
1

Immersive Virtual Reality Attacks and the
Human Joystick

Peter Casey, Ibrahim Baggili and Ananya Yarramreddy

Abstract—This is one of the first accounts for the security analysis of consumer immersive Virtual Reality (VR) systems. This work
breaks new ground, coins new terms, and constructs proof of concept implementations of attacks related to immersive VR. Our work
used the two most widely adopted immersive VR systems, the HTC Vive, and the Oculus Rift. More specifically, we were able to create
attacks that can potentially disorient users, turn their Head Mounted Display (HMD) camera on without their knowledge, overlay images
in their field of vision, and modify VR environmental factors that force them into hitting physical objects and walls. Finally, we illustrate
through a human participant deception study the success of being able to exploit VR systems to control immersed users and move
them to a location in physical space without their knowledge. We term this the Human Joystick Attack. We conclude our work with
future research directions and ways to enhance the security of these systems.

F

1 PREAMBLE

V IRTUAL Reality (VR) has found itself into our lives.
While the excitement and buzz surrounding VR, and

specifically immersive VR continues to increase, it is im-
perative that the scientific community pays attention to the
security of these platforms. While it may be obvious to
security researchers that immersive VR needs to be secure,
prior work has not examined it in a systemic way while ex-
ploring the impact immersion has on manipulating people.
Our work does not only coin and hypothesizes potential
VR attacks, but also implements them. Furthermore, we
illustrate through a human participant deception study that
we are indeed capable of moving VR users in a physical
space, to a location of our liking, without their knowledge or
consent. Our hope is that this primary work catalyzes future
research efforts in this domain, especially since immersive
VR bears psychological and physiological implications on
its users.

2 INTRODUCTION

VR is rapidly becoming a household item providing a
platform for a wide variety of applications. Currently, VR is
highly used in gaming, socialization, rehabilitation and job
training, but there many other applications [1]. VR technol-
ogy has become more accessible at an affordable price point,
yet its utility is not fully realized. There is an anticipation
that VR will become ubiquitous. Due to improvements in
graphics technology, mobile VR and price reduction, VR has
solidified its presence in the consumer market [2].

In 2017, the International Data Cooperation estimated
that $11.4 billion investments were made in VR equip-
ment [3]. Forecasts for spending over the next four years
calls for a 100% increase in spending every year. Two key
factors in driving the growth of the VR market are the
consumer’s desire for immersion and the novelty of 3D
user interfaces [2]. Small scale portable VR implementations
such as the Google Cardboard offers an affordable VR en-
vironment to compatible smart phones. A simple cardboard
headset can be purchased for about $15 to house a user’s
phone. Acting as the VR system, the phone using Google’s

software will render two stereoscopic views allowing porta-
bility and availability. Other options for mobile VR include
the Google Daydream and Samsung’s GearVR, which is
the most popular at 4.51 million units sold in 2016 [4].
Fully immersive systems which include features such as
motion controllers and Infrared tracking are also becoming
increasingly popular. Among the most common are the
Playstation VR (PSVR), Oculus Rift, and the HTC Vive. The
fully immersive nature of these systems provides a unique
experience. The common thing amongst all VR experience
is their ability to create Virtual Environments (VEs).

VEs attempt to create a replica of an object or experience
in a way for a human to understand [5]. Fully immersing
someone into VR has shown to influence their behaviors and
invoke sensations experienced in reality. These sensations
are in part a result of presence, defined as a participant
feeling as though they are “physically present within the
computer-mediated environment” [6]. For example, in a
study by [7], participants were presented with a small ledge
and a simulated cliff in VR, eliciting a fear of heights
and demonstrating the participants’ presence. The current
generation of VR systems completely encapsulate the user’s
vision. The complete removal of real-world distractions
further increases the user’s presence [8]. The perception of
presence and other familiar sensations may create a false
sense of security and lend to the user being susceptible to
harm.

A VE allows the developer to fully dictate the encounters
a user will experience. With content becoming more realistic,
psychologists have found use for immersion therapy [5].
The ability to illicit responses from subjects in VEs allows
psychologists to treat phobias. The first phobia exposure
treatment progressed from displaying images of spiders to
grabbing a virtual spider and its toy counterpart [9]. Again,
the sense of presence allowed researchers to evoke fear.
Other applications such as entertainment and training can
have similar effects where users forget they are in a VE. Being
that content creators can induce such strong responses and
VR systems are becoming commonplace, an evaluation of
the security of VR systems is prudent.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2907942

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

Fig. 1: Hardware and Software Abstraction Layers of the HTC Vive and Oculus Rift

The Internet in its infancy was much like VR, in that
the excitement of such a new technology can cause some
potential downfalls to be overlooked. Simply achieving a
working product is a challenge in its own right. The creators
of the Internet could not predict how it could be used ma-
liciously [10]. As VR systems become ubiquitous, they will
face the same scrutiny and malicious users will exploit them.
For example, a recent study by [11] identified that children
immersed in VR for 20 minutes showed deteriorated balance
immediately after. We contend that VR players can be ma-
nipulated and may be physically compromised making VR
users an assailable population. Although, research has been
conducted regarding security and privacy of Mixed Reality
(MR) systems [12], we found no applied work specific
to vulnerabilities presented by room-scale immersive VR.
Therefore, we deem it necessary to explore novel attack
vectors in VR.

Our work contributes the following:

• We coin the following attacks: Immersive Attack, Chap-
erone Attack, Overlay Attack, Disorientation Attack, Hu-
man Joystick Attack and finally The Man-In-The-Room
Attack.

• We implement proof of concept Immersive Attacks
using OpenVR against the HTC Vive and Oculus Rift
and discuss ways to mitigate them.

• We successfully implement the Human Joystick Attack
and provide evidence of participant manipulation
through a human participant deception study.

• We catalyze a research agenda for the security of VR
systems.

• We provide the source code developed upon request
and the vetting of the requesting party.

The rest of the paper is organized as follows. First, we
share background information and related work in Section
3. The devices and software used in our work are discussed
in Section 4 followed by attack implementations in Section
5. Results of testing the Chaperone, Disorientation, Overlay,
and Camera Attacks testing are shared in Section 6. In
Section 7, we share a human subject experiment testing
the Human Joystick Attack and discuss our findings and
attack mitigations in Section 8. We discuss new and similarly
novel attacks in Section 9. Finally, future work is identified
and concluding remarks are made in Sections 10 and 11
respectively.

3 BACKGROUND INFORMATION

3.1 Virtual Reality Components

Due to the characteristics of full immersion discussed in
Section 2, our work focused on immersive VR systems; the
HTC Vive and the Oculus Rift. These systems provide a
realistic virtual experience through a sophisticated tracking
system allowing user movements to be replicated in the VE
in real-time. The Oculus Rift Head Mounted Device (HMD)
has a series of Light Emitting Diodes (LED)s that are tracked
by a small camera, known as the Constellation Tracking
System [13]. This is supplemented by the Adjacent Reality
Tracker (ART), which features an Inertial Measurement Unit
(IMU), magnetometer, accelerometer, and gyroscope [14].
The HTC Vive reverses these roles by placing the tracking
sensors on the headset and emitting an Infrared (IR) beam
from the base station or lighthouses. The lighthouses begin
the tracking cycle with a synchronizing pulse, followed by
two perpendicular sweeps of IR. The sensors measure the
time between the pulse and the sweeps to determine their
angle to the lighthouse [15]. The Vive also incorporates an
IMU to fill the gaps in tracking due to obstruction.

