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ABSTRACT

The last decade has witnessed research advances and wide deploy-
ment of Internet-of-things (IoT) in smart homes and connected
industry. However, the recent spate of cyber attacks exploiting the
vulnerabilities and insufficient security management of IoT devices
have created serious challenges for securing IoT devices and applica-
tions. As a first step towards understanding and mitigating diverse
security threats of IoT devices, this paper develops a measurement
framework to automatically collect network traffic of IoT devices in
edge networks, and build multidimensional behavioral profiles of
these devices which characterize who, when, what, and why on the
behavioral patterns of IoT devices based on continuously collected
traffic data. To the best of our knowledge, this paper is the first
effort to shed light on the IP-spatial, temporal, and cloud service
patterns of IoT devices in edge networks, and to explore these mul-
tidimensional behavioral fingerprints for IoT device classification,
anomaly traffic detection, and network security monitoring for
millions of vulnerable and resource-constrained IoT devices on the
Internet.
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1 INTRODUCTION

The last decade has witnessed the research advances and explosive
deployment of Internet-of-things (IoT) and cyber-physical systems
in smart homes, smart cities, and industry 4.0 for a wide spectrum
of critical applications and services [23, 25, 29]. However, the re-
cent spate of cyber attacks towards IoT devices in smart homes or
small offices have created substantial challenges for Internet users
without network and security expertises to manage and secure
heterogeneous and poorly protected IoT devices [5, 6, 22] .

The burgeoning and insecure IoT devices in millions of edge net-
works call for effective techniques to detect, recognize, characterize,
and address security threats towards these devices and applications.
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As a first step of securing IoT devices in edge networks, this pa-
per develops a measurement framework to automatically collect,
process, characterize, and profile communication patterns of IoT
devices with a variety of traffic features from IP-spatial, tempo-
ral, and service dimensions. Specifically, we leverage intelligent
and programmable edge routers with commodity hardware to con-
tinuously collect incoming and outgoing network flow traffic in
real-time for connected IoT devices in distributed edge networks.

The availability of network traffic data makes it possible to de-
velop multidimensional traffic profiles! of IoT devices for gaining
an in-depth understanding of communication patterns and traffic
behaviors of IoT devices, and more importantly, detecting and miti-
gating suspicious activities and cyber attacks towards vulnerable
IoT devices. The additional benefit of measuring and monitoring
network traffic of IoT devices is to have the full visibility of data
communications and network configurations of IoT devices, e.g.,
Chromecast, a streaming media player developed by Google, con-
figuring Google DNS servers as default rather than using the local
ISP’s DNS servers [3]. Such bogus behaviors are very hard to dis-
covery if the measurement functions are not available on home
routers for capturing and profiling traffic activities of IoT devices
in edge networks.

In this study we build the behavioral profile of IoT devices from
a wide spectrum of their traffic features based on three dimensions:
IP-spatial, temporal, and cloud. The IP-spatial dimension is centered
on the analysis of remote IP addresses of Internet end hosts such as
domain name system (DNS) servers or network time protocol (NTP)
servers which IoT devices have communicated with. In addition,
aggregating these remote IP addresses into Border Gateway Pro-
tocol (BGP) network prefixes [32] and ASNs allows us to analyze
IP-spatial correlations of Internet end hosts communicating with
IoT devices. Our experimental results on IP-spatial behaviors of
deployed IoT devices in the wild have discovered that most IoT
devices engage with cloud servers from a small set of network pre-
fixes and ASNs due to their single-purpose applications and specific
functions. For example, our experiment study discovers Philips Hue
smart light bulbs mostly communicate with cloud servers, which
are owned by Philips and deployed on Google cloud platforms, via
Philips Hue smart hub for sending on or off commands.

Our proposed measurement framework characterizes behavioral
profiles of IoT devices from the temporal dimension through identi-
fying three distinct temporal traffic patterns from connected objects
in edge networks, and classify IoT devices into always-on and on-
demand devices. For the analysis on the cloud dimension, our study
shows that IoT devices typically only engage with a small and fixed

! Throughout the paper we will use the terms profile and fingerprint as well as profiling
and fingerprinting interchangeably.
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set of common applications such as Hyper Text Transfer Protocol
(HTTP), DNS, and NTP due to their specific functionalities.

