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Reaction-transport formalisms show that the effects of crystallite size, H" density, and Si speciation of
HSAPO-34 on catalyst lifetime and selectivity in methanol-to-olefins catalysis are all manifestations of
diffusional constraints. Both structural catalyst properties—i.e., crystallite size and H* density—and
intrinsic Kinetic constants (per H")—regulated, in silicoaluminophosphates, by Si speciation—affect the
severity of these diffusional restrictions. Methanol-to-olefins catalysis on HSAPO-34 occurs by a complex
network of autocatalytic reactions in which temporal gradients persist along with spatial gradients inher-
ent to continuous-flow, fixed-bed reactors. Invocation of reaction rates in the interpretation of lifetime
and selectivity trends in such systems requires defined quantities averaged in both time and space
because measured observables conflate instantaneous reaction rates with spatial and temporal gradients.
Quantities defined herein, i.e., total turnovers and cumulative selectivity, provide such rigorous assess-
ments of lifetime and selectivity that permit causative correlation between rates of reactions within
the complex network of autocatalytic reactions and material properties of HSAPO-34. Total turnovers
decreases with increasing diffusional constraints because dehydrocyclization reactions experience stron-
ger diffusional constraints than olefins methylation, aromatics dealkylation, and methanol transfer
hydrogenation. Cumulative selectivity to paraffins increases with increasing diffusional constraints
because transfer hydrogenation reactions of methanol, ethylene, and propylene experience stronger dif-
fusional constraints than all other reactions within the complex reaction network. The approaches
detailed herein codify the chemical and physical origins of trends in process outcomes with system vari-
ables for reaction systems characterized by complex reaction networks and prevailing spatial and tem-
poral concentration gradients.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Methanol-to-hydrocarbons catalysis on zeotypes and zeolites
occurs via a complex reaction network; the species include oxy-

Complex reaction networks are ubiquitous; they arise in, e.g.,
biochemical systems [1], interstellar chemistry [2], combustion
and pyrolysis [3], and heterogeneous catalysis [4]. The large num-
ber of species and reactions often preclude precise kinetic and
mechanistic analysis of elementary steps that comprise the com-
plex reaction network and, more often, restrict optimization of
material properties and process parameters to maximize, e.g.,
catalyst lifetime and selectivity to heuristic approaches. Trends of
catalyst lifetime and selectivity with material properties and
process parameters must emerge, however, as consequences of
the governing physical and chemical phenomena without regard
for heuristics and with provenance linked inexorably to the com-
plex reaction network.

* Corresponding authors.
E-mail addresses: jrimer@central.uh.edu (J.D. Rimer), abhan@umn.edu (A. Bhan).
! These authors contributed equally to this work.

https://doi.org/10.1016/j.jcat.2018.10.031
0021-9517/© 2018 Elsevier Inc. All rights reserved.

genates and acyclic and cyclic and aliphatic and aromatic hydro-
carbons, and the reactions include methylation, oligomerization,
hydrogen transfer, cyclization, -scission, and dealkylation [5-8].
The use of small-pore zeotypes/zeolites—e.g., in methanol-to-
olefins catalysis on HSAPO-34, a small-pore silicoaluminophos-
phate (SAPO) zeotype with CHA topology [9,10]—adds further
complexity because species engaged in the reaction network—
namely, branched aliphatics and aromatics—remain entrained
within the zeotype/zeolite cavities during catalysis [11,12] and
rapid catalyst deactivation [5-7,13-15] imposes persistent tempo-
ral gradients on continuous-flow reactors. The chemical origins of
the effects of methanol space velocity and methanol concentration,
i.e., process parameters, on catalyst lifetime and selectivity in
methanol-to-olefins catalysis trace to methanol dehydrogenation
[16-19]. The physical and chemical origins of the effects of crystal-
lite size, H" density, and Si speciation, i.e., material properties of
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HSAPO-34, on catalyst lifetime and selectivity remain, despite
numerous investigations [14,20-32], unresolved. For example, pre-
vious reports attribute, with apparent conflict, trends of catalyst
lifetime with crystallite size to product shape selectivity [24], tran-
sition state selectivity [22,28], external surface acid site density
[29], and mass transport properties [27,29,31].

Here, we report the preparation of HSAPO-34 formulations
diverse in morphology and composition; the characterization of
crystallite size, H" density, and Si speciation; and trends of lifetime
and selectivity in methanol-to-olefins catalysis with these material
properties. Reaction-transport formalisms show that effects of
crystallite size, H" density, and Si speciation on lifetime and selec-
tivity manifest together as consequences of diffusional constraints.
Interpretation of trends in lifetime and selectivity within the con-
text of this reaction-transport formalism reveals that specific
classes of reactions, within the complex reaction network, experi-
ence stronger diffusional constraints than others. Lifetime,
assessed here as total turnovers, decreases with increasing diffu-
sional constraints because dehydrocyclization reactions producing
entrained hydrocarbons experience stronger diffusional con-
straints than reactions producing light olefins. Methane, ethane,
and propane selectivities increase with increasing diffusional con-
straints because transfer hydrogenation reactions of methanol,
ethylene, and propylene experience stronger diffusional con-
straints than reactions producing light olefins. These results pro-
vide guidance, founded on principles of transport phenomena
and reaction engineering, on material properties necessary to max-
imize lifetime and light olefins selectivity in methanol-to-olefins
catalysis. More broadly, the methodology, results, and discussion
herein represent a case-study on the assessment of physical and
chemical origins of lifetime and selectivity trends for complex
reaction networks in heterogeneous catalytic processes with both
temporal and spatial concentration gradients.

2. Experimental methods
2.1. Materials synthesis

Colloidal silica (c-Si0,; LUDOX® HS-40), fumed silica (f-SiOy;
Cab-0-Sil® M-5), aluminum isopropoxide (Al(O'Pr);; 98 wt%,

Aldrich), boehmite (AIO(OH); 72%, Catapal B®, Sasol), phosphoric
acid (H3PO4; 85%, Sigma-Aldrich), tetraethylammonium hydroxide
(TEAOH; 35%, Sigma-Aldrich), morpholine (MP; > 99%, Sigma-
Aldrich), and triethylamine (EtsN; > 99%, Sigma-Aldrich) were
used as received without further purification. Deionized water
was purified with an Aqua Solutions Type I RODI filtration system
(18.2 MQ).

