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Abstract—The last decade has witnessed the explosive growth
of malicious Internet domains which serve as the fundamental
infrastructure for establishing advanced persistent threat com-
mand and control communication channels or hosting phishing
Web sites. Given the big data nature of Internet traffic data and
the ability of algorithmically generating domains and acquiring
and registering the domains in a near-automated fashion,
detecting malicious domains in real-time is a daunting task
for security analysts and network operators. In this paper, we
introduce bipartite graphs to capture the interactions between
end hosts and domains, identify associated IP addresses of do-
mains, and characterize time-series patterns of DNS queries for
domains, and explore one-mode projections of these bipartite
graphs for modeling the behavioral, IP-structural, and tempo-
ral similarities between domains. We employ graph embedding
technique to automatically learn dynamic and discriminative
feature representations for over 10,000 labeled domains, and
develop an SVM-based classification algorithm for predicting
malicious or benign domains. Our model makes the progress
towards adapting to the changing and evolving strategies of
malicious domains. The experimental results have shown that
our proposed algorithm achieves an area under the curve
(AUC) of 0.94 based on k-fold cross-validation. To the best of
our knowledge, this is the first effort to apply the combination
of behavioral modeling and graph embedding for effectively
and accurately detecting malicious domains.

1. Introduction

A wide spectrum of cyber attacks such as phishing, bot-
nets, and advanced persistent attacks (APT) share one funda-
mental infrastructure, i.e., malicious domains for establish-
ing control and command (C&C) communication channels
or hosting fake Web sites for click frauds or credentials
collection [1]. Although there exist a rich body of research
efforts in the literature, detecting malicious domains remains
a daunting and challenging task due to the big data nature of
Internet traffic and the ability of algorithmically generating
domains and acquiring them in a near-automated fashion [2],
[3].

In this paper, we explore bipartite graphs to model
the interactions of host-domain query behaviors, domain-IP
resolving structure, and the temporal patterns of domains,
and build one-mode projections of three different bipartite
graphs for capturing the similarity of domains on end-host
querying, IP resolving, and temporal patterns. Comparing
with features manually extracted from domain knowledge,
network traffic or lexical expressions, these behavioral fea-
tures are more robust and stable since the underlying behav-
ior of malicious domains tend to exhibit high consistency
over. Prior studies have shown that domain knowledge varies
across networks, network features such as TTL values set by
malicious domains shift over time for avoiding detection [4],
and cyber attacks can easily emulate lexical features of
benign domains, e.g., using similar number of characters
or pronounceable words in the domain names.

The performance of machine learning based malicious
domain detection methods is heavily dependent on the selec-
tion of feature representation in feature engineering, which
is important but labor-intensive. However, the major weak-
ness of conventional malicious domain detection methods
based on such methods lies in their inability to extract and
organize the discriminative and dynamic features from the
data.

In this paper, we employ LINE [5], which is one of the
best performers in graph embedding, to automatically learn
the dynamic and discriminative latent feature representations
from the constructed domain graph. This innovative process
of extracting the dynamic features and ease of applicability
of machine learning makes the malicious domain detec-
tion methods less dependent on feature engineering, and
more importantly, improves the flexibility of these methods
against the changing and evolving attacking strategies.

The feature vectors generated from graph embedding
represent the domain behavior in a high dimension space,
thus we develop an SVM-based binary classifier with over
10,000 labeled domains for predicting the new domains as
malicious or benign. Our extensive experimental results have
shown that the proposed algorithm achieves an AUC of
0.94 based on k-fold cross-validation, which outperforms
the strong competitors by an improvement of 6.8% on the
AUC metric.
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(a) DNS query volume

0 5 10 15 20 25 30

Days

0

50

100

150

200

250

T
h
e
u
n
iq
u
e
n
u
m
b
e
r
o
f
fd
q
n
a
n
d
e
2
ld
s
(t
h
o
u
s
a
n
d
) e2ld

fdqn

(b) Unique numbers of FQDNs and e2LDs

Figure 1: The DNS query volumes and the unique numbers of observed FQDNs and e2LDs over time in the large campus
network over 1-month time period.

The contributions of this paper are three-fold:

• This paper introduces bipartite graphs and one-mode
projections for modeling domains behaviors on host
interactions, resolving IP addresses, and temporal
patterns.

• This paper explores graph embedding for learn-
ing feature representations based on the similarities
among domains, which makes our model be inde-
pendent of the labor-intensive feature engineering
and captures the evolving attacking patterns.

• The extensive experimental results have shown that
our proposed algorithm achieves significant mali-
cious domain classification and clustering results
based on DNS traffic logs collected from a large
campus network.

