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predicting future word learning
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Abstract—Can we predict the words a child is going to learn
next given information about the words that a child knows now?
Do different representations of a child’s vocabulary knowledge
affect our ability to predict the acquisition of lexical items
for individual children? Past research has often focused on
population statistics of vocabulary growth rather than prediction
of words an individual child is likely to learn next. We consider
a neural network approach to predict vocabulary acquisition.
Specifically, we investigate how best to represent the child’s
current vocabulary in order to accurately predict future learning.
The models we consider are based on qualitatively different
sources of information: descriptive information about the child,
the specific words a child knows, and representations that
aim to capture the child’s aggregate lexical knowledge. Using
longitudinal vocabulary data from children aged 15-36 months,
we construct neural network models to predict which words are
likely to be learned by a particular child in the coming month.
Many models based on child-specific vocabulary information
outperform models with child information only, suggesting that
the words a child knows

influence prediction of future language learning. These models
provide an understanding of the role of current vocabulary
knowledge on future lexical growth.

Index Terms—Language acquisition; word learning; lexical
acquisition; neural networks; cognitive development

I. INTRODUCTION

What role does the current lexical knowledge of a child have
in accurately predicting future word acquisition? If all children
learn in approximately the same way, knowing the specific
words in a child’s vocabulary should not improve accuracy
at predicting what words the specific child is likely to learn
next. Alternatively, if the idiosyncratic words a child knows at
a given time influence the words that child is going to learn
next, this would provide strong evidence that current lexical
knowledge influences future lexical growth. Even assuming a
child’s vocabulary is predictive of the words a child is likely
to learn next, it is possible that the word learned itself is a
side-effect of learning a relevant feature or category in the
world. If this is the case, the knowledge of the specific lexical
item may be less predictive than the concepts or features it
encapsulates. For example, a child might learn the word dog;
she might have learned that her household pet is the only
dog, or that only animals walked around on a leash in her
neighborhood are dogs, or instead she could be learning that
dogs have four legs, a tail, etc. and that dogs are somehow
different than cats. All of semantic information related to the
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word dog capture different types of language knowledge that
a child might use to learn new words in the future.

In this work we explore how various representations of
a child’s current vocabulary predict that same child’s future
lexical acquisition. We focus on high level features of the child
and the child’s lexicon specifically to zoom in on what the
role of lexical structure is on future lexical acquisition. We
acknowledge that there are many forces that could influence
vocabulary growth and language acquisition besides the com-
position of a child’s lexicon. Here we focus on the ability to
use language knowledge to predict future lexical growth. We
consider various vector representations that aim to capture a
child’s language knowledge and evaluate these representations
on their ability to predict future acquisition trajectories at
the level of an individual child to model lexical growth. We
compare the usefulness of different vector representations
by comparing predictive performance of single-layer neural
networks, evaluating the models on their ability to predict the
words a child will learn one month into the future.

We tackle the problem of lexical acquisition in toddlers
because language learning is one of the first complex cognitive
tasks humans undertake, and therefore a great way to model
learning more generally. Infants start producing their earliest
words around 12 months of age and within only a few months,
young children have hundreds of words. Shortly thereafter,
young children begin to construct sentences with complex ideas
and grammatical structure. Despite how quickly this learning
comes online, much of the language acquisition process is still
challenging to explain— particularly how children represent and
access language knowledge, which is the focus of this modeling
work. The approach of machine learning to model complex
processes, such as language acquisition, can provide novel
insight into the learning and representation of language. We
focus particularly on how different vocabulary representations
of a young child’s lexicon increase predictive accuracy. Pairing
powerful statistical learning tools with observational acquisition
data, we can isolate differences in individual learning in
early acquisition and quantify the role of current vocabulary
knowledge, and how the representation of that knowledge
influences the ability to predict future vocabulary growth. We
argue that these analyses can be informative in suggesting
the relative importance of different factors in word learning,
leading to specific predictions that could be tested empirically.

Currently, a toddler’s lexical knowledge is often measured
as the number of words they know, given the child’s age and
sex [8], [10], [33]. While there is strong evidence that this
count of the number of words is useful in assessing language
ability, it is unclear that this number alone is useful and
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informative enough to aid in predicting future acquisition. In
our age range of the individual children of interest, the most
commonly used measure of vocabulary size is the MacArthur-
Bates Communicative Development Inventory (CDI). Parents
indicate which of a fixed set of about 700 words their child can
say. From this vocabulary report, developmental psychologists
assign each child a CDI percentile that compares the child’s
CDI vocabulary size to that of their peers. This percentile
value is used to flag children who are learning language
at slower rates than their peers. These children, classically
called late talkers, are important to monitor because many of
them will continue to have language learning difficulties [15],
[33]. Sometimes these early language difficulties will persist
and be reflected in reading and other difficulties in academic
settings [11]. However, not all children who have a low CDI
percentile as toddlers go on to have lasting language difficulties,
and to date, it is impossible to accurately predict which
toddlers will have persistent difficulties and which will catch
up. By exploring different types of language representations in
predicting future acquisition, we may help uncover relationships
between current language and future learning that could help
with diagnostic assessment, providing a quantitative tool to
help distinguish children who are simply learning language at
a slower rate than their peers and those children who are at risk
for these language-specific delays to manifest as other types of
cognitive difficulties, such as specific language impairment
(for more information on SLI see [18]). The relationship
between lexical representation and CDI percentile might
suggest an approach for quantifying meaningful differences
in word learning between at-risk children and their normally
developing peers. However, before these questions can be
directly studied, a working predictive model of acquisition
must be constructed and studied. Here we consider a simple
neural network modeling approach as an initial attempt to
tackle these issues.

