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Abstract

This paper presents an agent-based tsunami evacuation modeling (ABTEM) framework in Netlogo to analyze the impact of
various multimodal evacuation behaviors on life safety for a near-field tsunami. The objective of this work is to investigate
how: milling time, choice of modes (i.e., walking and automobile), and critical variables involved in an evacuation scenario
(e.g., walking, driving speed), affect life safety. Using the city of Seaside, Oregon, which is one of the most vulnerable cities on
the Oregon coast, as a study site, different evacuation scenarios are included in the model to assess the impact of parameters
involved on the mortality rate in a tsunami evacuation event. The results show that: choice of evacuation mode strongly and
non-linearly influences the expected number of casualties; use of vehicles leads to the creation of congestion and bottlenecks,
and thus, higher mortality rate; the mortality rate is strongly correlated with milling time; and the mortality rate is sensitive
to the variations in average walking speed of the population. The results will help emergency managers, community leaders,
and city and state agencies in their decision-making process for creating effective and efficient evacuation plans to increase life

safety and community resilience.

The Pacific Northwest region of the U.S.A. is highly
prone to a potential earthquakes resulting from the
Cascadia Subduction Zone (CSZ) (1), which could initi-
ate a near-field tsunami that would threaten the life
safety of the coastal community (2). A near-field tsunami
is one expected to come onshore within 20 to 40 minutes
after an earthquake, as opposed to a far-field tsunami or
other natural disaster which may take hours, or in some
cases, days, to affect the area of interest, allowing longer
lead time to issue warnings and evacuation notices (3).
Short preparation time adds considerable complexity to
the evacuation scenario, and even a well-established
agency like the Pacific Tsunami Warning Center might
not be able to provide sufficient warning time for the
event (4).

In 2004, the Indian Ocean earthquake and tsunami
resulted in the deaths of more than 230,000 people; and
in 2011, the Tohoku earthquake and tsunami resulted in
over 16,000 fatalities. These casualties resulted from a
wide variety of reasons including people’s inability to
evacuate the affected zones and areas subject to tsunami
inundation. However, since it is practically unrealistic to
build all structures in a way that resists tsunami forces,
evacuation is likely to be one of the most efficient and
and effective protective action to reduce fatalities,

especially for rapid-onset types of disasters. Tsunami eva-
cuation modeling is a newly developing methodology to
evaluate the impacts of heterogeneous decision-making
on the survivability and effectiveness of evacuation plans
and to set land use and construction policy in areas sub-
jected to devastation. Although tsunami evacuation mod-
els exist, many of the current models are essentially static
and there has been inadequate effort to assess the evacua-
tion behavioral variables included in agent-based models
such as milling time and choice of evacuation mode.
Near-field tsunami evacuation is a particularly vexing
problem because of the multi-hazard nature of these rare
events (5). Most tsunamis are accompanied by preceding
earthquakes which severely damage infrastructure and
buildings (6, 7). There is generally a very short lead time
following the earthquake (6, 8). Thus, the uncertainties
associated with milling time (9-13), self-initiated evacua-
tion (/4-18), altruistic behavior of evacuees (/9), and
multimodal transport choices (20) add complexities to
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the problem. The anticipation of a near-field tsunami
from the CSZ is relatively new, and prior mitigation
plans were based on far-field tsunami scenarios (2/-23).
The rarity of this event means there is little memory of
past events or culture of tsunami preparedness in the
Pacific Northwest (72, 24).

Objectives

The unknowns and complexities of evacuation scenarios,
both from socio-psychological and engineering perspec-
tives, necessitates further investigation of the impact of
different elements, such as evacuation mode, milling
time, and walking speed on evacuation life safety. Using
the city of Seaside, OR, where a sizable population is
threatened by a near-field tsunami in the foreseeable
future (10), this research aims to model the evacuees’
decision-making behavior as well as the physical charac-
teristics of the evacuees, and consequently their impact
on the mortality rate of the evacuation. The results of
this research will enlighten policy-makers and city plan-
ners on the behavior of the evacuation and the impacts
of the factors involved in similar type of evacuation sce-
narios from a rapid onset disaster on the mortality rate,
to inform their evacuation plans and strategies.