The improvement in tracking technology has brought
forth room-scale VR experiences. Room-scale adds another
dimension to the experience allowing VR users to walk
about freely in a play area. Being that the player’s vision
is entirely encapsulated by the HMD, there must be a
safeguard to protect the player from obstacles (walls). Both
systems implement similar solutions involving the user
tracing the boundary of the room prior to playing using a
controller. The Vive collision avoidance safeguard is referred
to as the Chaperone and is the target of our proof of concept
attack, while the Oculus Rift uses the term Guardian. One
can think of these as VR fake translucent walls that appear
during a VR experience when a user approaches a real wall.

3.2 OpenVR - The Attack Layer

OpenVR was developed by Valve Software for SteamVR
devices with the intent to allow developers to design appli-
cations without having to rely on vendor specific Software
Development Kits (SDK). This is accomplished by provid-
ing virtual functions in which the compatible SDK can be
matched to the initialized system [16]. Figure 1 shows how
OpenVR acts as a wrapper for the Oculus Rift to allow
compatibility for developers between VR systems. Although
distribution is currently limited to the HTC Vive and Oculus

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2907942

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

TABLE 1: Virtual Reality Devices

HTC Vive Oculus Rift
Device VID PID Firmware Device VID PID Firmware
Hub N/A N/A N/A Rift 2833 0031 708/b1ae4f61ae
Hub Controller 0424 274D N/A Rift Audio 2833 0330 708/b1ae4f61ae
Bluetooth N/A N/A 211 Sensor x3 2833 0211 178/e9c7e04064ed1bd7a089
Watchman Board 28DE 2000 1462663157 Left Touch f3c65f7a5f
Camera 0BB4 2C87 8590262295 Right Touch f3c65f7a5f
Audio Device 0D8C 0012 3
Main Board 0BB4 2C87 1.6
Wireless Receiver 1 28DE 2101 C638F6E4EF
Wireless Receiver 2 28DE 2101 90538B7D13
Base Stations 436

Rift, at the time of writing, Microsoft had also announced
their VR headsets will be Steam compatible [17], meaning
they will likely be adapted for OpenVR, since Steam is
based on OpenVR. Vulnerabilities found in OpenVR are
likely to affect all compatible devices. The attacks described
in our work are implemented on the software interface
level; OpenVR. Although we suspect there are other security
weaknesses at the hardware layer (Section 10) and specific
applications, targeting OpenVR offers a broad attack sur-
face.

SteamVR is an application that manages the VR hard-
ware and provides an interface to launch applications. The
HTC Vive relies largely on the services that SteamVR pro-
vides such as the Chaperone. Steam provides compatibility
for the Oculus Rift by acting as a wrapper to the Oculus Rift
Manager. This provides redundancy of services in the case
of collision avoidance. The services provided specifically by
the Oculus Rift Manager were not targeted in our proof
of concept attacks, yet the function of the Guardian and
Oculus Manager are similar enough that they would require
an equal security evaluation. In our work, all references
to the Chaperone are specifically regarding the SteamVR
generated collision avoidance system.

4 APPARATUS

This section outlines the system used in our testing in Table
2 and the VR devices used in Table 1. It is important to
note that these are off-the-shelf devices, and even though
the granular details are presented, all that was needed to
conduct this work was a gaming computer, the HTC Vive,
and the Oculus Rift. Of course, we also constructed our own
tools (see Section 5.3).

TABLE 2: System Details

Device Details
Processor Intel Core i7-6700 CPU
System Type: 64-bit OS, x64 based processor
Graphics Card NVDIA GeForce GTx 1070
Manufacturer iBUYPOWER
Installed Memory (RAM) 8.00 GB

Application Version
Steam 1508273419
SteamVR 1507941678
Oculus 1.19.0.456194

5 DISCOVERY AND ATTACK IMPLEMENTATION

The security analysis of the VR systems was performed with
several main objectives. Our study sought to answer the
following questions:

• Can a VR user’s safety be compromised?
• Can a VR user be disoriented?
• Can a VR user be manipulated?

To gain a preliminary understanding of the systems, we
first conducted forensic artifact collection. To identify arti-
facts of potential value, a system report was generated using
SteamVR. This yielded the locations of the boundary data,
default and current system settings, executable path loca-
tion, among many other features. Stored in plain-text, with
no integrity checks in place, this was immediately deemed
a vulnerability. Manual inspection of Steam, SteamVR and
application artifacts was conducted for completeness.

Familiarization of OpenVR was accomplished by ex-
amining the API documentation. Small scale development
efforts lead to the discovery of lack of access control to VR
resources. Unvetted applications were found to be able to
access and modify the VE. The inability to regulate and
authenticate accesses to the VR system was also deemed
a vulnerability.

5.1 Adversial Model

During the research and discovery phase we adopted a
strong adversarial model; placing no limitations on an ad-
versary’s capabilities. This was done to facilitate a robust
security analysis. Because our scope is limited to the VR
systems and their applications, we assumed the adversary
has compromised the target machine in some fashion, allow-
ing for user-land post-exploitation. On the other hand, the
adversarial goals were guided by hypotheses, specifically
related to Immersive VR. Aligned with our hypotheses and
indicative of a successful attack, we impose several other
secondary adversarial objectives:

• The target VR user would have no immediate indi-
cation that their privacy is being compromised.

• The attack does not interrupt ongoing VR applica-
tions or indicate that malicious activities were occur-
ring, unless that was the objective of the attack.

• No action would be necessary from the VR user for
the attack to take place.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2907942

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

Our findings and requirements for attack implementa-
tion (following sections) allow for the adversarial require-
ments to be further refined. Attacks which modify the VE
require the ability to initiate instances of OpenVR applica-
tions, or meaningful write privileges on VR system config-
uration files. Configuration file availability alone is not a
requirement but decreases attack sophistication and offers
several other worthwhile points of control. The ability to
affect an ongoing user experience also requires the ability to
spawn OpenVR instances, whereas solely modifying config-
uration files would preclude real-time attacks. Furthermore,
attacks which affect the VR scene or request information
from the run-time also require OpenVR instances. Generally
speaking, the adversary requires the capability to modify
the safety boundary or room-scale configuration.

5.2 Classification of Immersive Attacks

We define an Immersive Attack to be any attack that targets
the unique properties of Immersive VR and associated im-
mersed user vulnerabilities. An Immersive attack results in a
VE that has been maliciously modified, as to cause physical
or mental harm and/or disrupt the user. We classify Immer-
sive attacks by the attack’s outcome. We coin below new
terms for specific implementations of Immersive attacks:

• Chaperone Attack: Any attack that modifies the VE
boundaries (VR walls). This could be used to make a
virtual space appear smaller or larger to an immersed
user or may be used to prevent the Chaperone from
helping users identify their real world boundaries
(real walls) during an Immersive session.

• Disorientation Attack: Any attack that is used to
elicit a sense of dizziness and confusion from an
immersed VR user.

• Human Joystick Attack: Any attack that is used
to control an immersed user’s physical movement
to a predefined physical location without the user’s
knowledge. In our work, we implemented this by
manipulating a user’s Virtual Environment.

• Overlay Attack: Any attack that overlays unwanted
images / video / content on a player’s VR view. The
player will have no option to remove the content.
This attack includes persistent images as well as
content that remains fixed in virtual space.

5.3 Tools

Manipulation of the Steam configuration files were essential
for the Chaperone and Disorientation Attacks. For the purpose
of parsing and modifying the configuration files, we utilized
Python 3.6, specifically the JSON module.

To replicate the scenario and demonstrate that a remote
hacker can implement attacks, we incorporated a reverse
shell capable of remotely executing attack payloads. To
collect images captured from the device’s front facing HMD
from the HTC Vive, we utilized a User Datagram Protocol
(UDP) stream constructed using the Simple and Fast Multi-
media Library (SFML) API [18].

