
Autonomous Robots manuscript No.
(will be inserted by the editor)

Optimizing Multi-Robot Communication under Bandwidth Constraints

Ryan J. Marcotte · Xipeng Wang · Dhanvin Mehta · Edwin Olson

Received: date / Accepted: date

Abstract Robots working collaboratively can share obser-

vations with others to improve team performance, but com-

munication bandwidth is limited. Recognizing this, an agent

must decide which observations to communicate to best

serve the team. Accurately estimating the value of a single

communication is expensive; finding an optimal combina-

tion of observations to put in the message is intractable.

In this paper, we present OCBC, an algorithm for

Optimizing Communication under Bandwidth Constraints.

OCBC uses forward simulation to evaluate communications

and applies a bandit-based combinatorial optimization algo-

rithm to select what to include in a message. We evaluate

OCBC’s performance in a simulated multi-robot navigation

task. We show that OCBC achieves better task performance

than a state-of-the-art method while communicating up to

an order of magnitude less.

Keywords Communication Decision-Making · Multi-

Robot Systems

1 Introduction

Robots that collaborate on tasks can share information about

their environment, helping their teammates make better de-

cisions. When wireless bandwidth is limited, however, a

robot may not be able to communicate all its observations.

R. Marcotte

E-mail: ryanjmar@umich.edu

X. Wang

E-mail: xipengw@umich.edu

D. Mehta

E-mail: dhanvinm@umich.edu

E. Olson

E-mail: ebolson@umich.edu

How should a robot decide what to communicate when faced

with such a constraint?

Answering this question requires estimating the value of

a proposed communication. A direct approach is to predict

the effect of the message on team reward. However, such

a direct approach is intractable for many standard multi-

agent models. For example, deciding a Dec-MDP or Dec-

POMDP with communication is NEXP-complete (Pynadath

and Tambe 2002; Goldman and Zilberstein 2004). As a con-

sequence, most direct methods are limited to problems with

only a few agents, states, and actions (Roth et al 2005; Carlin

and Zilberstein 2009a,b).

This complexity motivated indirect methods of estimat-

ing communication value. For example, some methods mea-

sure the information content contained in a message and as-

sign high value to information-rich messages (Williamson

et al 2008, 2009). Others track the coherence of the ego-

agent’s internal models of its teammates and communicate

to keep the team’s beliefs consistent (Best et al 2018b; Wu

et al 2011; Roth et al 2005).

In this paper, we present a direct yet tractable method

for reasoning about communication actions. To enable

this tractability, we employ a specialized model of multi-

agent decision-making. This modified Dec-MDP model (c.f.

Becker et al 2004; Unhelkar and Shah 2016) makes assump-

tions that aid in tractability while maintaining fidelity to

real-world problems. It features a deterministic transition

function that is initially unknown to the agents, which cor-

responds to the unknown map in exploration-style robotics

tasks. Furthermore, the model is factored; that is, each agent

makes decisions independently. Factored problems occur

whenever agents collaborate while working on individual

sub-tasks.

These features of the model make it tractable for an

agent to evaluate a communication decision in terms of its

expected effect on reward. Because the model is factored,

2 Ryan J. Marcotte et al.

an agent can compute its action policy independently of

its teammates. Agents can use fast incremental algorithms

(e.g. Koenig and Likhachev 2005) to plan through the state-

action space since the transition function is deterministic.

Quick, independent planning allows an agent to quickly for-

ward simulate the behavior of its teammates. This leads to

a key insight of this paper: fast forward simulations make

it tractable to estimate the effect of a message on team re-

ward. Our first contribution then is a method that uses such

forward simulations to evaluate messages directly in reward

space.

Even once an agent has assigned a value to candidate

messages, it still needs a mechanism for making communi-

cation decisions. Most existing methods (e.g. Wu et al 2011;

Becker et al 2009; Unhelkar and Shah 2016) assume that

the content of a message is static and consists of, for ex-

ample, the agent’s entire observation history. They estimate

the value of this message, then weigh that value against a

fixed communication cost that is part of the problem’s re-

ward structure. Such an approach answers the question of

when the agent should communicate.

To respect practical bandwidth constraints, however, a

robot must reason about what to communicate, a problem

that has received little attention (Roth et al 2006). Consider

for example a scenario in which a robot makes observa-

tions more quickly than the network would support sharing

them. The robot then needs to decide which observations are

worthwhile to send.

Our second contribution addresses this challenge.

Namely, we apply a bandit-based combinatorial optimiza-

tion algorithm (Chen et al 2014) to select observations to

communicate. This algorithm estimates the expected reward

distribution associated with communicating each observa-

tion by repeatedly forward simulating the outcome of mes-

sages containing that observation. It uses these estimates to

build an approximately optimal message.

We call our complete method OCBC (Optimizing Com-

munication under Bandwidth Constraints). We evaluate the

performance of OCBC in a simulated multi-robot navigation

problem. We compare it to a state-of-the-art approach (Un-

helkar and Shah 2016) and show that OCBC achieves better

task performance with less communication.

2 Preliminaries

2.1 Model Formulation and Application

Consider the task of multiple robots navigating in an un-

known environment as illustrated in Figure 1. The robots all

move toward a goal destination, and they observe their envi-

ronment as they travel through it. The robots can share these

observations with their teammates to help them reach the

destination more quickly.

We will use this example task to explain our model for-

mulation.

Agent States

We denote the team of n agents as I = {1, . . . ,n}. At each

time step t ∈ {1, . . . ,T}, agent i is in state si(t)∈ S and takes

action ai(t)∈ A. In our example task, each robot’s state is its

current cell in the map, and its available actions are to move

in any one of the cardinal directions (i.e. A = {N,E,S,W})

Each agent has some goal state sGOAL
i that it tries

to reach, and each agent knows the desired joint goal

state sssGOAL = {sGOAL
1 , . . . ,sGOAL

n }. Each agent i knows its

own state si but cannot directly observe the joint state sss =

{s1, . . . ,sn}. In our example task, this corresponds to the

robot having a reliable localization system that provides its

current location but not having a way to observe the loca-

tions of its teammates.

