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137  Abstract: Global change drivers (GCDs) are expected to alter community structure and

138  consequently the services ecosystems provide. Yet few experimental investigations have

139  examined effects of GCDs on plant community structure across multiple ecosystem types, and
140  those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100
141  experiments that manipulated factors linked to GCDs, we show that herbaceous plant community
142 responses depend on experimental manipulation length and number of factors manipulated. We
143 found that plant communities are fairly resistant to experimentally manipulated GCDs in the
144  short-term (<10 years). In contrast, long-term (>10 year) experiments show increasing

145  community divergence of treatments from control conditions. Surprisingly, these community
146  responses occurred with similar frequency across GCD types manipulated in our database.

147  However, community responses were more common when three or more GCDs were

148  simultaneously manipulated, suggesting the emergence of additive or synergistic effects of

149  multiple drivers, particularly over long-time periods. In half of the cases, GCD manipulations
150  caused a difference in community composition without a corresponding species richness

151  difference, indicating that species reordering or replacement is an important mechanism of

152 community responses to GCDs and should be given greater consideration when examining

153  consequences of GCDs for the biodiversity-ecosystem function relationship. Human activities
154 are currently driving unparalleled global changes worldwide. Our analyses provide the most
155  comprehensive evidence to-date that these human activities may have widespread impacts on
156  plant community composition globally, which will increase in frequency over time and be

157  greater in areas where communities face multiple GCDs simultaneously.

158

159  Keywords: community composition, global change experiments, herbaceous plants, species
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Significance Statement: Accurate prediction of community responses to global change drivers
(GCDs) is critical, given the effects of biodiversity on ecosystem services. There is consensus
that human activities are driving species extinctions at the global scale, but debate remains over
whether GCDs are systematically altering local communities worldwide. Across 105
experiments that included over 400 experimental manipulations, we found evidence for a lagged
response of herbaceous plant communities to GCDs, caused by shifts in the identities and
relative abundances of species often without a corresponding difference in species richness.
These results provide evidence that community responses are pervasive across a wide variety of
GCDs on long-term temporal scales, and that these responses increase in strength when multiple

GCDs are simultaneously imposed.
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Main Text:

Human activities are driving unprecedented changes in many factors that may affect the
composition and functioning of plant communities. Determining the factors that cause alterations in
plant community structure is critical, as important ecosystem functions and services are influenced
by plant community composition (1, 2). Changes in resource availability (e.g., atmospheric carbon
dioxide (CO,), nitrogen (N), precipitation patterns) may have large consequences for plant
community structure worldwide (3). Yet our ability to interpret and predict plant community
responses to global change is complicated by many factors, such as the type of global change
driver (GCD) and the environmental context. Observational and experimental evidence has
demonstrated disparate and seemingly conflicting patterns of species richness responses to
environmental change across a variety of independent studies, meta-analyses, and large data
syntheses (4—11). As such, there is continued debate over whether local-scale biodiversity loss is
a worldwide trend (12—14). Moreover, recent studies (15, 16) advocate the use of multivariate
metrics (e.g., Bray-Curtis dissimilarity) that account not only for changes in species number, but
also species identities and relative abundances to provide a more comprehensive picture of
composition responses to GCDs.

Both biotic (e.g., shifts in competitive dominance or susceptibility to herbivores) and
abiotic (e.g., environmental filtering) processes (17-19) have been invoked to explain how
GCDs affect plant community richness and composition at local scales, and it seems reasonable
to expect that plant community responses will vary across a broad array of GCDs (2, 15).
Resource additions (e.g., nutrient additions) are predicted to reduce plant species richness and
alter plant community composition due to changes in competitive interactions among species for

the remaining limiting resources (e.g., water or light) (7, 8, 20). In contrast, increased
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environmental stress may have varying effects on plant community composition by either
shifting or increasing niche availability. For example, repeated removal of plant material through
haying (a common land use change in many herbaceous systems) may increase species richness
by increasing light availability and favoring species that can tolerate removal of aboveground
material. In contrast, increased drought or temperature stress may decrease plant species richness
as many species may not be able to persist under these novel conditions (7, 21). In addition to the
type of driver manipulated, the number of simultaneously imposed GCDs may also impact
community responses. Previous studies have shown that plant community responses may be
greater under multiple simultaneously imposed GCDs (22—-24). In contrast, both empirical and
theoretical evidence suggests that ecosystem function responses have been shown to dampen
with increasing numbers of simultaneously imposed GCDs (25, 26), due to a canceling out of
positive and negative effects on functions such as productivity and nutrient cycling. Based on
these conflicting results, determining a generalizable pattern of the effects of multiple GCDs on
community responses is needed.