In light of the prevalent cybersecurity threats against IoT de-
vices in edge networks, we explore the benefits of multidimensional
behavioral profiles for a wide spectrum of applications including
anomaly traffic detection, IoT device detection and classification,
and network security monitoring. Specifically, we introduce a sim-
ple yet effective pattern-based anomaly detection approach for en-
coding common network traffic patterns with short encoded length,
and encoding infrequent and unusual patterns with longer encoded
length. The experimental evaluation shows that the approach is
able to uncover suspicious traffic activities with high precisions.
Moreover, we leverage multidimensional profiles of IoT devices for
recognizing and detecting new and unknown IoT devices based
on the profiles of existing and known IoT devices. Finally we out-
line how the behavioral profiles could facilitate network security
monitoring via effectively capturing behavioral dynamics or devia-
tions caused by cyber attacks such as port scanning activities and
repeated failed login attempts.

The contributions of this paper are summarized as follows:

o This paper presents a measurement framework for collecting
network traffic of IoT devices to characterize and model
behavioral fingerprints of IoT devices in edge networks.

o This paper introduces a multi-dimensional approach to model
the IP-spatial, temporal, and cloud behaviors of heteroge-
neous IoT devices, and presents the experiments results
based on real world IoT devices.

o This paper explores multidimensional behavioral profiles
of IoT devices for a spectrum of applications including IoT
device classification, anomaly traffic detection, and network
security monitoring.

The remainder of this paper is organized as follows. Section 2
introduces the measurement framework we have developed for
multidimensional behavioral profiling of IoT devices and briefly
describes the data-sets used in this study. Section 3 introduces how
we profile behavioral patterns of IoT devices in edge networks with
traffic features discovered from IP-spatial, temporal, and cloud di-
mensions. In Section 4, we explore behavioral profiles of IoT devices
for a variety of critical applications such as IoT device classification,
anomaly traffic detection, and network security monitoring. Sec-
tion 5 discusses related work in this research area, while Section 6
concludes this paper and outlines our future work.

2 AN IOT TRAFFIC MEASUREMENT
FRAMEWORK VIA PROGRAMMABLE
EDGE ROUTERS

Recent advances on embedded systems, sensors, robotics, and ma-
chine learning have enabled the wide deployment of IoT devices in
edge networks. The first step of protecting and securing millions
of IoT devices is to measure, monitor, and understand their normal
communication patterns and behavioral profiles. For example, what
remote hosts on the Internet are talking with the smart speakers or
thermostats at home networks, at what time, for what reasons? A
recent security evaluation study [20] on IoT deployment has also
pointed out that measurement is a crucial step for protecting the
security of IoT devices and the privacy of end users.
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Answering these questions is very critical to understand if and
when connected IoT devices in edge networks are compromised
by cyber attacks such as Mirai botnet [16]. The Mirai botnet has
successfully infected over 60,000 IoT devices including IP cameras
and consumer-grade routers in the first 20 hours after being re-
leased to the Internet, and launched more than 15,000 cyber attacks
towards game servers, telecoms, anti-DDoS providers, and other
high-profile Web sites.

Towards profiling communication patterns of IoT devices, we
leverage the computational resources on intelligent and programmable
edge routers to develop a prototype measurement framework, which
is able to capture network traffic flows of IoT devices for real-time
traffic monitoring and behavioral profiling. As shown in Figure 1,
the programmable edge router continuously captures, stores, and
analyzes the incoming, outgoing, and internal network traffic flow
records of all IoT devices in the edge network. For each flow record,
our measurement framework collects the well-known 5-tuples of
a network conversation or session, i.e., source IP address (srcIP),
source port number (srcPort), destination IP address (dstIP), des-
tination port number (dstPort), and protocol, as well as the start
and end timestamps, byte count, and packet count.

Our measurement framework does not collect raw IP packets
from IoT devices since most data packets originating from or des-
tined to IoT devices are encrypted, and the storage of raw data
packets of IoT devices such as smart TVs or IP cameras could bring
undesired system challenges for resource-constrained edge routers.
On the other hand, network flow records are widely used for Inter-
net traffic classification, network measurement and analysis [10, 19]
thanks to their diverse and informative traffic features and marginal
computational and storage resource overheads.

