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Abstract— In this paper, we consider input-output properties
of linear systems consisting of PDEs on a finite domain coupled
with ODEs through the boundary conditions of the PDE. This
framework can be used to represent e.g. a lumped mass fixed
to a beam or a system with delay. This work generalizes the
sufficiency proof of the KYP Lemma for ODEs to coupled
ODE-PDE systems using a recently developed concept of
fundamental state and the associated boundary-condition-free
representation. The conditions of the generalized KYP are
tested using the PQRS positive matrix parameterization of
operators resulting in a finite-dimensional LMI, feasibility of
which implies prima facie provable passivity or L2-gain of
the system. No discretization or approximation is involved at
any step and we use numerical examples to demonstrate that
the bounds obtained are not conservative in any significant
sense and that computational complexity is lower than existing
methods involving finite-dimensional projection of PDEs.

I. INTRODUCTION

Partial Differential Equations (PDEs) model systems with
states which vary not only with time, but with respect to some
additional independent parameter or parameters. Examples
include: beam models, where the states are deflection and
rotation; chemical reaction networks, where states are species
concentrations; fluid flow, where the state can be velocity
or pressure; and time-delay systems, where the state is the
history of a finite-dimensional process. By contrast, Ordinary
Differential Equations (ODEs) model systems whose states
only depend on time, with common examples derived from
rigid-body motion or RLC circuits.

Occasionally, we find systems where the dynamics of
a PDE with distributed state are coupled to a system of
ODEs - often at the boundary of the domain. This can occur
naturally, such as in the case of, e.g.; an aircraft, where a
rigid fuselage (ODE) is fixed to the root of a flexible wing
(PDE); or in a time-delay system, where ODE state feeds
directly into the distributed state (history); fluid flow over
an accelerating mass [1]; and heat-exchange devices [2]. In
other cases, the ODE-PDE coupling is the result of attempts
to design ODE controllers to stabilize a PDE process - such
as in the well-developed Port-Hamiltonian framework [3].
Furthermore, such systems have vector-valued distributed
states, representing, e.g. temperature and flow velocities,
displacement of flexible structures attached to rigid bodies
or concentration of chemical subspecies.
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In this paper, we consider a general class of vector-valued
linear PDE systems whose internal dynamics are of the form




ż1

ż2

ż3



 (s, t) = A0(s)





z1

z2

z3



 (s, t) +A1(s)∂s

[
z2

z3

]

(s, t)

+A2(s)∂
2
sz3(s, t), z(s, 0) = 0; (1)

coupled at the boundary using

Bzb(t) = B1x(t)

zb(t) = col
(

z2(a, t), z2(b, t), z3(a, t), z3(b, t), ∂sz3(a, t), ∂sz3(b, t))

with a linear ODE system

ẋ(t) = Ax(t) +B2zb(t), x(0) = 0,

where x(t) ∈ R
nx is the ODE state and zi(s, t) ∈ R

ni

are the distributed states. Here A is a matrix and A0, A1,
A2 are matrix-valued functions. We assume B has row rank
n2 + 2n3. The difficulty in analyzing systems of this form
is that the boundary conditions (and hence ODE state) do
not appear explicitly in the dynamics of the PDE part of the
system.

Illustrative Example To illustrate this framework, we use
the example of a string coupled with an ODE; see [4]. The
dynamics of the system can be written as

ẅ(s, t) = cwss(s, t),

ẋ(t) = Ax(t) +Bw(1, t),

w(0, t) = Kx(t), ws(1, t) = −c0ẇ(1, t), (2)

where w(s, t) is transverse displacement of the string and x

is the ODE state. These equations may be rewritten in the
proposed form as

[
ż1

ż3

]

(s, t) =

A0(s)
︷ ︸︸ ︷
[
0 0
1 0

] [
z1

z3

]

(s, t) +

A2(s)
︷︸︸︷
[
c

0

]
∂2

∂s2
z3(s, t)

ẋ(t) = Ax(t) +Bz3(1, t),

z3(0, t) = Kx(t), z3s(1, t) = −c0z1(1, t)

where z1 = ẇ and z3 = w.
Analysis of coupled ODE-PDE Systems We propose an

algorithm to determine input-output properties of systems
of the Form (1). Specifically, if we define inputs w(t) and
outputs y(t) (See Equation 6) then we propose algorithms:

1) L2 Gain: To find the smallest γ such that ‖y‖L2
≤

γ ‖w‖L2
for all w ∈ L2 and

2) Passivity: To verify 〈y, w〉L2
≥ 0 for all w ∈ L2,

assuming dimensions of inputs and outputs are equal.
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In this paper we present a computationally scalable LMI-
based algorithms to prove passivity and minimize a bound
on L2 gain for systems in the form of (1). The class
of systems includes linear ODEs coupled with the PDEs
of parabolic, elliptic and hyperbolic type with Dirichlet,
Neumann and mixed boundary conditions. The primary
technical difficulty in analysis of coupled ODE-PDE systems
is that the coupling occurs through the boundary conditions.
Boundary conditions constitute implicit constraints on the
state of the PDE and are not directly represented in the
differential form of Eqn. (1). Furthermore, the effect of
the PDE state on the ODE state is not bounded as the
input to the ODE state is a single unmeasurable point of
a larger distributed state. These limitations preclude obvious
approaches such as construction of a Lyapunov functionals
which depends on the joint ODE-PDE state (See earlier work
in [5], [6], [7], [8]). Our solution to this problem is based
on an alternative boundary-condition-free representation of
the dynamics using a fundmantal state, xf , as proposed
in [9] (See Section VI). In this representation, the effect
of the boundary conditions is directly represented in the
dynamics of the PDE state, which is defined by a bounded
operator. Furthermore, the effect of the boundary on the ODE
state is directly represented using a bounded operator on
the fundamental state of the PDE. As a result, the KYP
and Positive Real (PR) lemmas may be generalized to the
dynamics of the ODE-PDE system by abstracting the original
matrices to bounded operators(See Section III).