SAPO-34 samples were prepared by adapting reported proto-
cols; the synthesis conditions for all samples are summarized in
Table 1. Solution compositions starting with Si/(Si+ Al +P)
<0.108 and SiO,/Al,03 within 0.075-0.15 were selected based on
reported criteria [33,34] to achieve SAPO-34 crystals with uniquely
isolated Si speciation, i.e., Si(OAl)4, and avoid formation of siliceous
domains [35]. Crystallization times were also adjusted to control Si
speciation [36]. Organic structure-directing agents were selected
to control crystallite size as, in general, TEAOH-directed crystalliza-
tion gives submicron crystallites while MP- and EtsN-directed
crystallization give > 1 pm crystallites [37,38]. See Section S1 of
the Supporting Information for more discussion on the effects of
synthesis conditions on Si speciation and crystallite size and
morphology.

In a typical synthesis [42], a 22 g mixture with a molar compo-
sition of

1Al,05 : xSiO; : 3P,05 : 6TEAOH : 108H,0

(with x = 0.15-0.6) was prepared. Al(O'Pr); was added to deionized
water followed by c-SiO, and then TEAOH. The mixture was stirred
in a 65 mL polypropylene bottle for 2 h at ambient temperature to
dissolve the Al and Si sources. H3PO4 was then added dropwise over
an interval of 0.5-1 h to avoid gelation. The resulting mixture was
then aged for an additional period of time (0.5-24 h), transferred
into a Teflon-lined stainless steel autoclave (Parr Instruments),
and heated in a Thermo Fisher Precision oven at a specified crystal-
lization temperature (438-473 K) with or without rotation under
autogenous pressure for 6-48 h. The autoclaves were then removed
from the oven and quenched in water to ambient temperature. The
products were washed with deionized water via three cycles of cen-
trifugation (Beckman Coulter Avanti J-E)—10 min cycles at 278 K
and 13,000 rpm. The supernatant was decanted, and the washed
samples were dried overnight at 323 K. SAPO-34 samples were

Table 1
Synthesis conditions for preparation of SAPO-34 samples.
Sample OSDA! Solution composition Precursor Aging time/h Temp./K Time®/h
Al,05:5i10,:P,05:H,0:0sda Al Si P

1 TEAOH® 1:0.6:3:108:6 Al(O'Pr); c-Si0, H3PO4 2 453 6"
2 TEAOH 1:0.6:3:108:6 Al(O'Pr); c-Si0, H3PO4 24 453 5
3 TEAOH 1:0.15:3:108:6 Al(O'Pr); c-Si0y H3PO4 0.5 453 48
4 TEAOH 1:0.6:3:108:6 Al(O'Pr); c-Si0, H3PO4 3 453 6"
5 TEAOH 1:0.6:3:108:6 Al(O'Pr); c-Si0, H3PO4 1.5 473 4
6° TEAOH 1:0.1:1:63:2 Al(O'Pr); c-Si0y H3PO4 24 473 24"
7° TEAOH + MP' 1:0.3:1:52: (0.7:1.3) Al(O'Pr); £-Si0, H5PO, 24 453 24"
8 TEAOH + MP 1:0.3:1:52: (0.7:1.3) Al(O'Pr); f-Si0, H3PO4 24 453 24"
9¢ Et;N' 1:0.44:1.1:35:2.3 AIO(OH) c-Si0y H3PO4 24 438 33"
10 TEAOH 1:0.6:3:108:6 Al(O'Pr); ¢-Si0, H3PO4 0.5 473 24
11 TEAOH 1:0.6:3:108:6 Al(O'Pr); ¢-Si0, H3PO4 24 453 24"
12 TEAOH 1:0.6:3:108:6 Al(O'Pr); c-Si0, H3PO4 0.5 453 20"
13 TEAOH 1:0.6:3:108:6 Al(O'Pr); c-Si0, H3PO, 24 453 6

2 Protocol adapted from Ref. [39].

b Seeded syntheses with 3 wt% seed (sample 9) based on amount of Si in starting solution.

¢ Protocol adapted from Ref. [40,41].

9 Organic structure-directing agent.

€ Tetraethylammonium hydroxide.

f Morpholine.

& Crystallization time.

h

Synthesized in rotation oven.
! Triethylamine.
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stored with the cationic moiety of the organic structure-directing
agent intact to avoid modifications to Si speciation upon exposure
to ambient moisture [43]. SAPO-34 samples were converted to
H'-form via thermal oxidative treatment on stream immediately
prior to catalytic testing (vide infra).

2.2. Structural and chemical characterization

Powder X-ray diffraction was used to characterize the crystal
structure and phase purity of as-synthesized SAPO-34 samples.
X-ray diffraction patterns were collected on a Rigaku SmartLab
Diffractometer using Cu Ko radiation (40 kV, 30 mA) in the range
of 20 =5-50 degrees with 0.02 degree increments. The collected
patterns were compared against a reference CHA pattern obtained
from the International Zeolite Association [44].

Scanning electron micrographs were collected using a LEO
Gemini 1525 Field Emission Scanning Electron Microscope
equipped with a Schottky field emission gun. SAPO-34 samples
were prepared for imaging by depositing powders on carbon tape
and coating them with a thin layer of carbon to prevent charging
effects during image collection.

Dynamic light scattering was used to assess the crystallite size
of submicron SAPO-34 samples. A sample was diluted in deionized
water and placed in a clean glass vial; the level of dilution was
adjusted to ensure a scattering count rate within 30,000-100,000
kilocounts per second. The glass vial was placed in a decalin bath
(298 K) sample holder housed within a Brookhaven Instruments
BI-200SM system equipped with a HeNe laser (637 nm) and Turbo-
Corr Digital Correlator. A total of six measurements at 298 K were
taken for each sample (2 min per measurement), and the measured
autocorrelation functions were analyzed using the method of
cumulants to obtain an average hydrodynamic diameter and poly-
dispersity index.

Transient sorption of propane (Matheson, 99.999%) on HSAPO-
34 was performed using a gas adsorption system (Micromeritics
ASAP 2020) equipped with a high vacuum pump and a 1 mmHg
pressure transducer (1 pmHg resolution). As-synthesized SAPO-
34 powders were crushed, pelletized, and sieved to obtain (180-
250 pum) aggregates and then detemplated and converted to H*-
form via thermal oxidative treatment (vide infra). HSAPO-34 aggre-
gates (0.050-0.10 g) were loaded into a quartz tube which was
then attached to the gas adsorption system; the sample was evac-
uated (< 6 pmHg) at 673 K for 4 h (0.0167 K s™!) and then cooled
to adsorption temperature (333 K) under vacuum prior to acquisi-
tion of transient sorption data. The evacuated sample was isolated
from the gas manifold which was then pressurized with known
amounts of propane (P=10%-10°> mmHg, T=319 K). The sample
was then exposed to the gas manifold, and the pressure was
recorded as a function of time (t, — t,_; = 2-20 s) until equilibrium
(6P = P(ty,) — P(tn,-1) < 0.1 mmHg) was established. The cycle of
sample isolation, manifold dosing, and transient sorption was
repeated until transient sorption data with sufficiently low overall
pressure changes (AP = P(t,,) — P(t = 0) $20%) were collected.

