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Abstract

State-free reversible VAMPnets (SRVs) are a neural network-based framework capable

of learning the leading eigenfunctions of the transfer operator of a dynamical system

from trajectory data. In molecular dynamics simulations, these data-driven collective

variables (CVs) capture the slowest modes of the dynamics and are useful for enhanced

sampling and free energy estimation. In this work, we employ SRV coordinates as a

feature set for Markov state model (MSM) construction. Compared to the current

state of the art, MSMs constructed from SRV coordinates are more robust to the

choice of input features, exhibit faster implied timescale convergence, and permit the

use of shorter lagtimes to construct higher kinetic resolution models. We apply this

methodology to study the folding kinetics and conformational landscape of the Trp-cage

miniprotein. Folding and unfolding mean first passage times are in good agreement

with prior literature, and a nine macrostate model is presented. The unfolded ensemble

comprises a central kinetic hub with interconversions to several metastable unfolded

conformations and which serves as the gateway to the folded ensemble. The folded

ensemble comprises the native state, a partially unfolded intermediate “loop” state, and

a previously unreported short-lived intermediate that we were able to resolve due to

the high time-resolution of the SRV-MSM. We propose SRVs as an excellent candidate

for integration into modern MSM construction pipelines.
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1 Introduction

Molecular dynamics (MD) simulations are an indispensable tool in the study of the confor-

mational, thermodynamic, and kinetic properties of biomolecular systems. Advances in MD

software and hardware have enabled access to millisecond timescales at atomistic resolution,

but a major challenge is how to best analyze these large simulated trajectories to extract

experimentally-meaningful kinetic and thermodynamic quantities.

Markov State Models (MSMs) have emerged as a powerful framework for analyzing MD

simulations and recovering dynamical properties of interest. 1 Their primary innovation is

to discretize high-dimensional molecular conformational space into coarse-grained states,

wherein the dynamical interconversions between microstates within a macrostate are fast

relative to transitions between macrostates. Accordingly, the macrostate dynamical tran-

sitions are approximately memoryless (i.e., Markovian) and can be modeled by a master

equation.2 Protein folding has benefited immensely from developments in MSM method-

ology which have pushed the limits of recoverable long-term kinetics while simultaneously

yielding insight into microscopic quantities. 3,4 Nevertheless, the quality of a MSM is highly

dependent on the input features, state space decomposition, and a number of parameters

chosen during its construction. This has motivated research into optimizing each stage of

the MSM pipeline including theory,5,6 basis selection,,7,8 clustering,9 and validation.10,11

The current state of the art in MSM construction involves the use of time-lagged inde-

pendent component analysis (TICA)2,7,12 to identify a linearly-optimal combination of input

features which maximizes their kinetic variance. Clustering is then performed in this slow

subspace to produce the states between which interconversion rates are estimated. TICA has

all but superseded structural clustering based on metrics such as minimum root mean square

distance (RMSD) that tend to capture motions of high structural variance as opposed to

the desired slowest motions.1,12 A recently proposed alternative to MSMs are VAMPnets, an

artificial neural network (ANN) approach that seeks to replace the entire MSM pipeline. 13

VAMPnets are a very promising new technique, but as an end-to-end replacement to MSM
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construction cannot yet be interfaced with the extensive machinery and extensions devel-

oped for MSMs such as statistical error estimators, rare event sampling techniques, and

incorporation of experimental constraints. 13

In a recent work, we proposed state-free reversible VAMPnets (SRVs) 14 as a deep learning

framework based on VAMPnets,13 which themselves are based on deep canonical correlation

analysis (DCCA).15 Contrary to VAMPnets, SRVs were designed not to approximate MSMs

but rather to directly learn nonlinear approximations to the slowest dynamical modes of a

molecular system obeying detailed balance. The approach is founded on the variational ap-

proach to conformational dynamics (VAC), which defines a variational principle for the slow-

est eigenfunctions of the transfer operator that propagates state functions through time. 6,16