Given our boundary-free representation of the conditions
of the KYP and PR lemmas, we parameterize the operator
variables in these conditions using the PQRS framework
(2.1). This framework uses matrices and matrix-valued poly-
nomials to parameterize operators on R

m×Ln
2 and enforces

positivity of such operators using LMI constraints on the
matrices and polynomial coefficients. This PQRS framework
is used to parameterize both the variables and the system
matrices. Then, giving an algorithm for composition and
transpose of PQRS operators, we are able to succinctly
summarize the resulting LMI conditions in Theorems 4
and 5. Numerical examples are then used in Section VIII to
show that the resulting L2-gain bounds are not conservative
in any significant sense.

Existing methods for analysis of coupled ODE-PDE sys-
tems involve approximating the PDE by a finite-set of
ODEs using reduced basis methods, discretization, or other
finite-dimensional projection methods [10], [11]. However,
approximating a distributed state by a finite set of states
often leads to large number of state variables. Furthermore,
finite-dimensional projection of PDE may change system
properties such as passivity, reachability, observability or
stability. Consequently, the properties proven for the ODE
approximation of a PDE are not provable for the PDE
directly - requiring a posteriori tests to bound the errors that
occur due to truncation. Methods for bounding the truncation
error typically depend on method of discretization and may
involve significant conservatism.

Other techniques, such as backstepping method [12], [13],
[14], [15] and sliding mode control method [16], [17], rely
on the use of predetermined Lyapunov functional which is
chosen in an ad hoc manner. Other methods, such as [5], [6],
[7], [8] use LMIs to search over a given set of Lyapunov
functionals. However, these methods are largely restricted
to scalar or vector-valued PDE systems with a specific
choice of boundary conditions and are not applicable to
coupled ODE-PDE systems with a general form of boundary
conditions. Finally, [18] considered input-output analysis of
vector-valued linear PDEs (with no ODE coupling). Note
that coupled ODE-PDE systems can NOT be posed (even
inefficiently) as a special case of the vector-valued PDE
framework.

II. NOTATION

S
m ⊂ R

m×m is the set symmetric matrices. For a normed
space X , define Ln

2 [X] as the Hilbert space of square
integrable R

n-valued functions on X with inner product
〈x, y〉L2

=
∫ b

a
x(s)⊤y(s)ds. The Sobolov spaces are denoted

W q,n[X] := {x ∈ Ln
2 [X] | ∂kx

∂sk
∈ Ln

2 [X] for all k ≤ q}
with the standard Sobolev inner products. For a given inner
product space, Z, the operatorP : Z → Z is positive
semidefinite (denoted P < 0) if 〈z,Pz〉Z ≥ 0 for all z ∈ Z.
Furthermore, we say P : Z → Z is coercive if there exists
some ǫ > 0 such that 〈z,Pz〉Z ≥ ǫ‖z‖2Z for all z ∈ Z.
L(X,Y ) is the set of bounded linear operators from X → Y

where L(X) = L(X,X). We use font as a pedagogical aid,
where typically x indicates x ∈ R

n, x indicates x ∈ Ln
2 [X]

and x̄ indicates x̄ ∈ R
m × Ln

2 [X] where m and n are clear
from context. Likewise, for operators, A typically indicates
A ∈ L(Rn) is a matrix, A indicates A ∈ L(L2[X]) and
Ā indicates Ā ∈ L(Rm × Ln

2 [X]) (or some variation). The
partial derivative ∂

∂s
x is denoted as xs.

III. I/O PROPERTIES OF A ABSTRACT DPS

Before we present our formulation of the coupled ODE-
PDE system, we recall sufficient conditions for Passivity and
L2-gain of an abstract Distributed Parameter System (DPS)
of the form

x̄t(t) = Āx̄(t) + B̄w(t)

y(t) = C̄x̄(t) +Dw(t), x̄(0) = 0, (3)

where, x̄(t) ∈ X is the state, y(t) ∈ R
ny is the output,

w(t) ∈ R
nw is the exogenous input to the system, and Ā :

X → Z, B̄ : Rnw → Z, C̄ : X → R
ny and D ∈ R

nz×nw

are linear operators.

Theorem 1. Suppose there exists a coercive, self-adjoint
linear operator P : Z → Z and γ > 0 such that

〈
z,PĀz

〉

Z
+

〈
Āz,Pz

〉

Z
+

〈
z,PB̄w

〉

Z

+
〈
B̄w,Pz

〉

Z
≤ γ2 ‖w‖

2
−

∥
∥C̄z

∥
∥
2
− (C̄z)⊤(Dw)

− (Dw)⊤(C̄z)− (Dw)⊤(Dw) (4)

for all z ∈ X and w ∈ R
m. Then for any w ∈ Lm

2 ([0,∞))
and y ∈ L

q
2([0,∞)) which satisfy (3) for some x̄, ‖y‖L2

≤
γ‖w‖L2

.
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Theorem 2. Suppose there exists a coercive, self-adjoint
linear operator P : Z → Z such that

〈
z,PĀz

〉

Z
+
〈
Āz,Pz

〉

Z
+
〈
z,PB̄u

〉

Z
+
〈
B̄u,Pz

〉

Z

≤ (C̄z)⊤u+ u⊤(C̄z) + (Du)⊤u+ u⊤(Du). (5)

for all z ∈ X and w ∈ R
m. Then for any w ∈

Lm
2 ([0,∞)) and y ∈ Lm

2 ([0,∞)) which satisfy (3) for some
x̄, 〈w, y〉L2

≥ 0.