N, adsorption isotherms were measured (Micromeritics ASAP
2020) at 77 K and used to calculate micropore volumes using the
t-plot method [45]. HSAPO-34 samples were treated in vacuum
(<6 umHg) at 673 K for 4 h (0.0167 K s™!) prior to acquisition of
equilibrium N, adsorption data.

NH; temperature programmed desorption was used to measure
H* densities of SAPO-34 samples [46]. HSAPO-34 (0.050-0.10 g)
was converted to NH; form by treatment in flowing 800 ppm
NHs (1.01% NHs/He Praxair, certified standard), balanced by He
(Minneapolis Oxygen, 99.997%) and Ar (Matheson, 99.9995%;
internal standard), at 423 K until complete NH; breakthrough
was observed using online mass spectrometry (MKS Cirrus 2,

m/z =16, 17, 40). Weakly bound ammonia was removed by treat-
ing the NH; -exchanged SAPO-34 in flowing He (3.33cm®*s~'¢g™")
at 423 K for > 4 h. The sample was heated rapidly in flowing He
and Ar to 823 K (0.167 K s~ 1) while the NH; evolved was measured
using online mass spectrometry. H" densities were calculated by
assuming unit stoichiometry between H" and NH; evolved.

27Al, 2°Si, 3P MAS NMR spectra were recorded on a Bruker
Avance 600 MHz spectrometer equipped with a 3.2 mm probe at
resonance frequencies of 156.4, 119.3 and 243.0 MHz, respectively;
using 3, 6.25, and 4 ps pulses, respectively; and 0.25, 120, and 10 s
repetition times, respectively. The flip angle was 7 /4 for all nuclei;
the spinning frequency was 15 kHz for 2’Al and 3'P and 10 kHz for
295i. The chemical shifts in 2’ Al, 2°Si, 3P spectra were referenced to
NasAlFg, Si(CHs3)4, and H3PO4, respectively.

2.3. Catalytic testing

Methanol-to-olefins reactions were performed on fixed-beds
comprised of HSAPO-34 aggregates (180-250 pm, 0.010-0.050 g)
mixed with quartz granules (180-250 wm, 0.25-0.50 g; washed
with 2 M HNOs, rinsed with excess deionized water, and treated
in flowing dry air at 1273 K for 12 h). Fixed-beds were supported
between inert quartz wool plugs in a tubular quartz reactor
(4 mm i.d.). The reactor was placed in a resistively heated furnace
(National Element FA120), and the temperature was monitored by
a K-type thermocouple (Omega) attached to the external walls of
the reactor near the axial center of the fixed-bed and regulated
by an electronic controller (Watlow 96). Fixed-beds were treated
in flowing air (Matheson, Ultra Zero Certified) at 873K
(0.0167 Ks™!) for 6 h and cooled to reaction temperature (673 K)
prior to catalytic testing. Liquid methanol (Fluka, 99.9%) was deliv-
ered by a syringe pump (Cole-Parmer 780100C) and vaporized into
heated gas transfer lines (= 393 K). He and N, (Matheson,
99.999%; internal standard) flows were metered by thermal mass
flow controllers (Brooks 5850). Concentrations of species compris-
ing influent and effluent gas mixtures were quantified using gas
chromatography (Agilent 7890) with parallel thermal conductivity
(Porapak Q, 13 ft x 1/8 in, 100-80 mesh) and flame ionization (HP-
PLOT Q, 30 m x 0.530 mm x 40 pm) detection.

3. Results and discussion
3.1. Preparation and characterization of SAPO-34 samples

Table 2 summarizes the characterization results for the catalog
of SAPO-34 samples diverse in morphology, crystallite size, H" den-
sity, and Si speciation. The samples were prepared by adapting
reported protocols using various organic structure-directing
agents; solution compositions; Si, Al, and P sources; aging times;
and crystallization temperatures and times (Table 1 summarizes
the synthesis conditions). Powder X-ray diffractograms confirm
crystallization of the CHA topology (see Fig. S1 of the Supporting
Information), and micropore volumes (Table 2) calculated from
measured N, adsorption isotherms at 77 K are consistent with
CHA-type materials.

3.1.1. A, Si, and P speciation via MAS NMR

The Brensted-acid function of microporous, crystalline SAPOs
emanates from charge-balancing protons localized at O atoms
bridging tetrahedrally coordinated Al and Si atoms [9]. Si incopora-
tion into neutral aluminophosphates occurs via two mechanisms:
(i) substitution of Si for P and (ii) substitution of a Si-Si pair for
an Al-P pair [9,35,47]. Brgnsted acid sites are localized at O atoms
bridging Al and either an isolated Si (i.e., Si(OAl),), Si on the bor-
ders of siliceous islands, or Si in aluminosilicate regions within
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Table 2

Micropore volume, Si(OAl), fraction, H" density, and size assessments of HSAPO-34 samples.

