operations is fairly common in real workloads.
β β β

(a) Base case.

• • •

(b) Online case.

Figure 16: Throughput of β0, β1, β2, β1-online, β2-online: ra-
tio of insertion and query operations changes in aworkload.

D.3 Impact of merging

As mentioned in Section 6, when being used in a streaming ap-

plication, as time continues to grow and in the rare case where

a tight space budget is to be observed at all time, we might have

to merge two PBFs that correspond to two neighboring partitions

(on the time dimension; see Figure 6) to stay within a given space

budget. This is a rare operation due to the fact that PBFs are highly

effective with small number of bits for a relatively large temporal

range, thus, maintaining multiple PBFs over temporal partitions

is not likely to lead to a large memory footprint. And even if over

a long period of time this results in too many PBFs, we can often

“retire” PBFs for partitions from remote history, by writing them

back to disk, as they are unlikely to be queried for.

In fact, the same argument goes for the classic bloom filter. When

a bloom filter is used in a streaming fashion, it rarely needs a merge

������������	
�

�����������	
�

(a) EDGAR.

������������	
�

�����������	
�

(b) Network.

Figure 17: Impacts of merging two neighboring PBFs: T =
32, 768 for each temporal partition before the merge; T =
65, 536 for the partition after the merge;m = 5 × 107.
operation. And the same partition idea can be applied if needed.

We discussed how to merge two PBFs if needed in Section 6,

and investigate the impact of merging next. We carried out this

experiment with two neighboring temporal partitions, each with

a temporal length T = 32, 768, on both EDGAR and Network data

sets. In other words, after the merge, there is one partition left with

a temporal range length T = 65, 536.

We are interested to understand the impact of the merge oper-

ation to the effectiveness of the underlying PBFs, i.e., how their

false positive rates are influenced by the merge. Figure 17 shows

the results of this experiment, where we used the default number

of bits (m = 5 × 107) for the online optimization versions of PBF-1

and PBF-2 (β1-online and β2-online, respectively).
Both PBF-1 and PBF-2 suffer a clear loss of accuracy due to the

merge operation as indicated in Figure 17: their false positive rates

are clearly higher than that of before merging on both data sets.

Nevertheless, the good news is that they are still highly effective

even after the merging operation. As shown in Figure 17, their false

positive rates are still less than 0.20% and 0.06% for β1-online and
β2-online respectively on EDGAR, and less than 0.15% and 0.08%

for β1-online and β2-online respectively on Network.

D.4 Bits allocation cost

Finally, we investigate the efficiency of optimizing PBF-1 and PBF-2,

i.e., what is the cost of doing bits allocation for PBF-1 and PBF-2

respectively. As discussed in Section 4.2, a disadvantage of PBF-1 is

that it uses O (T) number of bloom filters. As a result, its optimiza-

tion cost is much more expensive than that of PBF-2.

Figure 18 shows their optimization execution time using the

EDGAR dataset with default parameters. While PBF-1 takes about

0.1s to execute the bits allocation, PBF-2 takes only 100μs . Further-
more, the execution time of PBF-1 grows quickly whenT increases,

while that for PBF-2 remains roughly stable (logarithmic to T).

• •

Figure 18: Optimization execution time of β1-online, β2-online.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 An Overview of Bloom Filter
	2.2 Frequently Used Notations

	3 Baseline
	3.1 Naive Approach Using a Single Bloom Filter
	3.2 Using a Persistent Sketch
	3.3 Other Baselines

	4 Persistent Bloom Filter
	4.1 PBF-1
	4.2 PBF-2

	5 Analysis and Optimization
	5.1 PBF-1
	5.2 PBF-2
	5.3 Space-accuracy tradeoff

	6 Extension
	7 Experiment
	7.1 Effectiveness Analysis
	7.2 Efficiency Analysis
	7.3 Additional results

	8 Related Work
	9 Conclusion
	References
	Acknowledgments
	A Other alternatives
	A.1 Using a Persistent Binary Search Tree
	A.2 Using a Multiversion Bloom Filter

	B Proofs
	B.1 Proof of Theorem 5.1
	B.2 Proof of Theorem 5.2
	B.3 Proof of Theorem 5.3
	B.4 Proof of Theorem 5.4

	C Space-accuracy tradeoff
	C.1 Space-false positive rate tradeoff
	C.2 Impact of time granularity
	C.3 Impact of time upper bound

	D Additional Experimental Results
	D.1 Scalability of accuracy-space tradeoff
	D.2 Efficiency under different workloads
	D.3 Impact of merging
	D.4 Bits allocation cost