IV. OPERATOR REPRESENTATION OF COUPLED

ODE-PDE SYSTEMS

Our generalized formulation for coupled linear ODE-PDE
systems consists of a set of ordinary differential equations
and a set of partial differential equations coupled either at
the boundary or in-domain.

For some suitably differentiable functions x : R+ → R
nx

and zi : R×R
+ → R

ni , we represent the internal dynamics
of the system, for input w(t) ∈ R

nw and output y(t) ∈ R
ny ,

as

ẋ(t) = Ax(t) +



E





z1

z2

z3







 (t) +Bwow(t)





ż1

ż2

ż3



 (s, t) = A0(s)





z1

z2

z3



 (s, t) +A1(s)

[
z2s

z3s

]

(s, t)

+A2(s)z3ss(s, t) + E(s)x(t) +Bwp(s)w(t)

y(t) = Cx(t) +



C





z1

z2

z3







 (t) +Dww(t),

Czp := C1zb +

b∫

a

(

Ca(s)





z1(s)
z2(s)
z3(s)



+ Cb(s)

[
z2s(s)
z3s(s)

])

ds,

Ezp := E1zb +

b∫

a

(

Ea(s)





z1(s)
z2(s)
z3(s)



+ Eb(s)

[
z2s(s)
z3s(s)

])

ds,

(6)

where w ∈ Lnw

2 and y ∈ L
ny

2 . For Z := Ln1

2 ×
W 1,n2 × W 2,n3 and nz := n1 + n2 + n3, the system
can be represented by constant matrices A,C,Bwo, Dw and
matrix valued polynomials A0, A1, A2, Bwp, E . For linear
operators E : Z → R

nx , C : Z → R
ny , Ca, Ea, Cb, Eb are

matrix-valued polynomials and C1, E1 are constant matrices
of appropriate sizes. This parametric form of C of combines
boundary valued/distributed output of the state zp.

For the distributed state, zi, the boundary conditions are
represented in the form

Bzb(t) = B1x(t) +B2w(t)

where B, B1 and B2 are matrices of suitable dimensions,
zb = col

(
z2(a), z2(b), z3(a), z3(b), z3s(a), z3s(b)

)
. Note, B

should have a row rank of n2+2n3 for (6) to have a unique
solution. The matrices B1 and B2 represent the coupling
with the ODE and disturbance at the boundary, respectively.

We can write this system in the form of (3) as
[
ẋ

żp

]

(t) = Ā

[
x

zp

]

(t) + B̄w(t),

y(t) = C̄

[
x

zp

]

(t) + D̄w(t), (7)

where zp = col(z1, z2, z3). Linear operators Ā : Rnx ×Z →
R

nx × Lnz

2 , B̄ : Rnw → R
nx × Lnz

2 , C̄ : Rnx × Z → R
ny

and D̄ : Rnw → R
ny are defined as

(

Ā

[
x

zp

])

(s) =

[
Ax+ (Ezp)(s)

E(s)x+ (Azp)(s)

]

, D̄w = Dww,

(B̄w)(s) =

[
Bwow

Bws(s)w

]

,

(

C̄

[
x

zp

])

= Cx+ (Czp),

(8)

where

(Azp)(s) :=

A0(s)





z1(s)
z2(s)
z3(s)



+A1(s)

[
z2s(s)
z3s(s)

]

+A2(s)z3ss(s).

Notation: The domain of system (7) is

DĀ :={col(x, zp) ∈ X : B zb = B1x(t) +B2w(t)} (9)

where X := R
nx ×Ln1

2 [a, b]×W 1,n2 [a, b]×W 2,n3 [a, b]. For[
u

v

]

,

[
x

y

]

∈ X , we define the inner product as

〈[
x

y

]

,

[
u

v

]〉

X

:= x⊤u+
〈
y,v

〉

L
nz
2

[a,b]
,

and norm as
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[
x

y

]
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

X

=|| x ||2
Rnx + || y ||2Lnz

2
[a,b] .

Example 1. Consider

ẋ(t) = −x(t) + x(t− τ) + d(t), y(t) = x(t),

x(s) = 0 s ∈ [−τ, 0].

This can be written as an ODE coupled with a PDE as
follows.

ẋ(t) = −x(t) + z(0, t) + d(t), y(t) = x(t),

ż(s, t) =
1

τ
zs(s, t), z(1, t) = x(t), z(s, 0) = 0.

This is written in the form of (1) using following matrices.

B = [0 1], B1 = 1, A = −1, Bwo = 1,

A0(s) = 0, A1(s) = 1, A2(s) = 0, C = 1, E1 = [1 0].

All other matrices are zero.
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V. THE PQRS PARAMETRIZATION OF OPERATOR

Using Theorems 1 and 2, it is possible to express a bound
on L2-gain (or test for passivity) as a test for existence of
a coercive, linear operator P that satisfies the corresponding
operator inequalities in the Theorem statements. We convert
operator valued inequality constraints to a set of LMIs, by
using matrix valued functions to parameterize an operator on
R× L2. This PQRS parametric form is described below.