The remainder of this paper is organized as follows.
Section 2 describes the background of the research problem
and the data-sets used in this paper. Section 3 presents an
overview of our method. In Section 4, we explore bipar-
tite graphs and one-mode projections to model the domain
behaviors on the interactions with end hosts, resolved IP
addresses and temporal patterns, while Section 5 introduces
graph embedding to build feature vectors based on the sim-
ilarity matrix of the domains. Section 6 develops an SVM-
based classification algorithm with labeled training data-sets
for predicting new domains as malicious or benign, while
Section 7 identifies strong associations among malicious
domains. In Section 8, we evaluate the performance of our
proposed algorithm. Section 9 discusses related work in
detecting malicious domains, and Section 10 concludes this
paper and outlines our future work.

2. Background and Data Sets

The last decade has witnessed the wild growth of ma-
licious domains for hosting malware, phishing and scam

content and for facilitating command and control (C&C)
communication channels for botnets. As a key Internet in-
frastructure for resolving Internet hostnames to IPv4 or IPv6
addresses and vice versa, DNS is triggered and observed for
all Internet applications which involve hosts and domains.
Detecting malicious domains in DNS traffic originating
from end hosts in real-time is a crucial step for preventing
these vulnerable hosts from being compromised by a wide
spectrum of cyber attacks.

On the other hand, cyber attackers have devised intel-
ligent mechanisms such as DNS based domain fluxing [6]
to algorithmically generate and register a large number of
short-lived domain names for operating C&C servers and
hosting malicious sites. In addition, cyber attackers often
rapidly change the IP addresses of the C&C servers or
malicious sites under their control with DNS-based FastFlux
tools [7] to avoid the simple IP blocking. Thus there is a
pressing need to develop effective and accurate algorithms
to characterize, detect and filter malicious domains during
the very early stage of their operations.

Towards this end, we first collect IP data packets of
DNS traffic originating from or destined to all the campus
DNS servers via the edge routers in the campus network
which supports thousands of desktops, laptops, servers,
smart phones, tablets, and Internet-of-things1 since June
2017. For each DNS query packet, we collect timestamp,
identification number, source IP address, queried name, and
query type, e.g., A, NS, CNAME, or MX. For each DNS
reply packet, we extract timestamp, identification number,
destination IP address, and the response value for the corre-
sponding type. In addition to the DNS logs, we also collect
DHCP logs in parallel for mapping the MAC addresses
to the assigned IP addresses. The DHCP data ensures our
ability of pinpointing to the same compromised physical

1. For simplicity, we refer to these Internet-capable devices as end hosts
throughout this paper.
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Figure 2: An overview of our proposed end-to-end system for detecting malicious domains from a large campus network.

devices in the campus network which could have different
IP addresses due to device mobility on the same campus or
DHCP lease timeout.

Figure 1(a)(b) illustrate the DNS query volumes and the
unique numbers of fully qualified domain names (FQDNs)
and effective second level domains (e2LDs) over time in
the large campus network during March 2018. As seen
in Figure 1, the big data nature of DNS traffic creates
unprecedented challenges for characterizing and detecting
malicious domains on the fly.

3. System Architecture

In this paper, we develop an end-to-end prototype system
to detect malicious domains from a large campus network.
Figure 2 illustrates a schematic overview of the system
architecture which consists of five key system components:
data collection and pre-processing, behavioral modeling of
domains, learning domain features via graph embedding,
supervised learning algorithms for classifying malicious or
benign domains, and unsupervised learning algorithms for
clustering malicious domains.

The first system component is to automatically collect
DNS traffic logs from edge routers in the campus networks,
and pre-process the logs to extract the records of DNS
queries and the corresponding responses. The second sys-
tem component is centered on the behavioral modeling of
domains via bipartite graphs and one-mode projections for
capturing the behaviors of domains on end-host querying,
IP addressing resolving and temporal patterns, while the
third component explores graph embedding techniques for
learning feature representations of domains. The fourth com-
ponent develops an SVM-based classification algorithm with
over 10,000 labeled domain data-set for predicting new do-
mains observed in the same campus networks as malicious
or benign. The last component uses a clustering algorithm
to discover malware families and other applications.

4. Behavioral Modeling of Domains via DNS
Traffic

In this section, we first introduce bipartite graphs for
modeling the DNS behaviors of benign and malicious do-

mains. Specifically, we explore three types of bipartite
graphs for capturing the interactions between end hosts on
the campus networks and domains, identifying associated
IP addresses of domains, and characterizing time-series
patterns of DNS queries for domains, respectively. Subse-
quently, we rely on one-mode projections of these bipartite
graphs for understanding the behavioral, IP-structural, and
temporal similarities of domains.