The essence of our approach is to use twin-lobed neural networks to learn the best non-

linear basis set to pass to the linear variational problem defined by the VAC. The VAC

then furnishes the optimal eigenvector approximations of the transfer operator ordered by

decreasing implied timescales. Following VAMPnets, we deviate from DCCA in choosing as

our loss function the VAMP-2 score informed by the variational approach to Markov pro-

cesses (VAMP) principle.13 Contrary to VAMPnets, we modify our network architecture to

directly approximate the slow modes of the transfer operator rather than soft metastable

state assignments, and employ the variational approach under detailed balance to approx-

imate the slow modes of equilibrium dynamics. (Our prefix “state-free reversible” reflects

these two key differences.) SRVs can also be viewed as a multi-dimensional generalization of

variational dynamics encoder,17 a variational analog to time-lagged autoencoders, 18 and are

closely related to kernel TICA.19

In this work, we demonstrate the utility of employing the slow modes recovered by SRVs

as a basis within which to construct MSMs. This study was motivated by the hypothe-

sis that compared to MSMs based on linear TICA approximations to the transfer operator

eigenfunctions, MSMs constructed from the nonlinear SRV approximations would permit the

use of shorter lagtimes and therefore furnish models with higher kinetic resolution. Whereas
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VAMPnets perform nonlinear featurization, slow-mode estimation, and soft clustering into

metastable states macrostates,18 SRVs perform only the first two steps. The final step of

MSM construction is performed using standard protocols utilizing the slow modes learned by

SRVs rather than TICA coordinates. In this manner, we take advantage of the large body

of theoretical work and mature numerical implementations developed for MSM construc-

tion1,2,20,21 where SRVs serve as a modular replacement for TICA. SRV-MSMs are shown

to perform better than TICA-MSMs under cross validation, offer more flexibility and ro-

bustness in feature selection, and converge implied timescales quicker, allowing for shorter

lagtimes and ultimately a higher resolution kinetic model. VAMPnets and SRV-MSMs per-

form comparably, but, as we will show, the SRV-MSM exhibits slightly faster convergence of

the implied timescales and enables access to the statistical error estimators, 22 multi-ensemble

approaches,23 and other extensions developed for MSMs.13,24

We demonstrate SRV-MSMs in an application to an ultra-long 208 µs explicit solvent

simulation of the K8A mutant of Trp-cage TC10b at 290 K performed by D.E. Shaw Re-

search.25 Trp-cage is a fast-folding miniprotein that has been the subject of numerous exper-

imental26,27 and computational studies.27–32 Despite its status as an archetypal miniprotein

for the testing of new computational methods, its kinetic behavior remains incompletely

understood. Given the sensitivity of the Trp-cage folding landscape to mutations 26 and ter-

mini,33 a direct comparison of the behavior of different mutants is not possible. The K8A

mutant of Trp-cage TC10b considered in this work has been previously studied by Dickson

& Brooks,34 who determined that the Trp-cage unfolded ensemble displays two-state behav-

ior. Suárez et al.35 analyzed the same data using non-Markovian techniques to determine

mean first passage times (MFPT) between the folded and unfolded states. Deng et al. con-

ducted perhaps the most comprehensive study of the the kinetics of this data to date, 36,37

identifying two representative folding mechanisms: the hydrophobic collapse of Trp-cage

into a molten globule followed by the formation of the N-terminal α-helix and native core

(nucleation-condensation), and the pre-formation of the α-helix in an extended unfolded

5



state then the joint formation the 310 helix and hydrophobic core (diffusion collision). The

diffusion-collision mechanism is identified as the dominant folding pathway with a substan-

tially smaller transit time of 3 ns, compared to 42 ns for nucleation-condensation. The high

kinetic resolution of the model furnished by SRV-MSMs in the present work establishes new

understanding of the Trp-cage folding mechanism, and demonstrates SRVs as a valuable tool

in the construction of high kinetic resolution MSMs.