Here we examined results from 105 experiments conducted in grasslands around the
world that together provide data on over 400 experimental manipulations of GCDs to determine
whether we could identify general community response patterns across different types of
manipulations, the magnitude of the manipulations imposed, or the attributes of the ecosystems
where the experiments were conducted. In contrast to prior analyses, which have examined
patterns of community change based on observational data (5, 16, 27), we focused on
experiments because they provide an important baseline (control plots) that is critical for the
accurate assessment of community responses to GCDs by separating stochastic community shifts

from global change effects. By identifying generalities where they exist across complex
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community patterns, we can make tangible progress toward prediction of future community
responses to GCDs occurring worldwide, which is needed to develop strategies for maintaining
the communities upon which many ecosystem services rely.

We used hierarchical Bayesian modeling to examine how herbaceous plant communities
responded to global change manipulations in 438 experimental treatments, encompassed within

105 experiments at 52 sites around the world using the Community Responses to Resource

Experiments [CoRRE] database (https://corredata.weebly.com/; see SI Appendix 2). The CoRRE
database was assembled from plant species composition data collected by hundreds of
researchers in field experiments across all continents except Antarctica, and includes 285,019
species occurrence records of 2843 species from 26,788 time points in experiments ranging in
duration from 3 to 31 years (Table 1; see SI Appendix 3). Global change treatments included
resource additions and removals (e.g., nutrient additions, increased atmospheric CO,, irrigation,
drought), as well as non-resource manipulations (e.g., increased temperature, burning, mowing,
herbivore removals), and were designed to simulate predicted future global change scenarios in
different areas of the globe. We measured plant community responses in treatments relative to
controls using two commonly used metrics of community difference: (1) In Response Ratios
(InRR) of plant species richness (i.e., species number without regard to identity) and (2) species
composition responses in multivariate space using Bray-Curtis dissimilarities (encompassing
shifts in plant species identities and their relative abundances). We also briefly present results
from two additional richness metrics: percent difference of plant species richness from control to
treatment plots and InRR of effective species number (¢''). Because these two metrics show
qualitatively identical results to InRR of richness, we focus on InRR of richness here for most

analyses. For all metrics, we investigated the temporal nature of the observed differences over
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the length of each experiment, as well as whether these effects varied based on the site-level
(gamma) diversity or productivity of each experiment.

In experiments less than 10 years in duration, we found that plant communities are
relatively resistant to global change manipulations, with 79.5% and 77.0% of treatments showing
no richness or composition response, respectively (Table 2; Fig. 1a,f). In contrast in long-term
(>10 years) experiments, fewer manipulations (50%) showed no difference in species richness
(Table 2). Importantly, 70.7% of long-term manipulations exhibited composition responses
(Table 2) and some communities experienced almost complete turnover after one to two decades
(composition responses close to 1.0; Fig. 1). The increased prevalence of community responses
in long-term experiments highlights the need for long-term data collection to better identify
community responses to GCDs. In approximately half of the cases (54.5%) where experimental
manipulations caused a composition shift through time, it occurred without a corresponding
richness response. Consequently, the multivariate plant community composition responses
observed here often reflect differences in species evenness, reordering of species ranks based on
relative abundances, or species replacement (turnover) (15). Future consideration of these
detailed community responses is warranted to (1) examine the temporal hierarchy of the response
(i.e., is there an ordering to differences in evenness, reordering of species ranks, and turnover)
(2), and (2) move beyond using only richness differences as a metric of biodiversity (16).
Studying these detailed community shifts will provide important insight into how alterations in
ecosystem function with GCDs relate to compositional aspects of biodiversity.

When considering all manipulations regardless of experiment length, we find that the
community responses to global change manipulations varied in both direction and magnitude

(Fig. 1). When richness responded to experimental manipulations (22.3% of all manipulations), it
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generally declined either linearly or asymptotically (Table 2; Fig. 1). Similarly, when
composition responded to experimental manipulations (35.6% of all manipulations), it generally
increased in dissimilarity from control plots (Table 2; Fig. 1). Interestingly, in a small subset of
the cases studied here (10.5% of richness and 10.1% of composition responses), community
responses to global change manipulations were parabolic, with the minimum or maximum of the
curve occurring within the study period, suggesting that the community responses in these sites
dampen over time (Table 2; Fig. 1). These parabolic trends were more often detected in the long-
term experiments and treatments that manipulated two or more factors. For richness responses,
these parabolic trends were nearly equally split amongst those that were concave down,
indicative of initial richness losses that later recovered due to immigration of new species or
recovery of previously lost species, and those that were concave up, indicative of initial richness
gains that later declined. In contrast, the parabolic trends in composition response were nearly all
concave up, demonstrating an initial divergence of treatment and control plots, followed by
convergence. The few cases of long-term convergence between treatment and control plots
stemmed from a shift in control plots towards the altered state exhibited in the treatments (see SI
Appendix 5). Overall, these parabolic trends caused by a shift in communities in control plots
suggests that human activities may currently be impacting the environment at a scale beyond the
scope of some experimental treatments, as has previously been demonstrated in global
observational data syntheses (5, 8, 25).