In this study, we have collected network flow records of IoT
devices from 22 home networks and small offices in the United
States, Hong Kong, and China. The number of end systems in-
cluding IoT devices and non-IoT devices connecting to each edge
network ranges from 1 to 25. In total, these edge networks collec-
tively connect over 50 IoT devices including Amazon Echo, Google
Home, Philips Hue smart light bulbs, Samsung smart plug and
motion sensor, YI home camera, August smart lock, LG smart TV,
and a number of other IoT devices. To demonstrate the practical
feasibility of the IoT traffic measurement framework, we deploy
and evaluate the system with different brands of programmable
routers including Linksys, Netgear, Buffalo, and CanaKit Raspberry
Pi.

3 MULTIDIMENSIONAL BEHAVIORAL
PROFILING OF 10T DEVICES

In this section we present a multidimensional behavioral profiling
approach for fingerprinting the behaviors of IoT devices from a
wide spectrum of traffic features based on network flow records
collected from edge networks. First, we study the IP-spatial behavior
of IoT devices via characterizing remote IP addresses engaging with
IoT devices and aggregating these IP addresses into BGP networks
prefixes and ASNs for correlation analysis. Subsequently, we study
the temporal traffic patterns of IoT devices over our longitudinal
measurement study, and profile the cloud behaviors of IoT devices
via analyzing how they interact with cloud servers.
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Figure 1: An IoT traffic measurement framework via programmable routers at edge networks.

3.1 IP-Spatial Behavior of IoT Devices

We characterize the IP-spatial behaviors of IoT devices by analyzing
the remote IP addresses which communicate with these devices.
More importantly, we aggregate and correlate these remote ad-
dresses into BGP network prefixes and ASNs for gaining an in-depth
understanding of “clustered” IP-spatial behaviors for IoT devices.
For example, the IP address of the DNS server for Google home
smart voice assistant, 8.8.8.8, is from the BGP prefix 8.0.0.0/9
and ASN 15169 owned by Google based on the latest snapshot of
the BGP routing table [28] and the official registry records from
Internet assigned numbers authority (IANA).

Aggregating and correlating remote individual IP addresses to
network prefixes and ASNs reveal an interesting observation. IoT
devices typically engage with a very small subset of BGP network
prefixes and ASNs, even though they communicate with a large
number of remote severs, which are likely from the same server
pool by the same service providers for efficient load balancing and
content distributions. Table 1 summarizes the clustered patterns of
IP-spatial behavior of 6 IoT devices and 2 non-IoT devices in one
edge network during a 5-minute time window. As shown in Table 1,
each IoT device only engages with servers from one or two unique
ASNs during the observation period, while the smartphone and
laptop communicate with remote end hosts from 13 and 39 unique
ASNSs, respectively.

Figure 2 shows the convergence of unique remote IP addresses,
their network prefixes, and ASNs for a variety of IoT and non-IoT
devices in the same edge network over a 4-month time span. As
shown in the longitudinal measurement study for the IP-spatial
behavior, it is very interesting to observe that all IoT devices have
engaged with a much smaller set of destination IP addresses, pre-
fixes, and ASNs than smartphones and laptops.

3.2 Temporal Behavior of IoT Devices

For the temporal behavior of IoT devices, we first measure the
number of distinct time slots in which IoT devices exhibit traffic

Table 1: The clustered patterns of IP-spatial behavior of IoT
devices in the same edge network during a 5-minute time
window.

Device IoT | dstIPs | prefixes | ASNs
Amazon Echo Yes 3 3 1
Echo Dot Yes 5 4 1
IP Camera Yes 2 2 1
Philips Hue Yes 1 1 1
Samsung smart plug | Yes 3 2 1
Smart TV Yes 4 3 2
Smart Phone No 37 24 13
Laptop No 172 102 39

activities during the longitudinal measurement study. In this study,
we select 5 minutes as the time unit for analysis to balance the
computation overhead and monitoring real-time traffic activities,
thus the maximum of time slots an IoT device is observed is 288 in
one day. Figure 3 shows the flow, packet, and byte counts of three
different connected devices in edge networks over one-week time
span. As shown in Figure 3, the smart voice assistant, smart TV, and
smartphone exhibit distinct traffic characteristics over time, and
have very unique and diverse temporal patterns on flow, packet
and byte counts over time, which leads us to measure and quantify
the variability on the number of time windows for IoT devices over
the entire data collection period.

For each IoT device d in the edge network, let ¢4 ; represent the
number of time windows the device d is observed with network
traffic on the i-th day. Considering connected devices are randomly
added into the edge network, we use the average time window for
each device 14 rather than the total number of time windows during
the entire measurement period. The average of time windows g

N .
is derived as pug = %, where N is the number of the days
since the device d is observed in the edge network and 1 < i < N.
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Figure 3: Traffic characteristics of IoT devices and non-IoT devices over 1-week time-span.