Neural network models, often called connectionist models
in psychology, provide a systematic way of extending ob-
servational findings and behavioral studies of early language
learning. Single layer neural networks, while more complex
than generalized linear models, still provide interpretability
and insight into aspects of linguistic knowledge that may
impact future language learning. As statistical learning tools,
neural networks are powerful and adaptive, capable of modeling
change over time, and dealing with noise and uncertainty in the
data. Here we use neural network models to build predictive
models of lexical acquisition. We specifically explore how the
representation of a child’s current vocabulary influences our
ability to accurately predict what words a specific child will
learn next. Evaluating our predictive models on longitudinal
language acquisition trajectories, we interpret the model
accuracy as evidence of the importance of a specific type
of lexical knowledge representation in early acquisition. By
understanding the influence of the representation of a childs
linguistic knowledge in our models ability to predict future
acquisition, we aim to isolate the effects of the role of lexical
knowledge on the learning of individual lexical items. In
the larger literature of neural networks, neural networks are
essentially optimized feature detection systems, whose training

algorithms work to find the best combination of complex
features that accurately predicts the measure of interest. In
our simple neural networks, the intermediate layer aggregates
input features into representations that maximize predictability
of future language learning. By considering only simple graphs,
we allow for predictive models that are slightly more complex
than generalized linear models but whose performance is still
limited by the usefulness of the input representation, allowing
us to scientifically investigate the effect of the representation
of lexical knowledge on the ability of these models to predict
future acquisition of lexical items for individual children. We
compare model performance as a direct means to assess the
usefulness of a particular network representation in capturing
the relationship between current lexical knowledge and future
language learning for individual children.

We first briefly review the state of the art in using neural
networks to capture aspects of language acquisition, before
turning to the methods, and detailing the longitudinal data and
vocabulary representations. Next we discuss the neural network
training and optimization. Finally we discuss the different
predictive capacity of the various vocabulary representations
and the implications of the results.

II. PAST WORK

Neural network models, as applied to early learning, have a
long history which we review only briefly here. The interested
reader may find a more extensive review of neural networks
applied to the cognitive sciences here [4], [21] and a specific
review of semantic development here [29]. Previous research
also explores neural network approaches to link neuroscience
to early development [27] and to semantic cognition [22]. We
limit our literature review specifically to neural network models
of lexical acquisition, as our prediction task aims to capture
learning of specific lexical items.

Much of the past connectionist work to model lexical
acquisition focuses on capturing infant performance on behav-
ioral learning tasks, with the goal of providing a mechanistic
explanation of language learning in children that can be verified
experimentally. For example, connectionist networks have been
used to understand the role of associative learning on the
emergence of word learning biases [7]. Work using neural
network models tasked with learning word-to-object mappings,
trained on a vocabulary of CDI words, acquires useful word
learning biases, even though the models are not directly
rewarded for this bias, suggesting that the model benefits from
learning these biases and using them to generalize to novel
word-to-object mappings. These models have been shown to
make novel predictions — about learning for different types of
categories, learning different languages, or different language
proficiency — that have subsequently been experimentally
verified in young children [5]-[7], [30].

Other examples of neural network models applied to model-
ing early lexical acquisition include models capable of capturing
word confusability and age of acquisition effects [19], and the
formation and degradation of conceptual categories [22]. These,
and other examples of lexical development, explain behavior
with basic mechanistic accounts of associative learning. One
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neural network model, which learns to map word-forms to
object referents [23] shows a mutual exclusivity bias—a
preference for novel words to map to novel objects [25], even
though no training instances explicitly exhibited this bias. The
model uses this bias and associative ‘“knowledge” of other
words to quickly and accurately learn new words, even in highly
ambiguous contexts. Another neural network model captures
the acquisition of categories. Interpreting the online learning of
the neural network, the authors provide evidence for a feedback
loop between perceptual features and linguistics labels [38];
the linguistic labels are thought to support generalization of
categories and thus facilitate learning. The model itself is able
to capitalize on the relationships between category formation
and language learning to provide structure and reinforcement,
via the feedback loop between perceptual and linguistic features,
during learning.

Unlike the work reviewed above, we do not focus on
neural networks as cognitive models. We instead use neural
networks as a means to uncover associations in the environment
and language knowledge of a child that might be relevant
and even facilitate the lexical acquisition process of young
children. Neural network models are useful tools for modeling
development because the associative learning framework allows
for different types and timescales of learning to be captured
within a single representation. This is mostly due to the
ability of connectionist models to incrementally learn and to
have predictive capacity even when representations are under-
determined or noisy. We leverage the robust learning of neural
networks to provide quantification of the predictive power of
different vocabulary representations in relation to future lexical
acquisition.

A key assumption to this type of data-driven neural network
model of acquisition is that there are regularities in the way in
which children learn. But the differences are also informative
and predictive. If all children learn similarly, and/or the
variability is not predictive, then high-level features such as the
age of the child should be adequate in predicting lexical growth.
But if there is variability among learners that can be assessed
from vocabulary data directly, then the data-driven approach
can offer unique insights into these trends. Previous work
suggests that different types of learners exist and that there are
meaningful similarities in learning within these different types
of learners [15], [20], [28], [33]. For example, network analysis
approaches have found that not only are late talkers learning
slower than their peers, but the resulting vocabulary is less
structured than one might expect if the children were simply
learning at a slower rate [3], and in the lab, late talkers seem
to learn new words differently than their typically developing
peers [6], [36]. Assuming that there are different types of
language learners, and that the vocabulary at any time point
reflects the type of learner a particular child is, machine learning
models may provide a powerful and predictive tool to aid with
classification and diagnostics of a child’s learning trajectory.

Many features of the language environment likely affect
learning. We note that a large body of work focuses on
the aspects of the language and linguistic environment that
affects language acquisition. Here, we instead assume that
the content of the child’s vocabulary embodies much of

the relevant information about the most influential forces
directing the child’s learning trajectory. While we are agnostic
as to which specific features influence and direct learning,
we do assume that representations that accentuate relevant
features will result in an improvement in model accuracy. We
thus infer that models with higher accuracy are capitalizing
on representations or aggregation methods that accentuate
those aspects of the child’s language or characteristics that
are relevant to their acquisition process. We consider the
performance of various language representations to the baseline
child-feature model to approximately quantify the influence of
certain language representations on predictions, and thus as a
proxy for the relevance of this type of linguistic information
on the acquisition process.

With the goal of capturing the role of a child’s current
vocabulary on future language learning, we explore different
ways of representing the child’s current vocabulary knowledge.
Our baseline model considers only features of the child, such
as their age, total vocabulary size, and CDI percentile. If
all children learn similarly, then these features should be
informative and predictive of which words the child is likely to
learn approximately one month in the future. Alternatively, if
the lexical items in the vocabulary of a child captures predictive
information that influences future acquisition such as the child’s
interests in specific themes (for example, animals) or their
language environment, then knowing the semantic content of
the child’s vocabulary will be helpful in predicting future lexical
acquisition.