2 Methods

We now proceed to describe our SRV-MSM construction pipeline, comprising the follow-

ing six steps: (i) feature selection, (ii) SRV learning of the slow modes, (iii) definition of

microstates and microstate transition rates by k-means clustering in the SRV coordinates,

(v) definition of MSM macrostates and macrostate transition rates by spectral clustering

of the microstate transition matrix, and (vi) comparison of the resulting SRV-MSM with a

TICA-MSM and VAMPnets. The molecular simulation we study is a 208 µs explicit solvent

K8A mutant of Trp-cage TC10b simulation performed by D.E. Shaw Research. 25 The pro-

tein was prepared with the Asp and Arg side chains and N- and C- termini in their charged

states and modeled using the CHARMM22* forcefield. The protein was immersed in a cu-

bic box of side length ∼3.7 nm along with ∼1700 TIP3P water molecules and a number of

sodium and chloride ions to neutralize charge and bring the NaCl concentration up to 65

mM. Simulations were equilibrated in the NPT ensemble for 1 ns before being passed to

the special-purpose Anton hardware for the 208 µs NVT production run employing a 2.5 fs

integration time step and a Nosé-Hoover thermostat with a 1 ps time constant. Short-range

electrostatics and Lennard-Jones interactions were treated using a 0.9 nm cutoff and long-

range electrostatics treated using the Gaussian Split Ewald (GSE) method over a 32×32×32

grid. Simulation snapshots were saved at intervals of 200 picoseconds to produce a trajectory

containing approximately 106 frames.
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2.1 Molecular feature selection

In order to perform slow variable discovery we must first define the set of features derived

from each instantaneous configuration of the molecular system that will be used to represent

the trajectory to the learning algorithm. Scherer et al. 38 have recently shown that feature

choices can be optimized directly through a variational principle based on VAMP scoring

without requiring construction of the entire kinetic model. The scoring method, known as

VAMP-2 scoring,39 is the sum of the squared estimated eigenvalues of the transfer operator.

Under this variational approach, larger cross-validated VAMP-2 scores correspond to more

kinetically accurate models and the cross-validated test score is bounded from above by the

true kinetic model. We employ this method of variational feature selection using backbone

and sidechain torsions, Cα pairwise atom distances, a combination of these two features,

and the aligned Cartesian coordinates of the entire molecule. Figure 1 shows the result

of ten-fold cross-validated VAMP-2 scoring for the aforementioned feature sets at different

lagtimes τ using the top ten eigenvalues. It is clear the the combined set of torsions and Cα

pairwise distances contain more kinetic variance at all lagtimes considered, 8 and hence should

be preferred over the other feature sets. The aligned Cartesian coordinates consistently

underperform the other choices. We use the combined set of torsions and Cα pairwise

distances for all further analysis unless otherwise stated.

2.2 SRVs outperform TICA-MSMs under cross-validation

TICA-MSMmodels were built using PyEMMA20 2.5.4 following the general protocol outlined

in Ref.40 Using the combined feature set, the number of TICA dimensions, TICA lagtime, and

number of cluster centers were optimized under VAMP-2 scoring. Specifically, the VAMP-

2 score was maximized under five TICs computed at a lagtime of 20 ns. The simulation

trajectory was projected into these five leading TICs and clustered into 200 microstates using

k-means clustering. The VAMP-2 score was found to be quite insensitive to the number of

selected microstates over the range 20 to 500, which motivated us to select 200. The resulting
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Figure 1: Molecular feature selection. VAMP-2 scores of the five slowest processes for various
feature transformations of the Trp-Cage trajectory calculated at a variety of lagtimes τ :
backbone and sidechain torsions (torsions), Cα pairwise atom distances (Cα distances), a
combination of the previous two features (combined), and the aligned Cartesian coordinates
of the entire molecule (XYZ). The combined featurization comprising backbone and sidechain
torsions and Cα pairwise distances is superior across all tested lagtimes and is used for all
subsequent analysis.

microstate transition matrix computed over these clusters was then diagonalized to identify

the leading eigenvectors and associated implied timescales of the kinetic model. Although

we do not do so here, the 200 microstates may be coarsened into a far smaller number of

macrostates by performing PCCA++ clustering over these leading eight microstate transition

matrix eigenvectors. SRVs were trained using the SRV package (https://github.com/

hsidky/srv) with the default architecture of two hidden layers with 100 neurons each, and

tanh activation functions. We specified a batch size of 500,000, a learning rate of 0.01, and

employed batch normalization within all hidden layers. No early stopping or weight decay

was used to maximize data utilization and avoid having to tune regularization strength.
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Instead, we screened for number of training epochs as part of the VAMP-2 optimization.