5.4 Scenario

To provide some context to the reader, we preface the
attack implementation with a generic scenario (Figure 2)
in which these threats may be employed. Our assumption
regarding payload delivery relies on an initial compromise
of the target machine and the presence of a VR system
with the appropriate OpenVR drivers (default provided by
SteamVR and Oculus). Any number of exploits or social
engineering tactics that could result in user land payload
execution would suffice for this stage. As per Section 5.3, we
developed a command and control (C2) listener specifically
for these attacks, however any post exploitation tool, such
as meterpreter, will work. Once executed our C2 is used
to manipulate the necessary configuration files and initiate
instances of OpenVR. These minimal applications will for-
ward the attackers command to the VR runtime. Because
our OpenVR applications are independent, the ongoing VR
application can continue to execute uninterrupted. Finally,
any extracted information is relayed back to the attacker.

5.5 Chaperone Attack

Through manual system examination, we discovered a
JSON file that stores the details of the room setup, Table 3,
1-2. Each room setup or universe contained the 3D geometric
data representing the boundaries of the room. We created a
tool to parse and modify the boundaries in the Chaperone
artifact. This artifact portrays a security weakness where
critical safety feature data (physical wall boundaries) is
stored in cleartext, unencrypted, and is easily accessible.

We begin the attack by modifying the JSON configura-
tion file. The HTC Vive and the Oculus Rift create separate
directories containing the artifacts. If the file manipulations
happen while the user is immersed into a VR environment,
this modification will have no effect until the VR system is
restarted. To combat this challenge, we initialize an OpenVR
instance as a background application (Listing 1, line 1). This
application type does not have access to the renderer and
will not start SteamVR but can send commands to the Steam
processes. We call for Steam to reload the configuration file
from the disk (Listing 1, line 2). This loads the data into our
process’s working copy of the Chaperone. We then commit
our copy to the system, as the active Chaperone (Listing 1,
line 3). This change occurs seamlessly during VR immersion.
If a VR user was not conscious of the Chaperone, this would
likely go unnoticed and does not affect rendering. Physical
harm could result from an immersed user’s confidence in
bounds that are no longer in effect.

The attack was implemented due to the ease
of access to the Chaperone data and its simplic-
ity, however, it should be noted that the Chaperone
may be modified entirely in OpenVR. The function
SetWorkingCollisionBoundsInfo can be used to mod-
ify the boundaries of the working copy of the Chaperone.
Calling CommitWorkingCopy will then apply the changes.

If an attacker’s intent is to simply hide the collision
boundaries the opacity attribute can be set to transparent
or forceVisible to false.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2907942

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

VR DeviceTarget Machine

Workstation VR Application

Command &
Control

Chaperone,Overlay,
Camera, Disorientation,

Human Joystick

Compromise

Data Leakage
Camera, Position Feed

Initiate Background
Instance

Modify
Configuration

Fig. 2: A potential scenario for Immersive attacks.

TABLE 3: Files Modified in Attacks

File Path Contents
1 \Steam\config\chaperone_info.vrchap Vive Chaperone Coordinates, Translation, Yaw, Time, Play Area, UniverseID
2 \Steam\config\oculus\driver_oculus.vrchap Rift Chaperone Coordinates, Translation, Yaw, Time, Play Area, UniverseID
3 \Steam\config\steamvr.vrsetting Camera Enabled, Chaperone Opacity/Color, Lighthouse Bluetooth, etc

Listing 1 : Chaperone Attack

1 m pHMD = vr : : VR Init (& eError , vr : : VRApplication Background) ;
2 vr : : VRChaperoneSetup()−>ReloadFromDisk (vr : : EChaperoneConfigFile Live) ;
3 vr : : VRChaperoneSetup()−>CommitWorkingCopy (vr : : EChaperoneConfigFile Live) ;

5.6 Disorientation Attack

The Disorientation Attack is similar to the Chaperone Attack
in that the overall procedure is the same. This attack adjusts
the VR immersed user’s location and rotation in the virtual
play-space. When users are subject to visual motion cues
in the absence of physical motion, Visually Induced Motion
Sickness (VIMS) can occur [19]. By applying the translation
and rotation vigorously and randomly we replicated a sea-
sick sensation.

Utilizing our Python JSON parsing script we modified
the Chaperone configuration file (Table 3, 1-2). Two universe
traits control the players orientation: yaw and translation.
Adjusting the translation will cause lateral movements
while yaw will affect the direction the user faces. Making
small adjustments and calling for the Chaperone reload we
can take control of the player’s orientation.

Being that our implemented attack employs the same
configuration files as the Chaperone Attack, the extent of
our success for the Oculus Rift was similar to the Chaperone
Attack in the HTC Vive. When the Oculus Rift launched
from Steam, we were able to apply the translations and
rotations.

We discuss driver level attacks in Section 10, however,
we note that through OpenVR custom drivers it is possible
to map the tracking solution from one device to another [20],
[21]. For example, rapid and disorienting motions can be
caused by replacing the tracking solution of the HMD with
the tracking solution of the controller. This implementation
of the attack reduces latency by using the systems tracking
against itself and resulting in a more fluid disruption.

5.7 Human Joystick Attack

Our implementation of the Human Joystick Attack is similar
to the Disorientation Attack in all aspects except for the rate
and control at which it is conducted. However, the effect the
attack has on the immersed VR user is distinct enough to
warrant separate classification. The attack attempts to lead
the player to an attacker defined direction and location by
compounding imperceivable VE translation. The gradual
shift in the VE aims to cause the player to readjust their
location to the new virtual center point.

With the intent to guide and control the VR user’s
movements without their knowledge, we must first remove
any possible indication of foul play. Continuous translation
in any direction will cause the player to pass over the
Chaperone, thus in most cases, we begin the attack by
disabling or expanding the Chaperone. As we will discuss
in Section 5.9, it is possible for the attacker to access both the
screen data and the front facing camera. This could inform
the attacker of necessary information to make a decision
regarding the direction they intend to move the player and
the optimal time to apply the translation.

We then apply the translation towards the desired direc-
tion incrementally in an amount small enough to be imper-
ceptible to the immersed VR user. This is repeated until the
player reaches an obstacle or the desired physical endpoint.
In some instances, it is necessary to utilize a change in
rotation, however, this is application (VR experience) de-
pendent. Since all other attacks are technical in nature, we
ran a human participant deception study, to examine the
effectiveness of our implemented Human Joystick Attack,
which is discussed in Section 7.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2907942

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

Listing 2 : Overlay Attack

1 m pHMD = vr : : VR Init (& eError , vr : : VRApplication Overlay) ;
2 vr : : VROverlay ()−>CreateOverlay (oKey . c s t r () , ” Overlay ” , &oHandle) ;
3 vr : : HmdMatrix34 t current pos ;
4 vr : : VRChaperoneSetup ()−>GetWorkingStandingZeroPoseToRawTrackingPose(& current pose) ;
5 current pos .m[2] [3] = −1;
6 vr : : VROverlay ()−>SetOverlayTransformTrackedDeviceRelat ive (oHandle ,
7 vr : : k unTrackedDeviceIndex Hmd , &currrent pos) ;
8 vr : : VROverlay ()−>SetOverlayFromFile (oHandle , img path) ;
9 vr : : VROverlay ()−>ShowOverlay (oHandle) ;

5.8 Overlay Attack
An overlay is a two-dimensional image that is projected
onto the rendered screen [22]. This feature is intended to
supplement an Immersive VR scene and will not cause
an interrupt. This allows overlays to be used regardless
of the running VR application. Unlimited overlays can be
created, however, only one high definition overlay can be
rendered. Overlays are typically used for application menus,
information display, and the dashboard.