State Transition Function

The state transition function is deterministic (i.e. P(s,a,s′)∈

{0,1} for s,s′ ∈ S and a ∈ A), which corresponds to a robot

having reliable closed-loop actuation. In this case, the suc-

cess of an action depends only on whether the destination

cell is occupied. Tasks like this have a spatial relationship

between states and actions, giving the transition function

two characteristics we exploit in this paper.

First, a significant portion of the transition function is

trivially zero-valued. Specifically, P(s,a,s′) = 0 for any pair

of states s,s′ that do not correspond to adjacent cells or any

actions a that would not move the robot between the two

cells.

Second, many remaining elements of the transition func-

tion have a well-defined relationship. Specifically, all (non-

trivial) elements transitioning to state s′ are equal in value.

We denote this value as xs′ = P(s,a,s′) ∈ {0,1} for any

state s and action a that would transition the robot to suc-

cessor state s′ if the cell at s′ were unoccupied. This value is

the same for any such state-action pair.

To better understand the spatial structure of the transition

function and the significance of the value xs′ , consider the

following 2×2 grid environment:

0 1

2 3 .

Transition function elements such as P(0, ·,3) are trivially

zero-valued since no single action could move the robot

from cell 0 to cell 3. Likewise, an element such as P(0,W,2)

is trivially zero-valued since the action W cannot move

the robot from cell 0 to cell 2. Of the non-trivial ele-

ments of the transition function, all elements transitioning

to a given state will have the same value. For example, we

4 Ryan J. Marcotte et al.

state s. Though our formulation admits a stochastic obser-

vation function, we assume in our evaluation that O is de-

terministic, in which case observation ω(s) reveals the true

value of xs.

At each time step t, agent i receives a set of observa-

tions ωωω i(t). This corresponds in our example task to a robot

observing all its adjacent cells.

Communication

Agent i carries out a communication action ci(t) ∈C at each

time step t. This broadcasts observations ωωωci
to all other

agents along with the ego-agent’s state si. This results in the

other agents incorporating the associated observations into

their beliefs.

Reward

We compute each agent’s reward independently and then

combine the individual rewards to yield the team reward (i.e.

the reward function is factored). An agent’s reward comes

from two components. The action reward function RA : S×

A→ R gives the reward an agent receives after taking an

action from a particular state. The communication reward

function RC : C→R assigns reward based on a communica-

tion action. The total reward for the team, γ , is given by

γ = γA + γC

= ∑
i∈I

γAi + γCi

= ∑
i∈I

∑
t∈T

RA

(

si(t),ai(t)
)

+RC

(

ci(t)
)

.

(1)

In our example task, we assign action reward −1 for

each step the robots take until they reach the goal. We assign

communication reward differently depending on the com-

munication paradigm, which we discuss next.

2.2 Communication Paradigms

Roth et al (2006) introduce the concept of communication

paradigms, which are sets of rules governing how much

communication is allowed or how much communication

costs. They propose three such paradigms, which we sum-

marize here. These paradigms give context to OCBC and

related methods. In Section 4, we use these paradigms to

structure our evaluation and facilitate comparison with ex-

isting work.

Fixed-Cost Communication

Most decision-theoretic methods (e.g. Unhelkar and Shah

2016; Carlin and Zilberstein 2009b; Wu et al 2011) only fo-

cus on the question of when to communicate. This limits the

set of possible communication actions C to only two mem-

bers: share all information possible (e.g. the ego-agent’s en-

tire observation history) or do not communicate at all. The

former action is assigned a fixed cost (i.e. RC(c) = ε < 0)

while the latter has zero cost. We call this paradigm Fixed-

Cost Communication.

Proportional-Cost Communication

To penalize excessive bandwidth consumption, communi-

cation cost should depend on message size. This is the

Proportional-Cost Communication paradigm, in which the

cost of a communication action is proportional to the length

of the associated message (i.e. RC(c) ∝ |ωωωc|). Roth et al

(2006) use this paradigm to motivate the question of what

to communicate.

Fixed-Bandwidth Communication

Multi-robot teams using a wireless network must share some

fixed amount of bandwidth (Bianchi 1998; Hiertz et al 2007;

Shrader and Ephremides 2007). We denote the amount of

bandwidth available to the team at each time step as β .

The team allocates a portion of this bandwidth βi(t) to each

agent i at time step t through an offline round robin sched-

ule or other similar mechanism. Each agent must then de-

cide how to use this bandwidth allocation. We call such a

paradigm Fixed-Bandwidth Communication.

In the Fixed-Bandwidth paradigm, there is no cost asso-

ciated with a communication action (i.e. RC(·) = 0). The set

of communication actions available to an agent, Ci(t), con-

tains all messages that fit within its bandwidth allocation at

time step t. That is, Ci(t) = {c : |ωωωc| ≤ βi(t)}.

As we present it in the following section, OCBC fits

within the Fixed-Bandwidth paradigm. In Section 4, we will

discuss how to modify OCBC to compare its performance

to methods from the other two paradigms.

3 Approach

We now introduce OCBC and its supporting algorithms.

Section 3.1 explains OCBC, which is a bandit-based ap-

proach to optimizing multi-robot communication under

bandwidth constraints. Section 3.2 shows how OCBC eval-

uates communication actions using forward simulation.

These two sections correspond to our two primary contri-

butions.

The remaining two sections discuss how we implement

OCBC in the context of a sequential decision-making agent.

Section 3.3 gives the main sequential decision-making

method, and Section 3.4 deals with maintaining and updat-

ing agent beliefs within that method.

