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Abstract

The vortex dynamics and lift force generated by a sinusoidally heaving and
pitching airfoil during dynamic stall are experimentally investigated for re-
duced frequencies of k = fc/U∞ = 0.06−0.16, pitching amplitude of θ0 = 75◦

and heaving amplitude of h0/c = 0.6. The lift force is calculated from the ve-
locity fields using the finite-domain impulse theory. The concept of moment-
arm dilemma associated with the impulse equation is revisited to shed-light
on its physical impact on the calculated forces. It is shown that by selecting
an objectively defined origin of the moment-arm, the impulse force equation
can be greatly simplified to two terms that have a clear physical meaning:
(i) the time rate of change of impulse of vortical structures within the con-
trol volume and (ii) Lamb vector that indirectly captures the contribution
of vortical structures outside of the control volume. The results show that
the trend of the lift force is dependent on the formation of the leading edge
vortex, as well as its time rate of change of circulation and chord-wise ad-
vection relative to the airfoil. Additionally, the trailing edge vortex, which is
observed to only form for k ≤ 0.10, is shown to have lift-diminishing effects
that intensifies with increasing reduced frequency. Lastly, the concept of op-
timal vortex formation is investigated. The leading edge vortex is shown to
attain the optimal formation number of approximately 4 for k ≤ 0.1, when
the scaling is based on the leading edge shear velocity. For larger values of
k the vortex growth is delayed to later in the cycle and doesn’t reach its
optimal value. The result is that the peak lift force occurs later in the cycle.
This has consequences on power production which relies on correlation of the
relative timing of lift force and heaving velocity.
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1. Introduction

Flow physics of oscillating surfaces has become a very important area of
study for a wide range of applications, such as the development of micro-
air vehicles and energy harvesting devices (Tuncer and Platzer, 2000; Zhu,
2011; Mackowski and Williamson, 2015; Siala and Liburdy, 2015). A large
contribution to the existing knowledge has come through the studies of flap-
ping flight of insects, birds and bats (Leishman, 1994; Ellington et al., 1996;
Ellington, 1999; Madangopal et al., 2005; Platzer et al., 2008; Hubel et al.,
2009). The oscillatory/flapping kinematics of these natural fliers may exploit
several lift-enhancing mechanisms such as dynamic stall and vortex-wake re-
capture, among others (Srygley and Thomas, 2002). A common model of
oscillatory flight is the combined heaving and pitching motion of an airfoil at
large angles of attack, in which the formation and shedding of leading edge
vortices (LEVs) exhibit a large impact on the flow behaviour and instanta-
neous aerodynamic forces (Hubel and Tropea, 2010; Moriche et al., 2017).
Although the general role of LEVs is well understood; they produce regions
of low pressure on the suction side of the airfoil to generate a large suc-
tion force, yet developing fundamental theories that can predict their effects
on the transient aerodynamic forces remains to be quite challenging to the
aerodynamics community.

Classical unsteady theories of aerodynamics, the most prevalent of which
are the models of Wagner (1925) and Theodorsen (1934), have been used
extensively with success in problems related to aeroelasticity and fluttering.
However, since these models are based on potential flow theory, they do not
capture the effects of separated flow and LEVs, thereby limiting their ap-
plication to small amplitude kinematics where the boundary-layer remains
attached throughout the unsteady motion. In recent years, more advanced
models based on discrete-vortex methods have been employed to model un-
steady flows during dynamic stall (Xia and Mohseni, 2013; Hammer et al.,
2014; Liu et al., 2016; Darakananda et al., 2016). In these methods, potential-
flow theory is modified to include discrete point vortices to represent free
vortical structures and shear layers. Typically, the trajectory of these point
vortices is determined by the Kirchhoff velocity (Darakananda et al., 2016)
or Brown-Michael equation (Brown, 1954). However, such models are based
on some ad-hoc criteria for LEV inception and shedding. For example, the
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LEV strength must reach an extremum before it is allowed to evolve as a sim-
ple point vortex using the Brown-Michael equation. Furthermore, Ramesh
et al. (2014) developed the Leading Edge Suction Parameter (LESP), which is
equivalent to the first Fourier coefficient (A0) in unsteady thin airfoil theory,
to predict the onset of LEV formation. This method requires calibration us-
ing highly resolved simulations to determine a critical LESP value, at which
the flow begins to separate from the leading edge. They show that the criti-
cal LESP value they determined is universal for a given airfoil geometry and
Reynolds number. Once the LEV is formed, its evolution is determined us-
ing inviscid flow theory. While this method provides reasonable estimates of
aerodynamic force coefficients, it still requires high-cost simulations to pre-
determine the onset of flow separation. In addition, the exact contribution
of LEVs and other free vortices is not explicitly highlighted, which makes it
difficult to develop fundamental theories of vortex dynamics and their role
in aerodynamic force production.

One promising tool for computing the fluid dynamic forces is based on
the concept of hydrodynamic impulse (Lin and Rockwell, 1996; Epps, 2010;
Kim et al., 2013). Originally, the impulse concept was introduced to bypass
the integration of total momentum which is not well defined in an infinite
region, since in general the momentum integral is only conditionally con-
vergent (Lamb, 1932; Lighthill, 1986; Saffman, 1992; Batchelor, 2000). The
impulse-based force equation for an unsteady moving body in unbounded,
incompressible flow can be written as follows:

F = − ρ

N − 1

d

dt

∫
V∞

(x−x0)×ωdV +
ρ

1−N
d

dt

∮
SB

(x−x0)× (n×u)dS (1)

where ρ is fluid density, x is the position vector, x0 is the origin location of
the position vector, ω is the vorticity vector, u is the velocity vector, n is the
normal unit vector and N = ∇·x is the dimension of space. The first term is
evaluated over the entire flow field (V∞) and represents the rate of change of
flow impulse. The second term is evaluated over the body surface (SB) and
it represents the inertial force of the fluidic body. One particular constraint
with this formulation is that the entire vorticity field must be captured in
the control volume (V∞). Practically, this limits its use to the early times of
impulsively-started flows, where the entire vorticity field remains inside the
control volume.