4.1. Modeling Domain Behaviors with Bipartite
Graphs

4.1.1. Host-Domain Bipartite Graph. The first type of
bipartite graphs is host-domain interaction graph HDBG =
(H,D, E), where the vertex sets H and D represent all end
hosts in the campus network and all the Internet domains
queried by these hosts during a given time window t. The
edge set E denotes all interactions between hosts in H and
domains in D. For example, if a host hi ∈ H sends a DNS
query for the domain dj ∈ D, an edge ehi,dj

∈ E will be
created between hi and dj . As shown in Figure 3(a), the
host-domain bipartite graph essentially captures the query
behaviors of domains as well as the interactions between
end hosts in the campus networks and these domains.

4.1.2. Domain-IP Bipartite Graph. The second type of
bipartite graphs is domain-IP mapping graph DIBG =
(D, I, E), where the vertex set D consists of all the do-
mains observed in DNS traffic logs, while the vertex set I
represents all the IP addresses resolved for the hostnames
from the domains in D. A hostname from domain di ∈ D
resolving to an IP address ij ∈ I will lead to an edge
edi,ij ∈ E between di and ij . Thus the domain-IP bipartite
graph effectively illustrate the resolved IP addresses for all
the hostnames in the same domains.

4.1.3. Domain-Time Bipartite Graph. The third type of
bipartite graphs for modeling the DNS behaviors of benign
and malicious domain is domain-time association graph
DTBG = (D, T , E). The vertex sets D and T represent
all the domains and the distinctive time units. If a given
domain di ∈ D is observed in at least one DNS query

603



Figure 3: Discovering domain behavioral similarities via bipartite graphs and one-mode projection graph.

queried during the time window tj ∈ T , there will exist an
edge edi,tj ∈ E between di and tj . In this paper, the duration
of the time window tj is one minute. Therefore the domain-
time bipartite graph represents the temporal behavior of
domains which are being queried by end hosts in the campus
network.

These three types of bipartite graphs carry a wide spec-
trum of behavioral features for domains which interact with
end hosts on the campus network. In this study, we construct
each graph based on DNS traffic logs for a month.

As we collect DNS traffic logs from a large campus
network, the constructed bipartite graphs contain a sheer
volume of domains, resolved IP addresses, and end hosts on
the campus networks. For improving the running time of our
proposed algorithms, we prune each bipartite graph without
sacrificing the coverage and accuracy of malicious domains
detections with the three simple rules. Firstly, we prune the
well-known domains, e.g., google.com, which interact with
over 50% of end hosts in the campus networks for providing
valuable and legitimate Internet services for the students
and faculty. Secondly, we remove all domains which are
requested only by a single host. Although this step has a
potential risk of pruning malicious domains during its early
stage. However, our empirical experience has shown that
our proposed algorithm is able to identify such domains
in a later stage with the accumulated knowledge on their
behavioral, temporal, and IP-structural patterns. Thirdly, we
use the only effective second-level domain (e2LDs) in the
graphs since e2LDs often tell the domain ownerships and
reflect the actual organizations behind the domains. For
example, the e2LDs for the hostnames maps.google.com and
www.bbc.uk.co are google.com and bbc.uk.co, respectively.
Moreover, e2LDs are the widely used domain aggregation
unit for detecting malicious domains in the literature.

4.2. Discovering Domain Behavioral Similarities
via One-Mode Projection Graphs

Projecting bipartite graphs on each of two vertex sets
leads to two one-mode projection graphs, which are widely
used for capturing the similarities among nodes in the same
vertex set [8], [9]. Section 4.1 models domain behaviors
with three distinct types of bipartite graphs, thus we could
naturally build one-mode projection graphs on the domain
vertex set for capturing the querying behavioral similarity, IP
resolving similarity, and temporal behavioral similarity. For
example, Figure 3(b) builds the one-mode projection graph
for the domain vertex set from the host-domain bipartite
graph. Similarly, projecting the bipartite graph on the host
vertex leads to another one-mode projection graph, as shown
in Figure 3(c), which essentially captures the shared domain
interests for different end hosts.

4.2.1. Domain Querying Behavioral Similarity Graph.
Our intuition of exploring domain querying behavioral sim-
ilarity lies in the principle that if two domains are queried
by the same set hosts on the campus networks during a cer-
tain time window, these two domains are highly correlated
and strongly associated. Previous studies have revealed that
compromised hosts infected with the same malware family
tend to query a similar set of malware-control domains [10].
In general, normal hosts are unlikely to query domains that
are created for proving malware-only functionalities such as
serving as command and control centers.