Optimizing Multi-Robot Communication under Bandwidth Constraints 5

3.1 Optimizing Communication under Bandwidth

Constraints (OCBC)

An agent typically has multiple observations it could com-

municate with its teammates. When the agent’s bandwidth

allocation is too small to share all of those observations, it

must decide which observations to include. This requires es-

timating the reward associated with each observation, which

we do by forward simulation (see Section 3.2). Because of

the uncertainty in the ego-agent’s beliefs, though, any one

forward simulation only samples from the distribution of re-

wards for a given communication. In this way, the obser-

vations are like levers a multi-armed bandit could pull, and

our goal is to efficiently identify the observations with the

highest expected reward.

To this end, we apply the CSAR algorithm (Chen et al

2014), which is a bandit-based method that performs com-

binatorial optimization under uncertain rewards. CSAR tries

to find an optimal member of a specified decision class (e.g.

all arm combinations of a certain size). CSAR stands for

“Combinatorial Successive Accept Reject”, a title that ex-

plains the algorithm’s basic function. Given a set of K arms,

CSAR makes K successive decisions to either accept or re-

ject an arm. In between decisions, CSAR samples from the

remaining arms to better estimate their associated reward

distributions. CSAR makes the accept-reject decision on the

arm for which it has the highest-confidence reward distribu-

tion estimate. By the end of this process, the set of accepted

arms is an approximately optimal member of the decision

class. See (Chen et al 2014) for details on suboptimality

bounds of the CSAR method.

Algorithm 1 shows how we apply the CSAR algorithm

to the problem of optimizing communication under band-

width constraints. The function OPTIMIZECOMMUNICA-

TION (Lines 1-13) takes in the ego-agent’s current beliefs

about the transition function,bi(x), and its teammates, bi(m),

and decides which observations from the set ωωω to commu-

nicate. The resulting message must satisfy the ego-agent’s

bandwidth constraint βi.

The function has a fixed computational budget B (in

terms of iterations of the main loop) that it uses to evaluate

observations and decide what to communicate. The CSAR

algorithm dictates how much of this computational budget

should be allocated to each of the K accept-reject decisions

(Lines 14-18, see Chen et al 2014 for derivation). The al-

gorithm uses this budget allocation Bk to refine its reward

distribution estimates of the candidate arms (Line 7).

ESTIMATEREWARDDISTRIBUTIONS (Lines 19-27) is

responsible for this task. The function carries out Bk for-

ward simulations on each of the candidate observations. We

begin each of these forward simulations by sampling a set

of agent models (Line 21) and a transition function from the

ego-agent’s beliefs (Lines 22-23). The function EVALUATE-

Algorithm 1 Optimizing Communication under Bandwidth

Constraints (OCBC)

For convenience, let β , bi(x), bi(m), ∆̂k, and µk be global variables

shared among all functions

1: function OPTIMIZECOMMUNICATION(bi(x), bi(m), ωωω)

2: K← |ωωω|
3: ωωωCAND ← ωωω; ωωωACC ← /0

4: ∆̂k← /0; µk← 0, k ∈ {1, . . . ,K}
5: for k← 1, . . . ,K do

6: Bk← ALLOCATESAMPLEBUDGET(B, K, k)

7: ESTIMATEREWARDDISTRIBUTIONS(Bk, ωωωCAND)

8: ω̂ωω∗← ASSEMBLE(µµµ , ωωωACC , ωωωCAND)

9: l← SELECT(ωωωACC , ωωωCAND , ω̂ωω∗)
10: if ωl ∈ ω̂ωω∗ then

11: ωωωACC ← ωωωACC ∪{ωl}

12: ωωωCAND ← ωωωCAND \{ωl}

13: return ωωωACC

14: function ALLOCATESAMPLEBUDGET(B, K, k)

15: κ(y), ∑
K
y=1

1
y

16: f (y), ⌈ B−K
κ(y)(K−y+1) ⌉, y > 0

17: f (0), 0

18: return f (k)− f (k−1)

19: function ESTIMATEREWARDDISTRIBUTIONS(Bk, ωωωCAND)

20: for 1, . . . ,Bk do

21: m̃mm←
⋃

j∈I\i Sample m j ∼ bi(m j)
22: Sample x̃∼ bi(x)
23: P̃← CONSTRUCTTRANSITIONFUNCTION(x̃)

24: for ωl ∈ ωωωCAND do

25: δ̂ ← EVALUATECOMMUNICATION({ωl}, m̃mm, P̃)

26: ∆̂l ← ∆̂l ∪{δ̂}

27: µl ←
1

|∆̂l |
∑δ̂∈∆̂l

δ̂

28: function ASSEMBLE(µµµ , ωωωACC , ωωωCAND)

29: ω̂ωω∗← ωωωACC

30: while |ω̂ωω∗|< βi and |ωωωCAND|> 0 do

31: l← argmaxl:ωl∈ωωωCAND µl

32: if µl ≤ 0 then return ω̂ωω∗

33: ω̂ωω∗← ω̂ωω∗∪{ωl}
34: ωωωCAND ← ωωωCAND \{ωl}

35: return ω̂ωω∗

36: function SELECT(ωωωACC , ωωωCAND , ω̂ωω∗)
37: γ̂∗← ∑l:ωl∈ω̂ωω∗ µl

38: for ωl ∈ ωωωCAND do

39: if ωl ∈ ω̂ωω∗ then

40: ω̂ωω∗l ← ASSEMBLE(µµµ , ωωωACC , ωωωCAND \{ωl})
41: else

42: ω̂ωω∗l ← ASSEMBLE(µµµ , ωωωACC ∪ωl , ωωωCAND \{ωl})

43: γ̂∗l ← ∑l:ωl∈ω̂ωω∗l
µl

44: ψl ← γ̂∗− γ̂∗l
45: return argmaxl ψl

COMMUNICATION returns the reward obtained from com-

municating a candidate observation given that set of agent

models and transition function (see Section 3.2). This re-

ward is used to update the statistics associated with the ob-

servation (Lines 26-27).