All code used for model screening, selection, and generation of results can be found in the

repository https://github.com/hsidky/srv-trpcage.

Figure 2: SRV and TICA-MSM model validation. (a) Ten-fold cross-validated VAMP-2
scores for SRV models containing an increasing number of SRV coordinates constructed at
a lagtime of 20 ns (upper panel). An increase in the gap between testing and training scores
(lower panel) indicates the onset of overfitting and motivates the selection of a seven SRV
coordinate model as that best supported by the data. (b) Cross validation of the SRV training
epochs and TICA lagtime in steps (5 steps = 1 ns) hyperparameters against the VAMP-2
score demonstrate SRVs have higher train and test scores and narrower distributions, which
is indicative of model robustness and generalizability.

We used ten-fold cross-validated VAMP-2 scores to compare the quality of different SRV

models and TICA-MSM models. Specifically, to maximize the similarity between the train

and test data distributions, we first divided the full 208 µs trajectory into 100 equal segments

which are treated as independent trajectories for the purposes of our comparative analysis.

The segments are then shuffled and subsampled as part of train-test split procedure for each

fold. This approach has the drawback of losing transitions across the individual segments,

but it ensures that the conformational distribution over the complete trajectory is well

represented in both the training and testing sets. Note that here we choose to compare
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the VAMP-2 scores of the TICA-MSMs directly to the SRVs rather than a subsequent SRV-

MSM. The primary reason for this is that we want to make clear the contribution of the SRV

coordinates themselves to the kinetic content without additional processing. We present a

comparison between the TICA-MSM and SRV-MSM implied timescales later on in Section

2.4.

To determine the number of eigenvalues to retain for cross validation, we calculate train

and test VAMP-2 scores for SRVs of increasing dimensionality. From Figure 2a, there is a

marked increase in the gap between training and testing scores after seven dimensions, which

is indicative of overfitting and motivating our choice of the seven SRV eigenvector model as

that best supported by the data. The SRVs were trained at a lagtime of 20 ns which is the

same lagtime used for TICA-MSM construction and VAMP-2 scoring.

Figure 2b presents the cross-validated VAMP-2 scoring for the SRV and TICA-MSM

models. Both classes of models perform well but with some significant differences. While

the distributions of training scores are very similar, SRVs display remarkable consistency in

test scores compared to the TICA-MSMs. TICA-MSM test scores vary considerably between

folds, which is indicative of model sensitivity to training data and characteristic of overfitting.

The SRVs show consistent improvement in training scores with the number of training epochs,

but the plateau in the testing score and widening gap between the training and test scores

after 20 epochs signals overfitting. The 30 epoch model still yields a marginally higher test

VAMP-2 score than other epochs, which is our selection, but the difference between 20, 25,

and 30 epochs is insignificant. The TICA lagtime does not appear to have much of an impact

on train or test score means, although we do note a marked increase in the testing variance

for the largest lagtime of 700 steps (140 ns).

For comparison, Figure 3 shows the result of ten-fold cross validation for RMSD-based

MSMs for increasing number of microstates k. An RMSD-MSM with k = 25,000 microstates

was previously utilized by Deng et al.36 in the analysis of the D.E. Shaw 208 µs Trp-cage

simulation considered herein. The training VAMP-2 score increases with the number of mi-
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crostates, which results higher implied timescales and seemingly better performance. How-

ever, the test scores remain approximately constant, with a small decrease at k = 10,000.

This widening gap between testing and training scores is indicative of overfitting, and al-

though the RMSD-MSM training scores are similar to TICA-MSM and SRVs, the test scores

are significantly worse for all values of k.