Finally, the actual temporal variability on time windows, measured

by coefficient of variance, is calculated as CoV; = ‘Z—Z, where oy,

the standard deviation, is calculated as o = 4/ % Zﬁ\i 1tdi — Ha-

Figure 4 illustrates a scatter graph on the mean y and coefficient
of variance CoV of time slots observed with traffic activities for
different IoT and non-IoT devices deployed in the same edge net-
work. As shown in Figure 4, four out of the six IoT devices exhibit
traffic activities during the majority of time windows in each and
every day, and their variability on the number of time windows
is much smaller than that of non-IoT devices. One IoT device, i.e.,
an IP camera, is only active for a small number of time slots per
day, but exhibits lows variability on the time window as well. The
only IoT device showing a high variability on the number of time
windows across different days is a smart TV, which is turned on
and off in an unpredictable fashion. Based on these observations on
the temporal patterns of IoT and non-IoT devices, we can classify
connected devices in edge networks in three categories: always-on
IoT devices, on-demand devices, and non-IoT devices.

The self-similarity traffic patterns of IoT devices visualized on
Figure 3 also inspire us to analyze the autocorrelation on network
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Figure 4: The mean and coefficient of variance of time slots
observed with traffic activities for IoT and non-IoT devices.
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traffic for all connected devices in edge networks. The autocorrela-
tion metric quantifies the correlation of the same variable across
different and lagged periods of times, thus the metric is also referred
as to serial correlation and lagged correlation. The autocorrelation
metric, pg ., for the IoT device d, between network traffic activity
time series X ; and a k-lagged copy of itself X4 ., is captured by
the autocorrelation function (ACF) as follows:

PR = Kk — )
- -

; )

where p and o are the mean and standard deviation of network traf-
fic activity time series X, respectively. An autocorrelation value of
0 suggests independent and random observations on the traffic time
series of connected devices in edge networks, while a significant
autocorrelation reveals substantial correlations among adjacent
observations or determines predictable seasonality in the time se-
ries [12, 31].

Figure 5 illustrates the autocorrelation plots, also referred to
as correlograms, of network traffic time series for three selected
IoT and non-IoT device. As shown in Figure 5, the network traffic
time series of IoT devices in edge networks indeed exhibit various
extents of self similarity patterns.

Pd,k

3.3 Cloud Behavior of IoT Devices

The objective of characterizing cloud behavior of IoT devices is
to understand why IoT devices communicate with remote servers
in the cloud. In particular, we profile cloud behaviors of IoT de-
vices based on the dominant applications or services observed from
dstPort and protocol of their outgoing network traffic flows. Ta-
ble 2 illustrates all the observed 5 applications for the 6 IoT devices
deployed in one edge network during a 24-hour time window. These
5 applications are HTTP, Hyper Text Transfer Protocol Secure
(HTTPS), DNS, NTP, and Spotify music streaming. As a compar-
ison, one smartphone and one laptop in the same edge network
engage with 11 and 15 distinct applications, respectively during the
same time period.

Application | Service | Echo | Camera | EchoDot | Philips Hue | SmartTV | IoT Hub
443/TCP HTTPS Y Y Y Y Y Y
80/TCP HTTP Y Y Y Y Y
53/UDP DNS Y Y Y Y

123/UDP NTP Y Y Y Y

4070/TCP Spotify Y

Table 2: The dominant applications used by IoT devices in
edge networks.

The limited and consistent set of common applications used by
IoT devices confirms that IoT devices are typically designed for
very specific functions and dedicated utilities. Figure 6 illustrates
the convergence of cloud applications for IoT and non-IoT devices.
As shown in Figure 6, the number of applications for IoT devices
converges in a very rapid fashion. It is very interesting to note
that all IoT devices use HTTPS for secure and encrypted Web ser-
vices, which shows the security awareness and investment of IoT
manufactories and application developers. On the other hand, the
non-encrypted HTTP service is still observed for five IoT devices.
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For each application, we continue to characterize the remote
servers and their aggregated network prefixes or ASNs via ana-
lyzing the fanouts, i.e., unique numbers of destination IP address,
BGP prefixes, and ASNs. In addition, we measure the distribution of
network traffic across these remote servers, prefixes and ASNs via
calculating the entropy and standardized entropy of these fanouts.
For a given application a for an IoT device d, let N and m denote
the number of network traffic flows and the unique number of the
remote servers represented as si, sz, . . ., Sy The probability of each

remote server ps; is calculated as ps;, = % where f;; denotes the
number of flows between d and s;. Clearly ), fs; = N. The entropy
on the remote servers for the application a for the device d is then
derived as Eg , = — X1, ps; log ps;, while the normalized entropy

is derived as NEg 4 = Sﬁ.