6 Ryan J. Marcotte et al.

Once the reward distributions have been updated, we as-

semble the estimated optimal message ω̂ωω∗ according to the

current rewards and the bandwidth constraint (Line 8). The

function ASSEMBLE (Lines 28-35) is responsible for this

task. It starts by adding all of the previously accepted ob-

servations into the message. It then repeatedly adds the best

remaining observation to the message until the bandwidth

constraint is reached or the candidate pool is exhausted.

We use the optimal message estimate ω̂ωω∗ to help us

select the observation we will decide on at this iteration

(Lines 36-45). This message estimate corresponds to a par-

ticular accept-reject decision for each of the remaining can-

didate elements. We then assemble optimal message esti-

mates ω̂ωω∗l in which we force the alternative decision to be

made for each element ωl (Lines 38-42). The difference in

the reward expected to result from ω̂ωω∗ (the optimal message

estimate) and ω̂ωω∗l (the optimal message estimate with the al-

ternative decision about ωl) is the suboptimality gap associ-

ated with ωl (Line 44). The size of this suboptimality gap is

a measure of the confidence of the associated reward distri-

bution. We therefore select the observation with the largest

suboptimality gap and decide whether to accept or reject it

(Lines 10-12).

The running time of Algorithm 1 depends on the free

parameter B as well as parameters given by the problem

instance. The function OPTIMIZECOMMUNICATION carries

out B evaluations to refine its estimates of the reward distri-

butions associated with each candidate observation. In each

of these evaluations, the reward distribution for each candi-

date observation is updated. At most K such updates occur,

since K is the number of initial candidate observations, and

the pool of candidates shrinks as each accept-reject deci-

sion is made. Updating the reward distribution for a candi-

date observation requires a call to the function EVALUATE-

COMMUNICATION, which carries out forward simulations

for all n−1 teammate agents (see Section 3.2). Forward sim-

ulating to time horizon T requires a policy computation at

each time step, the cost of which depends on the particular

planning algorithm used. An implementation with a naive

shortest path planner would have complexity O(|S|+ |S||A|)
(i.e. the sum of the number of vertices and edges in the

state-action graph), but an incremental replanning algorithm

requires this computation only at the first time step and

then can quickly update the policy thereafter (Koenig and

Likhachev 2005). Altogether, the worst-case complexity of

OPTIMIZECOMMUNICATION is O(BKnT |S||A|), but careful

implementation can reduce this significantly.

One drawback of the CSAR algorithm is that it as-

sumes independence between the reward distributions of

arms. Such an assumption is necessary for CSAR’s tractabil-

ity, but it may harm performance in tasks where the reward

distributions are not independent. For example, there may

be scenarios in which communicating the occupancy of one

Algorithm 2 Evaluating Communication Actions

1: function EVALUATECOMMUNICATION(ωωωc, m̃mm, P̃)

2: for m̃ j ∈ m̃mm do

3: (s j,s
GOAL
j ,b j(x))← m̃ j

4: γA
NOCOM
j ← FORWARDSIMULATE(m̃ j , P̃)

5: b′j(x)← INCORPORATEOBSERVATIONS(b j(x), ωωωc)

6: m̃′j ← (s j,s
GOAL
j ,b′(x))

7: γA
COM
j ← FORWARDSIMULATE(m̃′j , P̃)

8: δ ← RC(c)+∑ j (γA
COM
j − γA

NOCOM
j)

9: return δ

10: function FORWARDSIMULATE(m̃ j , P̃)

11: (s j,s
GOAL
j ,b j(x))← m̃ j

12: γA← 0

13: for t, . . . ,T do

14: ωωω ← OBSERVE(s j , P̃)

15: b j(x)← INCORPORATEOBSERVATIONS(b j(x), ωωω)

16: π ← COMPUTEPOLICY(s j , sGOAL
j , b j(x))

17: a← π(s j)
18: s j ← argmaxs′ P̃(·|s j,a)
19: γA← γA +RA(s j,a)

20: return γA

cell is only useful when combined with communicating the

occupancy of a second cell. We leave study of this drawback

as future work.

3.2 Evaluating Communication Actions

Evaluating candidate communications in terms of their ex-

pected effect on reward is typically expensive. In this sec-

tion, we provide our method for performing this evaluation

efficiently and review the key aspects of our formulation that

enable this approach.

General multi-agent models are unfactored, assuming

that team reward is a function of joint actions. Such models

require planning in the joint action space, which scales ex-

ponentially with the number of agents. In contrast, we con-

sider only factored multi-agent problems, where agents plan

independently of one another. The computational cost of for-

ward simulating such problems then scales linearly with the

number of agents.

Furthermore, we assume that the transition function is

deterministic. We can transform such a deterministic tran-

sition function into a directed graph where nodes are states

and edges are actions. An agent can compute a policy by

finding a shortest path through the state-action graph. We

can further leverage incremental shortest-path planners to

recompute the policy quickly at each step of the forward

simulation (Koenig and Likhachev 2005).

Algorithm 2 specifies our method for evaluating candi-

date communications. The goal of this algorithm is to esti-

mate the effect a proposed communication will have on team

reward given sampled agent models and a sampled transition

Optimizing Multi-Robot Communication under Bandwidth Constraints 7

function (see Algorithm 1). To measure this effect, we first

forward simulate the agent models to get the baseline re-

ward that occurs without any communication (Line 4). Next,

we incorporate the communicated observation into the agent

models’ beliefs and repeat the forward simulation (Lines 5-

7). The difference in reward is an estimate of the value of

the communication (Line 8).

The function FORWARDSIMULATE estimates the reward

earned by an agent model m̃ j in a world given by transition

function P̃. At each time step of the forward simulation, the

modeled agent first observes its environment and incorpo-

rates that observation into its belief (Lines 14-15). The mod-

eled agent then plans and executes an action and arrives in an

updated state (Lines 16-18). The function returns the cumu-

lative action reward earned by the modeled agent (Line 20).

