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A B S T R A C T

Extreme events represent not only some of the most damaging events in our society and environment, but also
the most difficult to predict. Model-based predictions of the disruptions induced by extreme events on urban
infrastructure systems are often unreliable, as these events are unlikely by their very definition. Specifically,
characterizing the effect of such disruptions to the urban infrastructure using a parameterized model is a difficult
task. On the other hand, model-free approaches based on recent advancements in reinforcement learning can
model the complex dynamics of urban society and infrastructure under the risk of extreme events explicitly
without relying on any specific physics-based mechanism. However, these approaches usually require per-
forming random exploration of the effects of management actions on the system (typically in the post-event
situation) to allow for an acceptable approximation to the optimal management policy. When dealing with costly
infrastructure systems and important communities, this random exploration can be unacceptable and risky. In
this paper, we propose a method called Safe Q-learning, which is a model-free reinforcement learning approach
with addition of a model-based safe exploration for near-optimal management of infrastructure system pre-event
and their recovery post-event. Our method requires the decision-maker to model the structure of the state space
of the problem, and a suitable equilibrium of the system (optimum functionality pre-event). This information is
usually available for urban systems, as they spend long time in optimum equilibrium before the occurrence of
such events. We show on several examples of infrastructure management how the proposed approach is able to
achieve near-optimal performance without the risk due to random exploration.

1. Introduction

Resilience is a key aspect in the behavior of complex dynamical
systems such as our built environment, and it indicates the system’s
capacity to withstand the disruptions caused by extreme events and to
recover from it [17,8,5]. The definition of engineering resilience is
concerned with disturbances that threaten the functional stability of
engineering systems, and quick recovery to normal levels of function-
ality after a disruption [36]. In such definition, the resilience is mea-
sured usually based on four metrics: robustness, or the strength of the
system to withstand a disturbance without functional degradation, re-
dundancy, or substitutability of the system’s components, resourceful-
ness, and rapidity, or the capacity to restore system to the normal
functionality in a timely manner [3]. Quantification of such metrics
requires a specific knowledge on the dynamics of the system as well as
the risks and costs associated with actions that a decision-maker can
take [11]. However, in many scenarios, the reaction mechanisms and

the effects of an extreme event on a system is highly uncertain and it is
hard to parameterize such mechanism and evaluate these metrics.

Exhaustive reviews of previous research on definition and quanti-
fication of resilience are presented by Hosseini, Barker, and Ramirez-
Marquez [14] and Koliou et al. [15]. Here we focus on the few most
recent studies. The literature that has studied how to quantify resilience
largely focuses on either solutions based on network theory or para-
metric approaches based on reliability and risk analysis. On one side,
network theory is used to identify the changes within the network of
infrastructure systems to quantify its reliability, vulnerability and re-
cover-ability in occurrence of an external disturbance [31,41,35,40,12].
For example, Ramirez-Marquez et al. [31] models the restoration of
links among different components in the system, however, the recovery
of the components themselves and its economic cost is not studied.
Similarly, Zhang et al. [41] focuses on the design phase rather than the
actual operation and maintenance of infrastructure systems under the
risk of such disturbances. On the other hand, parametric non-linear
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models have been used to describe the recovery from the disturbances
based on historical data [32,1,25,8,27]. Given the peculiarity of each
extreme event and the lack of sufficient historical observations, the
generalization of such parametric approaches is limited. Moreover,
these methods do not specifically provide a decision optimization
platform for recovering after the distrubance caused by extreme event,
that can incorporate the risk associated to the future events and lessons
learned from observations of previous ones [16,30].

Decision theory and reinforcement learning, on the other hand, can
incorporate the risk associated to such rare events prior to their oc-
currence and identify the optimal recovery strategy post-event.
Recently, approaches based on decision theory and reinforcement
learning have been utilized to quantify and mitigate the effect of ex-
treme events on interdependent infrastructure systems [11,26,13]. For
example, Faber et al. [11] provides a decision-theoretic framework to
quantify the resilience and sustainability of infrastructure systems
under the risk of extreme events. Nozhati et al. [26] and Gomez and
Baker [13] utilize model-based reinforcement learning approaches to
optimize the recovery process post-event from disturbances caused by
extreme events for a network of interdependent infrastructure systems
under the seismic hazard.