The higher train and test scores of the SRVs and improved variance over TICA-MSMs

and RMSD-MSMs indicate that they are more kinetically accurate, capture more information

about the system dynamics, and thus present an excellent basis in which to construct kinetic

models of the system dynamics.
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Figure 3: Ten-fold cross validated VAMP-2 scores for RMSD-MSMs. Although the training
score increases with number of states, the widening gap between the test and training scores
is indicative of overfitting.

2.3 SRVs are robust to the choice of feature set

We showed in Section 2.2 that using the same optimized feature set, SRVs outperform TICA-

MSMs under cross-validation. We now address the situation where sub-optimal features are
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used to construct both models. Empirical evidence suggests that it may be useful 38 to

generate a bank of distance or contact-based features that are nonlinear featurizations of

the atomic coordinates to improve MSM quality. Examples of these transformations include

reciprocals, logarithms, polynomials, or exponentials of pairwise distances. Improvement

is possible since TICA is restricted to discover linear combinations of the input features,

and nonlinear feature engineering can introduce nonlinearities into the model. Since SRVs

are based on a deep learning architecture, the universal approximation theorem 41,42 asserts

that they should, by employing sufficiently many hidden nodes, be capable of discovering

nonlinear feature transformations to maximize the kinetic variance from rather poor choices

of input feature sets without extensive feature engineering. Here, we test this conjecture by

omitting the backbone and sidechain torsions from the feature set.

Figure 4 presents a visualization of the top seven SRV and top seven TICA-MSM eigen-

vectors constructed over two feature sets: one comprising Cα pairwise distances only, and

one comprising Cα pairwise distances plus backbone and sidechain torsions. To perform this

comparison we project the snapshots from the molecular simulation trajectory into the lead-

ing TICA coordinates (TIC1-7) obtained in construction of the TICA-MSM under the Cα

pairwise distances plus backbone and sidechain torsions feature set. We choose to visualize

along TICA coordinates since they contain more variance than the SRV or TICA-MSM eigen-

functions, which makes them more suitable for visualization purposes. Each point is colored

according to the corresponding value of each of the leading seven eigenvectors computed by

a SRV or diagonalization of the TICA-MSM microstate transition matrix under a molecu-

lar featurization employing either Cα pairwise distances only or Cα pairwise distances plus

backbone and sidechain torsions. The key difference between the feature sets emerges in the

second slow mode (TIC2, second column) learned from the combined Cα pairwise distances

plus backbone and sidechain torsions, where the SRV constructed using only Cα pairwise

distances (second row) is able to learn a transition along TIC2 whereas the MSM trained on

only Cα pairwise distances data (fourth row) fails to do so. Furthermore, the SRV trained
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only on Cα pairwise distances (second row) successfully discovers the remaining higher-order

modes with only a minor degradation in the implied timescales relative to the SRV trained

on torsions and Cα pairwise distances (first row). The dynamical motion associated with

TIC2 has a timescale of t1 ≈ 1 µs, and by failing to account for it a significant contribution

to the kinetic variance is lost. The nonlinear nature of the SRV enabled it to form nonlinear

combinations of the Cα pairwise distances input features to discover the dynamical motions

associated with torsional angles necessary to resolve this mode. SRVs are therefore able

to discover an important slow dynamical mode that is invisible to a TICA-MSM presented

with the same data. This capability is particularly valuable in extracting maximal kinetic

variance from suboptimal input feature sets, and can be used in concert with VAMP scoring

to identify the optimal feature set without extensive manual feature engineering.

2.4 Implied timescales of SRV-MSMs exhibit faster convergence

than TICA-MSMs and VAMPnets

We demonstrated in Section 2.2 that the leading SRV eigenvectors present a good basis in

which to represent the long time system dynamics, and that cross-validation with respect

to the VAMP-2 score showed the kinetic model based on the top seven SRV eigenvectors

to be best supported by the data. We now proceed to use these coordinates to construct a

SRV-MSM with which we may propagate the long-time evolution of the system and analyze

for its macrostate configurational discretization, stationary state occupancy probabilities,

dwell times, and transition rates.