The function EVALUATECOMMUNICATION of Algo-

rithm 2 is called from within the function ESTIMATERE-

WARDDISTRIBUTIONS of Algorithm 1, where it is used to

evaluate the effect of communicating a candidate observa-

tion and thus update the estimated reward distribution asso-

ciated with that observation.

3.3 Making Sequential Communication Decisions with

OCBC

In Algorithm 3, we show how we use OCBC within a

sequential decision-making agent. This algorithm provides

context for using OCBC as well as a means for evaluating

its performance (see Section 4).

Initialization

The algorithm begins by initializing the ego-agent’s beliefs

via the function INITIALIZEBELIEFS (Lines 11-18). The

agent starts with some prior ps for each transition function

value bi(xs) (Line 13). The ego-agent also initializes its be-

liefs about each of its teammates (Lines 14-17). In our eval-

uation, we assume a strong prior on this belief, that is, we

assume that the ego-agent knows the initial state and transi-

tion belief of each of its teammates. Such a prior could come

from an offline sharing step before the task begins. We im-

plement the belief over agent models as a set of particles (see

Section 3.4), so the initial particle set contains M copies of

the agent model m j, where M is a user-specified parameter.

Sensing

At each time step t, the ego-agent first senses its environ-

ment (Line 4), making observations ωωω i(t) drawn from the

observation function O(ω(s)|xs) (Line 20). Additionally, the

ego agent receives the communications ccc(t−1) transmitted

by its teammates at the previous time step (Line 21).

Algorithm 3 Sequential Decision Algorithm

For convenience, let si(·), sGOAL
i , ai(·), ωωω i(·), ci(·) be global vari-

ables shared among all functions

1: function MAKESEQUENTIALDECISIONS()

2: bi(x),bi(m)← INITIALIZEBELIEFS()

3: for t ∈ {1, . . . ,T} do

4: ωωω i(t),ccc(t−1)←SENSE()

5: bi(x),bi(m)← UPDATEBELIEFS(bi(x), bi(m))
6: π,ci(t)← PLAN(bi(x), bi(m))
7: ACT(π)

8: return b′i(x),b
′
i(m)

9: γi← ∑
T
t=1 RA

(

si(t),ai(t)
)

+RC

(

ci(t)
)

10: return γi

11: function INITIALIZEBELIEFS()

12: for s ∈ S do

13: bi(xs)← ps

14: for j ∈ I \{i} do

15: m j ← (s j,s
GOAL
j ,b j(x))

16: bi(m j)←
⋃

1,...,M{m j}

17: bi(m)←
⋃

j∈I\{i} bi(m j)
18: return bi(x),bi(m)

19: function SENSE

20: ωωω i(t)← OBSERVE(si(t), P)

21: ccc(t−1)←RECEIVECOMMUNICATIONS()

22: return ωωω i(t),ccc(t−1)

23: function UPDATEBELIEFS(bi(x), bi(m))
24: ωωωUPDATE ← ωωω i(t)∪ ccc(t−1)
25: b′i(x)← INCORPORATEOBSERVATIONS(bi(x), ωωωUPDATE)

26: b′i(m)← UPDATETEAMBELIEFS(bi(m), ωωωUPDATE)

27: return b′i(x),b
′
i(m)

28: function PLAN(bi(x), bi(m))
29: π ← COMPUTEPOLICY(si(t), sGOAL

i , bi(x))
30: ωωωALL

i ←
⋃

τ∈{1,...,t}ωωω i(τ)

31: ci(t)← OPTIMIZECOMMUNICATION(bi(x), bi(m), ωωωALL
i)

32: return π,ci(t)

33: function ACT(π)

34: ai(t)← π(si(t))
35: si(t +1)← argmaxs′ P(·|si(t),ai(t))
36: COMMUNICATE(ci(t))

Updating Beliefs

Next, the agent updates its beliefs based on the result of

the sensing step (Line 5). The ego-agent aggregates all the

observations it made directly or received via communica-

tion (Line 24). It incorporates these observations into its

transition belief via the function INCORPORATEOBSERVA-

TIONS (see Algorithm 4). The ego-agent then updates its

beliefs about its teammates via the function UPDATETEAM-

BELIEFS (see Section 3.4 and Algorithm 5).

8 Ryan J. Marcotte et al.

Algorithm 4 Incorporating Observations into a Transition

Belief
1: function INCORPORATEOBSERVATIONS(b(x), ωωω)

2: for ω(s) ∈ ωωω do

3: b′(xs)← ηO(ω(s)|xs)b(xs)

4: return b′(x)

Algorithm 5 Updating Team Beliefs

1: function UPDATETEAMBELIEFS(bi(m), ωωωUPDATE)

2: for bi(m j) ∈ bi(m) do

3: for m(k) ∈ bi(m j) do

4:
(

s,sGOAL,b(x)
)

← m(k)

5: π ← COMPUTEPOLICY(s, sGOAL , b(x))
6: a← π(s)
7: Sample x̃∼ b(x)
8: P̃← CONSTRUCTTRANSITIONFUNCTION(x̃)

9: s′← argmaxs′ P̃(·|s,a)
10: ωωω ← OBSERVE(s′, P̃)

11: b′(x)← INCORPORATEOBSERVATIONS(b(x), ωωω)

12: m′k← (s′,sGOAL,b′(x))

13: wk←∏ω(s)∈ωωωUPDATE
P
(

ω(s)|b′(xs′)
)

14: b′i(m j)←
⋃

1,...,M Sample m′k with probability ∝ wk

15: return b′i(m)

Planning

The ego-agent computes a policy π based on its current

state si(t) and its transition belief bi(x) (Line 29). Then, it

selects a (possibly empty) set of observations to commu-

nicate using the function OPTIMIZECOMMUNICATION, the

implementation of which is our primary contribution (see

Algorithm 1).