Sample* Vimiero” €m® g~ Si(0Al)4/% P2 “/(molys nm~3) Lsgm“/nm Lpis'/nm D/R?%[ks ™! g (R?/D)[(moly- ksnm~3)
1 0.28 100 0.59 - 260 2.9 0.21
2 0.27 100 0.56 480 - 20 0.28
3 0.28 100 0.71 150 - 22 0.32
4 0.28 100 0.74 - 490 2.0 0.36
5 0.25 100 0.83 510 - 1.8 0.47
6 0.26 100 0.79 1500 - 0.49 1.6
7 0.26 100 0.90 7700 - 0.30 3.0
8 0.27 100 0.86 12000 - 0.23 3.7
9 0.26 100 0.89 9200 - 0.12 73
10 0.30 76 0.98 1200 — 4.6 0.21
11 0.26 86 0.78 - 360 3.0 0.26
12 0.29 83 0.75 - 620 1.7 0.44
13 0.24 86 0.93 460 — 1.2 0.77
2 Sample numbers correspond to entries in Table 1.
b t-plot method on measured N, adsorption isotherms at 77 K.
¢ Integration of Bloch decay 2°Si MAS NMR spectra (Fig. 1).
4 NH; evolution upon thermal treatment of NH -exchanged samples.
€ Arithmetic mean of >30 crystallites from scanning electron micrographs (Fig. S3).
! Cumulant analysis of autocorrelation functions measured in dynamic light scattering.
& Transient sorption of propane at 333 K.
siliceous islands [35]. The first arises from Si incorporation mech- ' '
anism (i), and the latter two arise from mechanism (ii) [35]. The I
proton affinity of the conjugate base is sensitive to the local coor- 13 |
dinative environment of Si [33,48], and these variances in proton |
affinity, i.e., acid strength, manifest differences in catalysis 12 |
[28,49] and reveal themselves in infrared spectra with appropriate 1 I
probe molecules [50]. The Si speciation is affected by hydrothermal
synthesis conditions, e.g., template identity [51] and gel composi- 10
tion [34], post-synthetic thermal [52] and hydrothermal [53] treat- '
ments, and exposure to ambient moisture [43,54]. Si speciation is 9 I
typically identified using 2°Si MAS NMR [50,55-57] and quantified 8
in Bloch decay spectra [28,51,58,59]. Fig. 1 shows the Bloch decay
29Si MAS NMR spectra for as-synthesized SAPO-34 samples 1-13 in 7 S A AN
Table 2. The spectra for samples 1-9 (Table 2) show a single reso-
nance at —92 ppm attributed to isolated, tetrahedrally coordinated VWISV AWATYS
Si in the SAPO-34 framework [51,56-58], i.e., Si(OAl)4. The spectra 5
for samples 10-13 (Table 2) show an additional resonance at (AN
—96 ppm attributed to Si(OAl)3(0Si); indicative of the formation 4 W AN AN N
of siliceous islands [28,50,51,58,59]. Table 2 lists the fractions of
Si(OAl),4 species in each sample as determined by integration of | JA’\[\/AW\/"J\/‘”’\
the Bloch decay 2°Si MAS NMR spectra. 2 |
The 27 Al MAS NMR spectra (Fig. S2a of the Supporting Informa- | VA
tion) show a resonance at 39 ppm attributed to tetrahedrally ] T .
coordinated Al in the SAPO-34 framework [51,56-58] and a minor -80 90 -100 -110
feature at 10-13 ppm (< 10% via integration of Bloch decay spec- 29Q:
tra) attributed to pentacoordinated Al arising from interactions 6( SI) / ppm

between cationic moieties of the organic structure-directing
agent, mineralizing agents, or water with tetrahedrally coordi-
nated, framework Al [51,56,58]. The 3'P MAS NMR spectra
(Fig. S2b of the Supporting Information) show a resonance at
—29 ppm attributed to tetrahedrally coordinated P in the SAPO-
34 framework [51,56-58], i.e., P(OAl)4, and a minor feature at
—13 ppm (< 5% via integration of Bloch decay spectra) attributed
to P(OAI),(H,0), species [52,54]. These spectral results demon-
strate that the SAPO-34 samples are devoid of extraframework
Al and P species.

3.1.2. Assessment of H" density

Table 2 lists the H" densities of HSAPO-34 samples measured
using NHj; titration methods adapted from previously reported
protocols [46]. The H" count is normalized to the 36 T-atom CHA
unit cell volume, 2391.6 A3 per unit cell [10].

Fig. 1. Bloch decay 2°Si MAS NMR spectra of samples 1-9 and 10-13 in Table 2.

3.1.3. Assessments of size

The scanning electron micrographs (Fig. S3 of the Supporting
Information) of samples 1-13 in Table 2 show that the crystallites
exhibit plate and/or cubic morphology and size distributions rang-
ing from nearly monodisperse (e.g., samples 7 and 8) to polydis-
perse (e.g., samples 3 and 5). Table 2 lists the crystallite sizes
measured from scanning electron micrographs (arithmetic mean
of > 30 crystallites, Lsgy ) and determined from cumulant analysis
of autocorrelation functions measured via dynamic light scattering
[60] (Lprs). One-dimensional assessments of size from electron
microscopy and dynamic light scattering, however, conceal
morphological discrepancies and disregard intracrystalline defects
that affect dynamics of physical and chemical phenomena [61].
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Furthermore, assessments of average size from electron micro-
graphs require arithmetic or geometric averaging which do not
reflect the ensemble averages sensed in bulk measurements of
dynamical phenomena [62]. Transient sorption [63-65], however,
gives values for a combined parameter, D/R? (vide infra), as a func-
tional assessment of ensemble averaged size sensitive to both
morphological discrepancies and intracrystalline defects.

Fig. 2 shows transient sorption profiles for propane adsorption
at 333 K for samples 1, 6, and 9 in Table 2. The equilibrium propane
adsorption isotherms, at 333 K and 10?-10°> mmHg, show linear
correlation between equilibrium adsorption uptake and sorbate
pressure (Fig. S4 of the Supporting Information) implying ideal sor-
bate behavior (fugacity coefficients sufficiently close to unity) with
diffusivities independent of concentration [63,64,66]. Fig. 2 shows
the data and fitting results only for a subset of the sample catalog
to aid readability; see Fig. S5 of the Supporting Information for
graphical representation of the complete data set.

The solid lines in Fig. 2 are curves estimated by regression of
data to model equations describing radial diffusion in a sphere
under isobaric and isothermal conditions [63,64]. The selected con-
ditions—sorbate, temperature, and pressures—for collection of
transient sorption data result in <20% pressure change between
the initial and final (equilibrium) states. Measured transient sorp-
tion profiles are initially regressed to the following model equation

[63,64],
(——n T t) (1)

M[
M. @ Z
where M, is the molar uptake at time t, M, is the equilibrium molar
uptake, D is the effective diffusion constant of propane at 333 K, and
R represents a characteristic length scale for diffusion. This non-
linear regression gives an estimate of the model’s single parameter,
D/R%. Eq. (1) describes transient sorption in crystallites with suffi-
ciently narrow size distribution. A sorption model adapted for poly-
disperse crystallites applies a Gaussian distribution of sizes [63,64],

M£;2 n2zn2/ def(e eXP< z 2n2t>
e (552 )

where ¢ is the standard deviation of sizes ¢. Regression of measured
data to Eq. (2) gives estimates for the model’s two independent
parameters D/R? and . Table 2 lists the D/R? estimates obtained
from non-linear regression of transient sorption data to either Eq.
(1) or Eq. (2). These D/R* values are similar in magnitude, when
scaled by the square of crystallite size, to those archived in the open
literature for natural chabazite [67,68], aluminosilicate CHA [69],
and SAPO-34 [70,71].