The use of impulse theory has also gained popularity in constructing
semi-empirical low-order models. For example Babinsky et al. (2016) and
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Stevens and Babinsky (2017) have applied a linearized version of the impulse
formulation (Kármán, 1938) to experimental data to model the transient lift
force of impulsively pitching and surging airfoils. They decomposed the rate
of change of impulse into two terms: vortex circulation growth and vortex
advection, where both terms are calculated empirically from experimental
data. They show that the total lift force at the beginning of the motion
is primarily dictated by the LEV growth. Once the LEV stops growing,
the LEV advection relative to the trailing edge vortex (TEV) becomes more
dominant. Overall, they obtain reasonable lift force estimates by assum-
ing that all relevant vorticity is contained within the LEV and TEV. Fur-
thermore, Wang and Eldredge (2013) used the impulse-matching approach
(Tchieu and Leonard, 2011) in conjunction with discrete-vortex methods to
model the effects of LEVs on impulsively started flat plates at various an-
gles of attacks. The impulse-matching approach is used as an alternative to
the Brown-Michael equation in order to relax the vortex shedding criterion
required by the latter method. One limitation associated with this approach
that the authors address is the use of the Kutta condition to determine the
vortex strength as a function of time. They suggest that calculating the vor-
tex strength empirically might improve the accuracy of their model. Ideally,
one may develop universal scaling laws of vortex dynamics for a wide range
of operational parameters that can be used as inputs in such models. For
example, the idea of optimal vortex formation number (Dabiri, 2009) could
potentially serve as a unifying principle in constructing low-order models un-
der the proper conditions. Onoue and Breuer (2016) investigated the LEV
formation number of pitching airfoils for a wide range of amplitudes, reduced
frequencies and Reynolds numbers. They show that the time-history of LEV
circulation growth collapses on a single curve, where the maximum forma-
tion number was found to approximately equal to 4, agreeing remarkably
well with the theory (Gharib et al., 1998).

Noca (1997) has expanded on the impulse theory and derived the force
equation for arbitrary finite domains using the derivative moment transfor-
mation (DMT) identity (Wu et al., 2007b). The force equation is written as
follows:

F = − ρ

N − 1

d

dt

∫
Vf

(x−x0)×ωdV +ρ

∮
S

n·
(1

2
u2I−u⊗u

)
dS+

∮
S

n·λimpdS

+
1

N − 1
ρ
d

dt

∮
SB

(x− x0)× (n× u)dS (2)
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where Vf is the fluidic volume, S is the exterior surface of the control volume
and SB is the airfoil surface. The term λimp may be written as follows:

λimp =
ρ

N − 1
ω((x− x0)× u)− ρ

N − 1
[u⊗ ((x− x0)× ω)] + T

+
1

N − 1
[(x− x0) · (∇ ·T)I− (x− x0)⊗ (∇ ·T)] (3)

where I and T represent the identity and viscous stress tensors, respectively.
Unsteady force evaluation based on the finite-domain impulse theory has at-
tracted wide attention among the experimental fluid dynamics community, as
it is often not feasible to directly measure the aerodynamic forces on moving
airfoils due to challenges in separating the inertial contributions (Rival et al.,
2009). This is especially problematic in wind tunnel experiments, where the
density of the airfoil can be orders of magnitude greater than the density
of air (Totpal, 2017). Other force estimation techniques based on the inte-
gral momentum approach requires the evaluation of the pressure field which
can be a non-trivial task in experimental fluid dynamics (Van Oudheusden,
2013). Although many researchers have successfully computed the pressure
field and obtained reasonable force estimates (Liu and Katz, 2006; Charonko
et al., 2010; Dabiri et al., 2014; Villegas and Diez, 2014), these methods pro-
vide a global force estimation, where the contributions of the local vortical
structures are hidden. Several authors applied Eq. (2), or other forms of it,
to experimental (Noca, 1997; Baik et al., 2011; DeVoria et al., 2014; Siala
et al., 2018) and numerical (Li and Lu, 2012; Mohebbian and Rival, 2012;
Kang et al., 2018) data to calculate the unsteady lift force. The impulse
approach offers various distinct advantages. Firstly, it does not require the
evaluation of the pressure field, which is very practical for experiments based
on particle image velocimetry (PIV). Secondly, the force can be easily de-
composed into circulatory and non-circulatory contributions, which provides
useful insights of the physical mechanisms responsible for force generation.
In fact, this decomposition is similar to that found in Therodorsen’s model
(Theodorsen, 1934), except that it also includes the effects of free vortices.
Thirdly, and perhaps most importantly, the impulse-based force equation is
linearly dependent on vorticity, which means that the total impulse in the
flow field can be treated as a superposition of impulses of every individual
vortex structure in the flow. Note that the impulse of each vortex structure,
which is ultimately determined by the motion of the vortex, is dependent on
all of the other vorticity in the fluid through their Biot-Savart influences on
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the velocity of the vortex. These advantages provide the impulse approach
with great utility for theoretical modeling of unsteady airfoils exhibiting dy-
namic stall, as it is easier to describe these flows in terms of vorticity.

One particular challenge with Eq. (2) is that it contains cumbersome
boundary integral terms with ambiguous physical meanings, which makes it
difficult to identify the mechanisms responsible for the lift production and to
construct low-order models. Kang et al. (2018) proposed using the minimum-
domain impulse theory, which greatly simplifies Eq. (2) by dropping many of
the surface integral terms. The requirement for using their theory is that the
control volume must not cut through regions of significant vorticity. They
follow the idea of Flood Fill (Torbert, 2016) to choose a different control
volume at each instant in time to find a critical vorticity threshold under
which the minimum domain theory is valid. While this method is effective,
it may be difficult to experimentally pursue, since one is highly limited by
the field of view provided by the PIV imaging system.

In the pursuit of relaxing the criterion of the minimum domain theory
of Kang et al. (2018), we provide in this paper an alternative approach to
significantly reduce the finite-domain, impulse-based force equation. The
reduced-order impulse formulation is then used to provide insight into tran-
sient lift force production mechanisms of a heaving and pitching airfoil at
very large amplitudes of motion. We are specifically interested in operating
at relatively low reduced frequencies associated with flow energy harvesting
applications (Zhu, 2011), where there is a dearth of knowledge concerning
the evolution of LEV strength, size and trajectory. The flow field around the
heaving and pitching airfoil is obtained experimentally using two-component
PIV measurements. The results of this work will aid in constructing low-
order models of the aerodynamic forces generated during dynamic stall for
continuously oscillating/flapping airfoils (as opposed to impulsively started
flows).

2. Methodology

2.1. Experimental setup

Experiments were conducted in a closed-loop wind tunnel (1.37 × 1.52
m) with turbulence intensities below 2%. The airfoil used in this study
was manufactured in-house using fused deposition modeling and has a chord
length, thickness and aspect ratio of 125 mm, 6.25 mm and 2, respectively.
The airfoil is a flat plate and has elliptic leading and trailing edge tips with 5:1
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major to minor axis ratio. Stationary end plates were placed approximately 2
mm away from the side-edges to suppress the formation of tip vortices and to
simulate two dimensional flow conditions. The airfoil is attached to a motion
device using a titanium rod spanning through the mid-chord of the airfoil.
The motion device is used to generate the heaving and pitching motion of
the airfoil according to the following equations:

h(t) = h0cos(2πft) (4)

θ(t) = θ0cos(2πft+ Φ) (5)

where h0 is the heaving amplitude, f the oscillation frequency, θ0 the pitch-
ing amplitude, Φ the phase shift between heaving and pitching and t is time.
Heaving was achieved using a scotch-yoke mechanism and the pitching mo-
tion used a combination of a scotch-yoke mechanism and a rack and pinion
arrangement. The motion device was controlled using a LabVIEW program.
The airfoil motion was verified by recording a video of the oscillatory motion,
which was then used to calculate the heaving and pitching motion using an
object-tracking software (Totpal, 2017). The root mean square error of the
heaving and pitching motion was found to be less than 1% of the heaving
and pitching amplitudes, respectively. The experimental setup in the wind
tunnel and the motion device are sketched in Fig. 2.