Acting

Finally, the agent executes action ai(t) based on the policy π

and arrives in state si(t + 1) (Lines 34-35). The agent then

broadcasts its selected set of observations to all its team-

mates (Line 36).

3.4 Updating Agent Beliefs

Transition Beliefs

Algorithm 4 shows how we update an agent’s transition be-

lief based on a set of observations. Recall that we assume

the beliefs about transition elements are independent of one

another. Therefore, observation ω(s) only affects belief ele-

ment b(xs). We use Bayes rule to compute the new value of

the belief for each affected element (Line 3).

Teammate Beliefs

Algorithm 5 details our method of updating the ego-agent’s

beliefs about its teammate models. The algorithm takes in

the existing beliefs bi(m) as well as a set of new observa-

tions ωωωUPDATE. It performs a particle filter update on the be-

lief bi(m j) about each teammate j (Lines 3-14).

First, each particle m(k) is evolved forward one step

(Lines 4-12). Recall that each particle m(k) is an agent model

that contains a state, goal state, and transition belief. We then

plan and execute an action for the agent model (Lines 5-6).

To simulate the next time step for the agent model, we sam-

ple from the model’s transition element beliefs and construct

a transition function P̃ (Lines 7-8). We use P̃ to find the new

state s′ and generate an observation ωωω (Lines 9-10). We then

incorporate this observation into the particle’s transition be-

lief to get evolved belief b′(x) (Line 11). At this point, we

assemble s′, sGOAL
mk

, and b′(x) into an evolved particle m′k.

We assign the particle weight wk based on the likelihood

of the actual observations ωωωUPDATE given the updated model

(Line 13). We then re-sample the particles according to these

weights to get the updated set b′i(m j) (Line 14).

4 Evaluation

In this section, we evaluate our method on the multi-robot

navigation task introduced in Section 2.1. We structure our

evaluation around the three communication paradigms intro-

duced in Section 2.2. As we have presented it so far, OCBC

is a part of the Fixed-Bandwidth paradigm. The closest ex-

isting work (Unhelkar and Shah 2016) is in the Fixed-Cost

paradigm. We therefore evaluate variants of OCBC for the

Fixed-Cost and Proportional-Cost paradigms that allow us

to compare it to this existing method.

We first detail the experimental setup (Section 4.1).

Then, we compare OCBC to ConTaCT (Unhelkar and Shah

2016) in the Fixed-Cost and Proportional-Cost paradigms

(Section 4.2). Finally, we compare OCBC to a randomized

baseline method in the Fixed-Bandwidth paradigm (Sec-

tion 4.3).

4.1 Experimental Setup

In the experiments of Section 4.2, we use five agents in each

simulation. In Section 4.3, we vary the number of agents

between two and ten.

We begin each simulated trial by generating a 10× 10

gridmap. The occupancy of each grid cell is determined by

a Bernoulli trial with probability 0.3. Such a randomized

method can yield maps without feasible paths between cer-

tain cells. We therefore test that the resulting gridmap is

fully connected; that is, any given cell in the map must be

reachable from every other cell. If the gridmap is not fully

connected, we replace it with a new randomly generated

map until the condition is met.

Optimizing Multi-Robot Communication under Bandwidth Constraints 9

Once the map is generated, we select a shared goal cell

and agent start cells uniformly at random from among the

unoccupied cells. Because of the random nature of this pro-

cess, some generated problem instances are not interesting

tests of communication. For example, agents that begin on

opposite sides of a map may not benefit at all from sharing

observations with one another. We can detect such cases by

conducting two initial simulations: in the first, agents auto-

matically share all observations, and in the second, agents

share nothing. If both simulations yield the same result, we

reject the trial as uninteresting and generate a new gridmap,

a new goal location, and new agent locations.

Each simulated trial returns the reward, γ(χ) = γA(χ)+

γC(χ), earned by the team using method χ . We are inter-

ested in measuring the effect of communication on task per-

formance. In this case, task performance is measured by ac-

tion reward, which is given by γA(χ). To measure the effect

of communication on task performance, we repeat the trial

without any inter-robot communication to obtain the value

γ(NOCOM) = γA(NOCOM)+ γC(NOCOM). We then com-

pute the difference in action reward earned during the two

trials, that is,

δ (χ) = γA(χ)− γA(NOCOM). (2)

We normalize this value by dividing by the corresponding

value for the method ALLCOM, in which agents automati-

cally share all observations. This normalized value is given

by

δ̂ (χ) =
δ (χ)

δ (ALLCOM)
. (3)

In other words, δ̂ (χ) measures how much the communica-

tion of method χ helps task performance relative to the full

communication baseline method.

For each method, we run the same set of 1000 trials.

Each data point represents the mean of δ̂ (χ) for these trials,

and the error bars represent one standard error on the mean.

In our experiments, we set OCBC’s computational budget at

B = 1000 and maintain beliefs consisting of M = 50 parti-

cles.

4.2 Fixed-Cost and Proportional-Cost Communication

To compare OCBC to existing work (Unhelkar and Shah

2016), we present two variants OCBC, Fixed-Cost and

OCBC, Proportional-Cost.

In OCBC, Proportional-Cost, the ego-agent has no limit

on its available bandwidth (i.e. βi → ∞), but each commu-

nicated observation incurs some cost (i.e. RC(·) > 0). This

causes the function ASSEMBLE of Algorithm 1 to return

all observations with positive expected reward regardless

of how large the resulting message is. Although OCBC,

Proportional-Cost is a variant of OCBC, it still includes

both of our primary contributions (i.e. optimizing message

content and evaluating messages with forward simulation).

By contrast, OCBC, Fixed-Cost only includes the latter

contribution (i.e. evaluating messages with forward simula-

tion). It uses the same sampling method as OCBC, but only

evaluates messages containing all available observations.