Definition 2.1. For a matrix P ∈ R
n×m, and bounded

polynomial functions Q1 : [a, b] → R
n×q , Q2 : [a, b] →

R
r×m, S : [a, b] → R

r×q , and R1, R2 : [a, b] × [a, b] →
R

r×q , we define the operator P
{

P,Q1, Q2

S,R1, R2

}
: Rm×L

q
2[a, b] →

R
n × Lr

2[a, b] as
(

P
{

P,Q1, Q2

S,R1, R2

}
[
x

z

])

(s) := (10)
[

Px+
∫ b

a
Q1(s)z(s)ds

Q2(s)x+ S(s)z(s) +
∫ s

a
R1(sθ)z(θ)dθ +

∫ b

s
R2(s, θ)z(θ)dθ

]

.

The generalization of KYP and PR Lemmas using abstract
DPS form leads to operations, such as composition and
adjoint of bounded operators. Hence, we revisit the results
related to composition and transpose of PQRS operator;
refer [19]. These results are used to convert the operator-
valued inequalities, in Theorems 1 and 2, to a PQRS operator
positivity constraint that can be enforced using LMIs. First
we present sufficient conditions for the positivity of a self-
adjoint PQRS operator. Next, we provide the equations
to find adjoint of a PQRS operator in Lemma 3.2 and
composition of two PQRS operators in Lemma 3.1.

A. P
{

P,Q,Q⊤

S,R1, R2

}
Positivity

Theorem 3. For any functions Z1 : [a, b] → R
d1×n, Z2 :

[a, b]× [a, b] → R
d2×n, if g(s) ≥ 0 for all s ∈ [a, b] and

P = T11

∫ b

a

g(s)ds,

Q(η) = g(s)T12Z1(η) +

∫ b

η

g(s)T13Z2(s, η)ds

+

∫ η

a

g(s)T14Z2(s, η)ds,

R1(s, η) = g(s)Z1(s)
⊤
T23Z2(s, η) + g(η)Z2(η, s)

⊤
T42Z1(η)

+

∫ b

s

g(θ)Z2(θ, s)
⊤
T33Z2(θ, η)dθ

+

∫ s

η

g(θ)Z2(θ, s)
⊤
T43Z2(θ, η)dθ

+

∫ η

a

g(θ)Z2(θ, s)
⊤
T44Z2(θ, η)dθ,

R2(s, η) = g(s)Z1(s)
⊤
T32Z2(s, η) + g(η)Z2(η, s)

⊤
T24Z1(η)

+

∫ b

η

g(θ)Z2(θ, s)
⊤
T33Z2(θ, η)dθ

+

∫ η

s

g(θ)Z2(θ, s)
⊤
T34Z2(θ, η)dθ

+

∫ s

a

g(θ)Z2(θ, s)
⊤
T44Z2(θ, η)dθ,

S(s) = g(s)Z1(s)
⊤
T22Z1(s). (11)

where

T =







T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44






< 0,

then the operator P
{

P,Q,Q⊤

S,R1, R2

}
as defined in (10) is positive,

i.e. P
{

P,Q,Q⊤

S,R1, R2

}
< 0.

Proof. The proof can be found in [18].

For convenience, we define the following set.

Φd := {
{

P,Q,Q⊤

S,R1, R2

}
:

{
P,Q,Q⊤

S,R1, R2

}
=

{
Pa,Qa,Q⊤

a
Sa,R1a,R2a

}

+
{

Pb,Qb,Q
⊤

b
Sb, R1b, R2b

}

, where

(Pa, Qa, Sa, R1a, R2a) and (Pb, Qb, Sb, R1b, R2b)

satisfy the conditions of Thm.3 with Z1 = Zd and

where g(s) = 1 and g(s) = (s− a)(b− s), resp.}

B. P
{

P,Q1, Q2

S,R1, R2

}
composition

Lemma 3.1. Suppose A,P ∈ R
m×m are matrices and

B1, Q1 : [a, b] → R
m×n, B2, Q2 : [a, b] → R

n×m,
D,S : [a, b] → R

n×n, Ci, Ri : [a, b] × [a, b] → R
n×n are

bounded functions for i ∈ {1, 2}. Then for any x ∈ R
m and

z ∈ Ln
2 ([a, b]), we have

P
{

P̂ , Q̂1, Q̂2

Ŝ, R̂1, R̂2

}
[
x

z

]

= P
{

A,B1, B2

D,C1, C2

}
P
{

P,Q1, Q2

S,R1, R2

}
[
x

z

]

where

P̂ = AP +

∫ b

a

B1(s)Q2(s)ds,

Q̂1(s) = AQ1(s) +B1(s)S(s) +

∫ b

s

B1(η)R1(η, s)dη

+

∫ s

a

B1(η)R2(η, s)dη,

Q̂2(s) = B2(s)P +D(s)Q2(s) +

∫ s

a

C1(s, η)Q2(η)dη

+

∫ b

s

C2(s, η)Q2(η)dη,

Ŝ(s) = D(s)S(s),

R̂1(s, η) = B2(s)Q1(η) +D(s)R1(s, η) + C1(s, η)S(η)

+

∫ η

a

C1(s, θ)R2(θ, η)dθ +
∫ s

η

C1(s, θ)R1(θ, η)dθ

+

∫ b

s

C2(s, θ)R1(θ, θ)dθ,

R̂2(s, η) = B2(s)Q1(η) +D(s)R2(s, η) + C2(s, η)S(η)