Contributions

One of the main contributions of this work is to show
that a successful evacuation is more likely to be multimo-
dal. In addition, this study shows the significance of such
evacuation models and simulations to draw policy-level
disaster mitigation insights. Moreover, this work sheds
light not only on the fact that evacuation characteristics
(e.g., walking speed and milling time) impact the effi-
ciency of evacuation, but also, and more importantly, to
what extent and how they affect the evacuation process
and the resultant mortality rate.

Organization of the Paper

This paper begins by presenting a thorough review of the
literature on related topics in the next section. Then it
introduces the ABTEM framework and the methodology
to achieve the defined objectives, along with a description
of the study site. The results of this study are presented
next, which involve a detailed explanation of the evacua-
tion behavior and the impacts of the factors involved.
Finally, following the results, the paper concludes with a
section which summarizes the research and discusses the
major findings from the case study, along with a descrip-
tion of the challenges and complexities ahead in agent-
based tsunami evacuation modeling and simulation.

Literature Review

Because of the life-threatening risk posed by various dis-
asters, evacuation is likely to be a required or often rec-
ommended protective action to improve life safety.
However, the unique warning time for every hazardous
event creates challenges for efficient evacuation.
Evacuation time and distance vary between different
disaster types, ranging from seconds and meters in earth-
quakes and building fires to hours/days and hundreds of
miles in hurricane evacuations. This difference justifies
the use of vehicles for hurricane evacuations, but not
necessarily for the immediate evacuations such as earth-
quake and building fire. Near-field tsunamis present a
complex case of multimodal evacuation because the tsu-
nami wave arrives within 20-40 minutes after the earth-
quake and can travel several kilometers inland. Therefore,
transportation evacuation modes may be multimodal
rather than a single mode, and evacuees may face choices
such as when to leave (preparation or milling time), how
to leave (alone or in group), what mode of transportation
to use (on foot or drive), and where to go (destinations).
The multimodal choices of evacuation in these cases
necessitates extensive research on the modeling of traffic
flow and crowd dynamics in emergencies. In the following
subsection, a comprehensive literature review is presented
on current evacuation modeling techniques as well as
agent-based modeling methods.

Evacuation Modeling

A mass disaster episode is the result of an interaction
between two highly complex, dynamic and generally
hard-to-predict phenomena: a human community and a
hazard (25). Because of the complexity of human beha-
viors, the system can rarely be described as mathematical
equations. Various techniques have been proposed to
model this complex system. The existing efforts are sum-
marized into the following categories (26, 27):

Flow-based modeling: Flow-based models are called macro-
scopic models, and use the density of nodes in continuous
flows. The underlying logic is derived from an analogy
between the fluid and particle motions. Their characteristics
are predefined; thus, all the particles behave in the same
way, which is the major drawback of this approach. One
example is EVACNET4 (27).

Cellular Automata: In this type of model, space is
discretized, which differentiates it from all other modeling
techniques (27). A matrix is created to plot areas in a two-
dimensional array. In the simulation, the occupants move
from one position to one of the adjacent nodes in a prede-
fined time frame. Microscopic and macroscopic analysis are
both permitted. This method is easy to implement but fails
to replicate the complex movement of people, especially the
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Figure |. Evacuation traffic simulation models.

two-dimensional nature of pedestrian movements.
Furthermore, due to the grid-shaped network, it is rather
hard to depict the different speeds and interaction between
people. One example is EGRESS (28).

Agent-based modeling: The multi-agent system (MAS)
approach is deemed the most realistic solution due to its
capability to model each individual with unique characteris-
tics and interactions with the surrounding environment.
Representative examples are SIMULEX (27), the latest ver-
sion of EXODUS (27), and PedGo (29).

Other than the methods mentioned above, in the past
decades, approaches such as static networks, dynamic
networks, and dynamic traffic assignment have been
widely employed to model the evacuation scenario (20,
30). Wood et al. (10, 11) used a least-cost distance
(LCD) model, which focuses on evacuation landscape
features and uses geographic information systems (GIS)
to find the shortest path to safe spots from hazard zones.
Similarly, GIS-aided shortest path analysis has been the
centroid of most evacuation and life-safety analysis
works (4). Along with static methods, dynamic route
assignment (37, 32) and mathematical modeling of eva-
cuation (33) have also been implemented to minimize the
evacuation time. Figure 1 highlights some of the relevant
evacuation traffic simulation models (34—46).