We compare the performance of these methods to that

of ConTaCT , a method introduced by Unhelkar and Shah

(2016). Our method has several key distinctions from Con-

TaCT . First, the ConTaCT ego-agent maintains only a sin-

gle estimate of the transition function and of its teammates,

whereas OCBC maintains belief distributions over these val-

ues (see Section 3.4). Second, ConTaCT estimates the no-

communication reward by computing the expected reward

of an agent’s previously declared policy in the ego-agent’s

updated transition function estimate. This fixed-policy eval-

uation does not consider the future observations and asso-

ciated re-planning of other agents, which OCBC models

through forward simulation (see Section 3.2). Finally, Con-

TaCT reasons only about when to communicate, whereas

OCBC also considers what to communicate, which allows

OCBC to operate under bandwidth constraints (see Sec-

tion 3.1).

ConTaCT belongs to the Fixed-Cost paradigm and thus

reasons only about when to communicate. The primary dis-

tinction between OCBC, Fixed-Cost and ConTaCT is our

forward simulation method. Unlike ConTaCT , our method

considers the future observations and re-planning of other

agents as well as the uncertainty in the ego-agent’s beliefs.

To compare the cost-based methods, we vary the mod-

eled cost of communication in the range 0.01 ≤ RC(·) ≤ 20

and measure the resulting task performance and proportion

of observations communicated. Figure 3 shows the results

of this experiment with the measured number of communi-

cations on the horizontal axis and the measured task perfor-

mance on the vertical axis. Note that the controlled parame-

ter in the experiment is the communication cost, and both

the number of communications and task performance are

measured values. When the modeled cost of communica-

tion is high, all methods communicate little, leading to low

task performance. As the modeled cost parameter decreases,

the amount of communication and task performance both in-

crease.

Our partial method, OCBC, Fixed-Cost, performs simi-

larly to ConTaCT at low levels of communication, but sig-

nificantly outperforms ConTaCT as the amount of commu-

nication increases. At the top right portion of the figure,

OCBC, Fixed-Cost communicates less than 10 percent of its

observations while achieving approximately 85 percent of

the task performance of the method that communicates all

observations.

Optimizing Multi-Robot Communication under Bandwidth Constraints 11

els like Dec-MDPs or Dec-POMDPs is prohibitively com-

plex (Pynadath and Tambe 2002; Goldman and Zilberstein

2004). To avoid direct computation and its associated costs,

Williamson et al (2008, 2009) measure the information con-

tent in recent messages and use this as a proxy for a mes-

sage’s value. More concretely, their method computes the

KL divergence between an agent’s current belief and its be-

lief at the time of its last communication. If this divergence

is sufficiently large compared to some threshold parameter,

the agent decides to communicate.

Carlin and Zilberstein (2009a,b) and Becker et al (2009)

examine the effect of common myopic assumptions made

by existing methods. Specifically, they analyze the assump-

tions that future communication will not occur and that other

agents will not initiate communication themselves. They ar-

gue that these assumptions lead to over-communication and

present an algorithm free from these assumptions. However,

the complexity of the resulting algorithm limits it to very

small problems. OCBC makes these assumptions for the

sake of tractability.

Unhelkar and Shah (2016) propose ConTaCT, which de-

liberately deemphasizes uncertainty to make communica-

tion decisions tractable in larger domains. In ConTaCT, the

ego-agent maintains a belief about the world as well as an

estimate of other agents’ beliefs. By evaluating the expected

result of sharing its available observations, the ego-agent de-

cides whether or not to communicate. We discussed Con-

TaCT further in Section 4 and evaluated its performance

against that of OCBC.

Selecting What to Communicate

Because of the complexities already involved in deciding

when to communicate, few papers have addressed the ques-

tion of what to communicate. Roth et al (2006) and Roth

(2007) point out this deficit and provide one of the few meth-

ods for optimizing the content of communication messages.

Specifically, they use greedy hill-climbing optimization to

select observations to include in a communication. Their al-

gorithm is built on top of their previous coordination method

in which all agents act on common knowledge (Roth et al

2005). They then try to select the set of observations to add

to this common knowledge to maximize team reward. Be-

cause they use a very general multi-agent model, their ap-

proach does not scale beyond small problem domains.

Giamou et al (2018) take a task-oriented approach to se-

lecting what to communicate, proposing a communication

planning framework for cooperative SLAM. Specifically,

they find a solution for exchanging the minimal amount of

raw sensory data without missing out on potential loop clo-

sures. While our approach is also concerned with selecting

observations to share, their method does not extend beyond

the specific problem of cooperative SLAM.

Communicating to Maintain Coordination

In many multi-agent problems, agents must tightly coordi-

nate their actions. Such coordination typically requires sig-

nificant amounts of inter-agent communication. Therefore,

some methods reason about when communication is neces-

sary to maintain coordination.

In Roth et al (2005) and Roth (2007), agents generate

an offline centralized policy that maps possible joint beliefs

to joint actions. During execution, agents use this policy to

select actions based on the current joint belief. When agents

make observations, they consider how communicating those

observations would change the joint belief and how the up-

dated joint belief would affect team performance.

Wu et al (2011) also maintain coordination by having

agents act only on common knowledge. Agents communi-

cate whenever they detect an inconsistency in their shared

belief. This guarantees that agents will remain coordinated

even when they forgo communication for some time.

Best et al (2018b) present a communication planning

algorithm suitable for the Dec-MCTS coordination frame-

work (Best et al 2018a). In Dec-MCTS, agents maintain be-

lief distributions over the possible future action sequences

of their teammates. Best et al (2018b) reason about when an

agent should request information from a teammate to update

this distribution. More specifically, when a belief becomes

sufficiently uncertain, the agent requests an updated distri-

bution from the teammate.

In this paper, we focus on factored multi-agent problems

where coordination is not a concern. Rather, agents commu-

nicate observations to help their teammates perform their re-

spective independent tasks.