III. METHODS
A. Longitudinal vocabulary data

To train and evaluate the neural network models, we use
data collected as part of a 12-month longitudinal study in
the Colunga Lab at the University of Colorado Boulder. The
data were collected over three cohorts. Parents and children
visited the lab at approximately monthly intervals for a year.
On average, children in our study had 10.9 visits. We included
83 monolingual children (37 female) in our current analysis.
At each visit, parents completed a vocabulary report indicating
which, of a fixed set of words, their child produced. The parental
vocabulary report was collected using the MacArthur-Bates
Communicative Development Inventory (CDI) [8] for children
between 16 and 30 months. Our modeling work includes 677
of the CDI’s 680 early learned words. Three words (grass, slide
(noun) and work (noun)) were excluded from our analysis due
to missing data. Figure 1 includes an example of what the CDI
data look like. Across all recruitment phases we have a total of
908 CDI vocabulary reports which form 825 CDI vocabulary
snapshots (i.e., two sequential vocabulary reports). We define a
CDI snapshot as a sequential set of CDI’s where the first CDI
is the (transformed) input to the neural network and the second
CDI is the output (target) vocabulary. In all cases, our model is
given information pertaining the content of the first CDI report
in the snapshot and is tasked with predicting the vocabulary as
measured by the later CDI. While the time between CDIs is
usually one month, there is some variability due to scheduling
issues. We attempt to control for this variability by including
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the time between CDIs as an input feature to all neural network
models.

The longitudinal study represents many different types of
language learners with the age of the children ranging from
15.4 to 32 months of age during the course of the study. The
median age of children when their first CDI was collected is
16.4 months. We also have a full range of language ability
represented, as estimated via the CDI percentile measure. This
measure is calculated based on the size of a child’s productive
vocabulary as compared to the child’s age-matched peers. The
range of the CDI percentiles represented in the longitudinal
snapshots is between 3 and 99, with a median percentile of
54. We note that recruitment of participants in the longitudinal
study was biased to over-represent late talkers, or children in
the bottom 20th percentile, as late-talkers are a population of
particular interest in language acquisition research.

age | sex voc. sz | dog | house Z00
162 | F 32 0 0 0
kid A | 17.1 F 49 1 0 0
189 | F 132 1 0 1
193 | M | ... 257 1 0 0
kidB | 205 | M | . 345 1 1 0

Fig. 1: Example of longitudinal CDI data used as untransformed
input and output of the neural network. Note that only the
productive knowledge of the individual words is the output the
neural network models.

B. Neural network training

Neural networks were constructed and fit using Torch7, a
scientific computing framework for luaJIT. Models are trained
via stochastic gradient descent and have a single hidden
layer, optimized in size for each trained model. The network
architecture had a variable number of input features based
on the vocabulary representation, a single hidden layer and
a logistic transformation on the output layer such that the
probability of learning a specific word was returned by the
model. Learning rate («)), number of hidden units (hu), batch
size, number of epochs until learning rate is effectively zero
(o decay), and momentum (m) were optimized via step-wise
optimization (e.g. learning rate was optimized first, followed
by the number of hidden units etc. with momentum optimized
last.) Table I shows the neural network hyper-parameters for
each model. Dropout rate of the hidden units was fixed to 0.5.
We note that there may be better neural network architectures
and gradient decent parameters that could be uncovered by
more sophisticated optimization procedures but the greedy-
search procedure was effective for the comparison of interest.
During training, the gradients are only back-propagated for
those words that are learned by the model, thus the model
is not penalized, nor are the weights updated, for incorrect
predictions on words that are already known by the child.

Most of the step-wise optimization procedure was used to
determine the neural network architecture that best suited the
particular representation of current lexical knowledge. However,
some of the parameters directly affected the update of the
internal model weights. We review them quickly here as
this provides increased interpretability to model optimization.

Learning rate decay allows models to quickly learn initial
patterns but also adapt later in training to more nuanced patterns
and negates the need to determine stopping criterion since the
learning rate asymptotes to zero. Momentum ensures each
update is a combination of the current error gradient and the
error gradient accumulated from previous time steps. Dropout
was used to minimize overfitting and was fixed at 0.5; so during
training, the model only had access to an expected 50% of
the hidden units. During model evaluation, all hidden units
were available. Overall parameter selections (including input
feature size) are presented in Table I. We note that optimization
happened via 5-fold cross-validation at the child level such
that all data for a particular child was in the same fold. Thus,
model performance is based not only on generalization to
unseen vocabulary representations but also to unseen children.

IV. NEURAL NETWORK MODELS

We ask two main questions with this work. 1) To what
extent does the vocabulary knowledge of a child increases
predictability of which words the child will learn next? It is
possible that children generally learn words in a certain order,
and that knowing the specific lexicon of a child is not helpful
for our predictive models. 2) Assuming the set of words a child
knows is predictive of the words they will learn next, how
can we best represent the lexical knowledge of a child to our
simple neural networks? Different representations of a child’s
vocabulary knowledge may allow for a more robust and accurate
predictive model of the words the child is likely to learn
next. The performance of our models with various definitions
of lexical knowledge may provide insight into the types of
information that is guiding language acquisition. We use two
broad types of representations to capture a child’s lexicon. First,
we explore representing vocabulary knowledge by decomposing
individual words into lower level units, for example breaking
down the sounds of the words to capture phonemic level
information. Second, we consider representations that aggregate
word knowledge, for example aggregating latent space vectors
to capture a multidimensional description of the words a child
knows.

This leads to 6 models:

1) CDI child feature model based demographic information

of the child,

2) CDI word model based on the CDI vocabulary report of
a child’s productive vocabulary,

3) Semantic model based on the semantic features of
particular words in the child’s vocabulary based on the
McRae feature norms [24],

4) Phonology model which considers the child’s phonologi-
cal composition of their productive vocabulary,

5) CDI label model which captures the production of words
within particular categories as labeled on the CDI, and

6) Word2Vec representing the child’s productive vocabulary
as a combination of vectors in a high-dimensional
linguistic space.