Across sites, we found that productivity was positively related to richness increases in
response to global change manipulations, while gamma diversity (site-level species number) had
no effect on the direction or magnitude of the richness or composition responses (see SI

Appendix 4). Hence, high productivity ecosystems appear more responsive to GCDs, possibly
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due to the greater availability of resources and therefore niche space in such systems (28), or the
greater ability of species in these systems to respond to GCDs due to higher growth rates in
productive herbaceous systems (29). The greater community responsiveness at high productivity
sites may contribute to the maintenance of ecosystem function, as species with traits adapted to
the novel environmental conditions presented by global change scenarios increase in abundance
in these communities (30). However, higher abundances of species that are not functionally
similar to the existing community (2, 3, 5) would likely result in altered ecosystem function.
Declines in species richness are often attributed to decreased niche dimensionality with
alleviation of resource limitations (17) or increased environmental filtering (19), while richness
increases may be due to invasions or increased environmental heterogeneity (31). We did
observe richness differences in a few cases that may be attributable to these mechanisms. For
example, multiple resource additions may decrease niche dimensionality, leading to dominance
of a few competitive species and therefore richness declines (20). In contrast, multiple resource
additions can shift an ecosystem’s stoichiometry to alter the relative availability of the most
limiting resource, and thus competitive interactions, thereby reducing species loss (32). Further,
resource additions may increase species invasions by relaxing environmental filters (33), again
reducing species loss. Nevertheless, in the majority of cases we found that global change
treatments altered community composition with no corresponding richness responses. These
results highlight the fact that, by not accounting for species identity species, richness does not
entirely capture community responses to GCDs (16). Indeed, species richness can stay constant
even with complete turnover in the identities of species within a community. Therefore,
multivariate metrics of species abundances are needed to assess complex community responses

to GCDs (15).
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Interestingly, we did not find differences in richness or composition responses based on
the type of global change driver applied (Table 3). Our results differ from previous meta-
analyses that show stronger richness losses with N additions than other GCDs (7). However, we
did find that global change manipulations that simultaneously manipulated three or more GCDs
were significantly more likely to show richness and composition responses than treatments that
only manipulated one or two GCDs (Table 3; Fig. 3). These results are consistent with previous
studies examining community responses to GCDs (22—-24), but contrast with trends observed for
ecosystem function responses to multiple GCDs from two previous studies, which tend to show
damped responses with increasing factors manipulated (25, 26). This difference highlights the
need to examine how differences in community composition relate to altered ecosystem function
(2, 15, 25).

While on average the effects of N addition on plant communities were not stronger than
other global change treatments, we did find that the absolute level of N added interacted with
mean annual precipitation (MAP) to influence richness responses (Fig. 4; see SI Appendix 6).
Specifically, richness declined with increasing N added at sites with low MAP, and increased
with increasing N added at sites with high MAP (Fig. 4a; see SI Appendix 6). In contrast, the
magnitude of rainfall manipulations did not affect the richness or composition responses (Fig. 4;
see SI Appendix 6). These results conflict with previous analyses of richness responses to N
deposition, which show a decline in richness with increasing precipitation and N deposition (34).
This discrepancy may be due to the high magnitude of N added in some of our experiments,
more akin to nutrient runoff from agricultural fields than atmospheric deposition. Together, these
results point towards co-limitation of species richness across ecosystems (34, 35), and highlight

the need to address potential threshold responses of community responses to resource
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manipulations.

Although this analysis includes the effects of a wide variety of global change
manipulations on plant communities, many combinations of GCDs potentially important to
global change were under-represented or missing from our analysis, reflective of their lack of
study worldwide. These include combinations that are posited to have large impacts on the
biosphere, such as the combined consequences of increased nutrient availability and altered
precipitation patterns (36). Further, the geographic scope of global change experiments is
primarily constrained to the northern hemisphere (see SI Appendix 3). Experiments that
incorporate higher order interactions at sites worldwide are critical for accurately predicting how
communities will respond globally to predicted GCDs (25). Despite these limitations, our results
clearly demonstrate that changes in plant community composition may be expected across a wide
range of GCDs over the coming decades.