3.2. Effect of diffusional constraints on total turnovers in methanol-to-
olefins catalysis

Total turnovers of HSAPO-34 for methanol-to-olefins catalysis is
defined as the methanol converted to hydrocarbon products
appearing in the effluent throughout the lifetime of the catalyst
per H, i.e

1
total turnovers =N / dtzm:zn:chmHn(t,z =), 3)

where t is time-on-stream, 7, is the time-on-stream when methanol
conversion to effluent hydrocarbon products is zero, A}« is the
moles of H" in the fixed-bed at t = 0, and Fc,u, (t,z = ) is the molar

1.0

o o o
&~ (o)) (o0}

o
)

Fractional molar uptake

0 T | T | R | P | "
10° 10" 10° 10° 10" 10°
Time /s

Fig. 2. Fractional molar uptake versus time during transient sorption of propane at
333 K on HSAPO-34 samples 1 (v), 6 (¢), and 9 (o) in Table 2. Solid lines represent
curves obtained from non-linear regression of experimental data to Egs. (1) and (2);
the regressed D/R? values are listed in Table 2.

flow rate of C,H, at t in the fixed-bed effluent (z=¢) [72]. The
shape-selective properties of HSAPO-34—namely, the 3.8 A pore
openings [10]—restrict the distribution of hydrocarbons appearing
in the fixed-bed effluent during methanol-to-olefins catalysis to
C;-C7 acyclic aliphatics [6]. Total turnovers provides an assessment
of catalyst lifetime [18,72,73] that is intrinsic to the structural and
chemical properties of the zeotype/zeolite formulation and to the
methanol-to-olefins reaction conditions [18].

Total turnovers decreases monotonically with increasing values
of p:,. (R*/D), where p;,, and R*/D are the H" densities and size
parameters, respectively, reported in Table 2. Methanol conversion
to hydrocarbon products remains below 100% at all times-on-
stream for all samples at the selected reaction conditions (673 K,

16 kPa CH50H, 1700 MeOH (H* - ks)’1 ). The trend follows a smooth
curve for samples with uniquely isolated Si speciation (Fig. 3, filled
symbols). This trend is consistent with reported effects of crystal-
lite size, site density, and textural properties on lifetime of CHA
zeotypes and zeolites for methanol-to-olefins catalysis [14,20-
27,29-32]. Total turnovers is smaller, at identical values of
[om (RZ/D), for samples exhibiting signals attributed to siliceous
islands in 2°Si MAS NMR spectra (Fig. 3, open symbols) compared
to those with uniquely Si(OAl), speciation. This trend is consistent
with reported effects of Si speciation on lifetime of HSAPO-34 for
methanol-to-olefins catalysis [28]. The following mathematical
treatment of reaction-transport phenomena in methanol-to-
olefins catalysis reveals that the effects of H" density, crystallite
size, and Si speciation on total turnovers are all manifestations of
differences in diffusional constraints on methylation, hydrogen
transfer, dealkylation, and dehydrocyclization rates.

Temporal and spatial concentration gradients persist at time-
and length-scales spanning many decades during methanol-to-
olefins catalysis on HSAPO-34. These circumstances render imprac-
tical, if not impossible, the evaluation of instantaneous or steady-
state rates of individual reactions and restrict analyses, and inter-
pretations thereof, to rates averaged in both time and space. The
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Fig. 3. Total turnovers for methanol-to-olefins catalysis versus py. (R?/D). Filled
symbols denote samples with uniquely isolated Si, i.e., 100% Si(OAl),4 Si speciation
(samples 1-9 in Table 2), and open symbols denote samples with <86% Si(OAl), Si
speciation (samples 10-13 in Table 2). Reaction conditions: 673 K, 16 kPa CH30H,
1700 MeOH (H* - ks'). The dashed line is a guide for the eye.

temporal and spatial evolution of the concentration of hydrocar-
bon C,,H, is governed by material balance

9Cc,H,
ot

where Cc, p, is the concentration of C,,H,, Nc, 1, is the molar flux of
CnH,, and rgEan is the observed volumetric rate of formation of

H, [74]. For a uniaxial, tubular fixed-bed reactor, considering
time- and length-scales similar in magnitude for bulk convective
flux and chemical reaction, the material balance reduces to

l aFCmHn _ robs _ 8CCmHn
A, 0z CinHln at

obs
+ V- NeuH, = Eom,

the typical design equation for a packed-bed reactor [75] where A,
is the cross-sectional area. The reactor is devoid of radial and angu-
lar concentration gradients and operates under conditions with
constant velocity and with bulk diffusive flux time-scales much
smaller than the time-scales for both convective flux and chemical
reaction [75]. Integration of the material balance in space from the
fixed-bed influent (z = 0) to the fixed-bed effluent (z=¢) and in
time from t = 0 to t = 74 gives the following relation

/ dtFeu,(t,z=10) =V / de (rds, ), 4)

where V = A,/ is the volume of the fixed-bed and (f(t,z)), e.g., is the
spatial average of f(t,z), i.e., (f(t,z)) = F(t) = 27! fo‘z dzf(t,z). The
integration across the spatlal domaln applies the boundary condi-
tion stipulating that the molar flow rate of C,H, at z=0, the
fixed-bed influent, is zero at all values of t. The integration across
the temporal domain utilizes the initial and final conditions stipu-
lating that the concentration of C,,H, at both t = 0 and t = 7, is zero
at all values of z. These boundary, initial, and final conditions arise
because hydrocarbons (C,H,) are, by definition, products in
methanol-to-olefins catalysis. Substitution of Eq. (4) into the defini-
tion of total turnovers (Eq. (3)) gives

total turnovers :)\}/:c" (Tld / dtZZm (re%,) > (3)