To construct the domain querying behavioral similarity
graph, we first define how to measure the similarity between
two domains observed in DNS traffic logs. Let di represent
a random domain in D. The set of end hosts Hdi denotes all
hosts that queries the IP addresses of at least one hostname
in the domain di. Similarly, the set Hdj denotes all hosts
the queries the hostnames in the domain dj . The Jaccard
index, sdi,dj , for measuring the query behavioral similarity
between the domains di and dj is then defined as follows:
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qsdi,dj =
|Hdi ∩Hdj |
|Hdi ∪Hdj |

, (1)

where |Hdi∩Hdj | represents the number of the hosts that
query both domains di and dj while |Hdi ∪Hdj | represents
the number of the hosts which query either the domain di
or the domain dj . A similarity qsdi,dj of 1 suggests that
di and dj are queried by the same set of end hosts in the
campus network. Thus, the higher the similarity qsdi,dj , the
stronger query correlations between the domains di and dj .
Based on this similarity measure capturing the domain query
behavior correlations, we could construct the full similarity
graphs for all domains observed in DNS traffic logs at a
given time window.

4.2.2. Domain IP Resolving Similarity Graph. Domains
controlled by the same organizations often share IP blocks or
addresses via shared Web hosting or other techniques, thus
it is not surprising to observe different domains share IP
addresses [11]. Therefore if the hostnames from two differ-
ent malicious domains are resolved to the same IP addresses,
these two domains are likely associated with the same cyber
criminals. Intuitively, the more IP addresses shared by two
domains, the more stronger association between them.

Let Idi and Idj denote the set of IP addresses resolved
from the hostnames of domains di and dj respectively. Then
based on the Jaccard similarity coefficient we define the
domain IP resolving similarity isdi,dj between domains di
and dj as:

isdi,dj =
|Idi

∩ Idj
|

|Idi
∪ Idj

| . (2)

Similar to qsdi,dj
, the higher IP resolving similarity

isdi,dj
between two domains, the stronger their association.

4.2.3. Domain Temporal Similarity Graph. Our empirical
analysis on DNS traffic logs shows the strong temporal
correlations between many domains. The major reasons
behind such correlation are client-side or server-side Web
redirections and embedded hyper-links in HTML content.
For example, when an Internet browser requests a Web
page, the local host first sends a DNS request to resolve
IP addresses of the Web site2 for TCP connections. Once
the browser starts to render the Web page, it will generate
additional DNS queries for the domain names which are
embedded in the page, e.g., Google’s sponsored links on
CNN front page. For client-side or server-side redirection,
the browser will have to resolve the hostname for each URL
in the redirection chain before the Web page is retrieved
from the last URL. As shown in [12], drive-by exploits
typically involve a long redirection chain before the actual
exploit activity occurs.

Let Tdi
and Tdj

denote the minute sets we observe
domains di and dj respectively in DNS traffic logs. Then
the temporal similarity of domains di and dj is defined as

2. Here we assume the IP address of the Web site is not cached on the
host or expired.

tsdi,dj =
|Tdi

∩ Tdj
|

|Tdi ∪ Tdj |
. (3)

Clearly the temporal correlation between two domains
measures how frequently these domains are queried by end
hosts on the campus networks at the same time.

5. Learning Feature Representations for Do-
mains

The performance of machine learning based malicious
domain detection methods is heavily dependent on the selec-
tion of data representation (or features) on which they are
applied. Such feature engineering is important but labor-
intensive and highlights the weakness of the conventional
malicious domain detection methods: their inability to ex-
tract and organize the discriminative and dynamic features
from the data. In order to extract the dynamic features
and ease of applicability of machine learning, it would be
highly desirable to make the malicious domain detection
methods less dependent on feature engineering, so that novel
applications could be constructed faster, and more impor-
tantly, to make progress towards adapting to the changing
and evolving attacking strategies. In this paper, we employ
LINE [5], which is one of the best performers in graph
embedding, to automatically learn the useful and meaningful
(latent) feature representations from the constructed domain
graph. In the rest of this section, we elaborate on the LINE
algorithm in detail.

5.1. Problem Definition

LINE [5] learns the low-dimensional embeddings of
large-scale information networks. It is designed for homo-
geneous graphs, i.e., the networks with the same types
of nodes. The main idea behind LINE is to make use
of the first-order proximity and the second-order proxim-
ity between vertices, which assumes vertices with similar
neighbors are similar to each other and thus should be
represented closely in a low dimensional space. In particular,
LINE preserves the local structures that are represented by
the observed links in the networks, capturing the first-order
proximity between the vertices. In addition, LINE explores
the second-order proximity between the vertices, which is
not determined through the observed tie strength but through
the shared neighborhood structures of the vertices.