As mentioned before, model-based reinforcement learning ap-
proaches require some knowledge of the dynamics of the system, of
costs related to actions taken by the manager and utilities, and effects
on the system’s functionality. To overcome such limitations, model-free
reinforcement learning approaches has been employed [9,10], however
not in relation to extreme events and to optimize the recovery process.
Most of these models have been developed for regular operation and
maintenance of infrastructure systems. A main reason for this is the
high risk of applying model-free methods to critical infrastructure sys-
tems. Almost all of model-free approaches require performing random
exploration (i.e., random strategies taken by the manager to maximize
the speed of learning) to guarantee the convergence of the solution to
the optimal policy, which may be too risky in application to critical
urban infrastructure.

In this paper, we develop a model-free reinforcement learning ap-
proach with addition of a model-based safe exploration for near-op-
timal management of infrastructure system pre-event and their re-
covery post-event Our method requires the decision-maker to model the
structure of the state space of the problem, and to define a suitable
equilibrium of the system (i.e., an optimal level of functionality pre-
event). This information is usually available for urban systems, as they
spend long time in a stable configuration, which can be assumed as an
optimum equilibrium, before occurrence of the event. The advantages
of the proposed method are: (1) it can achieve a near-optimal perfor-
mance without the risk due to random exploration, (2) the method is
non-parametric (similar to other model-free reinforcement learning
approaches), and as a result does not make significant assumptions
about the parametric functions used to model the dynamics or the effect
of extreme events, (3) similarly, it does not require any prior knowledge
of the utility functions and economic costs of the actions taken by the
manager, and (4) is usually computationally more efficient than model-
based approaches and capable of real-time decision-making under un-
certainty.

2. Methods

Before getting into details of the proposed method, we summarize
the fundamentals of sequential decision optimization and reinforce-
ment learning.

2.1. Sequential decision optimization

Decision theory has long been employed to optimize the operation
and maintenance of infrastructure systems. Madanat [19] is among the
early work of framing the optimal management of infrastructure

systems as a model-based sequential decision-making problem under
uncertainty. Since then, this family of approach is utilized for mon-
itoring and control of many infrastructure systems such as transporta-
tion assets [33,20,21], structural components subject to fatigue [18],
and corrosion [28], and wind turbines [6,22,23]. In such setting, the
condition state of the infrastructure system is described by a variable,
s S, and the actions that manager can take to maintain the system are
described by another variable, a A. The deterioration behavior (i.e.,
the dynamics) of the system’s state is modeled stochastically, i.e.,

= ++s f s a( , )t t t s
t

1 , where t denotes time steps, f defines the dynamics
function, and s

t is a random variable modeling the uncertainty in
predicting the future system state. The quality of actions taken by the
manager is quantified by a utility function, which maps the states and
actions spaces to real-valued numbers: ×U S A: . The utility
function quantifies the immediate costs/benefits for the decision-
maker. The manager’s goal is to find a policy that minimizes the long-
term cumulative cost of operation and maintenance of the system over
its entire life span, = u s a( , )t

T t
t t0 , where T is the life-span of the system

(also known as the management time horizon), and is the discount
factor, relating the future costs to their net present value. In such set-
ting, the manager’s policy for maintaining the system is a mapping from
state space to the action space: S A: . At each time step t, the
manager observes the current condition state (e.g., using sensors or by
performing visual inspections), st , and identifies what action to take
according to a specified policy , i.e., =a s( )t t . For such arbitrary
policy s( ), the value of maintaining the system according to that
policy starting from each specific state, s (i.e., the initial condition),
V s( ), can be calculated as follow,

= +V s u s s p s s s V s( ) , ( ) , ( )
s S (1)

where p s s s( , ( )) is the probability of of reaching state s at next step,
if the current state iss, and policy $ $ is adopted. This probability is
related to function $f$ and the distribution of variables $ $. Formulating
the problem in this way, the manager is interested in finding a policy
(i.e., amaintenance strategy) that minimizes the operation cost over its
entire life-span, i.e., the policy that minimizes the value function in Eq.
(1)[2]:

= +s u s a p s s a V s( ) argmin , ,a
s

A
S (2)

The above formulation is well-known as Markov decision processes
(MDPs) [34] in decision theory and dynamic programming can be used
to solve Eq. (2) and find the optimal policy. Fig. 1 shows the prob-
abilistic graphical representation of MDPs.