Two-component, phase-locked PIV measurements were collected using a
dual-head Nd:YAG pulsed laser (EverGreen, 145 mJ/pulse, max repetition
rate of 15 Hz) operating at the 532 nm wavelength. A light sheet of approx-
imately 1.5 mm thickness was generated at the mid-span of the airfoil using
a LaVision optics module. An in-house designed Laskin nozzle atomizer pro-
vided the seeding particles using vegetable oil. Particle images were collected
using a CCD camera (Image Pro, LaVision) with a resolution of 1600 × 1200
pixels. The camera was equipped with a 50 mm focal length lens and a band-
pass filter centered at 532 nm. The PIV system was configured to obtain a
vector field resolution of 1.8 mm (approximately 70 vectors per chord length).
PIV images were processed with DaVis v8.4 software. Particle position dis-
placements were determined using a cross-correlation method on sequential
images. The calculations were conducted on two passes of interrogation win-
dow size of 64 × 64 pixels, followed by two passes of interrogation window
size of 32 × 32 pixels, where a 50 % over-lap was used. A high accuracy
sub-pixel peak fitting algorithm specific to DaVis R© software was used for
the final passes. The time between pulses was set such that an average of 8
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pixel displacement per interrogation window was achieved in the streamwise
direction. Minimum peak validation of 1.2 (ratio of the highest to second
highest correlation peaks) and moving-average validation schemes were used
to reject outliers, with a vector rejection rate of less than 2%.

The phase-locked velocity fields were calculated by averaging one hun-
dred images at each phase of interest. A total of 116 phases throughout the
downstroke motion with an equal spacing of ∆t/T = 0.004 (where T is the
oscillation period) were acquired. The PIV system and airfoil motion were
synchronized using LabVIEW. The motion device was run for at least 5 min-
utes prior to collecting PIV measurements to eliminate any initial transient
effects.

The use of Eq. (2) to calculate the aerodynamic forces requires captur-
ing the entire flow field surrounding the airfoil. In order to obtain data in
the shadow region caused by the laser illumination, the experiments were
repeated at a phase delay of 180◦ for each phase of interest. The 180◦ out
of phase flow fields were then mirrored and stitched to the rest of the vec-
tor field to construct the full flow field surrounding the airfoil. This can be
done because the flow, airfoil shape and motion are all symmetric. A similar
approach was used by Lua et al. (2015). Additionally, a second camera was
used to capture the flow field in the downstream region. The two cameras
were overlapped by 14 vectors and the overlapped region was smoothed with
a 3×3 moving-average filter.

2.2. Uncertainty quantification

The particle displacement uncertainty was calculated using the statistical
correlation technique developed by Wieneke (2015). Note that this method
only estimates the random errors that are associated with camera noise,
particle focus and out-of-plane motion, among others (Willert and Gharib,
1991), whereas the systematic errors that are typically influenced by the
calibration errors and peak-locking effects are not taken into account. For
calibration, we use the pinhole fitting model, and the root mean square of
the fit is 0.33 pixels. The peak-locking effect was avoided by using particle
image size of approximately 2.1 pixels (estimated from the peak width of
the autocorrelation peak of a typical particle image), which is greater than
the minimum size of 1 pixel (Wieneke, 2015). The particle displacement
uncertainty was then propagated to velocity and vorticity calculations using
the technique provided by Sciacchitano and Wieneke (2016). Finally, the
uncertainty was propagated to estimate the uncertainty in the lift force.
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The maximum and mean uncertainties of the velocity components, span-wise
vorticity and aerodynamic lift force are listed in Table 1 as a percentage of
their respective maximum values. We also include uncertainty of free stream
velocity measured in the wind tunnel without the airfoil and motion device.
All uncertainties are reported using a 95% confidence interval.

As pointed out in the previous section, one of the main motivations of
this work is the need for an alternative tool to estimate the transient aerody-
namics forces, since direct force measurement of high amplitude oscillating
airfoils operating in wind tunnels is usually unfeasible. Unsteady aerody-
namic flows indicate that the time scale of airfoil motion is smaller than the
time scale of the flow, where the degree of unsteadiness is often described by
the reduced frequency (k = fc/U∞). The difficulty in measuring transient
forces of highly unsteady airfoils is due to the inertial forces growing rapidly
at high oscillation frequencies (proportional to f 2), whereas the aerodynamic
forces grow with U2

∞. In fact, when k > 0.08, the inertial forces become at
least an order-of-magnitude larger than the aerodynamic forces, and there-
fore the accuracy of the force measurements becomes unreliable. For this
reason in this study, accurate direct force measurements for k > 0.08 are not
presented.

In Fig. 3 , the transient lift force coefficient (Cy = 2Fy/ρU
2
∞c) obtained

from the impulse formulation is compared with the results obtained from
direct force measurements during the downstroke motion at k = 0.06 and
k = 0.08. Note that the transient forces are shown only from t/T = 0.02
to t/T = 0.48, as we were unable to obtain consistent impulse-based force
measurements at these times due to unreliable curve-fitting of the raw data
prior to taking the time derivative of the impulse term (first term of Eq.
(2)). It is shown that the force magnitude and trend are well captured
by the impulse formulation. The largest discrepancy occurs at the begin-
ning of the downstroke, where the flow remains fully attached to the airfoil
surface. Here, the force generation is dominated by the bound vorticity,
which is not well resolved by the PIV experiments, and as a consequence,
the impulse-based formulation under-predicts the force. Once the flow at the
leading edge separates and forms an LEV, the impulse formulation and direct
force measurement are in excellent agreement. At this point, it is expected
that the contribution of surface vorticity to the lift force becomes negligible
(Moriche et al., 2017). The explanation for this has been provided by Ford
and Babinsky (2013), who have shown that the bound circulation (due to
surface vorticity) of unsteady airfoils at large angles of attack tends toward
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zero and the LEV circulation is nearly equal and opposite to the circulation
shed from the trailing edge. For the motion kinematics used in this study,
the flow is observed to be attached to the airfoil surface for only a relatively
short period of time, thus providing validity in the use of impulse formation.