We formally define the problem of homogeneous graph
embedding. In this study, we have three kinds of domain
similarity graphs, and each graph is defined as G =
(D,E,W ), where D is the set of vertices, each of which
represents a domain; E is the set of edges between the do-
mains, each of which represents a relationship between two
domains; W is the set of weights, each of which represents
the similarity between two domains. Each edge eij ∈ E is
an unordered domain pair eij = (di, dj) and is associated
with a weight wij > 0. Note that our domain similarity
graphs are undirected, thus we have (di, dj) ≡ (dj , di).
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First-order Proximity. Following [5], the local net-
work structures of the similarity graphs can be defined
as the first-order proximity between the vertices. For each
pair of domain (di, dj) linked by an edge eij , the weight
on that edge (i.e. wij) indicates the first-order proximity
between domain di and domain dj . If no edge is observed
between di and dj , their first-order proximity is 0. Because
of the importance of the first-order proximity in practice
that implies the similarity of two nodes, the majority of
graph embedding algorithms aims to preserve the first-order
proximity.

Second-order Proximity. The vertices that share sim-
ilar neighbors are likely to be similar to each other, even
though there is no link between them. LINE explores
second-order proximity which complements the first-order
proximity and preserves the graph structure. Formally, as-
sume that si = (wi,1, ..., wi,|V |) denote the first-order prox-
imity of di with all the other vertices, then the second-order
proximity between di and dj is determined by the similarity
between si and sj . If no vertex is linked from/to both di
and dj , the second-order proximity between di and dj is 0.

Given the domain similarity graph G = (D,E,W ),
LINE aims to learn low-dimensional vertex representations,
preserving both the first-order proximity and the second-
order proximity between the vertices.

5.2. Graph Embedding Algorithm

The training objective of LINE is to find vertex represen-
tations that maximize the occurrence probability among the
directly connected vertices (the first-order proximity) and
the vertices sharing many connections to other vertices (the
second-order proximity). Given the domain similarity graph
G = (D,E,W ), we first define the conditional probability
of vertex di ∈ D generated by dj ∈ D as:

p(di|dj) =
exp(−→u T

i · −→u j)∑
i′∈|V | exp(

−→u T
i′ · −→u T

i′ )
(4)

where −→u i is the embedding vector of vertex di, and −→u j

is the embedding vector of vertex dj , |V | is the number
of vertices or “contexts”. For each vertex dj ∈ D, Eq.
(4) defines the conditional distribution p(·|dj) over all the
vertices in the domain set. For each pair of vertices dj and
dj′ , the second-order proximity can be calculated by their
conditional distributions p(·|vj), p(·|vj′). Thus, we can make
the conditional distribution p(·|vj) close to its empirical
distribution p̂(·|vj) by minimizing the following objective
function:

O =
∑

dj∈D

∑

di∈D

wijKL(p(·|dj), p̂(·|dj)) (5)

= −
∑

eij∈E

wij log p(dj |di) (6)

where KL(·, ·) is the KL-divergence between two distribu-
tions;

∑
di∈D wij indicates the importance of vertex dj .

Finally, the objective function Eq. (6) can be optimized
with stochastic gradient descent through the techniques of

edge sampling [5] and negative sampling [13]. Concretely, in
each step, a binary edge eij is sampled with the probability
proportional to its weight wij , and meanwhile multiple
negative edges are sampled from a noise distribution. The
reader can refer to [5] for the implementation details of
LINE.

6. Malicious Domains Detection via SVM Clas-
sification

In this section we will first discuss how we obtain
labeled data-sets on the benign or malicious domains for
supervised learning, and subsequently introduce an SVM-
based classification algorithms for effectively and accurately
detecting malicious domains.

6.1. Labeled Data-Sets for Supervised Learning

We obtain a blacklist of malicious domains and a
whitelist of benign domains from a large Internet security
company. In order to reduce false positives of malicious
domains, we validate each malicious e2lds domain with the
public VirusTotal API [14] which queries over 60 global
blacklists from different credible sources. We will only
include an e2lds domain as a labeled malicious domain if
and only if the domain is confirmed by the VirusTotal API,
and appears at least two of the 60 global blacklists. The
final labeled data-set consists over 10,000 domains. Among
these domains, 30% are confirmed malicious domains while
the remaining 70% are benign domains.

For each domain in the labeled data-set, we could
build three feature vectors via learning domain querying
behavioral similarity graph, domain IP resolving similarity
graph, and domain temporal similarity graph, respectively.
Given an embedding size of k, we could use [V1, V2, ..., Vk],
[Vk+1, Vk+2, ..., V2k], and [V2k+1, V2k+2, ..., V3k] to repre-
sent these three feature vectors. Thus the final feature vector
is in the form of x ∈ R3k, where xj denotes its jth com-
ponent. The experimental results show that combining three
feature vector together achieves the best detection quality. In
Section 8.1, we will study the marginal contribution of each
feature vector and discover the unique contribution of each
vector. In addition, we use y ∈ 0, 1 to denote the class label
of a domain with y = 1 indicating a malicious domains and
y = 0 indicating a benign domain.