+

∫ s

a

C1(s, θ)R2(θ, η)dθ +
∫ η

s

C2(s, θ)R2(θ, η)dθ

+

∫ b

η

C2(s, θ)R1(θ, η)dθ. (12)

C. P
{

P,Q1, Q2

S,R1, R2

}
adjoint

Lemma 3.2. Suppose P ∈ R
m×m is a matrix and Q1 :

[a, b] → R
m×n, Q2 : [a, b] → R

n×m, S : [a, b] → R
n×n,
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R1, R2 : [a, b]× [a, b] → R
n×n are bounded functions. Then

for any x̄, ȳ ∈ R
m × Ln

2 [a, b], we have
〈

P
{

P̂ , Q̂1, Q̂2

Ŝ, R̂1, R̂2

}
x̄, ȳ

〉

=
〈

x̄,P
{

P,Q1, Q2

S,R1, R2

}
ȳ

〉

,

where

P̂ = P⊤, Ŝ(s) = S(s)⊤,

Q̂1(s) = Q2(s)
⊤, R̂1(s, η) = R2(η, s)

⊤,

Q̂2(s) = Q1(s)
⊤, R̂2(s, η) = R1(η, s)

⊤. (13)

Proof for Lemmas 3.2 and 3.1 can be found in [19] arXiV
version.
Notation: We say,

1)







P̂ , Q̂1, Q̂2

Ŝ, R̂1, R̂2







=







A,B1, B2

D,C1, C2







×







P,Q1, Q2

S,R1, R2







if functions {P̂ , Q̂1, Q̂2, Ŝ, R̂1, R̂2} satisfy (12).

2)







P̂ , Q̂1, Q̂2

Ŝ, R̂1, R̂2







=







P,Q1, Q2

S,R1, R2







∗

if functions {P̂ , Q̂1, Q̂2, Ŝ, R̂1, R̂2} satisfy (13).

VI. REPRESENTATION OF THE DYNAMICS IN THE

FUNDAMENTAL STATE

In this section, we express primal states zp, as a linear
transformation of fundamental states, zf . This transformation
directly embeds boundary conditions into the dynamics of the
system and can be represented as a bounded PQRS operator
on R

nw+nx × Lnz

2 . Likewise, the operators Ā, B̄, C̄ and D̄
as defined in (7) can be represented by some bounded PQRS
operator on R

nw+nx × Lnz

2 .

Lemma 3.3. Suppose w ∈ R
nw , x ∈ R

nx , col(z1, z2, z3) ∈
Ln1

2 ×W 1,n2 ×W 2,n3 satisfying

B
[
z2(a) z2(b) z3(a) z3(b) z3s(a) z3s(b)

]⊤

= B1x+B2w

where B has a row rank n2 + 2n3. Then, for zf =
col(z1, z2s, z3ss) and wr = col(w, x),





z1

z2

z3



 = P
{

0, 0, H0

G0, G1, G2

}
[
wr

zf

]

,

[
z2s

z3s

]

= P
{

0, 0, H1

G3, G4, G5

}
[
wr

zf

]

,

where

H0(s) = K(s)(BT )−1
[
B2 B1

]
,

H1(s) = V (s)(BT )−1
[
B2 B1

]
,

G0(s) =





I 0 0
0 0 0
0 0 0



 , G3(s) =

[
0 I 0
0 0 0

]

,

G2(s, θ) = −K(s)(BT )−1BQ(s, θ),

G5(s, θ) = −V (s)(BT )−1BQ(s, θ),

G1(s, θ) =





0 0 0
0 I 0
0 0 (s− θ)I



+G2(s, θ),

G4(s, θ) =

[
0 0 0
0 0 I

]

+G5(s, θ),

K(s) =





0 0 0
I 0 0
0 I (s− a)I



 , V (s) =

[
0 0 0
0 0 I

]

T =











I 0 0
I 0 0
0 I 0
0 I (b− a)I
0 0 I

0 0 I











, Q(s, θ) =











0 0 0
0 I 0
0 0 0
0 0 (b− a)I
0 0 0
0 0 I











.

(14)

Lemma 3.3 can be proved by using fundamental theorem
of calculus; refer [20]. Now, clearly, primal state, zp, is
dependent on the boundary conditions and can be directly
embedded into the dynamics.

P
{

P,Q,Q⊤

S,R1, R2

}
notation can also be used to rewrite the

system operators, as defined in (8), in a compact form.

Lemma 3.4. Suppose the operators Ā, B̄, C̄, D̄ are as defined
in (8). For any w ∈ R

nw , x ∈ R
nx , col(z1, z2, z3) ∈ Ln1

2 ×
W 1,n2 ×W 2,n3 such that

B
[
z2(a) z2(b) z3(a) z3(b) z3s(a) z3s(b)

]⊤

= B1x+B2w

where B has a row rank n2 + 2n3, if

zf =





z1

z2s

z3ss



 , zp =





z1

z2

z3



 , wr =

[
w

x

]

,

then

Ā

[
x

zp

]

= P
{

Â0, Â1, Â2

Â3, Â4, Â5

}
[
wr

zf

]

, B̄w = P
{

B̂0, 0, B̂2

0, 0, 0

}
[
wr

zf

]

,

C̄

[
x

zp

]

= P
{

Ĉ0, Ĉ1, 0

0, 0, 0

}
[
wr

zf

]

, D̄w = P
{

D̂0, 0, 0

0, 0, 0

}
[
wr

zf

]