The SRV-MSM was constructed using the PyEMMA software package. 20 A microstate

transition matrix comprising 100 microstates, where this number was selected by hyperpa-

rameter optimization, was constructed by performing k-means clustering of projections of

the simulation trajectory into the leading seven SRV eigenvectors. Diagonalization of the

microstate transition matrix reveals eight leading timescales followed by a spectral gap, mo-

tivating the construction of a nine macrostate SRV-MSM. The nine metastable macrostates
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Figure 4: Visualization and comparison of the top seven eigenvectors determined by the
SRV and TICA-MSM under two different feature sets: Cα pairwise distances only (Cα),
and Cα pairwise distances plus backbone and sidechain torsions (all). The snapshots from
the molecular simulation trajectory are projected into the leading TICA coordinates TIC1-7
obtained in construction of the TICA-MSM under the Cα pairwise distances plus backbone
and sidechain torsions feature set. Each point is colored according to the eigenvectors com-
puted by: a SRV employing a feature set comprising Cα pairwise distances plus backbone
and sidechain torsions (first row), a SRV employing Cα pairwise distances only (second row),
a TICA-MSM employing Cα pairwise distances plus backbone and sidechain torsions (third
row), and a TICA-MSM employing Cα pairwise distances only (fourth row). The leading
seven eigenvectors n=0-6 computed under each SRV or TICA-MSM are presented in decreas-
ing order of slowness in the columns of the plot and the implied timescales tn associated with
each eigenvector is printed above each panel. SRVs (first row) and TICA-MSMs (third row)
trained on Cα pairwise distances and backbone and sidechain torsions discover the same
leading five slowest modes, although the SRV discovers slower timescales. Excluding tor-
sions from the input feature set renders the second leading mode TIC2 (second column, t1 ≈
1 µs) invisible to the TICA-MSM (fourth row), whereas a SRV (second row) can adequately
resolve it and the remaining higher-order modes by forming nonlinear combinations of the
Cα pairwise distances input features.

S0−8 are computed by performing PCCA++ spectral clustering over the leading eight eigen-

vectors of the microstate transition matrix.43–45 In this way the SRV coordinates serve as

a modular replacement of TICA coordinates in performing microstate clustering within the

MSM construction pipeline and, as we shall demonstrate, enable the construction of kinetic

models with higher temporal resolution. Figure 5a shows the eight implied timescales to
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converge extremely rapidly with lagtime τ , enabling selection of a very short τ = 10 ns

lagtime and construction of a high temporal resolution SRV-MSM. To validate the result-

ing SRV-MSM, we conduct a Chapman-Kolmogorov (CK) test. The CK test compares the

transition probabilities between pairs of states i → j at a lagtime of kτ predicted by a

model constructed at a lagtime τ and that computed directly from a model constructed at

a lagtime kτ . Figure 5b presents the results of the CK test for within state (i.e., i → i)

transitions. We observe that our τ = 10 ns lagtime model performs excellently in predicting

the transition probabilities even out to very long times of kτ = 200 ns. This CK analysis

demonstrates that the SRV-MSM kinetic model is Markovian for a τ = 10 ns lagtime, where

this high temporal resolution is made possible by our use of SRV eigenvectors for microstate

clustering.

To compare SRV-MSMs, TICA-MSMs, and VAMPnets, we present in Figure 6 a close-up

of the convergence of the implied timescales as a function of lagtime for the optimized TICA-

MSM (Section 2.2), SRV-MSM, and an equivalent nine-state VAMPnet constructed at the

same τ = 10 ns lagtime. Due to the congested nature of this plot, we choose to plot only

the leading six implied timescales for clarity. The SRV-MSM converges the slowest implied

timescale at approximately five times shorter lagtimes than the TICA-MSM or VAMPnets.

Convergence of the higher-order timescales is similar for VAMPnets and the SRV-MSM,

whereas the TICA-MSM fails to converge to the same values even at quite long lagtimes.

This trend can be attributed to the fact that the SRV-MSM and VAMPnets are able to

learn nonlinear transformations of the input coordinates and therefore better resolve slower

processes that are invisible to the inherently linear TICA-MSM (cf. Section 2.3).