An overlay, like any virtual object, can be absolutely or
relatively positioned. The overlay can be transformed to
match the location of any tracked device. By linking the
translation of the overlay to the HMD or VR controllers, an
attacker can ensure the malicious images will be persistently
visible.

There are no built-in VR application features that allow
users to force close an overlay. This combined with the
ability to call an overlay from any application makes this
particularly prone to misuse. Once the attack has been
executed, the only way for the player to close the overlay
is to restart the application.

This feature is provided by Valve Software as a conve-
nient means to render images, however, aspects of overlays
lend to potentially malicious behavior. Reference code for
this attack is provided in Listing 2. We begin the attack
by initializing the type to V RApplication Overlay (line 1).
This will cause SteamVR to boot if not already running. We
then create the overlay and provide a key and handle for
referencing (line 2). The default overlay visibility is set to
hidden. This attack will display an image directly in front
of the user and encapsulate the majority of the VR view. To
accomplish this, we first capture the origin of the play space
in line 4. We then apply a translation to move the image 1
meter in front of the player’s field of view (line 5). We then
link our transformation with the tracking of the HMD (line
6). Finally, we load our image and set the overlay to visible
(lines 8-9).

Strategically replacing this attacks playload with a com-
monly used VR application could be a means to deliver
advertisements or completely blocking game play as a
form of ransomware. We were able to accomplish this by
replacing the path for a SteamVR tool with our payload. We
ask the reader to consider the psychological effects of overlaying
disturbing images by an attacker during Immersive experiences.

5.9 Camera Stream and Tracking Exfiltration
Although not unique to immersion (thus not included in
Section 5.2), the following attack further exploits the per-
missive nature of the VR system. With the advent of inside-

out tracking, cameras may be a requirement for room-scale
immersion [23]. Furthermore, a wide variety of information
can be extracted from the system to provide an attacker with
information not visible to the camera. This, in conjunction
with the resulting high impact we include the following
proof-of-concept attack.

The HTC Vive is unique from the Oculus Rift in that the
HMD has a front facing camera. This presents another attack
surface. Note that SteamVR does offer support to enable
and disable the camera. Disabling this feature will prevent
the camera from initializing and providing a video stream.
This was the only attempt to restrict permissions to services we
observed.

Similar to the Chaperone configuration file, SteamVR
stores configuration settings in an unencrypted JSON file.
We modify the file containing general settings (Table 3, 3),
adding the attribute camera: {enableCamera: True}.
Conversely, the absence of the attribute disables the
camera. For the change to take effect, SteamVR must
be rebooted. OpenVR provides the functionality to shut
the system down in the function vr::VR_Shutdown().
Finally the system can be rebooted by temporarily
initializing the system in a mode other than back-
ground, such as vr::VRApplication_Overlay or
vr::VRApplication_Scene. This allows an attacker to

access the camera regardless of the state the system is in.
Accessing the camera does not produce a rendered im-

age nor require a specific scene, therefore we can initialize
the attack as an OpenVR background process (Listing 3, line
1). Again, this allows the process to influence the VR system
without interrupting the current scene application. Being
that there is no indication that the camera is powered on, the
user would otherwise be unaware of the attack. We request
access to the video stream which will activate the camera
(Listing 3, line 4). Note, if the attack is the first client to call
for video services, the first few frames may be delayed due
to camera spin-up and auto exposure [24].

Calling GetvideoStreamBuffer copies the frame and
header into the specified buffer (Listing 3, line 5). We rec-
ommend receiving the header prior to the frame to ensure
an appropriate amount of memory has been allocated.

Utilizing the UDP stream discussed in Section 5.3, we
were able to export the camera’s video stream. OpenVR
also has the support to capture many other data points.
In the same manner we can export the tracking solutions,
providing further incite to the target’s physical behavior or
environment. Reconstructing the exfiltrated tracking infor-
mation, we are able to monitor the user’s movements in real
time.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2907942

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

Listing 3 : Camera Attack

1 vr : : IVRSystem *m pHMD = NULL;
2 vr : : IVRTrackedCamera *camVr ;
3 m pHMD = vr : : VR Init (& eError , vr : : VRApplication Background) ;
4 camVr−>AcquireVideoStreamingService (vr : : k unTrackedDeviceIndex Hmd , &m hCamera) ;
5 camVr−>GetVideoStreamFrameBuffer (m hCamera , vr : : VRTrackedCameraFrameType Undistorted ,
6 m pCameraFrameBuffer , m nCameraFrameBufferSize , &frameHeader , s i ze of (frameHeader)) ;

6 TESTING AND RESULTS

In this section we discuss our findings for each attack on
both the HTC Vive and the Oculus Rift.

6.1 Chaperone Attack Results

Our proof of concept attack was successful against all tested
OpenVR and SteamVR applications for the HTC Vive. As
SteamVR is the sole manager of the collision bounds for
the HTC Vive, targeting the Chaperone configuration file
affected all applications. We found the method of modifying
the artifact had the advantage of reliability over the faster,
Chaperone working-copy method accomplished entirely in
OpenVR. This is due to the working-copy failing to commit
depending on the state of the HMD. Additionally, rapid
modifications caused the Chaperone to enter an erroneous
state, preventing further Chaperone commits. We found that
if the system was idle or the proximity sensor did not
detect the headset being worn, the Chaperone would also
be inactive. In contrast by modifying the configuration file,
our changes would remain, and the next time the Chaperone
is loaded our changes would take effect.

As discussed in Section 3.1, when launched via Steam,
the Oculus Rift will inherit both the Guardian and the Chap-
erone. Our implementation will influence only the Steam
generated Chaperone. Upon startup, SteamVR will load the
Guardian boundary information and create a JSON file con-
taining the universe, similar to the SteamVR generated room
setup. Being that our attack targets the Steam generated file,
this implementation will not alter the Guardian. We expect
that the Oculus Rift produces an artifact containing this
information and could be modified in a similar manner.

We found that expanding the boundaries beyond what
the player was capable of reaching served as a better
method of hiding the Chaperone. In some cases, reducing
the Chaperone’s opacity did not affect all safety features. If
enabled, the front-facing camera would continue to activate
as the player approached an obstacle. Additionally, some
Chaperone modes would continue to display the outline on
the floor, a parameter which can also be modified.

6.2 Disorientation Attack and Human Joystick Attack
Results

The technical success rate of these attacks were identical
to that of the Chaperone Attack being that we targeted
the same artifacts. We found that in both systems, the VR
user’s orientation could be manipulated. By targeting the
Steam artifacts attack success on the HTC Vive was ex-
pected, however OculusVR maintains an independent room
configuration and orientation. When the Rift is initialized in
Steam, the rooms orientation is retrieved from Oculus and

stored in the Chaperone configuration file (Table 3, 3). This
file is then referred to by all applications launched through
SteamVR. Changes to this artifact will reflect upon all Steam
applications but will not be inherited by the Oculus room
configuration. The ability to change the user’s location
and orientation from SteamVR generated configuration file
suggests that Oculus entirely relinquishes its room-scale
configuration. OpenVR is likely utilizing functions within
the Oculus SDK, suggesting these attacks may also be
conducted solely through the Oculus SDK. Despite being
a closed system, the Oculus Rift still allows third party
managers access to some of its features.