Each modeling method has its pros and cons when
trying to simulate real-world situations, However, the
shortcoming of most of the existing static models is that
they typically neglect congestion dynamics, time-of-day
(47), and panic or herding behavior (47, 48). To partially
overcome these limitations, agent-based modeling and
simulation (ABMS) is introduced to capture dynamic
and complex systems where humans and their decision
making processes are involved, especially in a near-field
tsunami evacuation (7, 20, 49, 50).

ABMS

ABMS is an object-oriented modeling technique to simu-
late various independent entities as well as their

interactions with each other and the simulation environ-
ment to observe the behavior of the system as a whole
(51). The benefits of ABMS over other modeling tech-
niques can be highlighted in three statements (52): (i)
ABMS captures emergent phenomena; (ii)) ABMS pro-
vides a natural description of a system; and (iii) ABMS
is flexible. The ABMS technique has already been
employed in several studies. For example, Chen and
Zhan (53) utilized ABMS to study the collective behavior
of evacuee traffic flows. Nagarajan et al. (54) developed
a multi-agent simulation model and deployed it in a
warning information dissemination study. Mas et al. (48,
55) proposed an evacuation model integrated with a
numerical simulation of a tsunami and a casualty estima-
tion evaluation to study life safety considering evacuees’
decision-making regarding the evacuation start time. Liu
et al. (56) formulated a dynamic route choice model in a
multi-agent system, considering group evacuation. Uno
and Kashiyama (57) proposed a multi-agent emergency
evacuation simulation system. Dawson et al. (51)
adopted a dynamic agent-based model to manage flood
incidents.

Recent agent-based modeling efforts to simulate hur-
ricane and tsunami evacuation in coastal communities,
despite the observations that have shown vehicular eva-
cuation from low-topography areas (48), left additional
spaces for improvements to analyze the multimodal
behavior in a near-field tsunami evacuation, which is the
primary motivation and contribution behind this work.

Methodology: Agent-based Tsunami
Evacuation Model

This study is built on top of the underlying agent-based
tsunami evacuation model developed by Mostafizi et al.
(7, 58) and Wang et al. (20). The coded platform consists
of five different components: the population distribution
model, the transportation network, evacuation shelters,
the tsunami inundation, and the casualty model. The
simulations are capable to capture evacuees’ socio-demo-
graphic characteristics which are related to the evacuees’
decisions, such as choice of evacuation mode, milling
time which marks the start time of their evacuation, and
walking speed which represents the physical ability of the
evacuee. The platform is capable of simulating a near-
field tsunami evacuation scenario with variable tsunami
and behavioral characteristics. The details of each com-
ponent as well as model behavior are documented by
Mostafizi et al. (7, 58) and Wang et al. (20). In addition,
the city of Seaside, OR, has been used as a case study
because of its high risk of experiencing a tsunami in the
foreseeable future.

Figure 2 summarizes an hour of simulation process in
six steps. Figure 2a shows where the initial population
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Figure 2. Example of model simulation (7): (a) t = 0; (b) t = 10; (c) t = 30; (d) t = 35; (e) t = 40; (f) t = 45.

(brown) are distributed at time (f) = 0. The ocean is on
the left, and the evacuation shelters (yellow) are placed
outside the inundation zone on the right. After the earth-
quake, depending on the milling time, people evacuate
either by car (blue) or on foot (orange), shown at ¢t = 10
(Figure 2b) and ¢ = 30 (Figure 2¢); and the tsunami inun-
dates the city from about ¢ = 35 to t = 45 (Figure 2d—f),
causing casualties (red) (7).

The model can simulate several options related to
human decisions and mobility characteristics. For
instance, evacuation mode choice is one of the critical
decisions, independently made by each agent, which have
major impacts on the overall evacuation life safety.
Equally important, and especially for near-field tsunami
evacuations with less preparation time, milling time is
another critical variable that is associated with evacuees’
decision-making process. To capture the evacuation pre-
paration time, as suggested by Mas et al. (48), departure
times in this work follow a Rayleigh distribution where
values of 7 and o respectively represent the minimum
milling time and the spread of the departure times. The
larger is o, the larger the tail of the distribution towards
later departure times will be.

Two other mobility characteristics affecting the effi-
ciency of evacuation and the mortality rate of the sce-
nario are the walking speed of the pedestrians and details
of vehicular movement such as the maximum driving
speed and other traffic flow variables. In this work, the
movement of vehicles is governed by a classic car-follow-
ing model, the General Motors model, the details of
which are documented by Mostafizi et al. (7, 58). In addi-
tion, it is assumed that walking speeds follow a normal
distribution with varying mean.