Finally, we construct ensemble models as a way to explore
whether the types of language representations are redundant or
whether the various representations increase model predictabil-
ity. We further motivate these representations below.
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TABLE I: Hyper-parameter for neural network models. (a)
is the learning rate, hu is hidden units, Aa ~ 0 is epochs
when « is nearly 0, (m) is momentum and avg? is whether
word features were averaged. Input +6 shows inclusions of
CDI child features.

model | input a hu batch Aax0 m avg?
CDI child 6 03 800 25 500 7

CDI word 677+6 0.8 500 25 200 9

Semantic 3046 0.7 300 50 500 5 T
Phonology 37 0.5 200 10 400 7 F
CDI label 22+6 0.8 500 25 200 7 T
Word2Vec 200 0.2 500 25 650 7 F

A. Lexical knowledge and input representations

In our first simulation experiment, we explore whether
vocabulary knowledge is helpful in predicting future language
learning. To this end, we train two neural network models,
one that only has access to information related to the child’s
developmental stage and another neural network with the
additional information as to the specific words on the CDI that
are currently in the child’s vocabulary. We call the demographic
model the (1) CDI child feature model. This model, with a
total of 6 features, includes the child’s age (both at time of CDI
collection and time at CDI prediction), vocabulary size, sex,
number of visits to the Colunga lab, and CDI percentile. This
model is the simplest model and contains standard information
researchers usually use to assess a child’s lexical knowledge
and approximate their language ability.

We create the (2) CDI word feature model by combining
the features in the child model and a 677 binary word vector
indicating if the child reportedly produces each specific word on
the CDI or not. It is not clear that knowing the child’s current
productive vocabulary will outperform the child model which
has access only to the child features but learns via training on
other snapshots the general trend of the order in which words
are acquired, as there is much more individual variability in
the words a specific child knows. The variability may wash
out meaningful signals from which the neural network would
learn. In fact, previous work on logistic regression models
found that the child-features outperformed a model based on
the individual words the child knows [2]. In the neural network
approach, we explore this question again, asking whether the
content of the child’s vocabulary improves model accuracy in
predicting future language learning.

Intuitively, it is also possible the CDI word-feature model
will be the best performing model. The neural network has
access to input that may allow for the learning of individualized
trajectories for each word, capturing both temporal dependen-
cies (like boat is usually learned later than car) and relational
dependencies (such as red is usually learned in relation to blue).
Further, the neural network model, even with only one hidden
layer, has internal states that may allow the model to aggregate
this information in useful ways, increasing predictive accuracy.
Alternatively if there is systematicity in word learning at a
level different than the individual words, the predictability of
this model may be less than other vocabulary representations.
For example, if the number of animal words a child knows is
important for predicting future learning of animal words, this
word-level model may perform less accurately than a model

that clusters words based on semantic or syntactic categories.

Turning to our final question, we explore how representing
lexical knowledge in different ways may affect the predictability
of future language learning. Here we introduce a few representa-
tions that consider language knowledge at a different scale than
individual words. We consider two classes of representations
that 1) break down the words into specific features and 2)
those that aggregate the words into categories or higher level
representations. We choose this perspective as a means to assess
whether the neural network can more accurately predict future
word learning from lower-level features or more high-level
abstract information about a child’s lexicon. This may help
direct future developmental research focused on understanding
the role of different kinds of linguistic features that may
influence early lexical learning.

We first consider two ways of representing the child’s current
vocabulary in a more fine-grained way—one based on semantic
features, and the other based on phonological information. We
considered the McRae feature norms [24] as an approximation
of features related to concrete nouns that might bolster early
lexical acquisition. These norms were collected based on adult
judgments in which individuals were asked to list features of
concrete nouns. Features were aggregated to capture general
types of features such as taxonomic and encyclopedic features
(e.g. taste, animacy, fact, description) [1]. We use the McRae
features (e.g. planes have wings) and the number of each
type of feature (e.g. number of taxonomic features of a plane)
as input to the neural network. The McRae feature vector
representation is 30 continuously valued input features from
the McRae feature dataset (and include word features such as
word length, binary vector representing whether a word has the
feature, number of taxonomic features, etc.). This particular
representation only overlaps with about 200 of the 677 CDI
words, namely the concrete nouns. To approximate the whole
vocabulary knowledge of the child, we consider the average
of the individual features of the child’s productive vocabulary
assuming that word is in the McRae feature data set. Even
though the input representation is only based on nouns, we
still evaluate the model on the prediction to the whole set of
CDI words. We call this representation (3) Semantic. Because a
child may have multiple words that share a specific feature, we
aggregate together all of the individual McRae feature vectors
for all words that the child knows in order to represent the
child’s vocabulary knowledge. Previous work has found the
McRae representation has minimal predictability in accounting
for acquisition of young children using network analysis [16].
Here we test the usefulness of this representation within a
neural network model.

We then consider the phonemic composition of individual
words. Past work shows the sounds of words play a significant
role in learning [31], [32] and that computational models can
capture this effect [34]. Here we consider the individual words
a child produces and construct a vector representation of how
many times a given phoneme appears in the child’s current
vocabulary. IPA transcription is done using lingorado.com. For
words with multiple transcriptions, we consider the form related
to the American accent and/or the most common transcription.
We took an approach of broad transcription, ignoring subtle and
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dialectical variants. In total, we consider 37 different phonemes
(including diphthongs). Each word is a vector representation of
the 37 phonemes indicating the count of the number of times
each phoneme appears in the word. Each word is aggregated
together in order to represent the whole (CDI) vocabulary of
the child. Research related to phonological importance in early
learning suggests there is a strong effect of word onset and word
rhyme [14] but other work has instead suggested phonemic
awareness is a better predictor [17]. While this approach of
modeling acquisition with neural networks could provide some
insight to this debate, for this work we consider only phonemic
content and ignore location of the phoneme in the word. We
call this representation (4) Phonology.