2.2. Reinforcement learning

Reinforcement learning is an approach for sequential decision op-
timization when the models describing dynamics of the system and the
utilities (or cost functions) are either uncertain or unknown. Hence, it is
concerned with adaptive management and control in an uncertain en-
vironment. In such context, there is a decision-maker that controls a
system within an uncertain environment by taking actions (i.e., plan-
ning) and adopts her actions based on receiving new information from
the environment (i.e., learning). In the MDP setting defined in Section
2.1, the uncertainty is about the functions describing the dynamics of
the system (e.g., the deterioration behavior of infrastructure compo-
nents) and characterizing the utilities (cost of actions taken by the
manager). The goal of the decision-maker is to interact with the en-
vironment by taking actions and adjust the policies based on the in-
formation she gets from the environment and hoping to identify the
optimal policy in this process. Depending on how one formulates the
problem, reinforcement learning is categorized into two main
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categories of model-based and model-free approaches. Fig. 2 illustrates
the differences among these two. As mentioned before, the purpose of
this paper is to propose a method that does not rely on specific me-
chanisms or function to describe the resilience and recovery of the in-
frastructure systems under the risk of extreme events. As a result, we
will focus on the model-free reinforcement learning going forward;
interested readers can refer to Wiering and Otterlo [22,38] for detailed
description of model-based reinforcement learning.

Model-free reinforcement learning approaches learn the policy di-
rectly from the observations, without any explicit inference of the
model (e.g., dynamics of the system, and utilities). They tend to learn
better policies faster, when the prior knowledge is weak. In the next
sections, we first review a classical model-free reinforcement learning
approach and then will explain the fundamentals of deep reinforcement
learning, before going to the proposed method of Safe Q-learning.

2.3. Q-learning

One of the classical model-free reinforcement learning approaches is
Q-learning [37]. In Q-learning, the decision-maker represents the
quality of taking each possible action, a A, starting from any state,
s S as a table, Q s a( , ), and updates this table by interacting with
environment through taking actions and receiving observations. The Q-
value can be defined using Eq. (2) as follow:

= +Q s a u s a p s s a V s, , ,
s S (3)

At each time step t, given the current state of the system, st , the man-
ager takes an action at , and receives two observations, the immediate
utility ut, and next resulting state, +st 1. Based on this, she can update the
Q-table as follow,

+ + +Q s a Q s a u Q s a Q s a, , [ min ( ( , )) , ]t t t t t
a

t t t
A

1
(4)

where is the learning rate. Once this inference on the Q-table is done,
the next optimal action can be found as follow,

=+ +a Q s aargmin ( , )t a tA1 1 (5)

Although, in practice, it is recommended to adopt an -greedy (or
variations of that such as adaptive -greedy exploration or Boltzmann
approach) action selection [34], to allow the agent to explore the un-
known areas of the Q-table that can lead to better policies for future
management. This random exploration is essential for convergence of
the policy to the optimal one, otherwise the algorithm might iterate on
a sub-optimal policy. However, when dealing with costly infrastructure
systems under the risk of extreme events, random exploration is not
acceptable. In Section 2.5 we explain how we replace this random ex-
ploration with a safer one.

There are two fundamental limitations to the classical Q-learning
method: (1) in a high-dimensional problem, it is hard to maintain and
perform inference on the large Q-table efficiently; and (2) this approach
fails to provide any estimation of the Q-value for those areas of state
space that are not observed.

2.4. Deep Q-learning

To overcome both limitations presented above, we adopt the
Deep Q Network (DQN) approach [24] for solving operation and
maintenance of infrastructure systems in a model-free setting. The idea
here is to use a function approximator to estimate the Q-function,
Q s a Q s a( , ; ) ( , ), where Q s a( , ) is the exact Q-function, and lists
the parameters of the function approximator. The function approx-
imator can be any linear [10] or non-linear function, although in the
deep reinforcement learning, a non-linear function approximator such
as neural network is used. This neural network function approximator
with weights is called Q-network. It can also generalize the estimation
and predication to those areas of the state space that are unobserved,
and can also work with high-dimensional problems efficiently. The

Fig. 1. Probabilistic graphical model of Markov decision processes. Circles show random variables, squares show decision variables, and diamonds show the utility
variables. Shaded circles are the variables that are fully observable.