In conclusion, our comprehensive analysis finds that plant community structure is
frequently altered by a broad array of GCDs, and that these effects are largely only detectable
over long (>10 year) time scales. These community responses occurred at similar frequencies
across the wide variety of GCDs examined in this study, but were more prevalent when three or
more GCDs were manipulated simultaneously, representative of real-world situations where one
GCD rarely operates in isolation. In about half of the cases where compositional responses were
observed, they occurred without corresponding differences in species richness, indicating that
coexistence mechanisms may be maintained in the face of changing environmental conditions, or
that competitive displacement is slower than the time scales of these experiments. Rather than
species gains or losses, in many cases community responses appear to be due to the abundances

of species tracking environmental conditions through reordering within the existing community
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357  or colonization from a regional species pool. Determining the functional consequences of these
358  broad-scale community responses to GCDs demands investigation into the identities and traits of

359  species that are most responsive to global environmental change (2, 37).
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Figure Legends

Figure 1. Experimental global change manipulations drive temporal differences in plant
community composition. Richness responses (a-¢) are measured as the In Response Ratio (InRR)
in richness between treatment and control plots within a year; positive values indicate net species
gains in treatment plots relative to control plots, while negative values indicate net species losses.
InRR richness response has a lower bound of -1 and no upper bound. Composition responses (f-j)
are measured as the Euclidean distance between centroids of control and treatment plots within a
year in a PCoA based on a Bray-Curtis dissimilarity matrix; composition response is bounded by
0 and 1. Responses are grouped among five possible shapes, indicated along the left-side of the
panels. For all panels, lines correspond to models for 438 individual global change treatments
responses across 105 experiments. For all lines, slopes and intercepts are plotted as zero when
95% credible intervals (CI) of parameters include zero. Values in parentheses are percentages of
studies exhibiting a particular response shape across all experiments (i.e., not considering
experiment length). Percentage responses for short-term vs long-term experiments can be found

in Table 2.

Figure 2: Across all datasets, the proportion of significant temporal plant community responses
(InRR richness and composition differences) to global change treatments do not vary by the type
of global change manipulation imposed. Single-factor global change manipulations are
categorized into treatment types (CO2=increased atmospheric CO2; drought=reduced
precipitation; irrigation=increased precipitation; precip. vari.=variation in precipitation timing,
but not amount; nitrogen=nitrogen additions; phosphorus=phosphorous additions;

temperature=increased temperature; mow=mowing aboveground biomass; herbivore
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rem.=removal of above- and/or below-ground herbivores; plant manip.=one time manipulation

of plant community through seed additions or diversity treatments at the start of the experiment).

Figure 3: Across all datasets, the proportion of significant temporal plant community responses
(InRR richness and composition differences) to global change treatments vary by the number of
treatments simultaneously imposed. Global change manipulations are categorized into treatment
categories (R=single resource; N=single non-resource; R*R=two-way interactions with both
treatments manipulating resources; N*N=two-way interactions with both treatments
manipulating non-resources; R*N=two-way interactions with one resource and one non-resource
manipulation; R*R*R=three or more way interactions with all treatments manipulating
resources; and 3+=three or more way interactions with both resource and non-resource
manipulations). Significant differences in the proportion of significant richness and composition
responses among treatment categories are indicated by letters as determined by Fisher’s exact

test for all pairwise combinations.

Figure 4: Differences in (a-c) richness and (d-f) plant composition to the magnitude of (a, d)
nitrogen (N) addition treatments, (b, €) drought manipulation treatments, and (c, f) irrigation
manipulation experiments. Points represent treatment responses for each experiment at each site
in the final year of treatment, and lines indicate Bayesian regressions between treatment
magnitude and richness or composition responses where significant. Points and lines are colored
by site-level mean annual precipitation (MAP) where the independent effect of MAP was
significant, and lines are colored by MAP where the interactive effect between MAP and

treatment magnitude was significant.
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Table 1: Summary statistics of experiments (N=105) included in the data synthesis. See methods
for variable descriptions.