The normalized entropy is in the range of [0, 1], revealing the
degree of uncertainty, randomness, or variations on the remote
servers which communicate with IoT devices in edge networks.
Clearly, a N&; , value of 0 or near 0 indicates the uniformity on
the remote servers, while a N&; , value of 1 or near 1 means the
high randomness on the remote servers. The former scenario indi-
cates the IoT device only communicates with one or a few servers
on the application a, while the latter case reveals the device talking
with a large number of random servers. Based on a similar process,
we could calculate the entropies and normalized entropies for their
aggregated network prefixes or ASNs of remote servers. Table 3
illustrates the entropy values of destination IP addresses, prefixes
and ASNs IoT devices have sent HTTPS requests within a 24-hour
time window. As shown in Table 3, all IoT devices exhibit how
uncertainty on network prefixes and ASNs for their HTTPS traffic,
while the laptop and smartphones exhibit much higher variations
on the remote prefixes and ASNs for HTTPS traffic. These observa-
tions could potentially provide critical insights for detecting traffic
anomalies of IoT devices or classifying newly added IoT devices to
the edge network.

Fanout Normalized Entropy
Device Flows IP Prefix | ASN P Prefix ASN
Echo 148 20 6 1 0.5529 0.3158 0.0000
Camera 32 12 9 2 0.6023 | 0.5422 | 0.1792
Echo Dot 228 40 10 2 0.6197 0.3365 0.0051
Philips Hue 96 4 2 1 0.2163 0.0221 0.0000
Smart TV 429 109 39 7 0.6574 0.2968 0.1733
ToT Hub 258 3 2 1 0.1969 0.1115 0.0000
Laptop 3831 832 340 90 0.6782 0.5191 0.3064
Smartphone 1497 353 131 21 0.6274 | 0.4964 | 0.3077

Table 3: The entropy of destination IP addresses, prefixes
and ASNs IoT devices have sent HTTPS requests within a
24-hour time window.

In summary, our multidimensional behavioral profiling of IoT de-
vices have led to a number of discoveries. First, aggregating and
correlating the remote IP addresses into BGP networks prefixes
and ASNs reveal IoT devices typically engage with servers from a
small number of networks and domains due to their specific and
single-purchase functionalities. Second, the temporal traffic pat-
terns could classify IoT devices into always-on devices such as
smart voice assistants and on-demand devices such as smart TVs.
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Lastly, most IoT devices communicate with Internet servers for
limited, fixed, and common applications such as HTTP, DNS, and
NTP services. Profiling traffic behaviors of IoT devices not only
uncover what, when and how IoT devices communicate with legit-
imate end hosts on the Internet, but also provide critical insights
for detecting suspicious activities of IoT devices due to security
threats and cyber attacks. Thus, the next section leverages IoT be-
havioral fingerprints for a wide variety of applications such as IoT
device detection and classification, anomaly traffic detection, and
cybersecurity monitoring.

4 EXPLORING THE APPLICATIONS OF
MULTIDIMENSIONAL BEHAVIORAL
PROFILING

In this section, we demonstrate the benefits of multidimensional
behavioral profiles of IoT devices for a variety of applications includ-
ing anomaly traffic detection, IoT device detection and classification,
and network security monitoring.

4.1 Anomaly Traffic Detection for IoT Devices

Security and privacy are two key challenges faced by today’s wide
deployment of IoT devices in edge networks due to inadequate
built-in security features, flawed authorization and authentication
processes, weak password management, and other vulnerabilities.
As cyber attacks exploring millions of weakly protected IoT devices
often leave substantial traffic footprints in edge networks, we ex-
plore multidimensional behavioral profiles for detecting anomaly
traffic and security threats.

In this study, we adopt an anomaly detection method based on
minimum description length (MDL) principle due to its data-driven
approach and parameter-free feature [15, 17, 21]. The intuition and
novelty of the MDL principle lie in its pattern-based compression
and encoding technique which exploit coding tables to capture
the underlying data distributions. In other words, the technique
encodes a frequent and common pattern with a short encoded
length, and encodes a less frequent and unusual pattern with a
long encoded length reflecting anomalies and irregularities in the
original data [15].