Fig. 2. Graphical representation of the steps in (a) model-based approaches and (b) model-free methods.
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interested reader should refer to [4] for further details on neural net-
works.

In the Q-network representation, the goal is to estimate the optimal
target function, = +Q s a u s a Q s a( , ) ( , ) min ( , )a , where $s$ is the
current state the decision-maker takes action a and pays cost u s a( , ),
and ends up in state s in the next time step. As a result, the parameters
(i.e., the neural network weights) at each iteration i, i.e., i, need
to be adjusted to reduce the mean-squared error (or any other
appropriate error measure) in the Bellman equation, where the
optimal target values are substituted with approximate target values

= +y u Q s amin ( , ; )a i , using parameters i from some previous
iteration. As a result, the loss function at time $i$, $ $iL , can be written
as,

= y Q s a( ) [( ( , ; )) ]i i s a u s i, , ,
2L (6)

An important note here is that the target depends on the network
weights (this is in contrast with respect to supervised learning). At each
stage of the optimization, the weights are kept fixed from the previous
iteration, i , to update the i-th loss function ( )i iL [24]. To optimize the
above loss function, we use the stochastic gradient descent after every
time step, which results to a form similar to the well-known Q-learning
algorithm. Again, we note that the deep Q-learning needs the random
exploration to converge to the exact optimal policy, which is not ac-
ceptable in application to critical infrastructure systems. In the next
section we describe the proposed method to introduce safe exploration.

2.5. Safe Q-learning

One of the fundamental issues with Q-learning (either in the deep or
in the classic version), as mentioned above, is related to the selection of
actions from highly uncertain areas of state space (which is usually the
case after occurrence of an extreme event). For example, for a system
that has been in an equilibrium state for a long time, that area of the Q-
table is well-known, while the other areas can be highly uncertain. If an
extreme event pushes the system to those areas, how can we take ad-
vantage of the structure of the state space to turn the random ex-
ploration into a safe one?.

To solve this issue, we propose to add a term to the action-selection
strategy in Eq. (5), which we call the “momentum towards the system’s
equilibrium”. We refer to equilibrium as system’s optimal state before
the occurrence of the event. Let us call this equilibrium of the system
pre-event or state spaces around it a safe region, S S. Now, we revise
the action selection strategy as follow:

= +a Q s a a s Sargmin [ ( , ) ( , , )]a A M (7)

where a s S( , , )M is the momentum towards the safe region, S , from
the current state, s, under continually taking action a, and is a decay
factor that controls the effect of momentum (e.g., it reduces its con-
tribution when sufficient learning has been performed). It should be
noted that the definition of momentum needs assumptions about dy-
namics of the systems and the structure of the state space, and it is
related to a model-based approaches. Basically, we are combining
model-free reinforcement learning with a model-based exploration to
make the approach safer for application to critical infrastructure sys-
tems. A major limitation of the proposed method, in its current form, is
that the definition of the momentum functionM is problem-dependent,
however, as we see later in the results, in the investigated problems,
simple linear functions are sufficient to obtain near-optimal policies.
Now we are ready to provide the full algorithm of the Safe Q-learning
method proposed here in Fig. 3.

There are some fundamental differences in the algorithm with re-
spect to the classic Q-learning approach that are worth detailed ex-
planation. First, the reader can note that we store observations in a
memory setD and each time we sample a mini-batch of transitions from
this memory to use for fitting the model (this is sometimes referred to as
experience replay [24]). The reasons are: (1) by using this, the

previously observed transitions (especially the rare ones) will be re-
sampled and as a result the learning process would be more efficient;
and (2) Due to the high correlation among the transitions in a sequence,
the Q-network function might diverge, if we fit the model on the se-
quential data. Re-sampling transitions from the memory breaks this
correlation and as a result it reduces the variance of the updates and
helps the convergence. The second difference is using a separate net-
work for generating the targets yj in the Q-learning update, i.e., Q.
Then, every C steps we replace Q with the learned Q. This helps the
stability of the learning and avoids oscillations or divergence of the
policy.

3. Results and discussion

We evaluate the performance of the proposed method, Safe Q-
learning, comparing it to that of the regular Q-learning with different
exploration approaches, and to the control with perfect knowledge on
the system dynamics and utilities on multiple examples.