Deep Reinforcement Learning

Recent papers (Foerster et al 2016; Sukhbaatar et al 2016)

have used deep reinforcement learning to learn communi-

cation policies. Such methods do not have a defined lan-

guage of symbols for the agents to transmit. Rather, the

agents learn to use a continuous-valued broadcast commu-

nication channel. Foerster et al (2016) use such a method

to solve communication riddles and multi-agent computer

vision problems. Sukhbaatar et al (2016) show results for

multi-turn games and communication at a traffic junction.

Such data-driven methods show promise in the demon-

strated domains, but the continuous-valued broadcast chan-

nel limits the types of information that can be communicated

by such systems.

6 Conclusion

In this paper, we proposed OCBC, an approach to Optimiz-

ing Communication under Bandwidth Constraints. OCBC

12 Ryan J. Marcotte et al.

uses forward simulation to evaluate possible communica-

tion actions and incorporates those evaluations into a bandit-

based combinatorial optimization algorithm that computes

an approximately optimal set of observations to communi-

cate. OCBC is designed for collaborative multi-agent prob-

lems with a deterministic but unknown transition function,

which includes tasks where multiple robots operate in pre-

viously unexplored terrain. We showed that OCBC outper-

forms its closest existing competitor at a simulated multi-

robot navigation task, achieving higher task performance

while communicating more than an order of magnitude less.

Acknowledgments

This material is based upon work supported by the National

Science Foundation Graduate Research Fellowship Program

under Grant No. DGE 1256260. Any opinions, findings, and

conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the

views of the National Science Foundation.

References

Becker R, Zilberstein S, Lesser V, Goldman CV (2004) Solving Transi-

tion Independent Decentralized Markov Decision Processes. Jour-

nal of Artificial Intelligence Research 22:423–455

Becker R, Carlin A, Lesser V, Zilberstein S (2009) Analyzing myopic

approaches for multi-agent communication. Computational Intel-

ligence 25(1)

Best G, Cliff OM, Patten T, Mettu RR, Fitch R (2018a) Dec-MCTS:

Decentralized planning for multi-robot active perception. The In-

ternational Journal of Robotics Research 1

Best G, Forrai M, Mettu R, Fitch R (2018b) Planning-aware communi-

cation for decentralised multi-robot coordination. In: IEEE Inter-

national Conferenace on Robotics and Automation

Bianchi G (1998) IEEE 802.11-saturation throughput analysis. IEEE

Communications Letters 2(12):318–320

Carlin A, Zilberstein S (2009a) Myopic and non-myopic communica-

tion under partial observability. In: IEEE/WIC/ACM International

Joint Conference on Web Intelligence and Intelligent Agent Tech-

nology, IEEE, pp 331–338

Carlin A, Zilberstein S (2009b) Value of communication in decentral-

ized POMDPs. In: AAMAS Workshop on Multi-Agent Sequential

Decision Making in Uncertain Domains, pp 16–21

Chen S, Lin T, King I, Lyu MR, Chen W (2014) Combinatorial pure

exploration of multi-armed bandits. In: Advances in Neural Infor-

mation Processing Systems, pp 379–387

Foerster J, Assael Y, de Freitas N, Whiteson S (2016) Learning to

Communicate with Deep Multi-Agent Reinforcement Learning.

In: Advances in Neural Information Processing Systems, pp 2137–

2145

Giamou M, Khosoussi K, How JP (2018) Talk resource-efficiently to

me: Optimal communication planning for distributed slam front-

ends. IEEE International Conference Robotics and Automaction

Goldman C, Zilberstein S (2004) Decentralized Control of Coopera-

tive Systems: Categorization and Complexity Analysis. Journal of

Artificial Intelligence Research 22:143–174

Hiertz GR, Max S, Rui Z, Denteneer D, Berlemann L (2007) Principles

of IEEE 802.11s. In: Proceedings of the International Conference

on Computer Communications and Networks

Koenig S, Likhachev M (2005) Fast replanning for navigation in un-

known terrain. IEEE Transactions on Robotics 21(3):354–363

Pynadath DV, Tambe M (2002) The Communicative Multiagent Team

Decision Problem: Analyzing Teamwork Theories and Models.

Journal of Artificial Intelligence Research 16:389–423

Roth M (2007) Execution-time communication decisions for coordina-

tion of multi-agent teams. PhD thesis, Carnegie Mellon University

Roth M, Simmons R, Veloso M (2005) Reasoning about joint beliefs

for execution-time communication decisions. In: Proceedings of

the Fourth International Joint Conference on Autonomous Agents

and Multiagent Systems

Roth M, Simmons R, Veloso M (2006) What to Communicate?

Execution-Time Decision in Multi-agent POMDPs. In: Distributed

Autonomous Robotic Systems 7, Springer Japan, pp 177–186

Shrader B, Ephremides A (2007) Random access broadcast: Stability

and throughput analysis. IEEE Transactions on Information The-

ory 53(8):2915–2921

Sukhbaatar S, Szlam A, Fergus R (2016) Learning Multiagent Com-

munication with Backpropagation. In: Advances in Neural Infor-

mation Processing Systems, pp 2244–2252

Tange O (2011) GNU Parallel - The Command-Line

Power Tool. The USENIX Magazine 36(1):42–47, URL

http://www.gnu.org/s/parallel

Unhelkar V, Shah J (2016) ConTaCT: Deciding to communicate dur-

ing time-critical collaborative tasks in unknown, deterministic do-

mains. In: AAAI Conference on Artificial Intelligence, pp 2544–

2550

Williamson S, Gerding E, Jennings N (2008) A principled information

valuation for communications during multi-agent coordination. In:

AAMAS Workshop on Multi-Agent Sequential Decision Making

in Uncertain Domains

Williamson S, Gerding E, Jennings N (2009) Reward shaping for valu-

ing communications during multi-agent coordination. In: Interna-

tional Conference on Autonomous Agents and Multiagent Sys-

tems

Wu F, Zilberstein S, Chen X (2011) Online planning for multi-

agent systems with bounded communication. Artificial Intelli-

gence 175(2):487–511