We found the effectiveness of the Disorientation attack
to be related to the speed and magnitude of the artificial
motion. Surprisingly we observed that slower fluid sine
waves produced the sea-sick sensation and degraded bal-
ance more rapidly than breakneck fluctuations. The fluidity
of the attack was improved through smaller and more
frequent updates, paired with interprocess communication
synchronizing manipulation and commits. There may be
a point of magnitude at which the user will reject any
perceived artificial motion. Further testing is required to
validate this relationship.

6.3 Overlay Attack Results
In all applications tested, we were successful at populating
an image on the screen. Additionally, we identified no
means to remove the image while the user is immersed.
Hiding the payload process from the victim will further
conceal the responsible program [25]. This attack was also
successful against the Oculus Rift, however, OculusVR does
check for third-party applications. By default, the Oculus
Rift Manager will not allow applications that did not origi-
nate from the Oculus store to launch. This permission must
be granted to utilize Steam software and its applications.
Given that some content is only found on Steam or from
other developers, many users will have allowed this feature.
Once the payload application is executed it will appear in
the victim’s Oculus library reducing transparency. Further
development and testing are required to avoid this user
induced permission-based model. In contrast, the Chaper-
one, Disorientation, and Human Joystick attacks were not
flagged, as they did not produce a rendered product.

6.4 Camera Attack Results
At the time of writing, the Oculus Rift did not have a front
facing camera thus, our results are solely for the HTC Vive.
In all tested VR applications, we were able to initialize and
extract the video stream buffer. In fact, an active scene was
not necessary. The state of the VR system was a factor,
however, and in all instances, we were able to produce

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2907942

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

conditions to access the camera. Without knowledge of the
state of the system, the two courses of action described
in Section 5.9 alleviated a handle request for the camera
returning NULL. The first, indicated by a failed request for he
HMD is remedied by powering on the system. To ensure the
system is active without interrupting a current application
we can initialize a short-lived application as an overlay. As
per our assumptions, this will ensure that if the system is in
use there will be no effect. Second, the permission associated
with the camera being enabled via the configuration file
granted the needed access. The only instance in which the
player would be disrupted is the case where the system is
in use and the camera is disabled. Inducing a system restart
may raise an alarm to the victim.

If further information is required by the attacker as
to the type of hardware available, OpenVR provides this
information using the IVRSettings class [24].

7 HUMAN JOYSTICK ATTACK EXPERIMENT

To determine if the Human Joystick Attack is capable of
manipulating an immersed user’s location without their
knowledge, we designed and conducted a deception study
utilizing the HTC Vive. In the experiment, users played
immersive arcade style games in VR while the Human
Joystick Attack attempted to navigate the player to a pre-
determined location. The attack’s success is measured by
the player reaching a physical destination created by the
attacker and the immersed VR user reporting no awareness
to the attack or unusual movement. We hypothesized that
immersed players will follow the VE.

7.1 Methodology
The Human Joystick deception study was conducted in the
following phases:

• Experimental Design: We designed the experiment
as well as the post-immersion survey instrument.
The experiment was a deception study, as partici-
pants were recruited under the premise that they
would be playing VR games. Participants were not
told that we would manipulate their VE to influence
their physical movements until they were debriefed
at the end of each experimental run.

• Tool Creation: In this phase we developed software
to track and visualize the participant’s location and
the translation of the VE.

• IRB Approval: We submitted an IRB request and
received approval for the deception study.

• Participant Recruitment: We recruited participants
by sending e-mails, posting posters, and finally by e-
mailing the gaming club members. Participants were
selected with no regards to gender, age, or experience
with VR.

• Experimental Runs: The participant first signed the
consent forms, and the first phase of the experi-
mental run was used to familiarize the participant
with the HTC Vive. They were then asked to play
the Arcade style game, where data was recorded
using our created tools. Participants were finally
asked to complete a post-immersion survey and were
debriefed of the nature of the deception.

7.2 Experimental Design
To afford maximal play space along the axis of attack, the
experiment started with the VE offset from the center of the
physical room as shown in Figure 3. The Chaperone was
disabled to prevent participants from receiving visual cues
regarding the physical room (3.4mx3.4m) and the worksta-
tion positioned such that the HTC Vive’s tether allowed
access to all areas of the room. We defined a location for the
participant to reach signifying attack success as 1.9 meters in
front of the participant along the Y-axis with a radius of 20
centimeters. The distance to the destination was determined
sufficient from observing a participant’s typical territory for
the games to be tested. This ensured participants would not
travel to the destination as a result of uninfluenced game-
play, and in most games, this was discouraged by virtual
walls and boundaries. Games were selected on the basis
that they could be quickly understood, player skill would
not greatly influence the experience, and the average game
cycle would last between 5-15 minutes.

Participants were provided with a quick HTC Vive tu-
torial and were allowed to familiarize themselves with the
system. When they started a VR game, we started collecting
HMD and VE location data using our developed tools at a
frequency of 20x/second. Prior to commencing the attack,
participants were allowed to play for at least one game
cycle. This allowed us to confirm that each individual player
territory did not extend to the destination.

The Human Joystick Attack was then administered
by shifting the VE along the Y-axis at a rate of 0.01
meters/second1. The total attack translation equaled the
distance to the destination finishing with the VE centered on
the destination. Data collection continued for a maximum of
15 minutes or until the participant was halted due to prox-
imity to physical room boundaries. Participants completed
a post-immersion survey which asked them about their in-
game (immersed) awareness to the attack.

7.3 Observations and Results
In this section we present our findings for each game tested
shown in Table 4. We tested (n = 5) games and recruited
(n = 64) participants. Although the purpose of the experi-
ment was to investigate the success of the Human Joystick
Attack, we tested the attack against several styles of games
to explore the external validity of the constructed attack. We
note that this is not a comprehensive analysis of this attack
type, against all application types, but we observed trends
in gameplay that lend to the success of the attack.

TABLE 4: Success Rate per Game

Game R/U R/A F/U F/A N
1 Longbow 26 1 0 0 27
2 Xortex 11 0 0 1 12
3 Slingshot 6 0 0 0 6
4 Surgeon Simulator 8 0 1 0 9
5 Guns’n’Stories 5 0 5 0 10

Total 56/64 1/64 6/64 1/64
R: Reached Destination U: Unaware of the attack
F: Failed to reach the Destination A: Aware of the attack

1. Demonstration can be viewed at https://www.youtube.com/
watch?v=iyK94jFuniM

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2907942

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

Fig. 3: Experimental Design for the Human Joystick Experi-
ment

Games 1-4 were common in that the player was either
required to move to a given location in order to interact with
a virtual object or given an advantage based on location.
These games provided strong motivation for the player to
remain centered in the VE and accordingly we achieved a
94.4% success rate of being able to move an immersed VR
user to our predetermined location.

Game 5, Guns’n’Stories was selected on the basis that
the player was not forced to interact with a static virtual
object and could be played standing only. For this game we
observed a 50% success rate. The participant reaction to the
attack varied in this game, likely in part due to their style
of play. As this game did not explicitly provide motivation
for the player to remain centered in the VE, participants
that did not respond allowed the VE drift away from them.
In contrast, participants who chose to interact with scenery
responded in a similar fashion to Games 1-4. A third and pe-
culiar response was observed in three participants; they did
not interact with static virtual objects yet tended to maintain
their relative location to nearby objects. This suggests that
some players, regardless of gameplay requirements, will
subconsciously self-correct to the translation. Although the
attack’s success was not on par with Games 1-4, this finding
suggests that some victims will be susceptible to the attack
regardless of the application.