The observed volumetric rate of formation of C,,H,, is the sum of
observed volumetric rates of all reactions within the complex reac-
tion network for methanol-to-olefins catalysis weighted by the
stoichiometric coefficients for C,,H,, i.e.,

obs obs
TeoH, = ZVCman p (6)

where vc,u, » is the stoichiometric coefficient for C,,H, in reaction p
and rgbs is the observed volumetric rate of reaction p. rgbs is the pro-
duct of the overall effectiveness factor, 7, that accounts for concen-
tration gradients at particle and crystallite length-scales, and the
volumetric rate of reaction p under hypothetical conditions of flat
concentration gradients at particle and crystallite length-scales, r,,
[76] i.e.,

obs
Tty = ZvaHmIJ MpTp-

The overall effectiveness factor is the quantitative assessment of
diffusional constraints—increasing deviations from unity indicate
increasing deviations from flat concentration profiles. The overall
effectiveness factor is parameterized by reaction properties (e.g.,
rate constants), molecular transport properties (e.g., diffusion con-
stants), and structural catalyst properties (e.g., site density and
particle/crystallite size) [77,76]. It is experimentally inaccessible
for reactions involved in and at conditions relevant to methanol-
to-olefins catalysis; access is contingent on either a priori measure-
ment of an intrinsic reaction rate or a priori knowledge of the rate
expression and quantification of rate parameters—both formidable
tasks in complex reaction networks occurring within reactors with
both temporal and spatial gradients. The archived literature
includes, however, examples demonstrating virtue of a combined
parameter, site density (e.g., py+) multiplied to a size parameter
(e.g., R*/D), to assess diffusional constraints in, e.g., CO hydrogena-
tion on Co catalysts [77], alkene coupling on solid acids [78], alkane
hydroisomerization on metal-acid bifunctional formulations
[79,80], and methanol-to-hydrocarbons catalysis on HZSM-5 [81].

This virtue is a consequence of the general functional relation-
ship between effectiveness factor, site density, and particle/crystal-
lite size [76-80,82]. The overall effectiveness factor is a conflation
of effectiveness factors describing transport constraints imposed at
disparate length-scales [76]. The effectiveness factor describing
diffusional constraints at length-scales of crystallites is a function
of Thiele modulus [83], qbf,, which assesses the relative volumetric
rate of reaction versus diffusion within an intracrystalline domain,

(TP)S
(Deuha /R?) (Cem)s

() buwo) (PG o

%=

where (1), (rpu+ ), and (Ce,u, ) are the rate of reaction p per vol-
ume, rate of reaction p per H*, and concentration of C,H,, respec-
tively, evaluated at hypothetical conditions of flat concentration
gradients at crystallite length-scales; p,. is the instantaneous H*
density; and Dy, is the effective diffusion constant of C;,H,. (o5
is the H* density defined in Table 2, and D/R? is the size parameter
defined in Table 2 and Section 3.1.3.) This effectiveness factor devi-
ates further from unity with increasing values of Thiele modulus, in
general, for isothermal systems and for reaction-transport phenom-
ena conferring large diffusional constraints ((/)5 > 1) [76].
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The applied segregation of terms in Eq. (7) elucidates factors
affecting diffusional constraints imposed at length-scales of crys-
tallites [77]. The first term py. /p;,. accounts for H* loss during cat-
alyst deactivation; the effect of diffusional constraints on total
turnovers is ultimately insensitive to this effect of catalyst deacti-
vation on Thiele modulus because total turnovers is a quantity
averaged in time throughout the catalyst lifetime (Eqs. (3) and
(5)). The second term, py,, (R?/D), contains structural catalyst prop-
erties, and the third term,

¥ = [(rpn ),/ (Centn )5/ [Degin /DI, (8)

contains intrinsic kinetic constants (normalized per H*) and diffu-
sion parameters. The effects of site density, crystallite size, and Si
speciation on total turnovers (Fig. 3) are manifestations of effects
of structural catalyst properties and intrinsic kinetic constants on
the observed rates of formation of hydrocarbons appearing in the
fixed-bed effluent.

Diffusional constraints increase with increasing values of
P (R?/D). Total turnovers decreases monotonically with increas-
ing diffusional constraints, as modulated by py,. (R?/D), for
HSAPO-34 samples with uniquely Si(OAl)4 speciation (closed sym-
bols in Fig. 3). The monotonic trend conforms with the single-site
nature of such materials [35,84], and the single-site nature implies
uniformity in ¢ values (Eq. (8)) regardless of p°H+(R2/D) values
because rates per H and effective diffusion constants are proper-
ties intrinsic to the single-site and CHA topology. Total turnovers
is smaller, at identical py. (R?/D) values, for HSAPO-34 samples
with siliceous islands (open symbols in Fig. 3) compared to
HSAPO-34 samples with uniquely isolated Si(OAl); speciation
(closed symbols in Fig. 3). This implies that the presence of silic-
eous islands increases diffusional constraints via increases in s val-
ues. The topology is CHA regardless of Si speciation so siliceous
islands must affect y values by changes to intrinsic kinetic con-
stants. This effect of Si speciation is consistent with site hetero-
geneity of silicoaluminophosphates diverse in Si speciation and is
likely a consequence of increased acid strength for protons atten-
dant to siliceous islands compared to protons attendant to isolated
Si [33,35,48-50]. Further analysis of the trend for single-site
HSAPO-34 samples in Fig. 3 within the context of this reaction-
transport formalism, together with consideration of the complex
reaction network for methanol-to-olefins catalysis, enables insight,
however modest, on the relative effects of diffusional constraints
on rates of specific reaction classes.

The defintion of total turnovers includes a summation of species
(m, n) and reactions (p); substitution of Eq. (6) into Eq. (5) gives

V14 1 /Td b:
total turnovers = —2% | — dt MVe,Hp () |
o ( p U222 mes (57)

and the monotonically decreasing trend of total turnovers with
P (R?/D) (Fig. 3) prescribes the following inequality:

o - obs
) (/0 Y5 Y s 1 >> -0 o)

a(p;+ (R*/D

The reactions within the complex reaction network for
methanol-to-olefins catalysis with non-zero vc,u,p, comprise
methylation, oligomerization, g-scission, dealkylation, hydrogen
transfer, and dehydrocyclization [8], and the hydrocarbon products
detected in the fixed-bed effluent comprise C; to C; acyclic aliphat-
ics. Rates of oligomerization, B-scission, and hydrogen transfer
between acyclic aliphatics cancel, ultimately, in the m-weighted
sum over all effluent hydrocarbon products (sums with indices m

and n) and the v¢,u, p-weighted sum over all reactions (sum with
index p) in Eq. (9). Consider, e.g., the oligomerization of C,;H. with
CpHa,

Cch + CbHd i’ Ca+bHc+d-

The observed rate of consumption of C,H. and C,H, via oligomeriza-
tion is canceled exactly by the rate of formation of oligomer
CapHeyq via the identical reaction, i.e.,

D> mve,m, 1o = [a(=1) + b(=1) + (a+ b)(1)]rg>* = 0

The rates of consumption of reactants and rates of formation of
products in g-scission reactions cancel exactly in the reverse fash-
ion as oligomerization. Consider also hydrogen transfer between C,-
H. and CpHg; the observed rate of consumption of C;H. and C,H, via
hydrogen transfer is canceled exactly by the rate of formation of
CqHcir and C,Hg-, via the identical reaction. Only olefins methyla-
tion, aromatics dealkylation, methanol transfer hydrogenation,
and olefins dehydrocyclization contribute, ultimately, to the triple
summation in Eq. (9).