,

w = P
{

I0, 0, 0

0, 0, 0

}
[
wr

zf

]

,

[
x

zp

]

= P
{

I1, 0, H0

G0, G1, G2

}
[
wr

zf

]

, (15)

where






Â0, Â1, Â2

Â3, Â4, Â5







=







0, Ea, 0
A0, 0, 0







×







0, 0, H0

G0, G1, G2







+







0, Eb, 0
A1, 0, 0







×







0, 0, H1

G3, G4, G5







+







E1, 0, 0
0, 0, 0







×







0, 0, 0
T1, T2, T2







+







[0 A], 0, [0 E]
[0 0 A2], 0, 0







,







Ĉ0, Ĉ1, 0
0, 0, 0







=







0, Ca, 0
0, 0, 0







×







0, 0, H0

G0, G1, G2







+







0, Cb, 0
0, 0, 0







×







0, 0, H1

G3, G4, G5







+







C1, 0, 0
0, 0, 0







×







0, 0, 0
T1, T2, T2







+







[0 C], 0, 0
0, 0, 0







,

B̂0 =
[
Bwo 0

]
, B̂2(s) =

[
Bwp(s) 0

]
, D̂0 =

[
Dw 0

]
,

I0 =
[
I 0

]
, I1 =

[
0 I

]
, T1 = T

[
B2 B1

]
,
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T2(s, θ) = T (BT )−1BQ(s, θ) +Q(s, θ).

(16)

Proof. This can be proved using Lemma 3.3

Notation: For convenience, we define the following short-
hand notation, for the operators in Lemma 3.4.

PA := P
{

Â0, Â1, Â2

Â3, Â4, Â5

}
, PB := P

{
B̂0, 0, B̂2

0, 0, 0

}
,

PC := P
{

Ĉ0, Ĉ1, 0

0, 0, 0

}
, PD := P

{
D̂0, 0, 0

0, 0, 0

}
,

PI := P
{

I0, 0, 0

0, 0, 0

}
, P0 := P

{
I1, 0, H0

G0, G1, G2

}
, (17)

Example. For the example in section IV,

ẋ(t) = −
1

τ

∫ 1

0

zs(s, t)ds+ d(t), y(t) = x(t),

ż(s, t) =
1

τ
zs(s, t), z(1, t) = x(t), z(s, 0) = 0,

we can find the matrices defined in Lemma 3.4.

Â0 =
[
0 0

]
, Â1(s) = −

1

τ
, Â2(s) = 0, Â3(s) =

1

τ
,

Â4(s, θ) = 0, Â5(s, θ) = 0, B̂0 =
[
1 0

]
,

B̂2(s) =
[
0 0

]
, Ĉ0 =

[
0 1

]
, Ĉ1(s) = 0, D̂0 =

[
0 0

]
.

For this system, the boundary constraint z(1, t) = x(t) is
directly embedded in the dynamics via Â0 and Â1.

VII. REFORMULATION OF THE LOI FOR A COUPLED

ODE-PDE

Using the PQRS parametric form, the sufficient conditions
in Theorems 1 and 2, which are in the form of operator
feasibility tests, can be posed as LMI constraints. Then, these
constraints can be used to test for passivity or find a bound
on L2 gain of the system (7).

Theorem 4. Suppose there exists ǫ > 0, γ > 0, d1, d2 ∈
Z, matrix P ∈ S

nx , matrix-valued polynomials Q : R →
R

nx×nz , S : R → S
nz , and R1, R2 : R×R → R

nz×nz such
that

{
P − ǫI,Q,Q⊤

S − ǫI, R1, R2

}

∈ Φd1
.

Then for all x̄(t) ∈ X , y ∈ L
ny

2 [0,∞) and w ∈ Lnw

2 [0,∞)
which satisfy (7), if

−

{
J0, J1, J2
J3, J4, J5

}

−

{
J0, J1, J2
J3, J4, J5

}∗

∈ Φd2
,

where






J0, J1, J2
J3, J4, J5







=







K0,K1,K2

K3,K4,K5







×







Â0 + B̂0, Â1, Â2 + B̂2

Â3, Â4, Â5







+
1

2

(





Ĉ⊤
0 Ĉ0, 0, Ĉ

⊤
1 Ĉ0

0, 0, 0







+







D̂⊤
0 D̂0 − γ2I0, 0, 0

0, 0, 0







)

,

+







Ĉ0, Ĉ1, 0
0, 0, 0







∗

×







D̂0, 0, 0
0, 0, 0







,

{
K0,K1,K2

K3,K4,K5

}

=

{
I1, 0, H0

G0, G1, G2

}∗

×

{
P,Q,Q⊤

S,R1, R2

}

Hi, Gi are as defined in Lemma 3.3, Âi, B̂i, Ĉi, D̂i and Ii
are as defined in Lemma 3.4, then ‖y‖L2

≤ γ‖w‖L2
.

Proof. The proof is in the Appendix.

Theorem 5. Suppose there exists ǫ > 0, γ > 0, d1, d2 ∈
Z matrix P ∈ S

nx , matrix-valued polynomials Q : R →
R

nx×nz , S : R → S
nz , and R1, R2 : R×R → R

nz×nz such
that

{
P − ǫI,Q,Q⊤

S − ǫI, R1, R2

}

∈ Φd1
.