3.1. System under the risk of extreme events

In this section, we consider the management of a set of infra-
structure components under the risk of extreme events. The system is
made up by similar components, up to =N 100, exposed to extreme
events. The system supplies a service to society, to meet its demand. We
discretize time in weeks (meaning that t is 7 days). Demand, d, is
unknown and modeled as a log-normal distribution, d ( , )d dLN .
System state defines the number of functioning components, so that
there are nt number of functioning components at time step t.
Components deteriorate, and they are prone to failure when extreme
event occurs. The change nt in the number of functioning components
from time step t to +t 1 is given by three contributions:

= =+n n n n n nt t t t
a

t
d

t
e

1
( ) ( ) ( ) (8)

where, nt
a( ) is the decision variable and defines the number of com-

ponents to be repaired (or replaced), nt
d( ) is the number of components

damaged by deterioration and of those damaged by extreme events.
Binary variable et defines the occurrence of an extreme event at time
step t, and is Bernoulli distributed with rate , which is uncertain and
modeled as Beta( , ). Fig. 4 shows the graphical illustration of
the dynamical system in this example. If an event occurs, the

Fig. 3. Safe Q-learning algorithm.
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functioning components might get damaged according to an uncertain
probability pe, that defines the event’s intensity and is beta-distributed:
p Beta( , )e e e . Then, we model the effect of extreme event on the
functioning components as follow,

= =
=

n e
n e n p

[ 0] 0
[ 1]~Binomial ( , )

t
e

t

t
e

t t e

( )

( )
(9)

Failure of components due to deterioration and its effect on the
functionality of the systems is also similarly modeled as,

n n n pBinomial( , )t
d

t t
e

d
( ) ( ) .
The utility function U is the sum of two cost contributions: re-

pairing/replacing cost CR, and expected cost of insufficient function-
ality to meet the demand CF . replacing cost n a( ) components is for-
malized as follow,

= > +C n c I n c n( ) [ 0] [ ]R
a a

r
a( )

0
( ) ( ) (10)

where I is the indicator function and c c,r 0, and are the model para-
meters. Expected cost for insufficient functionality to meet the demand,
CF , is a function of lacking components =n d ntlack is defined as,

=C n c n( ) [max{ ( ) , 0}]F t d
µ

pen lack (11)

where, cpen and µ are model parameters.

3.1.1. Momentum definition
We define momentum function for this example as follow,

=a s a s aS S( , , ) ( , , ) Pen( )M B (12)

where a s S( , , )B is the loss for taking action a in the current state s,
while the safe region is S , and aPen( ) is a penalty for expensive actions.
For simplicity, we define the penalty function the same as the CR de-
fined in Eq. (9), where =n aa( ) . Since the state corresponds to the
number of functioning components, we define the loss function, B , as
follow,

=s a VS S( , , ) (1 ) ( )s a S( , )B (13)

where s a S( , ) is the expected time to reach S from s, while con-
tinually taking action a, and V S( ) is an estimate of the value starting
from the safe region. This estimate can be based on historical data.
Function s a S( , , )B measures how much value is lost before the system
reaches the optimum equilibrium region S . For this problem, it is

reasonable to assume expected time as a linear function of the state
space structure,

=s a s
a

S S,
(14)

3.1.2. Q-network implementation
The deep Q-network is implemented (Fig. 3) using Keras and ten-

sorflow libraries in R, and we refer the reader to Chollet and Allaire [7]
for further details on the implementation. Parameter =C 20, the
number of samples of mini-batches of transition is set to 10, the decay
factor for the momentum function is = 99.5%. The architecture of the
neural network is as follow,

• Dense(40 neurons, activation = ‘tanh’)
• Dense(20 neurons, activation = ‘tanh’)
• Dense(10 neurons, activation = ‘tanh’)
• Dense(number of actions neurons, activation = ‘linear’)

Adam optimizer with a learning rate 0.001 is used for optimization
using stochastic gradient descent and mean-squared errors is used as a
metric.

3.1.3. Performance comparison
The parameters of Log-normally distributed uncertain demand are

set to = log60d and = 10%d . The rate of the extreme event rate of
occurrence is fixed so that the expected value and the coefficient of
variation of are 0.2%w 1 (corresponding to the return period of
10 years) and 70%, respectively, meaning that = =2, 1000. The
intensity of the extreme event and its effect on system’s functionality, pe
is assumed to have an expected value and the coefficient of variation of
50%, meaning = = 1.5e e . pd is 0.2%, so that the expected annual
number of degraded components is 10 when =n N . Utility parameters
are defined as follow: =c $4K0 , = = =c c$10 K, 2, $1 Kr pen , and

=µ 2. The discount factor is = 99% per week. The implemented Q-
network, random exploration rate, and learning rate for classic Q-
learning approach are the same as Section 3.1.