To represent the aggregated lexical knowledge, we first
consider a measure of categories such that input to the neural
network includes the number of items in a particular category
that the child knows. On the CDI form itself, words are
classified into 22 different linguistically informed groups,
capturing semantic themes such as “animal”, and “people”, and
grammatical classes like “action words”, and “helping verbs”
There is also a class that contains sound effects, including words
like “owie” and “woof”. Using these classes, we represent the
child’s current vocabulary as counts of the number of words
the child produces from each class. Each class does not have
equal representation in the CDI and we do not normalize
by the size of the class. Instead, we let the network learn
both the frequency of each class and the predictability of
that class in future language learning simultaneously. This
representation suggests what word a child learns next is related
to the collective categories of words the child knows now. For
example, this model may more easily pick up on a child’s
preference for learning food words. This preference could be
due to specific interests of the child [9], the the language input
the child receives from the parent [35], or other features of
the environment. We withhold judgment as to what aspects
of learning might motivate the accuracy of this model, testing
instead whether or not this type of vocabulary representation
can capture future learning language as well as or better than
the CDI child model and the other models we consider. We
consider this to be the (5) CDI label representation.

For our final representation, we consider an aggregate repre-
sentation that has been particularly useful in modeling adult
language. Word2Vec uses a large corpus of data to build up a
rich representation of words [26]. We explore the use of this
representation to capture child language acquisition. Using the
Word2Vec algorithm, which considers co-occurrence frequency
of words and the neighborhood of the word in text/speech, we
constructed a 200 dimensional vector representation of nearly
all words in the CDI using a Word2Vec representation trained
on a large GoogleNews corpus. We assume this is an aggregate
representation rather than a decomposition because Word2Vec
requires co-occurrence information as well as information about
those word’s nearby contexts, resulting in words that have
both context and relational information. Vector representations
of compound words, like peanut butter, are constructed by
averaging the individual representations of the component
words. Natural language processing models using Word2Vec
representations have found syntactic, co-occurrence, semantic,

and even phonological information embedded in the complex
vector representation [26]. We consider this representation as
input to the neural network under the assumption it captures
the complexity and relationships of the language children
eventually learn. We call this input representation (6) Word2Vec.

We believe that by extending the representation of each
word to a vector representation, rather than a single value,
the model will more accurately capture the language learning
of individual children. We also suspect that some of these
representations will fail to account for language acquisition.
This failure may suggest features which are not readily
available to young children. One additional consideration of
these representations is how to aggregate the word specific
vectors to accurately represent a child’s holistic productive
(CDI) vocabulary knowledge. We consider both averaging and
summing the individual word vectors. In the case of averaging,
vocabularies are size-invariant and have the same relative
activation across all children and age. When summing the
individual vectors, information regarding the child’s age and
vocabulary size is indirectly measurable based on the activation
level since larger vocabularies will have more instances of
each feature (e.g. the phoneme 1 is more frequent in larger
vocabularies). Beyond the method of aggregation, we also
consider whether we see an improvement in predictability
when we include the child specific features of the CDI child
model. We consider both a model with and without the
child features because many features are highly correlated
with child demographic information. With limited data, the
high correlation among features can negatively affect model
performance.

All in all, we construct four different variants for each
feature representation. One averages the individual word
representations and one sums the word representations. We also
consider the effect of adding in the child features to each of the
input representations. We compare the performance of these
models to the CDI features directly. In practice, these models
contain different amounts and types of information. Figure 2
visually represents the vocabulary of child under the input
variants discussed above. The top row assume individual word
representations are summed, while the bottom row illustrate
the averaging of word representation for each child. The age of
the child at the time of the CDI is indicated along the x-axis.
Words are roughly sorted based on parts of speech (e.g. noun,
adjectives, verbs).

V. EVALUATION

We first evaluate models based on their performance in
terms of minimizing negative log-likelihood (llk) error on
the validation set. Error is computed only for words that were
unknown by the child at the beginning of the snapshot, thus we
do not penalize the model for incorrectly predicting that known
words stay known. Once network architecture is optimized for
each representation, we select a single model to investigate.
Only after fixing the network architecture and hyper-parameters,
which are chosen via cross-validation, do we consider the
withheld test set. The test set includes unseen children and all
their respective CDI snapshots.
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CDI Labels McRae

Child

CDI Labels McRae

Fig. 2: Input representations to the neural networks with
different methods of aggregation for a child. Top row represent
summing the individual word vectors in the child’s vocabulary,
bottom row indicates averaging individual word specific vectors.
The x-axis indicates CDI time points. Lighter color indicates
higher activation.

We evaluate performance by averaging the negative log-
likelihood (llk) error of all predictions. Note, this more heavily
penalizes the vocabulary snapshots of children with smaller
vocabularies as we only predict unknown words but gives us
more insight into the ability of the model to predict learning.
We also estimate predictive accuracy based on percent overlap
and receiver operating characteristic (ROC) measures. Percent
overlap measures the overlap between the k£ words reported
as learned by the child and the &’ words that are predicted as
most likely to be learned by the model. The percent overlap
measure approximates how accurate the model is at correctly
predicting which words are learned but does not consider
correct predictions of words that are not learned. We report the
median percent overlap across children. ROC curves compute
the trade-off between true positives and true negatives as the
cutoff for converting probabilities into learned and unlearned
varies. To capture model performance in relation the ROC
curve, we present the area under the ROC curve (AUC) as
well as summary measures of accuracy and discriminability (d-
prime). We assume for both accuracy and d-prime the threshold
is the point in which learning events are predicted with equal
frequency to what is observe within the particular CDI learning
snapshot. Also included is the t-statistic from a paired t-test on
average llk of the specific model compared to the CDI child
model for the unseen CDI snapshots in the test set.

Accurately predicting individual word learning has many
applications. But simple predictive assessment may mask
developmental changes. For example, assume children attend
to phonological features early in language learning only then
to attend later in development to semantic features. We would
then expect the phonological feature neural network to be
particularly adept at predictions of young children or children
with small vocabularies. We would also predict semantic neural
networks to capture changes in productive vocabularies of older
children with higher accuracy. Thus, we consider performance
variability related to the child’s language ability, age, and
vocabulary size.

Just as we consider the effect of performance on individual
children, we can also compare performance across individual
words. It is possible that the representation based on the (3)
Semantic feature norms [24] will be extremely accurate at
predicting the acquisition of concrete nouns but generalize less

well to action verbs or abstract nouns. We investigate this by
considering the performance of models based on the average
age at which a word is learned. Because earliest learned words
are often concrete nouns [12], we might expect the models with
semantic information to perform best early in development.
Further, if certain words are predominantly learned by children
of a certain age, and other words are learned based on individual
differences, we can expect overall accuracy differences when
considering individual word acquisition patterns [20].