Participants who responded to the attack (56/64), re-
ported being surprised of their location at the conclusion of
the VR immersion. Figure 4 shows example paths partici-
pants took in the VE, which remain centered in the play-
space. This is a visualization of what the player experienced
in regard to the VE. The player’s steady territory in the VE is

demonstrative of the player’s ignorance to the translation as
they perceive their overall location to be static. The contrast
in the path in the VE to the physical path indicates that
the forward movement was a result of the Human Joystick
Attack.

Thirteen participants were reoriented upon colliding
with a physical wall at the destination, however, reported
prior to the collision they were unaware they had traveled
significantly from the starting location. Of the two partici-
pants that were aware of the changes to the VE, one noticed
the translation and complied while the other simply did not
feel comfortable moving in VR thus observing the full 1.9m
translation. The success of this attack will be dependent
on the victim’s ability and willingness to move as the VE
translation is simply attempting to lead the player to the
destination. We did not vary the rate at which the attack
was carried out, however, further investigation into the
relationship between the rate and magnitude of the attack
versus awareness may lead to an improved success rate.

As participants indeed tended to follow the virtual
center-point, we observed two major mechanisms that re-
sulted in them correcting for the VE translation. The Xortex,
Surgeon Simulator and Guns’n’Stories games made player
frequently rotate. This caused participants to make many
small steps in which they may not notice they had moved
forward. Participants that confidently moved about in vir-
tual space and actively engaged in the game tended to
closely reflect the translation in comparison to participants
that were timid in their movements. Figure 4, Xortex, Sur-
geon Simulator and Guns’n’Stories paths show the player
gradually adjusting to the translation as a result of frequent
rotations.

Although the game Longbow involved rotating, this
proved to be dependent on the participant’s style of play.
Participants that did not readily move their feet tended to
respond to the translation with similarity to the Longbow
and Slingshot paths in Figure 4. The correction to the VE
translation primarily took place through a large movement
forward followed by an incomplete reciprocal movement.
Participants reported feeling as though they had to reach
farther than normal, however, after completing the motion
felt as though they had returned to their original position.

The degree of the participants’ movements may be rep-
resentative of their prior experience with VR and comfort
and confidence moving about in the VE is reflective of a
participant’s familiarity with VR. To determine if prior expe-
rience influenced the rate at which participants responded
to the attack, we compared the time it took participants to
reach the destination for ones that reported prior experience
against those who had not. Participants that reported prior
VR use (M = 183.0, SD = 62.9) showed no difference in time
to reach the destination compared to those who had not (M
= 181.6, SD = 42.0), t(53) = -0.10, p = 0.919. The p value
indicates there is a 91.9% probability that the two groups
are statistically similar.

As the rate of the attack remained constant throughout
the experiment, these preliminary results point to the hy-
pothesis that the attack is successful regardless of a player’s
experience level, although more testing is needed to validate
that claim. The mean time to the destination further rein-
forces our original hypothesis given the rate of translation

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2907942

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

Fig. 4: Player path in the physical room compared to the path in the Virtual Environment. The path in virtual environment
depicts how the player perceives their movements due their relationship to the virtual objects around them, while the
physical path shows the movements the player truly made.

Game

VR Experience

XortexSurgeon Sim.SlingshotLongbowGuns'n'StoriesAll

YNYNYNYNYNYN

400

350

300

250

200

150

100

T
im

e
 t

o
 R

e
a
c
h

 D
e
st

in
a
ti

o
n

 (
s)

Fig. 5: Time to reach the destination grouped by VR experience. Mean times are comparable between players with VR
experience and those without. Trend holds within games and overall.

(0.01m/s) and distance (1.9m). An ideal reaction to the
attack would take the participant 170 − 190s due to the
radius of our destination (20cm) compared to observed
combined mean time to destination of 182.4s. The overall
and per game similarity of times for both groups are shown
in Figure 5. Comparing the times per application may
reveal a relationship with player responsiveness, however,
this initial study’s limitation on sample size precluded this
analysis.

The games serve two functions in facilitating the Human
Joystick Attack. We hypothesize that constant movements
dilute small shifts in the VE, and the game’s objective capti-
vates the user. This may provide the necessary distraction to
prevent the attack from being perceived. Secondly, the game

provides the motivation for the user to move. Often, players
are forced to comply with the attack in order to continue
to play. The large forward movement described above was
occasionally a result of the participant reaching for a virtual
object or interacting with a menu item necessary for the
player to carry on. As a result, games that have strong ties
to a particular space in the VE will obligate the player to
move. In such a case, the success of the attack relies more
so on remaining clandestine. On the other hand, games that
do not provide advantage to player location must depend
on the player’s tenancy to maintain their relative position.
The games used in this study represent a small portion of
the many types of applications for immersive VR, many
of which intend for the player to remain seated. As each

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2907942

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

style of application varies in the level of distraction and
motivation, further investigation may yield a relationship
between the degree of immersion and susceptibility to the
attack.

8 DISCUSSION AND MITIGATIONS

The technical universal success for each our attacks lends to
the attack layer, OpenVR. With reasonable certainty, we can
conclude that all OpenVR compatible systems are suscep-
tible to these types of attacks. Irrespective of the hardware
interface, we contend that all aspects of VR systems need
to be protected. The consequence of malicious behavior is
amplified by the physical and physiological implications of
immersion. Although we specifically targeted OpenVR, the
potential exploits identified in this study are applicable to all
VR systems. Demonstrated by our proof-of-concept attacks,
VR security and safety features require further development
and protection.

Given that all fully immersive VR systems will require
some form of collision detection, a comprehensive evalua-
tion of these safety features should be prioritized. Though
we agree there is some benefit in the user manually ad-
justing the boundaries of his/her play area, access to this
data needs to be guarded. SteamVR storing these artifacts
in plaintext provided us with a major vulnerability. We
recommend encrypting this data and restricting its access
to the creating individual and service. Because the integrity
of safety features must be maintained, while also manage-
able, we suggest applying the Clark-Wilson integrity model.
Where transactions must be made and validated through the
VR runtime.

The Overlay and Camera Attacks exhibited the permis-
sive construction of the architecture. During our testing, we
utilized in excess of five additional malicious applications
running in the background of the scene. Again, SteamVR
made apparent the lack of application control and Ocu-
lusVR failed to check for renderless processes. OpenVR
offers an API interface for application management [24],
however, the success of the Overlay Attack demonstrated
the underutilization of application isolation. Ungoverned
applications led to loss of control of the VR system and data
leakage. Windowing, or limiting VR application access to
their respective environment may suit to prevent malicious
actors from interrupting valid applications [26]. Thus, we
recommend that VR application managers limits access to
vetted programs and require user approval for third-party
applications to a greater extent than found. Although out-
side of the scope of this paper, Steam applications were
found to lack integrity checks. We recommend instituting
application signing to prevent unwarranted modifications.

An alternative solution, Arya is a framework to im-
plement policies that govern AR reality output [27]. This
policy management should be incorporated into existing
immersive VR systems.

The Camera Attack made apparent the lack of
permission-based access. Though Steam allowed the user
to restrict the camera’s usage, the permission attribute was
stored unencrypted and was easily accessible. This trans-
parency allows an attacker to overcome camera restrictions.

As VR continues to spread, so will its functionality and fea-
tures. For example, Android has implemented permission-
based security with Access Control Lists (ACL) [28]. A
similar approach with the special features of VR systems,
limiting their use to specified applications may prevent
malicious third-party software from abusing their access.
We recommend access control be expanded to authenticate
all applications accessing VR resources. Many of which
can be validated should application signing from trusted
developers be instituted.