Fig. 5 reports (a) the optimal policy and (b) value (i.e., expected
sum of discounted cost) if the decision-maker has perfect knowledge of
the true models describing the dynamics of the system, the probability

Fig. 4. Probabilistic graphical model of the example of set of infrastructure systems. Circles show random variables, squares show decision variables and diamonds
show the utility variables. Shaded circles are the variables that are fully observable. sk t, is the state of component k at time t y, t is the observations of the extreme
event, tF is the functionality of the system and dt is the demand.
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of extreme events and their effects, as well as the utility functions in-
cluding penalties of not meeting the society’s demand and costs asso-
ciated with replacements, as derived from Eqs. (1) and (2). The red dot
in the figure shows the equilibrium in the state space, where the system
has an optimal performance and as a result the methods should keep the
system around this equilibrium to guarantee the optimal operation and
maintenance and meeting the demand of the society.

Fig. 6 shows the convergence of the learned Q-table according to the
two methods of regular Q-learning with adaptive -greedy exploration
and Safe Q-learning to the true one. We implement the adaptive -greedy
exploration as follow:

= ×i
i( 1)

0 (15)

where, …i {1, , 1000} denotes each episode of training, = 0.20 , $
\epsilon_i$ is the exploration probability at iteration $i$, and = 0.999
is the decay factor. Fig. 7 shows the corresponding long-term expected
utility of maintaining the system according to each model after the
learning has done, based on 1000 independent simulations. As it can be
seen, the proposed method performs slightly better than the regular Q-
learning. Although the difference in the performance is not obvious
here, we design an experiment in the next section, where the difference
in performance is more significant and random exploration hurts the
decision-maker far more than in this example.

After learning the policy, we plot a realization of the recovery
process according to all models, after occurrence of an extreme event

Fig. 5. The (a) optimal policy and (b) long-term expected cost (value), i.e., value of managing the system.

Fig. 6. The Euclidean distance between the true Q-table and the Q-table learned
by Q-learning with adaptive -greedy exploration and Safe Q-learning ap-
proaches.

Fig. 7. Expected long-term utility of maintaining the system based on 100 in-
dependent simulations according to the policies assigned by each approach.
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which takes the number of functioning components down to =n 36.
Fig. 8 shows that the two methods recover the system to the safe region
around the equilibrium level similar to the optimal policy. The blue
dashed line represents the expected value of the demand by the society.
Due to the stochasticity in dynamics and demand and risk of failure
caused by disturbances, all methods keep the number of components at
a safe distance above the expected value of the demand.

3.2. Reservoir water irrigation problem

In this section, we present an example to show the significance of
the proposed method compared to the regular Q-learning, where the
random exploration hurts. Imagine the manager is in charge of a re-
servoir that irrigates water for agricultural use (this example is inspired
by the reservoir operation example of Yakowitz [39]). The state of the
system is the water level of the reservoir, that we discretize and nor-
malize so that s [0, 1]. The capacity of the reservoir is fixed and set to

=K 0.8. The water level changes either due to irrigation for agricultural
use and by yearly rainfalls. The manager is in charge of selecting how
much of the water to distribute for agricultural use, which defines the
action space, i.e., a [0, 1]. The dynamics of the water level is defined
according to following function:

= ++s s s s
K

a1t t t t
t

t1 (16)

where, s S denotes the water level of the reservoir, a A is the
amount of water used for agricultural purposes, with subscript t de-
noting time steps, K is the capacity of the reservoir, and t captures the
inherent stochasticity in the water level dynamics and follows a trun-
cated Normal distribution with a unity mean and known standard de-
viation, which is assumed to be = 0.1s (the truncation is to avoid
negative values). The manager receives rewards proportional to the
amount of water the she distributes for agricultural use. The utility
function is defined as =U s a s a( , ) min( , )t t t t . The choice of the utility is
arbitrary and including the cost of irrigation would not change the
results.