Study Site

The city of Seaside, OR is chosen as the study site for this
work, mostly because of its special geographical and
topographical characteristics. The close proximity of the
CSZ, which has a 7% to 12% probability of initiating a
tsunami hazard by the year 2060, makes this city prone
to tsunami evacuation in the foreseeable future (2). In
addition, the existence of 10 bridges crossing two rivers,
which flow from south to north, approximately 1.5 km
inland from the shore, adds more complexity to the eva-
cuation of the residents. On top of these, the flat
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topography of the city would allow the tsunami inunda-
tion to reach a long distance inland in a relatively short
time, inundating the entire city in about 40 minutes in
the extreme case. The population of Seaside is estimated
to be 6,700 but is more than doubled by the numbers of
tourists visiting over the summer. More detailed informa-
tion about the study site is documented in the authors’
previous works (20, 58).

Data Quality

It should be noted that the results, and accordingly the
insights drawn from these results, albeit informed by
real-world circumstances and post-event surveys con-
ducted in Samoa in 2009 (/3) and Tohoku in 2011 (59—
61), are simulation generated. Therefore, although the
simulations are designed in such a way as to replicate
real-world scenarios, the results are subject to the choice
of behavioral and physical parameters in respective mod-
eling scenarios. In addition, all the results presented in
this work are averaged with a Monte Carlo simulation
approach with 100 trials to account for stochasticity in
the simulations.

Analysis of Evacuation Behaviors

Understanding of evacuation behavior is critical for
emergency managers to develop an efficient and effective
evacuation plan and consequently to minimize the loss of
life. In this section, evacuation efficiency, under the influ-
ence of different control parameters, is assessed. Various
factors can affect evacuation performance such as mode
choices, minimum milling time, walking speed, maximum
driving speed, car-following behavior, and critical tsu-
nami inundation depth. These variables, directly and
indirectly, affect the evacuation life safety. Therefore, the
sensitivity analysis of the mortality rate of the evacuation
against the factors affecting the efficiency of the scenario
is presented.

Multimodal Evacuation: Shall We Walk or Drive?

The mode choice of the agents based on their decision-
making attributes was implemented in the model by
defining the percentage of agents choosing any particular
evacuation mode. Studies have shown that the evacuees’
mode choice has significant impacts on the mortality rate
(20). To study the impact of driving and resultant traffic
congestion on life safety, evacuation scenarios with vary-
ing percentages of pedestrians from 0% (all by car) to
100% (all on foot) were simulated. As shown in Figure 3,
if it is assumed that the percentage of the agents who
decide not to evacuate is minimal, an increase in the per-
centage of pedestrians will generally lead to much lower

Mortality Rate vs. Pedestrian Percentage

= = = Pedeslrians Mortality Rate
= = = Cars Mortality Rate
Total Mortalty Rate

(%)

Mortality Rate

e X
0 10 20 30 40 50 60 70 80 0 100
Pedestrian Percentage (%)

Figure 3. Impact of the percentage of pedestrians on mortality
rate (Vyak = 3.5 ft/s and 7 = 0).

mortality rates. Officials generally do not recommend the
use of cars for evacuation purposes since it tends to cre-
ate bottlenecks and heavy congestion which will result in
excessively long travel times (62).

In Figure 3, the green curve shows the contribution of
use of cars to total mortality rate. It can be seen that the
mortality rate of evacuees decreases exponentially as the
percentage of pedestrians versus cars increases, since
traffic congestion conditions are likely to increase as the
number of vehicles on the road increases, especially on
the roads and bridges that lead to the evacuation shelters
(62). For example, the contribution of cars to the mortal-
ity rate increases by a factor of 5.5 if the percentage of
evacuees who drive increases from 50% to 100%. On the
other hand, the mortality rate of pedestrians linearly
increases, shown in the blue curve, with an increase of
evacuees who decide to evacuate on foot. Overall, the
total mortality rate (red) reached its minimum with the
percentage of pedestrians at 70%; when the percentage
of pedestrians is higher than 70%, the total mortality
rate changes slightly above the minimum value. This is
because of the mobility advantage of vehicles over pedes-
trians, but only when there is no congestion. In addition,
to capture the stochasticity because of the randomly
drawn walking speed of the evacuees and the spatial var-
iation agents with different decisions, the mortality rates
are the average of 10 simulation runs.