Variable minimum mean  maximum
Experiment Length (# years) 3 8 31
Number of Manipulations 1 2 5
Gamma Diversity (# species) 3 31 79
Aboveground Biomass (g m~yr) 1.5 349 1415
MAP (mm) 183 714 1526

MAT (°C) -12 8 22
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Table 2: Summary of the response shape of the richness (InRR Richness, % Diff Richness),
effective species number (InRR eH), and composition differences across 438 treatments included
in the data synthesis. Shown are percentages (with numbers in parentheses) of responses falling
into each of 9 shape categories, split by experiment length into those less than 10 year (N=322
responses) and those greater than or equal to 10 years (N=116 responses) in length. Note that
these percentages differ from Figure 1, which presents percentages of each response shape across
all experiments regardless of length. See methods for response variable descriptions.

InRR % Diff. InRR Composition
Richness Richness eH Diff.
Response Shape % (#) % (#) % (#) % (#)

??Osponse 87.0(280)  79.5(256)  80.7(259)  77.0 (248)
i;“cerigse 03 (1) 28 (9) 25 (8) 208 (67)
frfifg:i 00 (0) 00 (0 03 () 00 (0

. ?;er:::gnc 00 (0) 00 (© 06 () 00 (0
é g;‘ff;ase 65 21) 9.0 (29) 84 (27) 0.0 (0)
v gzﬁzzge 06 (2 03 (1) 09 (3) 00 (0
Zsefr‘gtszﬁc 00 (0) 06 (2 00 (0 00 (0
Zg“fr?ve 50 (16) 59 (19) 62 (200 22 (7)
fl;n""we 06 (2) 1.9 (6) 03 (1) 00 (0)
?;’Sponse 50.0 (58) 414 (48)  44.0 (51) 293 (34)
igfrgse 0.0 (0) 09 (1) 1.7 (2) 224 (26)

) ffifg:i 0.0 (0) 0.0 (0) 00 (0) 43 (5
;E ?jzrr:fstg“c 00 (0) 00 (0 00 (0) 121 (14)
% g;‘fferase 164 (19) 19.0 (22) 216 (25) 0.0 (0)
ngzzge 0.0 (0) 0.0 (0) 00 (0) 00 (0)
Zsez?;l;ts‘:ic 95 (11) 138 (16) 112 (13) 0.0 (0)
Z‘(’fvlf;we 52 (6) 8.6 (10) 78 (9) 302 (35)




concave

u 19.0 (22) 164 (19)  13.8 (16) 1.7 ()
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Table 3: Across all datasets, temporal plant community responses (InRR richness and
composition differences) to global change treatments do not vary by treatment type among single
resource or non-resource manipulations (richness: X*=12.47, df=11, p=0.330; composition:
X?=9.42, df=11, p=0.583), but do vary by treatment category among multi-factorial
manipulations (richness: X*=21.85, df=6, p=0.001; composition: X°=15.78, df=6, p=0.015).
Across only long-term (>10 years) datasets, temporal plant community responses to global
change treatments do not vary by treatment type among single resource or non-resource
manipulations (richness: X*=3.36, df=10, p=0.972; composition: X*=4.21, df=10, p=0.938) or
treatment category among multi-factorial manipulations (richness: X*=3.01, df=6, p=0.808;
composition: X*=1.39, df=6, p=0.967). For the long-term experiments, exclusion of treatment
types or categories with fewer than 3 replicates did not qualitatively affect the results. Number
and proportion of each treatment type/category that showed a significant temporal response to
experimental global change manipulations. Significant (p<0.05) differences in the proportion of
richness and composition responses among treatment categories indicated by letters as
determined by Fisher’s exact test for all pairwise combinations.

Proportion Proportion
Total # Significant # Significant
Treatment Possible  Richness  Richness Composition Composition
Type/Category Responses Responses Responses  Responses Responses
CO, 9 1 0.11 3 0.33
drought 23 1 0.04 8 0.35
irrigation 28 4 0.14 7 0.25
precip. variability 10 1 0.10 1 0.10
‘g nitrogen 69 15 0.22 24 0.35
£ & phosphorus 20 6 0.30 4 0.20
§ £ other resource 4 0 0.00 0 0.00
~  temperature 16 1 0.06 3 0.19
mowing/clipping 16 1 0.06 2 0.13
herbivore removal 8 0 0.00 1 0.13
plant manipulation 11 1 0.09 1 0.09
other non-resource 6 3 0.50 4 0.67
single resource 163 28 0.17* 47 0.29*
. _ single non-resource 57 6 0.11° 11 0.19°
S Z'resource*resource 46 12 0.26™ 24 0.52"
«% &’ non-res.*non-res. 13 2 0.15% 3 0.23%°
E & resource*non-res. 70 12 0.17* 21 0.30°
3+ resources 41 23 0.56° 26 0.63¢
#+ res. and non-res. 48 17 0.35° 24 0.50"
OVERALL 438 100 0.23 156 0.36
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