3.2.1. Momentum definition
In this example we define the momentum function as follow,

=a s VS S( , , ) ( )s a S( , )M (17)

where s a S( , ) is the expected time that takes to reach equilibrium
level S from s, while continually taking action a, and V S( ) is the best
estimate of the value (i.e., long-term expected rewards of management)
for the safe state region based on historical data. Function M here
defines the approximate value of performance in the current state, s, if
action a is continually taken until the system reaches the optimal re-
gion, S . We define the expected time as a linear function of the state
space structure,

=s a s aS S( , ) ¯ (18)

where it basically defines the distance between the current state, s, and
the expected state-value of safe region of the state space, S̄ , after a
amount of water is irrigated.

3.2.2. Performance comparison
Fig. 9 shows the cumulative rewards of maintaining the system

based on the policies assigned by the following methods: (1) Safe Q-
Learning, (2) Q-learning with adaptive -greedy exploration (labelled as
Q-Learning - Adaptive), and (3) Q-learning with Boltzmann exploration
(labelled as Q-Learning - Boltzmann), compared to the optimal policy
according to 1000 episodes of training. The Boltzmann exploration
weights the exploratory action selection according to their value as
follow,

=p a s Q s a
Q s a

( | ) exp( ( , )/temp)
exp( ( , )/temp)t

t

a A
t

(19)

where, p a s( | )t denotes the probability of taking action a in state s at
time step t Q s a, ( , )t is the best estimation of the Q-value of taking action
a in state s at time step t and then following the optimal policy and can
be computed according to Eq. (3), and temp is a temperature parameter,
which is annealed over each episode of training.

As apparent in the graph, the exploration of the Q-learning ap-
proach (either the adaptive -greedy or the Boltzmann approach) hurts
the system and results in significant loss in the revenue, while the safe
exploration approach proposed here results in significantly better and
near-optimal performance (on average safe Q-learning approach results

Fig. 8. Recovery process from an extreme event that takes the system down to
36 functioning components, according to the policy learned by each method, in
comparison to the optimal recovery process. The blue dashed line represents the
expected value of the demand by the society. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 9. Cumulative reward of managing the reservoir according the policy
suggested by each method compared to the optimal policy.
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in the 75% of the true model value, see Fig. 10). We also show the long-
term expected reward of managing the reservoir under different po-
licies (in Fig. 10), where the Q-learning results in a value significantly
less than the ones achieved by the optimal policy and the safe ex-
ploration proposed here (the adaptive -greedy achieves 29.8% of the
value of safe Q-learning while, the corresponding number for Boltz-
mann approach is 6.5%).

Moreover, it can be observed from Fig. 11 that both optimal policy
and Safe Q-learning approach keep the reservoir’s water in a steady
level, while Q-learning with both exploration methods result in the
decline on the water level in the long run and significant loss of the
revenue. The results are based on 1000 episodes of training and we
show the mean +/− standard deviation in the figures.

As mentioned before, the performance of Safe Q-learning approach
relies on a good assumption of the safe region, S . In Fig. 12, we eval-
uate the performance of this approach in a case where the prior in-
formation given to the method regarding the safe region of the state
space, S is wrong or correct. In the case of correct prior information,

the safe region is specified as an area around the true equilibrium of the
system s 0.6, while in the case of wrong prior information, it is spe-
cified as s 0.15. It can be seen that the performance of Safe Q-learning
method proposed here relies on the accuracy of the prior information
on the location of the equilibrium and if such information is wrongly
provided, it performs even worse than Q-learning.

3.3. Reinforced concrete bridge structure

In this section we apply the proposed Safe Q-learning approach to a
real-world example of maintenance planning of a reinforced concrete
bridge structure under the risk of extreme events. The data of this ex-
ample is obtained from the work by Papakonstantinou and Shinozuka
[29]. In this example the condition state of the structure is character-
ized by two variables: (1) four discrete conditions corresponding to the
deterioration of the condition of the structural elements, and (2) 83
state variables corresponding to the deterioration rate of the structure.
This results in an augmented state space with 332 states,