3. Results

In this section, we present results for reduced frequencies of k = 0.06 −
0.16, while holding the heaving amplitude, pitching amplitude, phase shift
and pitching axis fixed at h0/c = 0.6, θ0 = 75◦, Φ = 90◦ and xp/c = 0 (mid-
chord), respectively. The reduced frequency was varied by changing the free
stream velocity, resulting in Reynolds numbers (Re = U∞c/ν, where ν is the
kinematic viscosity) ranging from 7,216 to 16,889 for k = 0.16 and k = 0.06,
respectively. These parameters have been shown to produce high energy
harvesting efficiencies (Zhu, 2011). Due to the symmetry of the problem, the
results are only provided for the downstroke motion of the airfoil.

Figure 4 shows the non-dimensional spanwise vorticity evolution for k =
0.06, 0.10 and 0.14. The flow approaches from the left-hand side and the
non-dimensional time t/T = 0 corresponds to the top heaving position and
t/T = 0.5 is the bottom heaving position. For k = 0.06, the leading edge
shear layer on the top surface of the airfoil is shown to be separated due to
the LEV shedding during the upstroke motion. Once the angle of attack is
large enough (in the negative direction), the shear layer becomes attached to
the top surface, while it begins to separate and roll-up into an LEV on the
bottom surface at t/T ≈ 0.10. The shear layer feeds the LEV with vorticity,
which results in the increase of LEV strength and size over time. By the
time the LEV grows past the trailing edge (t/T ≈ 0.26), the trailing edge
shear layer begins to roll-up into a trailing edge vortex (TEV). Eventually,
the LEV and TEV both shed into the wake to form a Karman-like vortex
street (i.e. drag producing wake). For t/T > 0.42, the flow over the airfoil is
completely separated and full stall is attained.

Early in the cycle for k = 0.10, it is shown that a coherent positive
vortical structure is shed from the trailing edge. This corresponds to the
TEV formed during the upstroke. Since the convective time scale of the
flow for high reduced frequencies is relatively larger than for lower reduced
frequencies, the formation and advection of flow structures occurs at a slower
rate for k = 0.10 when compared to k = 0.06. The leading edge shear layer
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separates and rolls into an LEV at t/T ≈ 0.18. The TEV begins to form at
t/T ≈ 0.42, however its size is significantly smaller than for k = 0.06.

For k = 0.14, at early times a large negative vortex structure is observed
in the near wake of the airfoil. This is the LEV that was shed during the
upstroke. The convective time scale at this reduced frequency is significantly
larger than the airfoil oscillation time scale, thereby enabling the airfoil at the
beginning of downstroke to capture the LEV from the upstroke. Similarly to
k = 0.06 and 0.10, the shear layer from the bottom surface eventually rolls
into an LEV (t/T ≈ 0.260). Furthermore, it is shown that by the time the
LEV approaches the trailing edge, the airfoil is already at a relatively small
geometric angle of attack and so the trailing edge shear layer is not strong
enough to roll-up into a TEV.

The conclusions of the above discussion are as follows. First, the inception
of the LEV is delayed in time for larger reduced frequencies. As the reduced
frequency increases, the time scale of the airfoil motion becomes smaller
relative to the flow time scale. This means that the shear layer takes a
longer time to react to the change of angle of attack when k is larger, thus
delaying flow separation. Second, the growth rate of the LEV decreases
with increasing reduced frequency. This is the result of the decrease of the
feeding shear layer velocity at higher reduced frequencies. This is explained
as follows. The shear layer velocity can be approximated as the vector sum
of the local velocity of the leading edge and the component of the free stream
in the direction of the airfoil motion (Onoue and Breuer, 2016):

USL = U∞sin(θ)− ḣcos(θ)− θ̇c

2
(6)

where ḣ and θ̇ represent the heaving and angular pitching velocities, respec-
tively. As the reduced frequency increases (by either decreasing the free
stream velocity or by increasing the oscillation frequency), the shear layer
velocity decreases. Lastly, when k is less than 0.12, the trailing edge shear
layer rolls into a TEV. Siala et al. (2017) have shown that when the LEV
reaches the trailing edge, a saddle point is created downstream of the airfoil
trailing edge, which forces the trailing shear layer to roll-up into a TEV.
This phenomena was also reported by Rival et al. (2014) and Widmann and
Tropea (2015).
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3.1. Leading edge vortex dynamics

In this section the LEV spatio-temporal dynamics are evaluated which
will aid in understanding the mechanisms responsible for the lift force pro-
duction. The LEV circulation and its trajectory are computed based on the
vortex identification technique proposed by Graftieaux et al. (2001). In this
method, two scalar functions Γ1 and Γ2 derived from the velocity vector field,
are used to identify the vortex core location and its boundary, respectively,
and are given by:

Γ1(p) =
1

N

N∑
i=1

((xp − xi)× ui) · ẑ
||xp − xi|| · ||ui||

(7)

Γ2(p) =
1

N

N∑
i=1

((xp − xi)× (ui − up)) · ẑ
||xp − xi|| · ||ui − up||

(8)

Subscript i denotes any point in the flow field, xp is the position vector,
ẑ is the unit vector in the z direction, N is the total number of points in
a subregion and up is the average velocity evaluated in a sub-region. We
evaluate Γ1 and Γ2 at every point in the flow field using a 3 × 3 sub-region
(N = 9). The vortex core is identified by |Γ1| ≥ than 0.9 and the vortex
boundary is characterized by |Γ2| ≥ 2/π (Graftieaux et al., 2001). Overall,
this procedure has been found to provide reliable and reproducible definitions
of vortex structures (Morse and Liburdy, 2009; Baik et al., 2012; Dunne
and McKeon, 2015). The LEV circulation is then calculated by integrating
the vorticity enclosed by the contour |Γ2| = 2/π. To calculate the LEV
trajectory, the measured velocity vector field is rotated and translated at
each instant in time according to the airfoil kinematics given in Eq. (4) and
(5). This is is done so that the LEV trajectory is calculated in the frame of
reference of the airfoil. Then, the location of the largest value of Γ1 (on the
condition that it is greater than 0.9) is tracked for the entire time until the
LEV begins to leave the control volume.