9 RELATED WORK

AR and VR both require special considerations when han-
dling sensitive user information. Tracking and processing
of sensor information differs from traditional mobile de-
vices which may not need prolonged access to such data
streams [29]. Applications which utilize MR input may be
unintentionally granted access to unfiltered video streams.
[30] proposes fine grained permission and abstraction of the
AR object recognizer to relieve applications need for direct
access. Content sharing within the VE also requires consid-
eration; SecSpace presents a model for privacy permissions
based on physical space [31].

HMD’s provide a separation of visual channels, where
interactions with authentication mechanism’s (PIN pads,
and gestures) can be more difficult to detect by an on-
looker [32]. AR headsets are a prime candidate for visual
cryptography. Image pairs that while separate are mean-
ingless can be overlaid using Google Glass decoding the
underlying message [33], [34]. Overlaying randomized keys
onto a physical keyboard can further disguise input and
prevent shoulder surfing [35]. Conversely, candid interaction
with AR may grant onlookers context into users’ computing
activities [36].

Securing the input and output of AR systems has been
investigated by [26], [27], [29], where the system runtime
institutes policies which govern acceptable application be-
havior. [37] investigates the security of AR specific web
browsers and the challenges associated with supporting
AR content. The unique capabilities of MR systems can
be leveraged to improve authentication procedures. [38]
incorporates Android’s facial recognition into handshake
protocol of connecting devices.

10 FUTURE WORK

Although our attacks are focused at the software interface
layer, throughout our analysis, we identified other areas of
vulnerabilities. OpenVR provides the framework to develop
drivers for additional hardware [20]. This includes over-
loading the drivers already in place for the Vive system
and creating virtual controllers [21]. Menu operations and
interactive overlays largely receive input from a controller’s
pointer and with a malicious virtual controller, an adversary
can remotely control the player’s computer system.

A popular VR application such as Virtual Desktop,
which by default loads on start-up, allows users access
to their desktop in VR [39]. Should a virtual controller
be present, the attacker may gain complete access to the
client’s computer. A virtual controller has the advantage

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2907942

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

of transparency, where a 3D model representation of the
controller would not be specified nor rendered. It should
be noted that the installation of the drivers would make
delivery and execution of the payload increasingly complex.

The HTC Vive has a unique tracking system that utilizes
lighthouses. These lighthouses use IR to provide absolute
positioning for the tracked devices [40]. To reduce the num-
ber of necessary sensors required, the tracking solution is
supplemented by relative tracking provided by an IMU [15].
Tracking solely based on IMU data alone is not very accurate
but is useful to fill in the gaps when sensors are obstructed.
We suspect that disabling absolute tracking will cause the
tracking solution to drift from the true player’s location.
Further testing is required, however, the Lighthouse Redox
HTC Vive reverse engineering project, reversed the Blue-
tooth Low Energy (LE) communication to wake up and set
sleep timeout [41].

The lighthouses have their own set of configuration and
log files that contain location and normal information. These
files are also stored in plaintext JSON format. These artifacts
may present an additional avenue of attack. It is likely
that the disorientation attack could be carried out by ma-
nipulating the locations of the lighthouses themselves. The
approach we used attacked a static user defined universe, es-
tablished during the room setup. Being that the lighthouses
self-configure, this may not be as feasible. Furthermore,
if the lighthouses detect that they have been disturbed
they will immediately power down the rotors [15]. Further
testing is required to determine if IMU drifting could be
induced by manipulating these artifacts.

Social applications allow immersed VR users to congre-
gate and share content in VR. Applications such as Big
Screen Beta, go as far to share a user’s computer screen,
gestures, and audio [42]. Our preliminary network layer
analysis has shown that much of this information is passed
unencrypted. We suspect that a new form of the Man-In-
The-Middle (MITM) Attack may allow an attacker to join
a chat room and extract information and even possibly
manipulate the client’s environment [43]. We coin this the
Man-In-The-Room (MITR) Attack.

Despite the name, OpenVR is currently not entirely open
source. Valve is yet to release the source code, however,
the API acts as a wrapper for backend drivers and user
applications inherit the OpenVR Dynamic Linked Library
(DLL). Analysis of the openvr_api.dll with a tool such
as Interactive Disassembler (IDA) Pro may uncover further
vulnerabilities [44]. In our initial investigation we were
able to identify the memory locations storing the tracking
solutions for tracked devices. Disabling the tracking updates
and manipulating the present solution could allow for the
adversary to control the victim’s controllers,

11 CONCLUSION

With any emerging technology, securing data and protect-
ing the user may present new challenges, however proven
techniques and best practices must not be overlooked. The
permissive nature of the tested VR systems is a testament
to the lack of implemented security and privacy measures.
A deeper evaluation of the vulnerabilities unique to VR and
Immersion attacks is warranted for the safety and privacy

of its users. As development out paces security, the broad
range of applications for VR will continue to provide a
comparable breadth of vulnerabilities capable of exploiting
the physical and psychological ramifications of immersion.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1748950. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessar-
ily reflect the views of the National Science Foundation.

REFERENCES

[1] H. B. et al, “Profiles in innovation, virtual and augmented reality,
understanding the race for the next computing platform,” Equity
Research, January 13 2016.

[2] C. W. Mark Beccue, “Virtual reality for consumer markets,” Trac-
tica, vol. 4Q, 2016.

[3] M. T. Michael Shirer. (2017, August 07) Worldwide spending
on augmented and virtual reality expected to double or more
every year through 2021, according to idc. [Online]. Available:
https://www.idc.com/getdoc.jsp?containerId=prUS42959717

[4] J. Durbin. (2017, January 17) Super data re-
port: 6.3 million virtual reality headsets shipped
in 2016. [Online]. Available: https://uploadvr.com/
report-6-3-million-virtual-reality-headsets-shipped-2016/

[5] G. Riva, “Virtual reality: an experiential tool for clinical psychol-
ogy,” British Journal of Guidance & Counselling, vol. 37, no. 3, pp.
337–345, 2009.

[6] M. V. Sanchez-Vives and M. Slater, “From presence to conscious-
ness through virtual reality,” Nature Reviews Neuroscience, vol. 6,
no. 4, pp. 332–339, 2005.

[7] Meehan, Michael, Insko, Brent, M. Whitton, and F. P. Brooks Jr,
“Physiological measures of presence in stressful virtual environ-
ments,” ACM Transactions on Graphics (TOG), vol. 21, no. 3, pp.
645–652, 2002.

[8] Y. Wang, K. Otitoju, T. Liu, S. Kim, and D. A. Bowman, “Evaluating
the effects of real world distraction on user performance in virtual
environments,” in Proceedings of the ACM symposium on Virtual
reality software and technology. ACM, 2006, pp. 19–26.

[9] Carlin, A. S, Hoffman, H. G, and S. Weghorst, “Virtual reality
and tactile augmentation in the treatment of spider phobia: a case
report,” Behaviour research and therapy, vol. 35, no. 2, pp. 153–158,
1997.

[10] D. C. Craig Timberg, “Net of insecurity, a flaw in the design,” May
30 2015.

[11] F. M. Robin Mckie, “Virtual reality headsets
could put childrens health at risk,” https://
www.theguardian.com/technology/2017/oct/28/
virtual-reality-headset-children-cognitive-problems, last accessed
2017-11-02.

[12] J. A. de Guzman, K. Thilakarathna, and A. Seneviratne, “Security
and privacy approaches in mixed reality: A literature survey,”
arXiv preprint arXiv:1802.05797, 2018.

[13] D. Nield, “How oculus rift works: Everything you need to know
about the vr sensation,” March 29 2016, HowOculusRiftworks:
EverythingyouneedtoknowabouttheVRsensation, last-accessed
2017-11-03.