In summary, the convergence of the implied timescales and validation of the CK test

demonstrates that the SRV-MSM based on seven SRV coordinates (selected by cross-validating

the training and testing VAMP-2 scores), nine metastable macrostates (selected by a gap in

the microstate eigenvalue spectrum after the eighth non-trivial eigenvalue), and a lagtime of

τ = 10 ns (estimated by convergence of implied timescales) presents a good kinetic model
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Figure 5: Validation of the SRV-MSM. (a) Convergence of the eight implied timescales of the
nine-macrostate SRV-MSM as a function of lagtime. Solid lines indicate maximum likelihood
result while dashed lines show the Bayesian ensemble means. The SRV-MSM timescales
converge at a lagtime of τ = 10 ns (vertical line). The black solid curve marks equality of the
implied timescale and lagtime and delimit the shaded region where the implied timescales are
shorter than the lagtime and cannot be resolved. (b) The Chapman-Kolmogorov (CK) test
comparing the probabilities of remaining within each of the nine macrostates as a function of
lagtime predicted by a SRV-MSM constructed at a τ = 10 ns lagtime (dashed blue line) and
those computed from a SRV-MSM constructed at the particular lagtime (solid black line).
In both panels the shaded areas represent 95% confidence intervals. Rapid convergence of
the implied timescales and agreement of the predicted and computed transition probabilities
confirm the dynamic validity of the SRV-MSM.
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Figure 6: Close-up of the convergence of the leading six implied timescales as a function of
lagtime for TICA-MSM (solid line, circles), SRV-MSM (dashed line, squares), and VAMPnets
(dotted line, triangles). The SRV-MSM converges the implied timescales at approximately
five times shorter lagtimes than VAMPnets or TICA-MSMs, enabling the construction of an
extremely high time resolution MSM.

for the long-term system dynamics at a higher temporal resolution than is accessible using

a TICA-MSM. This demonstrates the value of a modular replacement of TICA coordinates

conventionally used for microstate clustering by SRV coordinates within an MSM pipeline in

order to achieve higher temporal resolution MSM models while preserving access to the large

body of tools and infrastructure developed for the construction, validation, and analysis of

Markov state models.22–24,46

3 Results and Discussion

We now commence our analysis of Trp-cage folding dynamics based on the SRV-MSM con-

structed and validated in Section 2. It is first useful to visualize low-dimensional free energy

landscapes illustrating the nine macrostates in order to generate an overview of the relative

locations of the metastable macrostates of the model. As is customary, 20 we visualize the free
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energy landscapes in the leading TICA coordinates as good high-variance collective variables

in which to construct and display the free energy surface. We emphasize that these TICA

coordinates are used exclusively as convenient linear collective variables that support good

visualizations, whereas the MSM is constructed from the nonlinear SRV coordinates. To

obtain more accurate free energy estimates along the TICA coordinates, we reweight each

frame of the simulation trajectory by the associated values of the stationary distribution

computed from the 100 microstate transition matrix, project these weighted data onto the

leading TICA coordinates TIC1-7, and then estimate free energy surfaces from the empirical

probability distributions within this space. We display selected 2D projections of the free

energy surface within pairs of TICs in the top row of Figure 7, and in the bottom row show

the clustering into the nine metastable macrostates S0−8 computed from PCCA++ spectral

clustering.43–45

We caution against over-interpreting low-dimensional free energy landscape projections,

but the gross features of the landscape are a folded state represented by S7 connected to

the large unfolded ensemble of states S2−6,8 by a narrow neck. S2−6 represent structured

metastable conformations within the unfolded ensemble. S2 corresponds to an extended

conformation with outwardly rotated prolines, S3 a crossed conformation with a minor central

hairpin, S4 a braided hairpin-like structure, S5 a hairpin, and S6 a configuration with a

collapsed N-terminus and an extended C-terminus. We provide a finer-grained molecular-

level description and visualization of the states when we discuss the macrostate transition

matrix.