In Figure 5(a) the LEV circulation normalized by the average shear layer
velocity and chord length is plotted versus t/T for all reduced frequencies. In
general, once the LEV is formed, it entrains vorticity from the feeding shear
layer and the circulation grows at a rate proportional to U2

SL4 (Eldredge and
Jones, 2019). It is worthwhile to mention that this non-dimensionalization
of LEV circulation is analogous to the optimal vortex formation number
given by Dabiri (2009). This concept is based on the argument that for a
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vortex generator with a given length scale and feeding shear layer velocity,
the maximum possible vortex formation number is approximately equal to
4. Here, the airfoil can be thought of as a vortex generator with a length
scale c and average feeding shear layer velocity USL. It is shown that for
k ≤ 0.10, the maximum circulation is approximately 3.8-4. In this case,
the shear layer feeds the LEV with vorticity until the LEV grows to the
size of airfoil chord length (Fig. 5(b)). At this point, there is flow reversal
due to TEV formation which interacts with the leading edge feeding shear
layer. This results in the separation of the LEV from the shear layer. This
mechanism of vortex detachment is similar to what is observed in flows past
bluff-bodies (Widmann and Tropea, 2015). Conversely, when k ≥ 0.12, the
relatively small oscillation time scales of the airfoil results in the maximum
LEV circulation (Fig. 5(a)) and size (Fig. 5(b)) to be significantly reduced.
That is, the LEV begins to form quite late in the downstroke, and thus the
end of downstroke is reached before the LEV reaches its maximum possible
circulation and size. The result is much lower peak values of the normalized
strength of the LEV at higher reduced frequencies.

The normalized LEV circulation and diameter are plotted versus time
using the shear layer-based convective time scale, c/USL in Fig. 5(c) and
5(d), respectively. For k ≤ 0.12, the LEV circulation and diameter are
shown to collapse to a single curve and their maximum respective values
are attained at tUSL/c ≈ 4, agreeing remarkably well with the concept of
universal vortex formation time (Gharib et al., 1998). For k ≥ 0.12, both
the circulation and diameter also collapse well with the rest of the data in
the early times during the cycle, however as discussed above, their maximum
values are much smaller than for k ≤ 0.10. In addition, there seems to
be no universal vortex formation time for these higher reduced frequency
values, but rather the maximum formation time is seen to decrease with
increasing reduced frequency. Lastly, it may be interesting to note that for
all reduced frequencies, the time of LEV inception occurs at tUSL/c ≈ 1.4.
This inception timescale was also observed by Siala et al. (2017) using the
same reduced frequencies but different pitching and heaving amplitudes. This
may suggest that the concept of optimal vortex formation may serve as a tool
to predict the onset and growth of LEV circulation and size for combined
heaving and pitching airfoils, at least for relatively low reduced frequencies
which are greatly influenced by the LEV dynamics.

In Fig. 6(a) the chord-normal trajectory of the LEV, YLEV /c, is plotted
versus t/T for all reduced frequencies. After LEV formation, the LEV re-
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mains very close to the airfoil surface (YLEV /c = 0) for a very short period
of time. Meanwhile, the LEV is shown to convect along the chord at ap-
proximately the same rate for all reduced frequencies until it approaches the
airfoil mid-chord (XLEV /c = 0), as is shown in Fig. 6(b). Afterwards, the
LEV begins to travel away from the airfoil surface, while it remains approx-
imately stationary near the mid-chord for k ≤ 0.10. For k ≥ 0.12, however,
the LEV does not stop convecting in the streamwise direction, but its rate
of advection is slightly reduced. Eventually the rate of LEV chord-wise ad-
vection increases again and it approaches a constant value while it is being
shed into the wake (XLEV /c < −0.5). This is accompanied by a reduction
in the rate of chord-normal trajectory, as shown in Fig. 6(a). In fact, for
k ≥ 0.08, the LEV is shown to move back towards the airfoil surface. Note
that this reversed motion of the LEV only occurs once the LEV travels be-
yond the airfoil mid-chord, XLEV /c = 0. Therefore as the airfoil begins to
pitch back up in clock-wise direction at t/T ≈ 0.25, the latter half of the
airfoil moves downwards and hence it gets closer to the LEV. On the other
hand for k = 0.06, the LEV slows down at t/T ≈ 0.23 and then moves away
quite rapidly again at t/T ≈ 0.26. We believe this is associated with the fact
that at k = 0.06, a very large TEV forms relatively early in the cycle, around
which the LEV has to travel, thus pushing it away from the airfoil surface.
It is possible that the LEV at this reduced frequency eventually moves back
towards the airfoil surface after it completely travels around the TEV, but
this cannot be confirmed as the field of view is not large enough to capture
this process.

In Fig. 6(c) and 6(d), the chord-normal and chord-wise LEV trajectories
of the LEV are plotted versus tUSL/c. It is shown that the chord-normal
LEV trajectories collapse quite well from the inception time up until the
reversed motion of LEV. Furthermore, the chord-wise trajectory is shown to
collapse only up to tUSL/c ≈ 2. Beyond this time, the trajectory becomes
highly dependent on the value of the reduced frequency. The impact of LEV
trajectory on the lift force production is discussed later in the paper.

3.1.1. Application of impulse equation to experimental data

Before presenting force results it is necessary to examine the effects of
origin location when evaluating the terms. Although the impulse-based force
equation is theoretically independent of the origin location (x0), the presence
of errors in the data can be significantly amplified by the origin location. As
mentioned by DeVoria et al. (2014) and Rival and Van Oudheusden (2017),
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the error amplification due to the selection of the origin location selection
in the current approach is similar to that resulting from the selection of
the reference pressure location in the direct integration of the Navier-Stokes
equation. DeVoria et al. (2014) developed a technique that yields the origin
location that mitigates the amplified error. This technique utilizes the DMT
identity to relate the local and convective accelerations (which are used to
remove the pressure term, see DeVoria et al. (2014) for a complete discussion)
with other terms that contain only the measured velocity. The contribution
of the viscous stress is not taken into account in this analysis because its
influence on the forces is often negligible (as is shown later). The DMT
(which is valid for any vector) is written here for the two vector quantities
that are associated with the local and convective accelerations, respectively:

(N − 1)

∫
udV =

∫
(x− x0)× ωdV −

∮
S+SB

(x− x0)× n× udS (9)

−(N − 1)

∮
S

1

2
(u · u)ndS =

∮
S

(x− x0)× n× [u · ∇u + u× ω]dS (10)

where the subscript S + SB indicates that the surface integral is performed
at the exterior surface S and the airfoil surface SB. Note that for the local
acceleration condition in Eq. (9), the velocity time derivative is not used
to ensure that the error associated with the temporal discretization does
not propagate in defining the origin location. The idea here is to determine
the origin location x0 that best satisfies the left-hand side of both equations
(which involve only the measured velocity). The objective origin is defined as
the one that best satisfies the summation of these equations on a component-
wise basis. This is determined as the origin which yields the smallest root
mean square deviation (RMSD) over time between the left- and right-hand
sides of the summation of Eq. (9) and (10). The random velocity errors in the
left-hand side leads to negligible error accumulation (DeVoria et al., 2014).
In this study the flow is assumed to be two-dimensional and thus N is set to
2. Since we are interested in the lift force, the analysis is conducted for the y
component only because the x moment arm plays a much bigger role in the
lift production than the y moment arm (Noca, 1997). Equations (9) and (10)
are non-dimensionlized by 1

2
U2
∞Tc and 1

2
U2
∞c, respectively. We calculate the

RMSD for 3600 origins uniformly distributed over the entire measurement
plane. Figure 7(a) shows a contour plot of the RMSD (in percentage of the
maximum value of the sum) as a function of the origin location for k = 0.06.
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Figure 7(b) displays the coordinate system that is used. As shown, the RMSD
is strongly dependent on the origin of the x-axis, while its dependence on the
y-axis is essentially insignificant. It is shown in Fig. 7(a) that the RMSD
is minimized at the downstream boundary (x0/c = 0) of the control volume
(at this location the RMSD varies from 1.2% of the maximum value to 3.5%,
depending on y0). The contour distribution of the RMSD is found to be
essentially identical for all reduced frequencies tested. Figure 7(c) compares
the sum of the left-hand side (solid lines) with the sum of the right-hand side
(symbols) of Eq. (9) and (10) for x0/c = 0, showing excellent agreement.