6.2. SVM Classification Algorithms

In this study, we choose SVM classification algorithm
for building the binary classifier for predicting malicious or
benign domains due to its wide popularity and efficiency
on high-dimensional data-sets [15]. As the SVM classifier
is built for maximizing the margin of correct classification,
the established decision boundary is robust or insensitive to
slight changes on the feature vectors, thus minimizing the
over-fitting effect.

The decision rule generated by SVM classifier is ex-
pressed via a kernel function, i.e., K(x, x′) which computes
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the similarity between two feature vectors and non-negative
coefficients {ai}ni=1 where n is the size of training data-
set. In this article, we exploit radial basis function(rbf) to
be the kernel function. The penalty parameter is set to 0.09
and the kernel coefficient for rbf is set to 0.06. The SVM
classifier predicts the class label of the new domains, e.g., x,
via computing their distance d(x)to the decision boundary
as follows:

d(x) =

n∑

i=1

ai(2yi − 1)K(xi, x), (7)

where the sum is aggregated over all the objects in the
training set. The sign of the derived distance measure deter-
mines the side of the decision boundary on which the new
domain x lies. In practice, we could set a threshold value
for d(x) to predict the binary class label, i.e., malicious or
benign, for the new domains.

7. Mining Associations of Malicious Domains

In this section, we first discuss how to uncover the strong
association among malicious or benign domains via cluster
analysis, and subsequently visualize the feature vectors of
domains.

7.1. Clustering Analysis of Domain Clusters

Malicious or benign domains are often associated as they
are from the same malware family or the same business
owners. The ability of our proposed SVM classifier in dis-
tinguishing malicious or benign domains allow us to further
group associated domains into the same clusters for in-depth
analysis.

In this paper, we apply a simple yet effective
partitioning-based clustering algorithm, i.e., XMeans [16]
due to its simplicity and automated selection and opti-
mization on the number of clusters. The distance measure
between any two domains is measured by the Euclidean
distance on their feature vectors.

The discovery of domain clusters shows very interesting
and strong association among malicious or benign domains.
For example, most of 61 domains in one cluster are reported
as spam or phishing domains by ThreatBook [17]. Table 1
shows a subset of these spam domains in this cluster. Sim-
ilarly, one cluster includes 131 domains, and most of them
are reported as Conficker DGA domains by ThreatBook, and
unsurprisingly these domains share the same IP addresses
and are queried by the same of end hosts on the campus
networks. Table 2 shows a subset of these DGA-generated
domains in the cluster.

7.2. Applications

7.2.1. Acquiring Additional Labeled Malicious Domains
for Model Training. The discovery of malicious or benign
domain clusters can reciprocally improve malicious domain

brvegnholster.bid turputch.bid
fattylivercur.bid curafane.bid
bstwoodprofit.bid ankletol.bid
concldpermitt.bid nanoclen.bid
undetectdrger.bid cooknice.bid
turmericuses.bid bellydit.bid
lrn2plymuzic.bid easycanvvas.bid
simflightgam.bid solaramrica.bid

TABLE 1: An example of spam domains cluster

oorfapjflmp.ws nalenyjvncb.ws oceudjhxmts.ws
lhkiqoedwng.ws kkdgqwjedyj.ws qxenrcbugvr.ws
gqzmihbsjrs.ws nhqaldggstz.ws tylyqdbtzud.ws
vrstvbcvkpm.ws hcamlehhrpc.ws emkpjrvaxxq.ws
dyyrtlmnsyf.ws nseotiosjvj.ws sakssuuaxex.ws
zumxvivnqma.ws urfdekqrffe.ws nomgyfygkub.ws

TABLE 2: An example of DGA-generated domains cluster

detection via SVM classifications by acquiring additional la-
beled domains for model training. In other words, we could
potentially identify a large number of suspicious domains
from a few known and confirmed malicious domains.

For each unknown domain in the malicious domain clus-
ters from our experiments, we query the public VirusTotal
API [14] to confirm if it is indeed a known malicious do-
main. We consider the confirmed domains as true malicious
domains and the unconfirmed ones as suspicious domains.
Figure 4 shows the number of newly discovered true and
suspicious malicious domains with varying seed sizes of ma-
licious domains. As we increase the seed size of malicious
domains from 0 to 200, we can discover nearly 2,000 true
malicious domains and 500 suspicious domains. These true
malicious domains can in turn substantially contribute to the
quality and improvement of our SVM-based classification
algorithm for detecting malicious domains.
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Figure 4: The number of newly discovered malicious do-
mains with a small seed of malicious domains.