The cascade of olefins methylation results ultimately in the net
formation of an effluent hydrocarbon; aromatics dealkylation
results ultimately in the net formation of an effluent hydrocarbon;
methanol transfer hydrogenation results in the net formation
methane; and, dehydrocyclization results ultimately in the net
consumption of a hydrocarbon. Manipulation of the inequality in
Eq. (9) to distinguish reactions with vc,u,, > 0 from those with
Veuap < 0 gives

/0 ! dt;; > m{Ve,ml <8<L‘;bs>

P Py (R/D))
v>0
Tq 8robs
dt —Pr ) 10
</ DIDY m|vaH"«p<8<p;(R2/D)>> (10)
v<O0

The left-hand side of the inequality in Eq. (10) includes only the
observed rate of the methylation cascade, methanol transfer
hydrogenation, and aromatics dealkylation, and the right-hand
side includes only the observed rates of dehydrocyclization. Alter-
natively, the left-hand side includes only the rates of reactions that
ultimately consume methanol to give an effluent hydrocarbon pro-
duct, and the right-hand side includes only the rates of reactions
that ultimately consume methanol to give or augment an
entrained hydrocarbon. The inequality in Eq. (10) states that
observed rates of productive reactions decrease more with increas-
ing diffusional constraints imposed by the structural catalyst prop-
erties than observed rates of nonproductive reactions. More
specifically, rates of dehydrocyclization are less sensitive, on-
average, to diffusional constraints than rates of methylation,
methanol transfer hydrogenation, and aromatics dealkylation.

The aliphatic precursors to aromatics in solid-acid mediated
dehydrocyclization include acyclic and cyclic hydrocarbons of
varying degrees of unsaturation [85-88]. Only acyclic species are
detected in the fixed-bed effluent in methanol-to-olefins catalysis,
and only these are enumerated in the summations indices to eval-
uate total turnovers (Eq. (3)). Backbone chain-lengths of acyclic ali-
phatic precursors for aromatization are necessarily larger than or
equal to six. The inequality in Eq. (10) suggests then that the intrin-
sic kinetic properties, i.e., rate constants per H*, and topological
features, i.e., eight-membered ring apertures, of HSAPO-34 confer
such strong diffusional constraints on Cg. aromatization precursors
that variations in structural catalyst properties, i.e., site density
and crystallite size, confer only minimal effect on observed rates
of dehydrocyclization. The diffusional constraints imposed by
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intrinsic kinetic properties and topological features of HSAPO-34
on gas-phase reactants in the methylation cascade (C,-Cg olefins,
methanol, and dimethyl ether), methanol transfer hydrogenation
(aliphatic hydrocarbons and methanol), and aromatics dealkyla-
tion (methanol and dimethyl ether) are on average less severe than
those imposed on Cg. aromatization precursors such that varia-
tions in structural catalyst properties confer profound effects on
diffusional constraints for these reactions. (Effectiveness factor
scales as the inverse of Thiele modulus. The sensitivity of effective-
ness factor with Thiele modulus scales then as the inverse-square
of Thiele modulus.) This implies that the effective diffusion con-
stants for Cg. aromatization precursors are so small that the
orders-of-magnitude variations in p;. (R*/D) affect the effective-
ness factors for aromatization less, on-average, than effectiveness
factors for methylation, methanol transfer hydrogenation, and aro-
matics dealkylation because the effective diffusion constants for
gas-phase reactants of these reactions (methanol, dimethyl ether,
and aliphatics) are comparatively large. Alternatively, this implies
that the average intrinsic rates per H* for dehydrocyclization are
so large that the orders-of-magnitude variations in py, (R*/D)
affect the effectiveness factors for aromatization less, on-average,
than effectiveness factors for methylation, methanol transfer
hydrogenation, and aromatics dealkylation because the average
intrinsic rates per H* for gas-phase reactants of these reactions
are comparatively small. Succinctly, the trend in Fig. 3 (and
inequality in Eq. (10)) implies that the Thiele moduli for dehydro-
cyclization is larger, on-average, than the Thiele moduli for methy-
lation, methanol transfer hydrogenation, and aromatics dealkylation.

3.3. Effect of diffusional constraints on cumulative selectivity in
methanol-to-olefins catalysis

The coupled temporal and spatial gradients rendering impracti-
cal the evaluation of instanteous and steady-state rates in
methanol-to-olefins catalysis prevail also to preclude precise
kinetic and mechanistic interpretation of instantaneous selectivity
data. The utility of the reaction-transport formalism detailed in
Section 3.2 to reveal effects of diffusional constraints on reaction
rates averaged in time and space extends to the analysis of selec-
tivity averaged in time and space. The cumulative selectivity to
effluent hydrocarbon product C,;H; (Sc,n,) is defined [18,73] as

_ JoddtmFe,, (t,z=1¢)
B fofd dth’Zn’m/ch/Hn/ (t,Z = Z)
= Jot At My, p (19%)

B (11)
‘L'ld (;:d dt Zm’Zn’ Zp’ m’ vaan, N <rg!35>

VT, 1 (U b:
- ﬁ (a fO dthm vaHmP <rg S>)
total turnovers '

ScpHy

(12)

Sc,u, 1S the ratio of the time- and space-averaged net rate of forma-
tion of C,,H, to the time- and space-averaged rates of the methyla-
tion cascade, methanol transfer hydrogenation, aromatics
dealkylation, and dehydrocyclization (Eq. (11)). Equivalently, Sc,n,
is the fractional contribution of total turnovers from C,,H,, (Eq. (12)).