In addition, an analysis was conducted to investigate the effects of control
volume size on the origin location as well as the calculated transient lift
force. Six control volumes were tested, which are shown in Fig. 8(a). We
varied the control volume size by adjusting the distance from the airfoil
trailing edge to the downstream boundary (s/c). The largest control volume
corresponds to a distance of 1 chord length from the trailing edge to the
downstream boundary, whereas the smallest control volume corresponds to
a distance of 0.25c. The cross-stream size of the control volume was found
to have a negligible influence on the results. For all control volumes tested,
the objective origin was always located at the downstream boundary with
RMSD values below 4 %. Figure 8(b) shows the effect of control volume
size on the calculated lift coefficient (Cy = 2Fy/ρU

2
∞c) for k = 0.06. It is

shown that the transient lift force is significantly altered by the distance
of the downstream boundary to the airfoil trailing edge when s/c < 0.85.
As s/c is decreased, the time at which the force begins to deviate from the
converged force estimate (i.e. when s/c > 0.85) is shifted to earlier times.
For example when s/c = 0.25, the force begins to deviate from the converged
force estimate at t/T ≈ 0.19, whereas for s/c = 0.55, the deviation occurs
t/T ≈ 0.23. For all reduced frequencies considered in this study, the force
deviation from the converged estimate seems to occur only when the LEV
advects outside of the control volume while it is still growing (i.e. entraining
vorticity from the shear layer). When s/c increases, there is sufficient area for
the LEV to reach its maximum circulation before it begins to advect outside
of the control volume. This effect is quite interesting and will be thoroughly
addressed in a future publication. For the remainder of this paper, we use
the largest control volume (s/c = 1) to conduct the rest of our analysis.
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3.1.2. Reduction of the impulse equation

For convenience, the impulse-based force equation for a two dimensional
flow is rewritten:

F =

T1︷ ︸︸ ︷
− ρ

N − 1

d

dt

∫
Vf

(x− x0)× ωdV +

T2︷ ︸︸ ︷
ρ

∮
S

n ·
(1

2
u2I− u⊗ u

)
dS

+

T3︷ ︸︸ ︷∮
S

n · λimpdS+

T4︷ ︸︸ ︷
ρ

N − 1

d

dt

∮
SB

(x− x0)× (n× u)dS (11)

As was mentioned previously, the impulse force equation contains complex
boundary integral terms that account for the finite control volume. The
physical interpretation of these terms is not obvious, and therefore it is dif-
ficult to isolate the mechanisms responsible for the lift production. We now
show that it is possible to greatly simplify this formulation through the use
of the objectively determined origin defined in the previous section.

To calculate the transient lift force, the flow impulse (denoted as T1 in Eq.
(11)) was fitted to a cubic spline prior to taking the time derivative. The time
derivative was calculated using a central difference scheme with dt = 0.004
s . The results are filtered using an eight-point moving average to remove
the high frequency fluctuations related to measurement noise from the force
signal. Note that data in the first and last t/T = 0.02 of the downstroke are
omitted due to unreliable fits. Figure 9 shows the total lift coefficient (Cy),
as well as the contribution of each individual term of the impulse equation
for k = 0.06 and 0.14. As shown, the total lift coefficient is dominated by
the first two terms, with the first, T1, dominant during the first part of
the downstroke, and then a combination of T1 and T2 dominant during the
remainder of the downstroke. The third and fourth terms, T3 and T4, are
negligible during the entire cycle. The inertial force of the fluidic body (T4) is
typically negligible for thin airfoils moving in air. The impulse flux force, T3,
is evaluated on the control volume boundaries, and vortical structures leave
the control volume mainly through the downstream boundary. It is apparent
that this term is dependent on the streamwise origin location x0. By choosing
an origin located at the downstream boundary, this term becomes negligible
(though not exactly zero, because some vortices may leave the upper and
lower boundaries of the control volume). These results are consistent with the
suggestion by Noca (1997) that the impulse flux force contribution leads to
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the dilemmic dependence of the impulse force equation on the origin location.
By locating the origin at the downstream boundary the contribution of n ·
u(x × ω) is significantly reduced. This justification seems to resonate well
with the objective origin definition proposed by DeVoria et al. (2014).

Based on the above arguments, the force equation can be simplified by
retaining T1 and T2 as follows:

F ≈ −ρ d
dt

∫
(x− x0)× ωdA+ ρ

∮
S

n ·
(1

2
u2I− u⊗ u

)
dS (12)

The first term is the rate of change of impulse, which represents the force
produced by vortical structures within the control volume. This term consists
of the contributions of the vortex circulation growth and advection to the
transient lift force (Stevens and Babinsky, 2017). Moreover, Saffman (1992)
showed that for an impermeable body, the second term on the right-hand
side can be written in terms of the Lamb vector such as:∮

S

n ·
(1

2
u2I− u⊗ u

)
dS =

∫
u× ωdA (13)

Note that Saffman (1992) shows that the velocity within a vortex can be
written as u = uv + ue, where uv is the velocity induced by the vortex
itself (which can be calculated using Bio-Savart law) and ue is the external
velocity (Kang et al., 2018). The Lamb vector of the self-induced velocity
of the vortex,

∫
uv × ωdV , can be shown to equal zero, meaning that the

total vortex force exerted by the vortex on itself is zero. Therefore the only
contribution from the Lamb vector is

∫
ue × ωdA. This can be interpreted

as follows. The external velocity, which also includes the induced velocity
by other vortical structures either inside or outside of the control volume,
interacts with the vorticity of a specific vortex structure (e.g. LEV) within
the control volume to produce a force on the airfoil. When the entire vorticity
field is contained within the control volume, for example in starting flows,
then the vortex force can be shown to equal zero. This suggests that the
vortex force term due to vortices outside of the control volume can be thought
of as a history effect of the vortex shedding in the far-wake.