7.2.2. Discovering traffic patterns of malware. Our ex-
perimental results have shown that malicious domains in
the same clusters often belong to the same malware or
malware family, share similar IP addresses and ranges, and
communicate with the same set of compromised end hosts
on the campus networks. From the netflow traffic collected
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from edge routers of the campus network, we find that
the domains in the same clusters exhibit similar traffic
patterns. Such traffic patterns reveal deep insight on the
attack behaviors and tactics of malware.

For example, 12 domains in the same malicious cluster
are all reported as spam domains by Threatbook. These
domains share one single IP address, and communicate with
518 end hosts in the campus network on three destination
ports: 80, 1337, and 2710. Similarly, 32 malicious domains
in one cluster are all reported as C&C server domains by
Threatbook. These domains share three IP addresses, and
talk to 8 hosts in the campus network on the destination
port 80. Our in-depth investigation reveals that these 8 com-
promised hosts are indeed controlled by the same botnet.
Such interesting behaviors will be difficult to uncover if
we simply focus on traffic patterns of the single malicious
domain without correlating with multiple domains in the
same cluster.

7.3. Domain Cluster Visualization

The graph embedding method can capture the character-
istics of the local structure and node features of the graph.
It thus learns a latent representation for each domain so
that similar domains have similar domain embeddings. In
this experiment, we randomly selected five domains clusters
and use t-SNE [18] to reduce the dimension of the domain
embeddings to a 2-dimensional space and then visualize
them in Figure 5. As shown in Figure 5, the domains
with strong association are close in low-dimensional space,
illustrating the ability of our model to automatically learn
the implicit relationships between domains.
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Figure 5: Domains visualization.

8. Experimental Evaluations

In this section, we first measure the accuracy of our
proposed algorithm with the combined feature vector as
well as each individual feature vector for detecting malicious

with k-fold cross-validation. subsequently, we compare our
approach with other systems.

8.1. Measuring Detection Accuracy with AUC

To understand the quality of detecting malicious do-
mains, we adopt the widely used k-fold cross-validation
method to evaluate the SVM-based classification algorithm.
Firstly, we randomly shuffle the labeled domain data-set,
and split the data into k groups. Subsequently, for each of
these k groups, we consider it as a hold-out group as testing
data-set, and use the remaining k− 1 groups as the training
data-set for developing SVM classification model. Finally,
we evaluate the quality of the trained model with the hold-
out group for evaluations.

After repeating the same process of each group, we
calculate the average detection quality from the k trained
SVM models. In our experiment, we choose k = 10, a
common value in machine learning model evaluations, for
measuring the detection quality. Figure 6 illustrates the false
positive rate versus the true positive rate, also referred as
the receiver operating characteristic (ROC) curve. The area
under the curve (AUC) is 0.94, suggesting that our proposed
system is able to effectively and accurately detect malicious
domains.
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Figure 6: Measuring detection accuracy via AUC based on
10-fold cross-validation.

To qualify the contributions of each feature vector
learned from graph embedding, we evaluate the contribution
of each individual feature vector for detecting malicious
domains. Specifically, we train three different SVM-based
binary classifiers based on three feature vectors via learning
domain querying behavioral similarity graph, domain IP
resolving similarity graph, and domain temporal similarity
graph, respectively. As shown in Figure 7, the AUCs for
these SVM classifiers are 0.89, 0.83, and 0.65. The SVM
classifier built on top of the feature vector learned from
via learning domain querying behavioral similarity graph
achieves the highest detection accuracy, while the SVM
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Figure 7: Qualifying the contributions of three feature vec-
tors learned from graph embedding.

classifier based on domain temporal similarity graph has
the lowest accuracy. However as illustrated in Figure 6,
combining all these feature vectors together to train the
classification algorithm lead to an AUC of 0.94, thus sub-
stantially improving the overall detection accuracy.

8.2. Performance Comparisons

To demonstrate the performance of our proposed algo-
rithm in detecting malicious domains, we implement and
evaluate the state-of-the-art algorithm, i.e., Exposure [19]
which detects malicious domains with a similar method of
passive DNS analysis. In particularly, Exposure relies on
four groups of statistical features extracted from passive
DNS traffic: time-based features, DNS response-based fea-
tures, TTL-based features, and domain name lexical fea-
tures, and develops a J48-based decision tree classifier with
labeled training data.

Based on the same training data we used in this study, we
extract the same four groups of features as in [19], and trains
J48 binary classification classifier. The experimental result
shows that the Exposure algorithm achieves an AUC of 0.88.
In other words, comparing with the algorithm in [19], our
proposed SVM-based classification algorithm with feature
vectors learned with graph embedding improves the AUC
by 6.8%.