The MDL principle essentially is a model selection framework
for performing lossless compressions and encoding on data with
categorical features and attributes. The main process is to search
and identify the best model m which minimizes the overall encoding
size for the entire data, i.e.,

argmin L(m) + L(d | m), (2)
meM
where M, L(m), L(d | m) are the model set, the bit length describing
the specific model m, and the bit length of describing the data d
with the model m, respectively.
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In the context of network flow traffic of IoT devices in edge
networks, we consider all network flow data collected during a
given time period as the data-set D consisting of n flow records,
each of which has w categorical features, i.e., ¥ = {f1,..., fuw}.
To encode the data with a code table, CT, we first extract all the
patterns P in the data, and represent each pattern with a code ¢
in the encoding set C. For a given pattern p € P encoded as c(p),
we define its frequency, i.e., freq(p) as the number of flow records
in D containing p in their encoding. Thus based on the entropy
theory, the optimal coding for the pattern p becomes

freq®)

L(c(p) | CT) = —log(—=———).
. EZC ; freq(q)

In addition, the overall number of bits required to encode the entire
data-set D is derived as:

L(D|CT) = Z L(r | CT)

reD
=Z Z L(c(p) | CT).
reDpefreq(r)

As shown in Eq. 2, the bit length of encoding the overall data is
then calculated as:

LCT) = ) Lep) |CT)+ ) ~ovlog(po),
peCT veV

where V is the set of all unique categorical attributes appearing in
the patterns of the code table, o,, is the the occurrence count of the
category value v € V. p; is calculated as % where £ is the total
length of all the patterns in the code table. Combining the entire
feature set together, we can build multiple code tables for further
reducing the overall encoding cost .

The simple yet effective pattern-based anomaly detection ap-
proach allows us to identify unusual or anomalous traffic flows from
network traffic originating from or destined to IoT devices in edge
networks. Our encoding process leverages the following multidi-
mensional traffic features extracted from network flow records: flow
duration, srcIP, srcPort, dstIP, dstPort, protocol, packet count,
byte count, dstIP’s network prefix, and dstIP’s ASN. The MDL
principle intends to encode unusual patterns with longer encoded
lengths, thus we simply consider the encoding length L(r | CT) for
a network flow record r as the anomaly score.

Figure 7 illustrates the distribution of anomaly scores for all the
observed network traffic flows originating from a Google Home
smart voice assistant during a 24-hour time window. Based on
the widely used elbow principle, we determine the anomaly score
of 9 as the threshold for traffic anomalies for IoT devices in edge
networks. To evaluate the quality of the anomaly detection, we
manually validate all 526 network flows with an anomaly score of
9 or above.

Table 4 summarizes our in-depth analysis of all 526 network
flows with high anomaly scores. As shown in Table 4, most of
these network flows are long HTTPS connections between the
smart voice assistant with Google cloud servers. In addition, a small
number of network flows are related to ICMP, mDNS, and DHCP
traffic. Thus the manual validation confirms the effectiveness of our
proposed pattern-based anomaly detection for discovering unusual
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Figure 7: The distribution of anomaly scores for all observed
network traffic flows during a 24-hour time window for a
smart voice assistant.

Table 4: An in-depth analysis of network traffic flows high
anomaly scores.

Protocols | Root cause analysis Flows
HTTPS long secure web sessions with cloud servers 489
ICMP ping traffic 13

mDNS multicast DNS query

DHCP DHCP requests

DNS Unusual number of Packets

8009/TCP | Optimized HTTP service running on the device.
5228/TCP | long TCP connections with Google Play services

R[N O| W

traffic activities from the multidimensional behavioral profiles of
IoT devices.

4.2 IoT Device Detection and Classification

The multidimensional behavioral profiles of existing IoT devices
in edge networks also provide unique and valualable features for
detecting and classifying newly added devices to the network. Let i
and j denote two [oT devices in the data-set. For each and every traf-
fic feature in behavioral profiles over a given time window, we can
quantify and measure the similarity and correlations of the feature
between two devices i and j during the same time period. Assuming
the feature b is the remote destination IP addresses (dstIPs) that
communicate with IoT devices. Let S; j, and S; ;, represent the
unique sets of dstIPs observed for IoT devices i and j during the
time window, respectively. The similarity on the dstIP feature, ie.,
Si,j,b» is calculated as

Si,6 N Sl
Sijib =g S
MY 1S U S bl
Thus repeating the same process on the available features extracted

from network flow data could lead to a similarity vector for any two
IoT devices in the same or different edge networks. The similarity

®)
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matrix on traffic features among all IoT devices enables us to identify
and cluster devices with similar behavioral fingerprints, and more
importantly detect new suspicious IoT devices in the same edge
network.