Milling Time and lIts Sensitivities

The milling time in this study is governed by a Rayleigh
distribution which has two variables—r and o—where 7
represents the minimum delay time and o is the scale
parameter. Although in reality both 7 and o vary based
on an agent’s attributes or type (e.g., resident or transi-
ent) and evacuation mode choice, only the impact of 7
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(b) speed = 5.5 ft/s.
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Figure 5. Impact of minimum milling time on optimal evacuation

mode split (Vyaic = 3.5 ft/s).

on the efficiency of the evacuation scenario was assessed
in this work, mostly because both of the parameters are
expected to have a somewhat similar impact on the mor-
tality rate.

Figure 4 shows the sensitivity of mortality rate to min-
imum milling time. For this scenario, o is kept constant
at 0.5 and 7 varies from 0 (immediate evacuation) to 20
minutes. As expected, the mortality rate is positively cor-
related with the minimum milling time, regardless of the
average walking speed of the population. Moreover, the

Impact of minimum milling time on mortality rate. Mortality rate versus minimum milling time: (a) speed = 3.5 ft/s,

effect of minimum milling time grows more significant as
the number of evacuees on foot increases. Likewise, com-
paring Figure 4a and b, for scenarios with lower walking
speeds, the impact of minimum milling time on mortality
rate is higher as well.

The impact of minimum milling time on the optimal
split of evacuation mode is further investigated. Figure 5
shows the variation of mortality rate because of changes
in the percentage of pedestrians for different minimum
milling times, where the average walking speed of the
population is set to 3.5 ft/s. In general, the impact of
milling time is significantly greater on pedestrians than on
cars. Comparing two extreme cases: where all the evac-
uees evacuate by car and all the evacuees evacuate on
foot, if minimum milling time increases from 0 to 20 min-
utes, mortality rate increases from 40% to 65% for evac-
uees by car and from 10% to 70% for evacuees on foot.
This phenomenon causes the optimal evacuation mode
split to shift according to different minimum milling
times. In addition, there is a critical threshold for mini-
mum milling time, roughly 15 minutes, beyond which
fully vehicular evacuation results in lower mortality rates.

Walking Speed and Its Sensitivities

Figure 6 shows the effect of the walking speed on mortal-
ity rate where the walking speed is modeled as a normal
distribution with mean speed (1) and standard deviation
sigma (o). For these simulations, two different minimum
milling times, 7 = 1 min and 7 = 15 min delay from the
time of the earthquake to the start of evacuation with
o = 0.5 were used (i.e., 95% of the population would
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Figure 6. Impact of walking speed on mortality rate. Mortality rate versus walking speed, with (a) minimum milling time = | min, (b)
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60Mortality Rate vs. Pedestrian Percentage (Max Speed 35 mph)
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Figure 7. Impact of walking speed on the optimal evacuation mode split (7 = | min). Mortality rate versus pedestrian percentage: (a)

max. driving speed 5 mph, (b) max. driving speed 35 mph.

have taken action approximately 5 or 20 minutes after
the earthquake in either case, respectively).

Figure 6 shows that the walking speed of evacuees has
a strong influence on the mortality rate. Also, as
expected, the influence of average walking speed
increases as the percentage of pedestrians increases in
both proposed milling time cases. In addition, compari-
son of Figure 6a and b shows that the impact of walking
speed is more significant when milling times are longer.
For example, in an evacuation scenario with 100%

pedestrians, an increase in walking speed from 3.5 ft/s to
5.5 ft/s decreases the mortality rate by 45% with 15 min-
utes minimum milling time. On the other hand, this
decrease could be less than 20% if the milling time were
as short as one minute. Moreover, for shorter minimum
milling times, average walking speeds of 5 ft/s and higher
would all have the same impact on the efficiency of eva-
cuation. On the other hand, for longer milling times,
mortality rate decreases linearly with increase in average
walking speed.
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Mortality Rate vs. Maximum Driving Speed (Walking Speed 3.5 ft/s)
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Figure 8. Impact of maximum driving speed on mortality rate (7 = |

speed = 3.5 ft/s, (b) walking speed = 5.5 ft/s.

