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Abstract: We introduce photonic Dirac monopoles and strings, proving the existence of a spin-1 
bosonic topological phase for light. Fundamentally different from pseudo-spin-1/2 based photonic 
crystals, we discover quantized spin in symmetry protected helical edge states of continuous media.  
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Topological phases of electronic materials exhibit a host of fascinating phenomena such as protected edge states, 

spin-momentum locking, quantized magneto-electric effect, Weyl points and Fermi arcs[1]. The phenomena in non-
interacting electronic systems can be traced back to the time-reversal and parity symmetry properties of the band-
structure and underlying Hamiltonian. A fundamental ingredient is the spin-1/2 of the electron which admits the 
definition of topological invariants such as the spin Chern number and ℤ" invariant in the quantum spin Hall phase, 
which can be related to experimentally observed electronic transport properties (eg: Hall conductivity[1]).   

Recent interest in photonics has focused on mimicking topological phenomena using photonic crystals that exploit 
the correspondence between Schrodinger’s equation and Maxwell’s equations[2]. This requires a pseudo-spin-1/2 
electromagnetic field for systems with time-reversal (𝑇) symmetry and synthetic gauge fields (artificial vector 
potential) for those without 𝑇 symmetry[2]. However, these systems do not take into account the fundamental spin-1 
nature of the photon, nor the central differences in time-reversal between bosons and fermions. Furthermore, the 
topological invariants cannot be defined for continuous natural media or metamaterials but necessarily rely on band-
structure similar to electronic crystals. 

Our major contribution in this paper is the foundation of bosonic topological insulators (bTI) for light. We 
provide the first definition of topological invariants utilizing the spin-1 vector fields of the photon, marking a distinct 
departure from previous pseudo-spin-1/2 based works. We achieve this by introducing a Dirac-Maxwell 
correspondence principle for topological photonics, a paradigm shift from existing Schrodinger-Maxwell analogies. 
This paper also introduces for the first time - Dirac monopoles, Dirac strings and skyrmions in photonics as well 
as bosonic time-reversal and parity symmetry based topological quantum numbers. Furthermore, we show the 
existence of a practical bosonic topological phase employing degenerate optical chirality which achieves the Quantum 
spin-1 Hall effect of light (QS1HE). Finally, we discover a quantized photonic spin in symmetry protected helical 
edge states which does not occur in any existing photonic crystal or metamaterial designs.   

Dirac’s equation for a massive electron is an energy eigenvalue problem 𝐸𝜓 = 𝐻(𝜓, where the Hamiltonian is 

𝐻( =
𝐤 ∙ 𝝈 𝑚(
𝑚( −𝐤 ∙ 𝝈 = 𝜎0⨂ 𝐤 ∙ 𝝈 + 𝑚(𝜎3⨂𝐼". For the electron, 𝝈 is the set of SU(2) Pauli matrices representing 

the generators of spin 𝑠 = 1/2; 𝑚( being the electron mass. We utilize the Reimann-Silberstein (R-S) basis to recast 
Maxwell’s equations into a remarkably similar form 𝜔Ψ = 𝐻;<Ψ, with the Hamiltonian written as 𝐻;< =
𝐤 ∙ 𝐒 0
0 −𝐤 ∙ 𝐒 = 𝜎0⨂ 𝐤 ∙ 𝐒 . Note the fundamental difference for the photon, 𝐒 is the set of SO(3) antisymmetric 

matrices representing the generators of spin 𝑠 = 1. Besides the mass term, the two equations are phenomenologically 
identical since both 𝝈 and 𝐒 obey the same Lie algebra. Indeed, the massless photon has an equivalent Dirac monopole 
𝐅 = 𝒌/𝑘C corresponding to a string of singularities in the Berry potential 𝐀 = −𝝓 cot 𝜃 /𝑘 (Fig. 1(a)). To harness this 
topological feature, we introduce an effective mass for the photon 𝑚;< = 𝜔𝛾 = 𝑚KLMNOPQNRSTUU that behaves 
analogously to the electron mass (Fig. 1(b)). Here, 𝛾 is the degenerate optical chirality that couples the electric and 

magnetic fields. This enters the constitutive relations as 𝐃𝐁 = 𝜖 𝛾𝑆0
𝛾𝑆0 𝜇

𝐄
𝐇 , where 𝑆0 is the SO(3) generator along 

𝐳 and we may assume 𝜖 and 𝜇 are all-dielectric (positive >1) scalar constants that only effect the apparent speed of 
light. Importantly, due to the reality condition on the electromagnetic field, 𝛾 = −𝛾(−𝜔) must be odd in 𝜔 which 
ensures the effective mass 𝜕a𝑚;< ≈ 0 is approximately constant when sufficiently far off resonance. Tbl. 1 shows 
the equivalent 2-D system in the R-S basis. We find that this degenerate optical chirality supports counter-propagating 
photonic QS1HE edge states Ψ±, which are completely transverse and orthogonal Ψd