Then for all x̄(t) ∈ X , y ∈ L
ny

2 [0,∞) and w ∈ L
ny

2 [0,∞)
which satisfy (7), if

−

{
J0, J1, J2
J3, J4, J5

}

−

{
J0, J1, J2
J3, J4, J5

}∗

∈ Φd2
,

where






J0, J1, J2
J3, J4, J5







=







K0,K1,K2

K3,K4,K5







×







Â0 + B̂0, Â1, Â2 + B̂2

Â3, Â4, Â5







−







(Ĉ0 + D̂0)
⊤I0, 0, Ĉ

⊤
1 I0

0, 0, 0







,







K0,K1,K2

K3,K4,K5







=







I1, 0, H0

G0, G1, G2







∗

×







P,Q,Q⊤

S,R1, R2







,

Hi, Gi are as defined in (14), Âi, B̂i, Ĉi, D̂i and Ii are as
defined in (16), then 〈w, y〉L2

≥ 0.

Proof. The proof is similar to that of Theorem 4, see
Appendix.

VIII. NUMERICAL IMPLEMENTATION AND TESTING

In this section, we validate the accuracy of proposed algo-
rithm. It was implemented in MATLAB using an adaptation
of SOSTOOLS [21]. The code can be found on CodeOcean
(https://codeocean.com/capsule/4730069/ ).

A. Stabilizing Boundary Control of PDEs

Consider the example from [22] stabilized by a backstep-
ping controller at the boundary. The resulting closed-loop
system is as follows.

ẋ(t) = −3x+ w(0, t),

ẇ(s, t) = wss(s, t),

ws(0, t) = 0, w(L, t) = 0

A bound on L2 gain of this closed-loop system, using the
proposed method, was found to be 0.4269 for relatively
low order monomial basis (d=2). On the other hand, the
norm bound obtained through a finite difference method
(approximately 100 discrete elements) had significant error
with a value of 0.5941.
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B. Aircraft wings as flexible beams

Consider a simplified model of an aircraft, in which a
lumped mass is attached to flexible Euler-Bernoulli beams on
either side. The deflection of beam can be used to estimate
the stresses that develop in the beam. Let z represent vertical
displacement of the aircraft, w1 and w2 be the deflection of
the wings and d(t), u(t) disturbances.

z̈(t) = −Fwsss(0, t) + d(t),

ẅ(s, t) = −
EI

µ
wssss + u(t),

w(0, t) = z(t), ws(0, t) = 0, wss(L, t) = 0, wsss(L, t) = 0

where F = [EI EI], w(s, t) =

[
w1

w2

]

(s, t). The use of

variables, x1 = z, x2 = ż, v1 = ẇ and v2 = wss, converts
the system into

[
ẋ1

ẋ2

]

(t) =

[
0 1
0 0

] [
x1

x2

]

(t)−

[
0 0
0 F

] ∫ L

0

v2ss(s, t)ds

+

[
0

d(t)

]

,

[
v̇1
v̇2

]

(s, t) =

[
0 −EI

µ

1 0

] [
v1ss
v2ss

]

(s, t) +

[
u(t)
0

]

.

This is a linear system of ODEs coupled with PDEs at
the boundary for which a bound on L2 gain can be found
using proposed framework. Using v2(L, t) as the output, we
can estimate the shear stresses at the tip in presence of
disturbances. For EI

µ
= 10, the L2 gain was found to be

0.8936.

C. Time-delay systems

We test conservatism of the bounds by comparing our
H∞ norm bound to the method described in [23] for a few
well studied time-delay systems. We use the following three
examples to document the result from numerical tests in
Table I.

C.1: ẋ(t) = −x(t) + x(t− τ) + d(t), y(t) = x(t).
C.2:

ẋ(t) =

[

0 1
−2 0.1

]

x(t) +

[

0 0
1 0

]

x(t− τ) +

[

1 0
0 1

]

w(t),

y(t) =
[

0 1
]

x(t).

C.3:

ẋ(t) =

[

−2 0
0 −0.9

]

x(t) +

[

−1 0
−1 −1

]

x(t− τ) +

[

−0.5
1

]

w(t),

y(t) =
[

1 0
]

x(t).

ODE-PDE framework Method in [23]
C.1 0.8911 0.8920
C.2 2.9366 2.9367
C.3 0.2601 0.2601

TABLE I

COMPARISON OF BOUNDS OBTAINED BY DIFFERENT METHODS FOR

TIME-DELAY SYSTEMS AT DELAY VALUE, τ = 1.

IX. CONCLUSION

In this paper, we propose a method to prove passivity
and obtain bounds for the L2-gain of coupled linear ODE-
PDE systems with disturbances at the boundary or in-domain
distributed using the LMI framework. The method presented
does not use discretization and the properties established
are prima facie provable. Restricting the PQRS operator
to polynomial basis can, in theory, lead to some amount
conservatism. However, the numerical results indicate the
bounds are not conservative in any significant sense.
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APPENDIX

Theorem 4. Suppose there exists ǫ > 0, γ > 0, d1, d2 ∈
Z, matrix P ∈ S

nx , matrix-valued polynomials Q : R →
R

nx×nz , S : R → S
nz , and R1, R2 : R×R → R

nz×nz such
that

{
P − ǫI,Q,Q⊤

S − ǫI, R1, R2

}

∈ Φd1
.