Figure 8 illustrates the distributions of similarity scores on three
IP-spatial features including dstIP, destination prefixes and ASNs
between IoT devices in two different edge networks. Each point
represents one pair of IoT devices from two networks. As shown
in Figure 8, most pairs of IoT devices exhibit low similarities, sug-
gesting IoT devices communicating with diverse servers on the
Internet. However, the high similarities between two pairs of IoT
devices from two different edge networks are apparently worth
in-depth investigations. Our further analysis discovers that two
pairs of IoT devices are exactly the same IoT products, i.e., Amazon
Echo Dot and Samsung SmartThings Hub, which happen to be
deployed in both edge networks. In addition to the similarity scores
on IP-spatial features, we also compare the scores on temporal and
service dimensions. After ranking the average similarity score over
all features, we find that the top pairs of IoT devices with the high-
est similarity scores, i.e., 0.65 and 0.47, are exactly the same two
pairs of devices. We believe that the discovery of high similarity
scores on behavioral features among similar IoT devices could help
identify newly added or unknown IoT devices by monitoring and
learning their behavioral fingerprints during the early phase after
they join the edge networks.
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Figure 8: The scatter plot of similarity score on IP-spatial
features.

Several recent studies have explored machine learning tech-
niques for IoT device detection and classification [18, 27]. For ex-
amples, [18] presents a Random Forest classifier to automatically
identify device types of the new IoT devices that are connected
to a network for the enforcement of security polices and traffic
rules, and [27] leverages the widely used supervised classification
algorithm, i.e., Random Forest, for classifying authorized and unau-
thorized IoT devices based on the features extracted from the link
and service layers of BLE protocol stacks. The multidimensional
behavioral profiles of IoT devices we have developed in this study
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will provide additional features and unique insights for improving
the quality and performance of these machine learning-based IoT
device detection and classification.

4.3 Network Security Monitoring

In light of prevalent cyber attacks and exploits towards vulnera-
ble IoT devices, it is crucial to develop effectively techniques for
monitoring traffic activities of IoT devices for network security
monitoring. Similar to a network telescope, our proposed measure-
ment framework on programmable edge networks can build the
fine-grained and multi-dimensional behavioral profiles of IoT de-
vices, and provide critical insights for discovering the potential
exploits and attacks towards IoT devices in real-time.

To demonstrate the feasibility of our proposed IoT measurement
framework for network security monitoring, we simulate all the
critical steps of Mirai botnet [8, 16] for infiltrating, infecting, and op-
erateing weakly protected IP cameras in a controlled edge network
environment. For each of the infiltration, infection, and operation
steps, we demonstrate that the behavioral fingerprints left by Mirai
botnet traffic reveals many unusual traffic patterns or substantial
behavioral deviations that could raise anomalous alerts and security
alarms.

During the infiltration step, Mirai first employs a port scan strat-
egy for identifying open ports such as 22, 23, and 2323, and if
successful, subsequently attempts to launch a dictionary attack to
attempt the logins with 62 default credentials. Clearly the scanning
activity and brute-force login process trigger substantial behavioral
footprint deviations on the IP-spatial and application dimensions,
since the IP address of the remote attacker is from a different net-
work prefix and ASN, and the remote ports used in the scanning
are very different from the limited set of applications used by IP
cameras. The infection stage also leaves unique behavioral finger-
prints on IP-spatial, data volumes, and applications, as the loader,
which could be different from the initial scanner, has to transfer
the malware image to the compromised IP camera.

During the operation stage, the compromised IP camera, as part
of Mirai botnet now, exhibits very unusual attacking behaviors
since the device starts to i) perform port scanning activities, 2)
communicate with control and command (C2) servers of Mirai
botnet, and eventually 3) launch coordinated distributed denial
service attacks (DDoS) towards C2-specified targets such as Dyn
DNS infrastructure [16]. All of these malicious traffic activities
by the IP camera, a new Mirai bot, leaves significant deviations
on the behavioral fingerprint on IP camera, thus our proposed
multidimensional behavioral profiling framework for IoT devices
could effectively detect, mitigate and stop such malicious activities.