e	ΨP = 0; therefore immune to 
back-scattering (Fig. 2(b)). Furthermore, we discover that they are linearly dispersing and helically quantized along 
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the direction of propagation 𝜎0⨂ 𝐤 ∙ 𝐒 Ψ± = 𝑆±Ψ±, where 𝑆± = ±1 are the spin-1 eigenvalues for the photon. We 
emphasize that the hallmarks of observable topological phenomena in electronics are quantized spin and transport 
parameters which has not been achieved in photonics. This quantized effect in the spin-1 bTI lays the foundations of 
such endeavors for photonics. 

Table 1. We introduce the Dirac-Maxwell correspondence for foundations of spin-1 bosonic topological insulators in photonics. 
Property Dirac Maxwell 

2-D Hamiltonian, 𝐻 𝐻( = 𝜎0⨂ 𝑘3𝜎3 + 𝑘g𝜎g + 𝑚(𝜎3⨂𝐼" 𝐻;< = 𝜎0⨂ 𝑘3𝑆3 + 𝑘g𝑆g + 𝑚;<𝜎g⨂𝑆0 
Dispersion relation, 𝜔 𝐸 = 𝑘" + 𝑚(

" 𝜔 = 𝑘" + 𝑚;<
",    𝑚;< = 𝜔𝛾 

Parity operator, 𝑃 𝑃 = 𝜎3⨂𝐼",    𝑃" = +1 𝑃 = 𝜎g⨂𝐼C,    𝑃" = +1 
Time-reversal operator, 𝑇 𝑇 = 𝐼"⨂𝜎g𝐾,    𝑇" = −1 𝑇 = 𝐾,     𝑇" = +1 
Parity-time operator, 𝑃𝑇 𝑃, 𝑇 = 0,     (𝑃𝑇)" = −1 𝑃, 𝑇 = 0,     (𝑃𝑇)" = −1 

Spin, 𝑠 𝑠 = 1/2 𝑠 = 1 
Monopole charge, 𝑄k 𝑄l/" = 𝑠 = 1/2 𝑄l = 𝑠 = 1 

Time-reversal invariant ℤ":		𝜈 = 0, 1  2ℤ":		𝜘 = 0, 2  
   

              
Figure 1. (a) Our theory rigorously puts forth the difference between Dirac monopoles/strings of the massless spin 𝑠 = 1/2 electron and 𝑠 = 1 
photon. The electron and photon have monopole charges of 𝑄l/" = 1/2 and 𝑄l = 1 respectively. For massless particles, the energy bands are 
linearly dispersing around the 𝐤 = 0 Dirac point (zero energy/frequency). Any closed path around this point produces a quantized Berry phase 
𝐀 ∙ 𝑑𝐤 = 2𝜋𝑄k. Unlike the electron, the photon returns to its initial state after a cyclic evolution around the equator. (b) On the left, the Dirac 

point of the vacuum photon. On the right, we put forth a 2ℤ" bosonic topological insulator (bTI) with QS1HE edge states. The spin-1 bTI can be 
realized by opening the gap with an electronic-like mass term 𝑚;< = 𝑚KLMNOPQNRSTUU. The edge states (black lines) emerge from any point where 
𝑚;< 𝐤 = 0 passes through zero (white ring) and these are protected by time-reversal symmetry. (c) The massive electromagnetic field is generally 
desribed by a 3D polarization (black line) as opposed to the 2D polarization of conventional photonic media. The magneta, cyan and yellow lines 
show the elliptical projections of this 3D polarization in each of the orthogonal planes. 

                     
Figure 2. (a) Berry curvature of a trivial 𝑁 = 0 and non-trivial 𝑁 = 1 photonic skyrmion. 𝐶 = 2𝑄l𝑁 = 2𝑁 is the corresponding spin-1 Chern 
number. (b) Trivial insulating phase and non-trivial QS1HE phase. The electromagnetic reactance is directly proportional to the effective photonic 
mass 𝐑" ∝ 𝑚;<

". If the reactance/mass passes through zero an odd number of times, the topological phase is non-trivial. (c) The linearly dispersing 
QS1HE edge states Ψ± that emerge from this 𝑚;< 𝐤 = 0 point. The states are back-scatter immune, spin-1 quantized 𝑆± = ±1, and can exist at 
the interface with vacuum. We emphasize that till date, no transport parameters have been quantized in topological photonics, unlike electronics, 
and our work lays the foundations for this endeavor. 
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