Then for all x̄(t) ∈ X , y ∈ L
ny

2 [0,∞) and w ∈ Lnw

2 [0,∞)
which satisfy (7), if

−

{
J0, J1, J2
J3, J4, J5

}

−

{
J0, J1, J2
J3, J4, J5

}∗

∈ Φd2
,

where






J0, J1, J2
J3, J4, J5







=







K0,K1,K2

K3,K4,K5







×







Â0 + B̂0, Â1, Â2 + B̂2

Â3, Â4, Â5







+
1

2

(





Ĉ⊤
0 Ĉ0, 0, Ĉ

⊤
1 Ĉ0

0, 0, 0







+







D̂⊤
0 D̂0 − γ2I0, 0, 0

0, 0, 0







)

,

+







Ĉ0, Ĉ1, 0
0, 0, 0







∗

×







D̂0, 0, 0
0, 0, 0







,

{
K0,K1,K2

K3,K4,K5

}

=

{
I1, 0, H0

G0, G1, G2

}∗

×

{
P,Q,Q⊤

S,R1, R2

}

Hi, Gi are as defined in Lemma 3.3, Ai, Bi, Ci, Di and Ii
are as defined in Lemma 3.4, then ‖y‖L2

≤ γ‖w‖L2
.

Proof. From Theorem 1, if we can find a self-adjoint,
coercive operator P such that
〈
x̄,PĀx̄

〉

X
+
〈
Āx̄,Px̄

〉

X
+
〈
x̄,PB̄w

〉

X
+
〈
B̄w,Px̄

〉

X

− (γ2w⊤w − (C̄x̄)⊤(C̄x̄)− (C̄x̄)⊤(D̄w)− (D̄w)⊤(C̄x̄)

− (D̄w)⊤(D̄w)) ≤ 0

for all x̄ ∈ X and w ∈ R
nw , then ‖y‖ ≤ γ ‖w‖. Let P =

P
{

P,Q,Q⊤

S,R1, R2

}
. Then

〈[
x

zp

]

,P
{

P,Q,Q⊤

S,R1, R2

}
[
x

zp

]〉

=

〈[
x

zp

]

,P
{

P − ǫI, Q,Q⊤

S − ǫI, R1, R2

}
[
x

zp

]〉

+ ǫ ‖x‖
2
+ ǫ ‖zp‖

2

≥ ǫ ‖x‖
2
+ ǫ ‖zp‖

2
L2

.

P
{

P,Q,Q⊤

S,R1, R2

}
is self-adjoint and coercive. Next, we prove that

〈
x̄,P

{
P,Q,Q⊤

S,R1, R2

}
Āx̄

〉

X
+

〈
Āx̄,P

{
P,Q,Q⊤

S,R1, R2

}
x̄

〉

X

+
〈
x̄,P

{
P,Q,Q⊤

S,R1, R2

}
B̄w

〉

X
+

〈
B̄w,P

{
P,Q,Q⊤

S,R1, R2

}
x̄

〉

X

− (γ2w⊤w − (C̄x̄)⊤(C̄x̄)− (C̄x̄)⊤(D̄w)− (D̄w)⊤(C̄x̄)

− (D̄w)⊤(D̄w) ≤ 0

for all w(t) ∈ R
nw and x̄(t) ∈ X .

Let x̄f = col(w, x, z1, z2s, z3ss). Then from Lemma 3.4
and short-hand defined in (17),
〈
x̄,P

{
P,Q,Q⊤

S,R1, R2

}
Āx̄

〉

X
=

〈
P0

x̄f ,P
{

P,Q,Q⊤

S,R1, R2

}
PA

x̄f

〉

=
〈
x̄f , (P

0)∗P
{

P,Q,Q⊤

S,R1, R2

}
PA

x̄f

〉
.

Similarly,
〈
x̄,P

{
P,Q,Q⊤

S,R1, R2

}
B̄w

〉

X
=

〈
P0

x̄f ,P
{

P,Q,Q⊤

S,R1, R2

}
PB

x̄f

〉

=
〈
x̄f , (P

0)∗P
{

P,Q,Q⊤

S,R1, R2

}
PB

x̄f

〉
,

∥
∥C̄x̄

∥
∥
2
=

(
PC

x̄f

)⊤ (
PC

x̄f

)
=

〈
x̄f , (P

C)∗PC
x̄f

〉
,

(
C̄x̄

)⊤ (
D̄x̄

)
=

(
PC

x̄f

)⊤ (
PD

x̄f

)
=

〈
x̄f , (P

C)∗PD
x̄f

〉
,

(D̄x̄)⊤(D̄x̄) =
(
PD

x̄f

)⊤ (
PD

x̄f

)
=

〈
x̄f , (P

D)∗PD
x̄f

〉
,

and

(w)⊤(w) =
(
PI

x̄f

)⊤ (
PI

x̄f

)
=

〈
x̄f , (P

I)∗PI
x̄f

〉
.

Then
〈
x̄,P

{
P,Q,Q⊤

S,R1, R2

}
Āx̄

〉

X
+

〈
Āx̄,P

{
P,Q,Q⊤

S,R1, R2

}
x̄

〉

X

+
〈
x̄,P

{
P,Q,Q⊤

S,R1, R2

}
B̄w

〉

X
+

〈
B̄w,P

{
P,Q,Q⊤

S,R1, R2

}
x̄

〉

X

− (γ2w⊤w − (C̄x̄)⊤(C̄x̄)− (C̄x̄)⊤(D̄w)− (D̄w)⊤(C̄x̄)

− (D̄w)⊤(D̄w)) = 〈x̄f , ((Peq)
∗ + Peq) x̄f 〉L2

where Peq = P
{

J0, J1, J2

J3, J4, J5

}
. From the Theorem statement,

Peq + P∗
eq 4 0.

Then, all the conditions of Theorem 1 are satisfied. Hence
‖y‖L2

≤ γ‖w‖L2
.
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