We also consider ensemble models where we combine
the individual predictions of the neural networks to increase
predictive accuracy. We aim to further capture what types of
vocabulary representations are most useful in predicting future
lexical acquisition. We describe these ensemble models after
discussing the results and performance of the current neural
network models mentioned above.

A. Baseline performance

Negative log-likelihood (1Ik) is a useful and efficient metric
for training neural networks; but as a measure, it can be difficult
to interpret. To understand performance of these neural network
models, we orient the readers by introducing a few 11k scores for
comparison. If the model always returned 0.5 as the probability
of learning a word, the average 11k score of predictions would
be 0.631. If we condition on words such that the model returns
the probability of learning a given word proportional to the
empirical data, the result is a 1lk score of 0.496. We can further
improve this basic prediction by conditioning on the age of the
child. Here we can use two independent predictions. One is
from the published CDI norms [8] which indicate the proportion
of children at a given age who reportedly produce a specific
word. We can also estimate the learning rate of individual
words directly from the data. Using the published CDI norms
and the empirical age of acquisition results, we get a 11k of
0.456 and 0.453 respectively. Values closer to zero indicate
better model performance.

Our final (informed) baseline 1lk measure uses logistic
regression models for prediction. Training an individual logistic
regression for each word, we predict, given a child’s current
vocabulary, if the child learns a specific word. Aggregated to
predict the whole vocabulary of a child, we find a negative log-
likelihood score of 0.391. See Beckage, Mozer and Colunga
for more detail on the modeling framework and results [2]. Any
model that contains useful information to word prediction must
clearly outperform this logistic regression model by attaining
a score smaller than 0.391.

All neural network models outperform logistic regression
models. Of the models tested, the model with the worst
performance still had a negative log-likelihood error of 0.32.
With this result we can now compare neural network models
directly. As mentioned above, all models were individually
optimized for learning rate, batch size, number of hidden units,
momentum, and learning rate decay. We ignore the specifics of
optimization other than to remind the reader that we did step-
wise optimization for each free model parameter and for each
model individually. We first consider the CDI-based models
and then we turn to the feature based models.
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B. CDI models

As discussed in section IV-A, we construct and train a global
(1) Child model that includes only the child features as our
baseline model. We then compare performance of this model to
the (2) Word model which includes the individual vocabulary

words that the child can produce for a total of 683 features.

In Table II, we report summary performance of these CDI
representations by average negative log-likelihood (11k) for all
171 snapshots (17 children) in the test data. Table II shows
that the CDI word representation performs better than the
CDI child model in log-likelihood, and accuracy which is near
84.3%, suggesting that knowing the individual words a child

knows increases overall performance of our predictive models.

However, looking at aggregate performance, it is difficult to
capture where the gains of the word-based model are. For
example, it is possible that this model is a better model for every
child in the testing data set. Alternatively the CDI word model
may see gains for a sub-population of learners or snapshots
capture specific populations of learners, performing better for
a subset of the snapshots explored. To examine this idea, we
turn to figure 3. In this figure, we plot the difference between
the (1) CDI child model and the (2) CDI word model along
the x-axis. We then consider features of the child along the
y-axis. From left to right, we order snapshots by the age of the
child, vocabulary size, and percentile. We normalize the x-axis
so positive values indicate that the (2) CDI word model is
performing better and negative values indicate that the (/) CDI
child model is performing better. We include a density plot
(right of the scatter plot) to indicate the number of snapshots
that are best fit by each model for the range of child features
we consider.

TABLE II: Neural network performance of 6 different models.

model [ IIk % overlap AUC acc dprime t-stat.
CDI child 312 36.9 816 .840 167 —
CDI words | .311 362 816 .843 167 7.4
Semantic 314 36.3 .809 837 165 -1.8
Phonology | .312 37.1 814 840 167 -8.3
CDI label 307 37.6 820 .843 .170 20.5
Word2Vec 312 373 815 841 .166 6.4

We find that the (/) CDI Child model performs on par
with the CDI model for children with higher percentiles but
not as well for children with small percentiles. This result
is in line with other work that finds higher variability and
more heterogeneity in the lexicon of children with lower CDI
percentiles e.g. [10]. In practice this means our CDI word
specific model has the greatest improvement over the baseline
CDI child model for children who have a CDI lexicon that is
smaller than average. The fact that the CDI word model shows
strongest gains for a population that is known to be variable in
their learning strategies suggest that this data driven approach

can leverage meaningful trends to predict future acquisition.

In future work we aim to explore what these trends are and
if they can provide direct insight into different strategies or
environments that might impact a toddler’s language ability.
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Fig. 3: Performance differences of the CDI word model
compared to the CDI child model. Zero means the models
perform equally. Histogram is the frequency of an individual
snapshot being better fit by the CDI child model (pink) or
word model (green). Data is sorted by the child’s age, then
vocabulary size, and percentile.

C. Feature-based models

While the individual words a child knows as recorded by
the CDI are useful in predicting the words the child will learn
next, we are also interested in whether the CDI is the best
representation of the content and structure of a child’s current
productive vocabulary. It may be that by representing a child’s
vocabulary as an aggregate set of word-feature representations,
we can outperform the CDI models. In this section we discuss
the resulting model performance when using our (3) Semantic
features, (4) Phonology, (5) CDI label and (6) Word2Vec
representations. As mentioned above, we also consider whether
averaging or summing the individual word features produces
the best predictions. We also briefly discuss whether adding
additional child specific information such as age improves
performance of the language representations.

We find different aggregation processes of the vocabulary,
even within a specific representation, have large effects on
the ability for a model to predict future lexical acquisition.
Across all representations, there is no best aggregation method.
Two of the models (the (3) Semantic feature norms and the
(5) CDI label) performed significantly better when including
child specific features, suggesting that the child information
of age, percentile and vocabulary size are not independently
useful for some representations. The other models, including
phonology, saw no reliable improvement when including the
child features.

The fact that there are some representations that do not
benefit from the inclusion of child level features may suggest
that there are a subset of words that are learned systematically
[6], [15] which can be used to mark development and other
child specific features, resulting in a redundancy between
vocabulary representations and child features. Additionally, half
of the representations were most predictive when the individual
word representations were summed across the whole productive
vocabulary. The remaining showed increased accuracy when
the individual word features were averaged. We find that when
the features are averaged, child features increase accuracy
further highlighting the fact that summing the features preserves
information about the child’s age and potentially about their
language ability as vector ‘activity’ increases as vocabularies
grow. Table I details what models used the child features as
well as what models were averaged (as opposed to summed) in
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order to aggregate the individual representations of the words.
For the rest of our analysis we choose the best aggregation
model for each vector representation of the lexicon.