Now that the impulse equation has been reduced to terms with clear phys-
ical meanings, the mechanisms responsible for the transient lift production
can be analyzed. It can be noted that Eq. (12) is identical to the formulation
developed by Kang et al. (2018) using the minimum-domain theory.
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3.1.3. Transient lift force analysis

The transient lift coefficient is plotted in Fig. 10 for low and high re-
duced frequency ranges, k = 0.06 - 0.10 (Fig. 10(a)) and k = 0.12 - 0.16
(Fig. 10(b)). For the low reduced frequency range, the lift coefficient is
shown to contain two peaks. The magnitude of the secondary peak, which
occurs later in the downstroke, is approximately 50% - 55% of the magnitude
of the primary peak. The timing of both the primary and secondary peaks
is delayed, and their magnitudes increase with increasing reduced frequency.
For all reduced frequencies, the lift coefficient approaches positive values (i.e.
opposite direction of lift) by the end of the cycle, where the magnitude also
increases with increasing reduced frequency. The generation of two lift peaks
for heaving and pitching airfoils has been reported in the literature by several
researchers (Deng et al., 2014; Karbasian et al., 2016; Totpal et al., 2017).
Furthermore, the high reduced frequency cases also show that an additional
tertiary lift peak is produced early in the downstroke, whose magnitude rel-
ative to the primary peak lift increases with increasing reduced frequency.
Similar to the smaller reduced frequency range, the primary and secondary
peaks increase in magnitude and are delayed in time as k increases. It is seen
that the lift coefficients at high reduced frequencies do not approach positive
values at the end of the cycle.

Fig. 10(c) and 10(d) show results using a rescaling of the cycle time that is
based on the leading edge velocity as tUSL/c. Interestingly, the primary peak
force that occurs near tUSL/c ≈ 1.75, is consistent for all reduced frequencies.
Also, the value of this convective time scale is slightly after the time at which
the LEV is initiated (see Fig. 5(c)). This seems to imply that the roll-up of
the leading edge shear layer into an LEV is the dominant mechanism of peak
lift production. It also indicates that the leading edge velocity scaling of the
time of this peak is explicitly independent of the reduced frequency since
this scaling collapses the data over this reduced frequency range. For the
lower range of reduced frequencies in Fig. 10(c) the lift coefficient is shown
to collapse fairly well up until the local minimum just after the primary peak
is produced. For time tUSL/c > 3.7 the lift coefficients begin to diverge.
This corresponds to the time at which the trailing edge shear layer begins to
roll-up into a TEV. The results for the larger range of reduced frequencies
in Fig. 10(d) show somewhat different trends. For these cases the TEV does
not form and hence the lift coefficients do not significantly diverge at later
times during the cycle. Also, for the larger reduced frequencies, the influence
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of the lagging LEV from the previous cycle near the top heaving position
results in a third minor peak at early times in the cycle. The strength of
this minor peak increases with increases reduced frequency while occurring
earlier at the start of the downstroke. In fact, it is only this early cycle minor
peak that distinguishes the effect of increasing reduced frequencies for the
high k values.

To better understand the role of vortical structures, in particular the LEV
and TEV, in lift force production, it is necessary to correlate them with the
transient lift force. Rather than using the vorticity field alone, we use the
local integrand of the impulse and vortex forces of Eq. (12). For the vortex
force, the lamb vector is used instead of the flux formulation to visualize
its local contribution within the control volume. Figure 11 shows the total
lift coefficient (Cy) for k = 0.06, as well as the contributions of the impulse
(Cy,I) and vortex (Cy,V ) forces. In addition, contours of vorticity and the
integrand of impulse (Fy,I) and vortex (Fy,V ) forces for five snapshots during
the downstroke motion are provided. Both force integrands are normalized
by 2c/ρU2

∞. In snapshot (1), the LEV had just been formed, and it remains
compact and quite close to the airfoil surface. The impulse force contour plot
shows that the LEV is primarily producing a negative impulse (in the direc-
tion of lift). The total lift here is dominated by the LEV impulse force. While
the LEV is shown to produce a vortex force, its contribution is approximately
cancelled by the vortex force produced by the trailing edge shear layer, hence
Cy,V ≈ 0. Slightly after peak force production in snapshot (1), the LEV be-
gins to lift-off from the airfoil surface. As a result, the total lift is reduced
from Cy ≈ −1.2 to Cy ≈ −0.5 in snapshot (2). This reduction in force is a
consequence of the low pressure zone generated by the LEV being relatively
far away from the airfoil, which reduces the pressure difference between the
upper and lower surfaces. From the impulse analysis point of view, the LEV
begins to produce a positive impulse force (lift-diminishing) that approxi-
mately cancels the negative impulse contribution (lift-enhancing), such that
Cy,I ≈ 0. Additionally, the LEV is also shown to produce a positive vortex
force (lift-diminishing), however, the lift-enhancing effect clearly dominates.
The total lift force at this snapshot is primarily due to the vortex force of
the LEV.

The fact that the LEV produces lift-enhancing as well as lift-diminishing
impulse and vortex forces is quite interesting. Contrary to the conventional
belief that LEVs on the suction side only provide lift-enhancing contributions,
it is necessary to stress that there is no vortical structure that provides a
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purely single-sign contribution to the aerodynamic forces. Wu et al. (2007a)
have observed a similar phenomena for drag force analysis for a flow past
a cylinder. They explained that this observation is consistent with the fact
that attached flows over an airfoil produce boundary layers at the upper and
lower surfaces of the airfoil, but only the sum of the total vorticity in the
boundary layer (i.e. net circulation) yields the desired lift. Furthermore, an
alternative explanation of the significant lift reduction in snapshot (2) can
be understood by decomposing the force impulse into circulation growth and
chord-wise trajectory of the LEV (refer to Section 4.3.2). At this instant
in time (t/T ≈ 0.16), the rate of change of LEV circulation significantly
decreases (Fig. 5(a)) and the LEV chord-wise advection approaches zero
(Fig. 6(b)). Consequently, the LEV impulse force contribution is greatly
decreased. The magnitude of the secondary lift peak in (3) is also shown
to be dominated almost entirely by the vortex force produced by the LEV
and its shear layer. The formation of the peak itself, however, is a result of
the impulse force becoming less negative and ultimately going positive near
t/T ≈ 0.25. This is equivalent to the convective time scale of tUSL/c ≈ 3.7, at
which the TEV begins to form. In snapshot (4), the total lift force is shown
to drop to very small values. The LEV here has attained its maximum
circulation (see Fig. 5(a) at t/T ≈ 0.30), and thus no longer contributes
to the force impulse. In addition, its advection relative to the TEV is also
expected to significantly drop as it approaches the trailing edge of the airfoil
(Stevens and Babinsky, 2017). Meanwhile, the rolled-up TEV begins to
generate a net positive impulse force (i.e. lift-diminishing), which almost
cancels with the vortex force produced by the leading edge shear layer and
TEV. Beyond snapshot (4), the LEV begins to convect outside of the control
volume, which is reflected by the impulse force going from positive to negative
values in snapshot (5). This is accompanied by the change of the sign of the
vortex force from positive to negative. IN snapshot (5) and beyond, the
TEV begins to leave the control volume, and the impulse force decays from
negative values to zero, whereas the Lamb force decays from positive values
to zero, hence they cancel each other to result in Cy ≈ 0 by the end of the
downstroke. This equal and opposite trend of the Lamb and impulse forces
indicates that the Lamb vector is indeed picking up the contribution of the
LEV and TEV as they leave the control volume.