= × =S 4 83 332. Four different actions are available to the decision-
maker which are Do Nothing, Minor Repair, Major Repair, and Replace.
Doing nothing results in the structure deteriorating, while repairing
improves the condition of the structure and replacement result in a
intact structure. Costs for each action are fixed realistically based on the
condition level of the structure and are valued according to their ex-
pected effect on structure’s condition. Costs of minor repairing ac-
cording to the data is estimated to be $60, $110, $160, and $280 de-
pending on the condition state of the structure. Similarly, cost of major
repairing is estimated at $105, $195, $290, and $390. Replacement
would cost the manager $820, and the penalty occurred to the manager
due to lack of service to the society is estimated to be
$4. 75, $40, $120, and $250 for each condition states. For further de-
tails regarding this example, we refer to Papakonstantinou and Shino-
zuka [29]. It should be noted that in the original example of Papa-
konstantinou and Shinozuka [29], the effect of extreme events are not
modeled and, in order to add such effect, we have assumed that an
extreme event with a probability of 5% can alter the deterioration of the
structure significantly. Specifically, we assume that the deterioration
rate increases by 50 states in the case that the extreme event occurs
(without the extreme event the deterioration rate increases by one state
at each time step).

In this example we define the momentum function as follow,

=a s VS S( , , ) ( )s a S( , )M (20)

where s a S( , ) is the expected time that takes to reach equilibrium
level S from s, while continually taking action a, and V S( ) is the best
estimate of the value (i.e., long-term expected cost of management) for
the safe state region based on historical data. We define the expected
time as a linear function of the state space structure,

=s a
a

sS S, 1 ¯
(21)

Fig. 13 shows (A) the expected state of the structure under man-
agement based on each method, and (B) the long-term expected cost of
maintaining the structure in a good condition. As expected, our pro-
posed approach keeps the system in a condition state identical to the
true model, however with a 33% higher maintenance cost compared to
the true model. In this example, Q-learning with adaptive -greedy
exploration results in approximately 70% higher maintenance cost
compared to the true model.

4. Conclusions

In this paper, we have proposed a model-free reinforcement learning
approach with a model-based safe exploration, Safe Q-learning, for opti-
mizing the operation of urban infrastructure under the risk of extreme

Fig. 10. Long-term expected reward (value) of managing the reservoir ac-
cording to the policies defined by different methods.

Fig. 11. Expected level of the water in the reservoir in the long run by mana-
ging it according to the policies suggested by different methods. The results are
based on 1000 episodes of training and we show the mean +/− one standard
deviation.
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events and the recovery process post-event. The main advantage of the
method, compared to the literature, is replacing the random exploration
of the model-free approaches with a safe exploration, which is crucial in
application to costly urban infrastructure. Moreover, the proposed
method is non-parametric and hence it does not make any assumption
about parametric functions used to model the dynamics of the system,
the effect of extreme events on the system, and the utilities (which are
usually unknown in real-world scenarios). Relying on numerical simu-
lations on several infrastructure management examples, we quantify the
performance of the proposed method and we compare it to the optimal
performance, assessing its advantage with respect to the traditional
method of Q-learning with different exploration strategies.

Although the proposed method here is promising, there are a few
caveats that need to be addressed as future direction of this research:
(1) The current approach assumes full observability of the condition
state of the infrastructure components. In many situations, this as-
sumption might be violated due to existence of the measurement error
or incomplete observations of the full state. In those settings, the
manager has access to only noisy measurement of the states. Further
advancement of the current proposed approach to deal with partial
observability of the state in these problems is part of the future work;

(2) the deep Q-network such as the one implemented in this paper
suffers from instability and convergence issues [24]. The adjustment
and tuning of the parameters in the optimization, and the design of the
neural network architecture needs careful consideration and currently
is a trial and error procedure. Further research needs to be done to
improve the stability of these methods and to make the optimization
model robust to noise, and the nature of the problem under study that
would help generality and flexibility of these methods and their ap-
plications; and (3) the momentum function introduced in this paper is
problem-dependent and it relies intrinsically on an accurate assumption
about the safe region pre-event. Further work needs to be done to make
the current formulation robust with respect to the lack of accuracy in
the prior knowledge.
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Fig. 12. Comparing the performance of the safe Q-
learning approach to Q-learning with either adap-
tive -exploration or Boltzmann approach, and the
true model where the prior knowledge on the equi-
librium of the system given to the safe Q-learning is
wrong or correct.

Fig. 13. (A) the expected state and (B) long-term expected cost of maintenance for management of the reinforced concrete bridge structure under the risk of extreme
events.
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