[14] N. Patel and D. Cober. Adjacent reality.
[15] E. Williams. (2016, December 21) Alan yates: Why valves

lighthouse can’t work. [Online]. Available: https://hackaday.
com/2016/12/21/alan-yates-why-valves-lighthouse-cant-work/

[16] Valve, “Api documentation,” https://github.com/
ValveSoftware/openvr/wiki/API-Documentation, last accessed
2017-10-26.

[17] Road to VR, “Steamvr will support mi-
crosoft vr headsets,” https://www.roadtovr.com/
windows-vr-headsets-mixed-reality-support-steamvr/, last
accessed 2017-10-26.

[18] SFML, “Documentation of sfml 2.4.2,” https://www.sfml-dev.
org/documentation/2.4.2/2.4.2/classsf 1 1UdpSocket.php, last
accessed 2017-10-26.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2907942

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

[19] L. Caroux, L. Le Bigot, and N. Vibert, “Impact of the motion and
visual complexity of the background on players’ performance in
video game-like displays,” Ergonomics, vol. 56, no. 12, pp. 1863–
1876, 2013.

[20] V. Joe Ludwig, “Driver documentation,” https://github.
com/ValveSoftware/openvr/wiki/Driver-Documentation, last
accessed 2017-10-31.

[21] matzman666, “Openvr-inputemulator,” https://github.com/
matzman666/OpenVR-InputEmulator, last accessed 2017-10-31.

[22] Valve, “Ivroverlay overview,” https://github.com/
ValveSoftware/openvr/IVROVerlay\ Overview, last accessed
2017-10-25.

[23] B. Lang, “Oculus quest hands-on and tech details,” 2018,
https://www.roadtovr.com/oculus-quest-hands-specs-tech-
details-oculus-connect-5/.

[24] Valve, “openvr.h,” https://github.com/ValveSoftware/openvr/
blob/master/headers/openvr.h, last accessed 2017-10-26.

[25] J. Butler, J. L. Undercoffer, and J. Pinkston, “Hidden processes:
the implication for intrusion detection,” in Information Assurance
Workshop, 2003. IEEE Systems, Man and Cybernetics Society. IEEE,
2003, pp. 116–121.

[26] K. Lebeck, T. Kohno, and F. Roesner, “How to safely augment
reality: Challenges and directions,” in Proceedings of the 17th In-
ternational Workshop on Mobile Computing Systems and Applications.
ACM, 2016, pp. 45–50.

[27] K. Lebeck, K. Ruth, T. Kohno, and F. Roesner, “Securing aug-
mented reality output,” IEEE Security & Privacy, 2017.

[28] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji, “A
methodology for empirical analysis of permission-based security
models and its application to android,” in Proceedings of the 17th
ACM conference on Computer and communications security. ACM,
2010, pp. 73–84.

[29] F. Roesner, T. Kohno, and D. Molnar, “Security and privacy for
augmented reality systems,” Communications of the ACM, vol. 57,
no. 4, pp. 88–96, 2014.

[30] S. Jana, D. Molnar, A. Moshchuk, A. M. Dunn, B. Livshits, H. J.
Wang, and E. Ofek, “Enabling fine-grained permissions for aug-
mented reality applications with recognizers.” in USENIX Security
Symposium, 2013, pp. 415–430.

[31] D. Reilly, M. Salimian, B. MacKay, N. Mathiasen, W. K. Edwards,
and J. Franz, “Secspace: prototyping usable privacy and security
for mixed reality collaborative environments,” in Proceedings of the
2014 ACM SIGCHI symposium on Engineering interactive computing
systems. ACM, 2014, pp. 273–282.

[32] C. Goerge, M. Khamis, E. von Zezschwitz, M. Burger, H. Schmidt,
F. Alt, and H. Hussmann, “Seamless and secure vr: Adapting and
evaluating established authentication systems for virtual reality,”
in Proceedings of the Network and Distributed System Security Sympo-
sium (USEC17). NDSS. DOI: http://dx. doi. org/10.14722/usec, 2017.

[33] S. J. Andrabi, M. K. Reiter, and C. Sturton, “Usability of augmented
reality for revealing secret messages to users but not their de-
vices.” in SOUPS, vol. 2015, 2015, pp. 89–102.

[34] P. Lantz, B. Johansson, M. Hell, and B. Smeets, “Visual cryptogra-
phy and obfuscation: A use-case for decrypting and deobfuscating
information using augmented reality,” in International Conference
on Financial Cryptography and Data Security. Springer, 2015, pp.
261–273.

[35] A. Maiti, M. Jadliwala, and C. Weber, “Preventing shoulder surf-
ing using randomized augmented reality keyboards,” in Perva-
sive Computing and Communications Workshops (PerCom Workshops),
2017 IEEE International Conference on. IEEE, 2017, pp. 630–635.

[36] B. Ens, T. Grossman, F. Anderson, J. Matejka, and G. Fitzmau-
rice, “Candid interaction: Revealing hidden mobile and wearable
computing activities,” in Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology. ACM, 2015,
pp. 467–476.

[37] R. McPherson, S. Jana, and V. Shmatikov, “No escape from re-
ality: Security and privacy of augmented reality browsers,” in
Proceedings of the 24th International Conference on World Wide Web.
International World Wide Web Conferences Steering Committee,
2015, pp. 743–753.

[38] E. Gaebel, N. Zhang, W. Lou, and Y. T. Hou, “Looks good to me:
Authentication for augmented reality,” in Proceedings of the 6th
International Workshop on Trustworthy Embedded Devices. ACM,
2016, pp. 57–67.

[39] G. Godin, “Virtual desktop,” http://store.steampowered.com/
app/382110/Virtual Desktop/, last accessed 2017-10-31.

[40] D. Coldewey. (2016, Apr 26) Teardown of htc vive highlights
the headset’s differences from oculus rift. Last updated - 2016-
04-27. [Online]. Available: https://techcrunch.com/2016/04/26/
teardown-of-htc-vive-highlights-the-headsets-differences-from-oculus-rift/

[41] p. nairol, “Basestation, bluetooth le communications,”
https://github.com/nairol/LighthouseRedox/blob/master/
docs/Base%20Station.md, last accessed 2017-10-31.

[42] B. S. Inc., “bigscreen,” bigscreenvr.com, last accessed 11-01-2017.
[43] F. Callegati, W. Cerroni, and M. Ramilli, “Man-in-the-middle at-

tack to the https protocol,” IEEE Security & Privacy, vol. 7, no. 1,
pp. 78–81, 2009.

[44] “IDA pro,” https://www.hex-rays.com/products/ida/.

Peter Casey received his B.S. from SUNY Geneseo and is pursuing
his M.S. in Computer Science from the University of New Haven. He
is a member of the University of New Haven’s Cyber Forensics Re-
search and Education Group (UNHcFREG) and Virtual Reality Security
Research Laboratory.

Ibrahim Baggili PhD is the Elder Family Endowed Chair of Computer
Science, and the founder of UNHcFREG. He is also the founder of
the Virtual Reality Security Research Laboratory. He received all of his
degrees from the Purdue Polytechnic Institute, and was a researcher at
CERIAS.

Ananya Yarramreddy received two Masters, one M.Sc. degree in Com-
puter and Networks from University of North Umbria, UK and M.Sc.
degree in Cybersecurity from University of New haven, USA. She is
currently a Security Specialist at State of North Carolina. Her career
interests cover the designing of Network/Cloud Infrastructure and Vul-
nerability assessment of networks/cloud and ethical hacking.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDSC.2019.2907942

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