We now turn to the performance of the models we classified
as being a decomposition of the vocabulary knowledge—the
(3) Semantic feature norms and (4) Phonology. In Table II we
see that the (4) Phonology reaches comparable performance
with the child feature model even though this model has no
direct information about the words in the child’s vocabulary or
features of the individual learner but only information about the
phonemic composition of the words in the child’s vocabulary.
However, the paired t-test suggests that this model performs
worse than the child feature model on a kid-by-kid measure
as indicated by a large negative t-statistic. The decrease in
predictive performance of the phonemic model when compared
to the CDI word model suggests that children are not only
learning words based on their ability to pronounce and parse
the phonemes. While it is a necessary condition for children to
understand the word they are learning to produce, phonemic
production is not enough to predict what words a child will
learn next. While not a surprising result, the performance loss
of this representation compared to that of the CDI word model
validates the ability of model performance to provide an indirect
means to quantify the usefulness of various representations in
predicting future lexical learning of individual children.

We also see that the neural network using the (3) Semantic
feature representation is unable to outperform the child feature
model. Previous work has found that the feature norms
themselves do not adequately capture the relevant features to
small children (e.g. [16]). This result is not unexpected as the
McRae feature norms include features, such as encyclopedic,
that are learned much later in development [24]. We summarize
performance of these decompositional models in Table II. In
general, these results suggest that considering words, rather
than their constituent parts is more useful in predicting future
language acquisition trajectories.

We now consider representing the vocabulary knowledge
through aggregating individual words into a higher-level
representation of vocabulary knowledge. Here we consider
the category labels from the CDI in our (5) CDI label model

and the (6) Word2Vec representation of the child’s vocabulary.

Both of these models outperform the (1) CDI child model on
most measures and has similar performance as the (2) CDI
word feature model see table II. In fact these models tend to
outperform the CDI word model, implying some representations
of a child’s vocabulary can provide additional information,
beyond predictions based on the individual words a child
knows. Our findings suggests that we gain improvement in
predictability of individual acquisition when the model has
access to category information or more general information
about the words a child knows. The improvement of these
aggregated vocabulary representations implies that what is most
important to predicting future word learning is what categories
and linguistic structure the child has in their productive
vocabulary rather than the individual words the child currently
knows.

Collectively, the results suggest the (5) CDI label model
and the (6) Word2Vec model increase predictive capabilities

vocab size
]

§225
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/

Fig. 4: We consider difference of performance of the CDI
word model as compared to the CDI child model. Zero means
the model perform equally well. The histogram represents the
frequency of an individual being better fit by the CDI child
model (pink) or the CDI word model (green). From left to right,
and along the diagonal axis, the data is sorted by vocabulary
size and percentile
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of our models to accurately predict what words are likely to
be learned next by specific children. We consider if this is
conditional on a specific point in development or specific words
in Figure 4. Here we normalize such that zero indicates that
the child model is the best of the language feature models
we consider. We then plot the difference from zero and show
the density of the best performing model as a function of
vocabulary size and age. Unlike the previous plot, we do not
consider each model compared to the CDI child model but
instead compare all jointly. This masks the fact that some
models (particularly the (5) CDI label model) outperform the
(1) CDI child model much more frequently than other models,
but instead highlights the statistics of the children in which the
(1) CDI child model consistently outperforms other models.
As before, the child model does well for children who are in
general good at learning language. This suggests that the (/)
CDI child model is learning only high-level trend and where
there are only a few words left to learn the high-level trend
is predictive. We also see here that the (6) Word2Vec model
and the (2) CDI word model are particularly good for children
with low percentiles and children with small vocabularies. This
suggests that the Word2Vec representation, or the individual
words on the CDI may be capitalizing on systematicity in early
language learning that is not easily interpreted by humans, a
finding that requires more investigation.

D. Ensemble models

The above results help us to capture the role of a par-
ticular type of language representation in predicting future
language learning. Now we explore whether the information
contained in these predictions are independent or redundant.
To explore this question, we construct ensemble models that
weigh various model predictions in hopes of training a more
powerful predictive model. We now consider a few ensemble
models based on the individual predictions of the 4 language
representations, models (3)-(6) We also include the (/) CDI
child and (2) CDI word models in our ensembles. We note
that it is possible to train neural network models that include
multiple representations as input, but we instead focus on
averaging the final predictions.

The most basic ensemble model simply considers each of
the best performing models equally. In this Avg. Ensemble
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model, we combine prediction across the (/) CDI child and
(2) CDI word model as well as the language representation
models (3)-(6). The performance of this ensemble model, as
reported in Table III is comparable to the CDI child model. This
ensemble does not outperform the best input representations
discussed above. The fact that this ensemble model does not
outperform the CDI child model suggests that the types of
information each representation is using to predict are not
equally relevant and the success of certain models is effectively
canceled out by the poor performance of other models. The
second Wgt. Ensemble uses the combined training data and

validation data to learn the optimal contribution of each model.

This learned weighting is then applied to the test data. Table III
shows that this model performs better than simply averaging
all predictions together but still does not outperform our best
single feature model of (5) CDI label. Looking at the weighting
of the individual representations, this model suggests that the
vocabulary representations that are most useful are the (5) CDI
label and the (2) CDI word representations, accounting for 32%
and 67% of the total estimates respectively. The (1) CDI child
model, the (3) Semantic feature model and the (4) Phonology

model are almost completely ignored in the optimal weighting.

Even though this ensemble model is not more predictive than
the best performing single feature model, the weighting of
each model indicates what features of language learning are
most predictive of future lexical acquisition. The fact that
the CDI label model and the CDI word model are significant
contributors to the final predictions suggests that knowing the
child’s vocabulary as well as higher level category information
is useful in predicting future acquisition. We believe that this
ensemble model could be made more powerful with more data
and suggest that researchers interested in modeling acquisition

consider both category information and word level information.