Fig. 4a shows that the cumulative selectivities to ethylene,
propylene, butenes, and Cs and Cg. acyclic aliphatics are largely
invariant with pg,. (R?/D) for samples 1-9 in Table 2. These invari-
ances imply that the sensitivity of time- and space-averaged net
rates of ethylene, propylene, butenes, Cs, and Cg. formation to dif-
fusional constraints conferred by structural catalyst properties are
similar to that for the time- and space-averaged rates of the
methylation cascade, methanol transfer hydrogenation, aromatics
dealkylation, and dehydrocyclization. This suggests that ethylene,
propylene, butenes, and Cs, acyclic aliphatics share, on average,

identical kinetic origin with the possibilites limited to the methy-
lation cascade, methanol transfer hydrogenation, aromatics
dealkylation, and dehydrocyclization. Methanol transfer hydro-
genation and dehydrocyclization are eliminated because these
reactions ultimately consume an olefin, and the methylation cas-
cade is eliminated because ethylene is not a product of methyla-
tion [72,89-91]. Thus, the invariances in olefins cumulative
selectivities with py,. (R?/D) (Fig. 4a) suggest that the kinetically-
dominant pathway for formation of all olefins products when aver-
aged throughout the catalyst lifetime and across the fixed-bed is
aromatics dealkylation. This result is consistent with aromatics
comprising the pool of organic co-catalysts throughout the major-
ity of turnovers in methanol-to-olefins catalysis [11,12,24].

The cumulative selectivities to methane, ethane, and propane
increase with increasing py,. (R?/D) (Fig. 4b) while the cumulative

selectivity to butanes is invariant with pf. (R?/D). These trends
translate into the following inequalities

a‘S‘Cn H2n+2

0< o o R2 )
o(py, (/D))
‘Eld fgd dtzpnanHZrHZp <r2b5>

_ 9 ( > (13)
a(p;, (R /D)) e Jot dES S Yo oM Ve, (1)

forn =1, 2, and 3. Applying the quotient rule for differentiation to
Eq. (13) and assuming the inequality (9(r*) /6(p°H‘ (R /D))) <0-—
i.e., observed rates decrease with increasing diffusional constraints
imposed by structural catalyst properties (rigorously true for
isothermal systems and reactions with strong diffusional limita-
tions (¢ > 1))—gives

Lt , o(r)
N fO dth/Zn’Zp’m VCmrH"up/

o\ p;. (R?/D)

1 (T A(robs)
2 Jo" At Ve, p ﬁ
ol p>. (R?/D)
T,
Tl—d St dtS> S >y Ve, <rg,b5)
1 T, b
T4 fod dthnanHan-P <r§3b5>
and applying the definition in Eq. (11) and the inequality Sc,u, < 1,

i.e., the cumulative selectivity to any effluent hydrocarbon is less
than 100%, gives

L Y Y S v |2
b R e )
1 Tq 8(T0bs)
— dt —r L | 14
> % Js zp:n VCuHn o0 O(p;r (RZ/D)) ( )

The left-hand side of the inequality in Eq. (14) includes only, as
discussed in Section 3.2, the observed rates of the methylation cas-
cade, methanol transfer hydrogenation, aromatics dealkylation,
and dehydrocyclization. The right-hand side includes the rates of
reactions producing and consuming methane, ethane, and propane
(n=1, 2, and 3, respectively). Methane, ethane, and propane are
produced in transfer hydrogenation of methanol, ethylene, and
propylene, respectively, and ethane and propane are consumed
in transfer dehydrogenation. The inequality in Eq. (14) then implies
that the net rates of hydrogen transfer reactions involving C;-Cs
species are less sensitive to diffusional constraints than the rates
of the methylation cascade, methanol transfer hydrogenation, aro-
matics dealkylation, and dehydrocyclization. This implies that the
Thiele moduli for transfer hydrogenation reactions of methanol,
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Fig. 4. Cumulative selectivity of (a) CoH,, C3Hg, C4Hg, Cs acyclic aliphatics, and Cg. acyclic aliphatics and (b) CH4, CoHg, C3Hg, and C4H;o in methanol-to-olefins catalysis versus
Py (R?/D) for HSAPO-34 samples 1-9 in Table 2. Reaction conditions: 673 K, 16 kPa CH;0H, 1700 MeOH (H" - ks™'). The dashed lines are guides for the eye.

ethylene, and propylene are larger, on-average, than the Thiele
moduli for methylation, methanol transfer hydrogenation, aromat-
ics dealkylation, and dehydrocyclization. This result is consistent
with the results in Section 3.2—Thiele moduli for dehydrocycliza-
tion are larger, on-average, than the Thiele moduli for methylation,
methanol transfer hydrogenation, and aromatics dealkylation—be-
cause methane, ethane, and propane are the hydrogen-rich
byproducts formed along the dehydrocyclization cascade.

4. Conclusions

The effects of crystallite size, H" density, and Si speciation of
HSAPO-34 on catalyst lifetime and selectivity in methanol-to-
olefins catalysis are all manifestations of diffusional constraints.
Diffusional constraints increase with increasing values of a com-
bined parameter of structural catalyst properties—H" density mul-
tiplied to a functional assessment of crystallite size (py. (R?/D)).
Diffusional constraints are also sensitive to Si speciation because
the local coordinative environment of the heteroatom affects,
apparently, the intrinsic kinetic constants. Rigorous assessment
of the effects of diffusional constraints on rates of reactions within
the complex reaction network for methanol-to-olefins catalysis
requires quantities derived from observables that avoid conflation
by temporal and spatial gradients. Total turnovers is the sum of
hydrocarbon formation rates averaged in space, across the fixed-
bed, and in time, throughout the catalyst lifetime; total turnovers
is an intensive assessment of catalyst lifetime in methanol-to-
olefins catalysis on HSAPO-34. Total turnovers decreases with
increasing diffusional constraints regulated either by py. (R?/D)
or by Si speciation. Reaction-transport analysis of the complex
reaction network for methanol-to-olefins catalysis shows that the
effect of diffusional constraints on total turnovers arises because
dehydrocyclization reactions experience stronger diffusional con-
straints than olefins methylation, methanol transfer hydrogena-
tion, and aromatics dealkylation. Cumulative selectivity to a
given hydrocarbon product, C,H, is the space- and time-
averaged rate of formation of C,H, normalized by the sum of
space- and time-averaged rates of formation of all hydrocarbon

products. Cumulative selectivities to methane, ethane, and pro-
pane increase with increasing diffusional constraints demonstrat-
ing that transfer hydrogenation of methanol, ethylene, and
propylene experience stronger diffusional constraints than all
other reactions within the complex reaction network. The method-
ology and results reported here represent a case-study for the anal-
ysis of reaction-transport phenomena occurring within complex
reaction networks in heterogeneous catalysis where both temporal
and spatial concentration gradients prevail.
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