As the reduced frequency is increased to k = 0.14, the third lift peak
is formed early in the cycle, as shown in snapshot (1) for k = 0.14 in Fig.
12. The negative LEV generated from the previous upstroke is shown to
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be captured by the airfoil as it begins heaving/pitching downward. The
majority of the impulse force is shown to be sporadically distributed within
the separated flow on the upper surface of the airfoil. It should be kept
in mind that Fy,I is calculated locally and therefore the noise level due to
spatial and temporal derivatives may be high. However the integrated value
(Cy,I) clearly dominates the total lift production. Furthermore, the small
positive vortex force at this instant is shown to be dominated by the upper-
surface shear layer. In snapshot (2), this lift-enhancing effect has subsided
and the upper shear layer begins to re-attach to the airfoil surface. The lift
here is dominated by the impulse force from the nearly-attached boundary
layer. However we anticipate that the accuracy of the force calculation here
to be somewhat hindered by the fact that the PIV measurements do not fully
resolve the surface vorticity. The mechanism responsible for the production
of peak force in snapshot (3) is identical to the mechanism identified for the
lower reduced frequency value. In snapshot (4), it is shown that the secondary
peak force is a result of the slight increase (in the negative direction) of the
impulse force Cy,I . Since the LEV is no longer growing at this instant of
time (see Fig. 5(a)), the increase of the impulse force can then be associated
with the enhanced chord-wise advection of the LEV (i.e. the slope of the
chord-wise LEV position increases at this instant, as shown in Fig. 6(b)).
Furthermore, a notable difference at this large reduced frequency case is
the lack of TEV formation. As explained in the previous section, the LEV
approaches the trailing edge of the airfoil quite late in the downstroke, where
the angle of attack is not large enough to support the roll-up of the trailing
edge shear layer into a TEV. Consequently, the lift-diminishing effect of the
TEV is avoided.

To conclude the above discussion, the lift-enhancing mechanisms for the
low reduced frequency range (k = 0.06 − 0.10) are all related to the LEV
generation, its growth and its trajectory relative to the airfoil surface. As
the reduced frequency is increased to k = 0.12− 0.16, the slower convective
time scale of the vortical structures allows the airfoil to capture the influence
of the previously shed LEV, whereas the lift-diminishing effect of the TEV is
avoided. It is interesting to note the optimal vortex formation generated for
the low frequency cases does not correlate with the peak lift. This contradicts
the findings of Milano and Gharib (2005), who show that the peak lift force
is produced when the LEV formation number reaches approximately 4. How-
ever, their results are for a flapping wing (pitching) while translating (not
heaving) which does not have the same effect on the trajectory of the leading
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edge vortex motion relative to the surface. We believe that this discrepancy
of lift force versus formation number is related to the fact that the LEV
generated in our experiments begins to lift-off from the airfoil surface much
before the optimal formation number is achieved. Therefore the correlation
between the optimal vortex formation number and maximum lift production
is not only dependent on the LEV size and strength, but also on the LEV
trajectory relative to the airfoil. At larger values of k our results show that
an optimal formation number is never reached due to the disconnection of
the feeding shear layer from the leading edge vortex. For energy harvesting
applications where it is important to correlate peak force with peak heaving
velocity during the cycle, the delayed leading edge vortex formation associ-
ated with higher k values improves power production even though the peak
formation numbers are lower. Lastly, for all reduced frequencies, the impulse
force produces the general trend of the transient lift, whereas the vortex force
simply modifies the lift magnitude. The implication of this is that unlike im-
pulsively moving airfoils where the entire circulatory force is dominated by
the impulse force (Stevens and Babinsky, 2017), the contribution of the vor-
tex force must be taken into consideration when constructing low-order lift
models of continuously oscillating airfoils.

4. Conclusions

In this paper, two dimensional particle image velocimetry measurements
were conducted to investigate the vortex dynamics and lift force production
mechanisms of an oscillating airfoil undergoing dynamic stall at reduced fre-
quencies of k = 0.06− 0.16. The transient lift force was estimated from the
velocity fields and its derivatives using the derivative moment transformation-
based impulse force formulation. The moment-arm dilemma associated with
the application of the force impulse equation to experimental data was inves-
tigated. It is shown that the origin location that most effectively reduces the
amplified error due to the position vector was always located at the down-
stream boundary of the control volume. In addition, it was found that the
calculated lift forces were consistent when the distance from the airfoil trail-
ing edge to the downstream boundary was equal to and greater than 0.85c.
Upon using the objectively defined origin, the impulse force equation was
shown to reduce to two dominating terms: the rate of change of the impulse
within the control volume and the Lamb vector thereof that picks up the
contribution of vortices outside of the control volume.
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For k = 0.06 − 0.10, the lift force results show that there are two force
peaks that form during the downstroke/upstroke. The primary peak is asso-
ciated with the formation of the leading edge vortex and the secondary peak
is associated with its enhanced time rate of circulation growth and chord-wise
advection. Even though the optimal leading edge vortex formation number
was attained for these lower reduced frequencies, it was observed that its
timing was not well correlated with the timing of maximum lift force. In
addition, at this low reduced frequency range, the trailing vortex sheet was
observed to roll-up into a trailing edge vortex. The trailing edge vortex was
shown to produce lift-diminishing effects, whose intensity increases with in-
creasing reduced frequency. For k = 0.12− 0.16, a third lift peak was shown
to form at the beginning of the downstroke due to a vortex capture-like
effect from the LEV shed during the previous upstroke. No trailing edge
vortex formation was observed at these high reduced frequencies, hence the
lift-diminishing effect was avoided.

The results of this study may be of great importance in developing low-
order models of transient lift forces produced by oscillating airfoils undergoing
dynamic stall. In particular, the overall trend of the lift force was shown to
be primarily dependent on the impulse force produced by vortical structures
(leading and trailing edge vortices and their associated shear layers) within
the control volume. However, the Lamb force, which indirectly captures
the influence of the far-field vortical structures may significantly alter the
magnitude of lift. The implication of this is that the influence of vortical
structures in the far-field must also be considered when constructing low-
order models.
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