TABLE III: Performance of ensemble models on test data

model \ Ik % overlap AUC acc  d prime
Avg. Ens. .307 36.1 .820  .843 .169
Wgt. Ens. .306 36.5 821 .843 171
Word Vote | .310 36.7 817 842 .168

The method of combining our individual neural network
models affects predictive ability. Surprisingly, many of these
models, especially the models that take into account general
features of the child, fail to perform as well as the (2) CDI word
feature model, suggesting that the information contained in
these representations may be redundant or have less predictive
information as compared to the CDI word model. We find that

the Wgt. Ensemble model performs the best of our ensembles.

This weighted ensemble model considers the (2) CDI word
feature model most heavily but also weighs the (5) CDI label
representation. These results suggest that there may still be
unique information in the some of representations that could
aid in predictions of individual word acquisition of unseen
children but that due to limitations in data availability or
model architecture these ensembles are not able to easily
capitalize on this information. The similarity between the
weighted ensemble model and the average ensemble model
suggests that the benefit of these various representations can
be accessed nearly as simply by averaging predictions of all
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models as opposed to optimizing current model weights. In
the future we aim to further investigate how to integrate these
different representations to build a more accurate and robust
predictive model of lexical acquisition.

VI. CONCLUSIONS AND DISCUSSION

We find evidence that developmental changes as captured
by child level features and the individual words a child
knows now have an impact on which words a child will
learn next. Individual words in a child’s vocabulary are
informative in predicting future vocabulary growth. The (2)
CDI word model, which contains the words produced by the
child reliably outperformed the (1) CDI child feature model.
This confirms our intuition that the individual words a child
knows contains relevant information beyond that provided
by knowing the child’s age and vocabulary size. This is
an interesting result when placed in the context of current
diagnostic and intervention techniques in clinical practice.
Many vocabulary assessment tools rely only on information
pertaining to the size of the child’s vocabulary, with little
attention to the specific words known by the individual learner.
The predictive accuracy of our network models suggest that
we can improve our assessment of children’s development
by looking at the individual items in a child’s productive
vocabulary. The success of the (5) CDI label model also
suggests that the category structure of a child’s vocabulary
may be important to understanding their language learning
ability.

These modeling results additionally suggest the need to
consider differences in learners. The content of the vocabulary
significantly improves our ability to predict future acquisition,
suggesting that an individual’s vocabulary has relevant and
predictive information about the type of learner — and the
learning trajectory — of a particular child. While we remain
agnostic as to the nature of the relationship between known
words and future learning, we find strong evidence of the
importance of the current vocabulary both in the (2) CDI word
feature model and the (5) CDI label model. However, (3)
Semantic features (capturing semantics) and the (4) Phonology
model performed significantly worse than the (/) CDI child
model possibly because these representations do not aggregate
the child’s current vocabulary knowledge in a meaningful way.
In later work it may be interesting to consider why these models
fail. For example, the chosen phonological representation may
fail to capture features relevant to young learners, such as
phonemic onset, rhyme, sound similarity, or the difficulty of
pronouncing individual phonemes [13], [14], [17].

More interesting than the failure of individual representations
is the feature representations that perform on par with, or better
than, the individual word representations. The feature aggrega-
tion using the (5) CDI label or word class labels is reliably the
best performing model. This suggests knowing something about
the category of words a child knows can help in predicting
acquisition of individual words. This representation is possibly
capturing important features in the lexical knowledge of young
learners. The (6) Word2Vec model, which did not include the
child features in the neural network representation, performs on

2379-8920 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2019.2928023, IEEE

Transactions on Cognitive and Developmental Systems

JOURNAL

par with the (1) CDI child model, suggesting that representing
the child’s vocabulary knowledge as various features that are
themselves difficult to interpret still allows for the model to
learn and that these vector representations can capture all
of the information available in the high-level information
about the learner even though the information available to
the neural network excludes this infoormation. Future work
should consider how this (6) Word2Vec representation could
be tailored to capture information that may be more relevant
to our young learners—for example instead of training on the
GoogleNews corpus, we could train on children’s books or
child-directed speech.

The performance of these aggregated knowledge represen-
tations begs further investigation—is the success of these
representations the result of the model’s ability to capture
different learning styles which allow for easy detection of a
learner’s trajectory? Or are these representations abstracting
vocabulary content in a way that represents language knowledge
from the perspective of a toddler in a more useful way?
Capturing the learning trajectory may be the most reliable
prediction of future growth, allowing our models to accurately
predict future acquisition and provide additional insight into
important differences in learning trajectories. Classification of
these trajectories and different learning styles may also be
possible. These aggregated lexical knowledge models perform
especially well for a particular group of children commonly
known as late talkers, children who know fewer words than
their age-matched peers, raising important future directions in
the diagnosis and intervention design for children with language
learning difficulties. In future work, we plan to use these
representations to model the language trajectory as opposed
to individual word learning.

Previous work has suggested that children with lower CDI
percentile have more variance in the words they learn than
children who have higher CDI percentiles [3], [6], [15], [37].
An implication of these results is that children who are having
more difficulty with language have widely variable learning
strategies. Given this idea, the success of some of the models
for this population of late talkers is hopeful. It offers a model to
predict future word learning and may also suggest what types
of attentional mechanisms may differ between late talkers and
their peers. Our work shows that we can quantify differences in
the vocabulary of these children in ways that aid in prediction
of future language learning. We hope to use this insight to
explore the attentional and learning mechanisms that result in
learning differences between these groups in future work.

By considering the developmental aspects inherent in this
type of modeling, we can make predictions (and evaluate those
predictions) of how a specific child’s vocabulary will grow. This
type of modeling approach will allow us to capture and explain
the effect of certain features in language learning as related to
development, and in turn, might allow us to distinguish late
talking children who will catch up to their peers from those late
talking children who will not, allowing for targeted and early
interventions. Given that the neural networks are able to predict
future acquisition with some degree of accuracy, we can begin
to predict further than one month, assessing language ability
throughout the course of early development. We can also use
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these different language representations to further tease apart
different types of learners and the acquisition process of late-
and typically-developing children.

It is still an open question whether the performance of
these models can be increased with more data—which is time
intensive and challenging to collect. If instead we can use
insights from machine learning to direct researchers to specific
lexical features of relevance, we may improve the ability
of developmental psychology to expand their understanding
of learning without having to do exploratory data-intensive
investigations.
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