5 RELATED WORK

The recent rapid development and deployment of IoT devices in
smart homes, cities, and industry 4.0 have attracted signifiant in-
terests from the research community in understanding the appli-
cations, security, threats, vulnerability, and the ecosystems [1, 4,
7,13, 14, 24, 30]. IoT behavioral profiling and fingerprinting have
recently attracted wide attention from the system, networking and
security research communities. The fingerprinting techniques cover
nearly all protocol layers of TCP/IP stacks such as applying wavelet
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transform on the sequence of packet inter-arrival time (IAT) of wire-
less access points for device profiling [11, 26, 27] or characterizing
packet headers and IP payload for device fingerprinting [2, 18].

Most of the existing studies on IoT behavioral fingerprinting
are centered on the protocols of the physical and link layers for
the applications of device classifications [9, 11, 26, 27]. For exam-
ple, [26] introduces a real-time system that passively scans and
analyze the data communication over WiFi, Bluetooth, and Zigbee
for classifying IoT devices and detecting privacy threats, while [27]
proposes to extract the unique features from the link and service
layers of Bluetooth low energy (BLE) protocol stack for generating
the IoT fingerprint for authenticating devices and defensing against
spoofing attacks. In addition, [9] proposes a wireless device identi-
fication platform for distinguishing legitimate and adversarial IoT
devices based on radio frequency (RF) fingerprinting over different
ranges of signal-to-noise ratio (SNR) levels.

A few recent studies have shifted traffic data collection and anal-
ysis to the network, transport and application layers for device
behavioral modeling and characterizations [2, 18]. For example [18]
establishes IoT device fingerprints with 20 binary features of pro-
tocol fields extracted from packets headers collected from link,
network, transport and application layers to reflect the protocol en-
gagement of IoT devices headers such as ARP, IP, ICMP, TCP, UDP,
NTP, DNS, DHCP, HTTP and HTPPS, and 3 numerical features
including packet size, destination IP counter, source and destination
port numbers, while [2] characterizes the behavioral fingerprints of
IoT devices with a subset of binary features identified in [18], and
3 payload-based features including the entropy of payload, TCP
payload size, and TCP window size. Compliment to these studies,
our paper focuses on the behavioral fingerprinting of IoT devices
in edge networks based network flow records, rather than the raw
IP data packets which raise on privacy concerns of IoT users and
computational resources on edge routers, for detecting new devices
and traffic anomalies.

6 CONCLUSIONS AND FUTURE WORK

As the rapid and wide adoption of IoT devices continue to acceler-
ate in smart homes, cities, and industries, it becomes increasingly
urgent to design and implement Internet traffic measurement plat-
forms to effectively monitor, characterize, and profile communica-
tions pattens of IoT devices with remote end hosts on the Internet
and local systems on the same edge networks. Towards this end,
this paper develops a systematic measurement framework for es-
tablishing multidimensional behavioral profiles of connected IoT
devices based on a wide spectrum of traffic features from IP-spatial,
temporal, and cloud dimensions. Based on real network traffic data
collected from 22 edge networks over 4-month time span, we have
discovered a number of important findings on behavioral finger-
prints of IoT devices. First, IoT devices typically communicate with
cloud servers from a very small number of prefixes and ASNs, which
belong to IoT manufactories, the cloud service providers, NTP ser-
vice providers, public DNS service providers. Second, IoT devices
often exhibit repeated and predictable traffic activities over time
due to heart-beat signals between IoT devices and cloud servers.
Lastly, unlike laptops, desktops, and smartphones, [oT devices often
engage with a limited and common number of applications such
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as DNS, HTTPS, HTTP, and NTP. These behavioral fingerprints
not only summarize communication patterns of IoT devices with
end systems on the Internet, but also benefit a range of security
applications for IoT devices such as anomaly traffic detection, IoT
detection and classification, and network security monitoring. Our
future work is centered on exploring the traffic fingerprints at the
link layer, i.e., studying wireless communications between IoT hubs
and IoT sensors via Bluetooth, ZigBee, Z-Wave, and Wi-Fi. The
link layer fingerprint could compliment the current behavioral
fingerprinting framework based on traffic features collected from
network, transport, and application layers.
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