It is also of great value to assess the impact of walking
speed on the evacuation efficiency, along with the maxi-
mum driving speed of the cars, which indirectly reflects
the advantage of cars in relation to pedestrians. Figure 7
shows the impact of walking speed for two evacuation
simulation scenarios with two different driving speeds.
Here, minimum milling time is set at one minute. As
expected, increase in average walking speed moves the
optimal split of evacuation mode toward pedestrians; the
optimal split shifts from 100% pedestrians to 80% pedes-
trians as average walking speed decreases from 5.5 ft/s to
3.5 ft/s. Also, comparing Figure 7a and b, it can be seen
that the optimal percentage shifts very minimally toward
cars, even though maximum driving speed increases from
5 mph to 35 mph. This phenomenon again emphasizes
the importance and efficiency of evacuation on foot. At
the same time, increase in maximum driving speed
decreases the mortality rate when the majority of the
population evacuate with cars.

Maximum Driving Speed

The maximum driving speed of the cars, reflecting the
speed limit, could be an important parameter which not
only affects the mortality rate of a specific scenario but
also shifts the optimal evacuation mode choice split
toward either higher or lower percentages of pedestrians.
Figure 8 shows the effect of the driving speed limit on
mortality rate for two different evacuation simulation
scenarios with different average walking speed for pedes-
trians. Both Figure 8a and b confirm that the effect of a
maximum driving speed of 20 mph and above is

min): mortality rate versus maximum driving speed: (a) walking

negligible for almost all the evacuation mode splits. This
is mainly because of the fact that in a congested network
where cars do not get to reach the speed limit, unrealisti-
cally high speed limits are not influential to the mobility
of the network. However, for maximum driving speed
lower than 20 mph, the mortality rate of the scenario
increases as the maximum driving speed decreases, and
as expected, the effect goes to zero as the percentage of
cars goes to zero.

Comparing these two figures, it can also be stated that
the impact of an increase in maximum driving speed is
slightly greater for the scenarios with a lower average
walking speed of pedestrians. In addition, Figure 9 shows
the impact of maximum driving speed on the optimal
evacuation mode split, coupled with different average
walking speeds. Figure 9a suggests that the optimal split
shifts toward pedestrians as the speed limit decreases to 5
mph and vice versa in the scenarios with lower walking
speeds. Similarly, from Figure 9b, simulations with
higher average walking speeds showed that the mortality
goes to zero earlier with the increase in percentage of
pedestrians for cases with a higher maximum driving
speed for the cars.

Car-Following Behavior and Parameters

Another significant parameter which indirectly affects
the mortality rate is the sensitivity coefficient in the car-
following model, «. As this coefficient directly correlates
with the range of acceleration and deceleration of the
cars, this variable cannot take a value higher than 0.14
mile?/h since any higher value leads to the assumption of
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Figure 9. Impact of maximum driving speed on the optimal evacuation mode split (7 = | min). Mortality rate versus pedestrian

percentage: (a) walking speed = 3.5 ft/s, (b) walking speed = 5.5 ft/s.
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Figure 10. Impact of car-following model sensitivity parameter.

jam density lower than 250 veh/mile/lane or free flow
speed of higher than 35 mph which is unrealistic. On top
of this, any value of « higher than 0.14 results in extreme
acceleration and deceleration rates (7).

Despite the low variability range of «, Figure 10 dis-
plays the sensitivity of mortality rate over change in « for
the scenario where maximum driving speed is set to 35
mph, mean walking speed is set to 4 ft/s, and minimum
milling time is set to one minute (7 = 1 and o = 0.5).
The results show that lower sensitivity coefficients, which
lead to lower acceleration and deceleration rates, mean-
ing that the cars lose their agility, cause higher mortality
rates when a significant portion of evacuees are evacuat-
ing by car. In addition, with the decrease of parameter «,
the optimal evacuation mode split moves toward pedes-
trians since cars lose their advantage because of lower
acceleration and deceleration rates.

Critical Depth

Critical depth, the minimum depth of the wave that
causes fatality to the population, can represent the physi-
cal vulnerability of the would-be evacuees to the tsunami
inundation. For instance, a community with higher num-
ber of elderly people and children could be more sensi-
tive to the impact force of tsunami inundation, and in
that case, the critical depth can be adjusted to lower val-
ues (7, 20, 58).