Our in-depth analysis on the Exposure algorithm shows
that statistical features of DNS traffic change over time
and cross different networks, thus lowering the detection
quality of Exposure in classifying malicious domains. For
example, in TTL-based features group, Exposure uses lower
TTL values to detect malicious domains. However, recent
studies [4] show the TTL values of malicious domains
has increased, while the average TTL value of all Internet
domains is decreasing due to the wide deployment of content
distribution networks (CDNs) and similar services [12].
Similarly, in domain name lexical features group, the per-
centage of numerical characters and the length of the longest

meaningful substring (LMS) can not effectively detect ma-
licious domains for non-English speaking countries where
many domain names do not contain valid English words or
prefer the numerical values with special meanings in local
languages.

9. Related Work

The existing studies on malicious domain detection
can be broadly classified into three categories based on
the underlying techniques: classification-based solutions,
clustering-based solutions, and graph-based techniques. The
classification-based solutions first rely on domain knowledge
from networking and security experts to extract relevant
statistical features of benign and malicious domains. Based
on such features and labeled data-sets with known malicious
and benign domains, these solutions employ supervised
classification algorithms such as support vector machines
(SVMs) and decision trees to build binary classifiers for
distinguishing benign and malicious domains [10], [19]–
[23].

For example, the early study in [20] first identifies a
broad range of network and zone features of domains for
characterizing capacity planning, usage patterns and man-
agement of domains, then explores automated classification
algorithms to model DNS behavior of known benign and
malicious domains, and finally applies the classification
model to compute reputation or malicious scores for new
domains. Similarly, [19] extracts four groups of features
from passive DNS traffic: time-based features, DNS answer-
based features, TTL-based features, and domain name lex-
ical features for training a J48 decision tree classifier with
labeled training data-set. In addition to features extracted
from local DNS traffic, a number of recent studies also
exploit features from network traffic at the upper DNS hier-
archy [21], APT malware C&C server domain features [22],
host behavior features, domain activity features and IP abuse
features [10], and temporal dynamics and behavior profiles
of domains [23]. Differing from these studies, our proposed
algorithm requires little expert knowledge for extracting
domain statistical features which often exhibit different be-
haviors across different networks or over time. In addition,
our empirical analysis shows an increasing trend of TTL
values from malicious domains.

The clustering-based solutions [12], [24], [25] extract
the feature similarity between domains, and utilize the sim-
ilarity measures to group domains into distinct clusters. For
example, [24] calculates the similarity between non-existent
domains (NXDomains) at the authoritative level, and then
adopts hierarchical clustering to identify the domain groups
produced by domain generation algorithms (DGA). Simi-
larly, [12] examines the temporal correlation among DNS
queries, and then applies XMeans clustering algorithms with
a few seed malicious domains to detect a large number of
malicious domains groups, while [25] clusters the end hosts
compromised by the same DGA algorithm based on their
query behaviors observed in DNS traffic logs.
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The graph-based solutions [26], [27] first model the
behavior of domains via a variety of graphs, and then
use graph mining approaches to detect malicious domains.
For example, [26] builds DNS failure graphs to model the
interactions between end hosts and failed domain names, and
successfully extracts coherent co-clusters from DNS failure
graphs with a statistical tri-nonnegative matrix factorization
technique, while [27] constructs host-domain association
graph for detecting malicious domains via the belief propa-
gation (BP) inference algorithm.

Our proposed algorithm essentially combines the ad-
vantages of all three existing types of malicious domain
detections since we i) rely on bipartite graphs and one-mode
projections for capturing behavioral similarity of domains
and explore graph embedding to learn the feature represen-
tations of domains, ii) develop a binary classifier based on
SVMs for distinguishing malicious domains, and iii) run
XMeans clustering for mining and discovering malicious
domain clusters.

10. Conclusions and Future Work

In light of the limitations of existing approaches in
detecting malicious domains, this paper introduces an end-
to-end system for effectively and accurately detecting ma-
licious domains via behavioral modeling and graph embed-
ding which does not rely on expert knowledge, traffic or
lexical features. Specifically this paper models the behav-
ioral patterns of domains via bipartite graphs, and explores
one-mode projections to capture the behavioral similarity
of domains. Relying on graph embedding techniques, we
successfully represent domain behaviors via feature vectors,
and develop an SVM-based classification algorithm with la-
beled domain data-sets for predicting new domains observed
in a large campus network as malicious or benign. Our
extensive experimental results have shown that our proposed
algorithms outperform existing studies and achieves an AUC
of 0.94 for detecting malicious domains from a real and
large campus network. One of our future work is to deploy
our proposed system in distributed campus networks or
enterprise networks and analyze the correlations of mali-
cious domains for mining large-scale attack campaigns and
detecting new and evolving botnets.
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