Figure 11 shows the mortality rate as a function of
critical depth, /4., used as the criteria to determine the
fatality of an agent. For this simulation, which shows
the impact of critical depth coupled with mode
choice split and minimum milling time, walking speed
of 4 ft/s, maximum driving speed of 35 mph, and mini-
mum milling time of one minute (r = 1, = 0.5
(tr =1,0 = 0.5) were set. In this scenario, it is shown
that generally mortality rate very insignificantly
decreases as the critical depth increases. The effect of
critical depth increases with the increase in the percent-
age of pedestrians. In addition the effect of critical
depth is also positively related to minimum milling
time, meaning that the effect of critical depth increases
for higher milling times. This is mainly because of con-
gestion of evacuees on the shoreline because of high
milling times when the first waves hit the shore.
However, it may be concluded that the effect of critical
depth on mortality rate is not comparable with other
factors such as walking speed and milling time. Such
analysis done in this work can help to improve our
understanding of the near-field tsunami, and more gen-
erally of rapid onset disasters and evacuation scenarios,
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and will help emergency planners, decision-makers,
and officials to devise more efficient and effective eva-
cuation plans and strategies.

Discussion

The results of this study can be translated into policy-
level insights for designing effective evacuation plans and
strategies. One key takeaway is that, although it appears
that the minimum mortality is achieved in a multimodal
scenario (Figure 3), the difference between this minimum
value and the mortality rate when the entire population
evacuates on foot is minimal, especially for higher walk-
ing speeds (Figure 7) and lower milling times (Figure 5).
To avoid the complications associated with multimodal
evacuation, this finding supports advocacy for evacua-
tion on foot instead with a consideration of the facts
there were vehicle uses in tsunami evacuations from both
the American Somoa in 2009 and the Tohoku event in
2011. In addition, the milling time is the most important
variable when the entire population evacuates on foot
(Figure 4). Thus, as walking speed is constrained by the
physical ability of the evacuees, immediate evacuation
has to be greatly emphasized. In addition, immediate
evacuation could possibly compensate for low walking
speeds and decrease the impact of slower walking crowd
on the efficiency of evacuation (Figure 6). Moreover, in
case of vehicular evacuation, speed limits above 20 mph
have no impact on the efficiency of evacuation
(Figure 8).

Model Extensions

The underlying model used in this study is a multimodal
and agent-based evacuation model initially developed by
Wang et al. (20) and Mostafizi (58). This model is
designed with a modular programming paradigm and
has several components: (a) transportation network, (b)
population distribution, (c) hazard model, (d) safe zones,
and (e) casualty model. Each of these components can be
changed with minimal effort to investigate another set-
ting or another type of disaster evacuation. Thus, this
tool can be used in any other geographic location and
any other type of disaster as long as it has a clear propa-
gation and casualty model which explains how the disas-
ter spreads and how it interacts with the evacuees and
possibly causes of casualties.

Conclusion and Future Directions

This research presented a near-field multimodal tsunami
evacuation study through an agent-based modeling envi-
ronment. This work was designed to study how varia-
tions in decision-making time, choices of transportation
modes, and general influential factors in an evacuation
scenario affect the life safety (i.e., mortality rate) of
coastal communities to provide a better understanding
of the multimodal evacuation behavior. Using the city of
Seaside, Oregon as a case study, an agent-based model-
ing environment was developed in NetLogo to assess the
sensitivity of mortality rate to the factors involved in the
evacuation scenario. The results show that: (i) mortality
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rate is sensitive to the minimum milling time such that a
slight increase in minimum milling time can lead to a sig-
nificant increase in mortality rate, especially where the
average walking speed of the community is low; (ii)
walking speed has significant effects on the estimation of
the number of fatalities; (iii) maximum driving speed is
also influential when the speed limit is lower than 20
mph; and, most importantly, (iv) mortality rate is highly
correlated with evacuation mode choice, such that there
is an optimal mode split which leads to the lowest mor-
tality rates and is typically when between 100% and
75% of evacuees are pedestrians. The results of this work
can potentially be used by city planners and officials to
devise well-informed evidence-driven evacuation plans
and strategies.

Future work will involve modeling of coalescing beha-
vior, car-abandoning (evacuation mode transfer), and
communications (information provision and propagation
strategies) which could possibly affect the efficiency of
evacuation and must be considered in a realistic evacua-
tion platform. Population distribution also has a great
impact on mortality rate, and analyzing different popula-
tion distributions reflecting day-time or night-time condi-
tions would be beneficial to this study.
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