The first non-trivial right eigenvector of the macrostate transition matrix describes the

transition to and from S7 which represents the folded state. Based on this definition, there

are 12 observed folding and unfolding events in the trajectory, which agrees with the value

reported by Lindorff-Larsen et al.,25 who used a native contacts-based definition of folded

and unfolded states. The fraction of native contacts, Q, has been previously shown to accu-

rately characterize the thermodynamics of protein folding in and out of the native state. 47,48
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Figure 7: Free energy surfaces and macrostate clustering visualizations projected into the
leading TICA coordinates (TIC1-7) for visualization purposes. (a-e) Free energy surface
projected onto various pairwise combinations of TICs. The arbitrary additive constant in
the free energy was fixed such that the lowest free energy in each plot was set to zero.
Accordingly, absolute values of free energy within each plot are not meaningful but relative
differences are. It is also not meaningful to compare free energies across the different plots.
(f-j) Metastable macrostate assignments S0−8 computed by PCCA++ within the same TIC
projections. Macrostate S7 contains the folded state.

Conversely, this figure is in poor agreement with the 31 folding transitions reported by Deng

et al.36 who use an RMSD-based definition of folding. This choice of an RMSD distance in-

troduces a number of additional rapid folding transitions, and – based on the good agreement

between the Q-based and MSM-based definitions of folding – suggests that this structural

measure is a poor proxy for kinetic proximity.

We report in Table 1 the mean first passage times (MFPTs) into and out of the the

folded state, S7, with uncertainties estimated using a Bayesian scheme emnploying 50 sam-

ples.40,49,50 Our calculated MFPTs are in good agreement with Lindorff-Larsen et al. 25 who

report values of 14.4 µs and 3.1 µs for folding and unfolding respectively. Indeed, coarsening

our MSM from nine to two macrostates gives us near perfect agreement with a folding MFPT
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of 14.0 µs and an unfolding MFPT of 3.0 µs. The high temporal resolution models produced

by the rapid convergence of our implied timescales with lagtime is likely the key reason for

the high accuracy MFPT estimates from our SRV-MSM. Suarez et al. 35 analyzed this same

data using higher-order Markov approaches to report folding and unfolding MFPTs of 8.4

µs and 1.9 µs, respectively. The discrepancy may be due to different macrostate defini-

tions. Laser temperature-jump spectroscopy measurements on the TC5b Trp-cage mutant

conducted by Hagen and co-workers resolve folding and unfolding times of ∼4 µs and ∼13 µs

at 293 K.51,52 Although this is a different Trp-cage variant from the TC10b mutant studied

herein, the folding and unfolding times are of the same order of magnitude as our calculated

values.

Table 1: Calculated MFPTs into and out of the folded state S7.

transition mean / µs std / µs
S7 → S(0,1,2,3,4,5,6,8) 2.9 ± 0.2
S(0,1,2,3,4,5,6,8) → S7 16.3 ± 0.9

A visualization of the metastable conformational ensembles and the associated transitions

of the nine macrostate SRV-MSM is presented in Figure 8. The stationary probabilities πSi

and associated free energies GSi of each state S0−8 are listed in Table 2. The native fold

resides in S7 and occupies ∼17% of the stationary probability distribution at the T = 290

K state point at which the molecular dynamics simulation was conducted.

Table 2: Stationary probabilities πSi and associated free energies GSi of each state
S0−8 within the nine macrostate SRV-MSM.

macrostate Si πSi GSi/kBT
S0 0.004837 5.332
S1 0.008090 4.817
S2 0.006681 5.009
S3 0.016846 4.084
S4 0.012673 4.368
S5 0.020058 3.909
S6 0.075622 2.582
S7 0.168266 1.782
S8 0.686928 0.376
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Figure 8: Visualization of the SRV-MSM for Trp-cage. The nine metastable macrostates S0−8
defined by PCCA++ spectral clustering are represented by visualizations of an ensemble of
20 mutually aligned representative molecular states. The equilibrium transitions between
states are represented by arrows and annotated by the transition probability corresponding
to the associated off-diagonal macrostate transition matrix element. Arrow widths are drawn
proportional to probabilities, and arrows corresponding to fluxes smaller than 10−5 are not
visualized for clarity. The unfolded ensemble comprises S2,3,4,5,6,8 and is characterized by
a central molten globule S8 that rapidly interconverts with the other metastable unfolded
states. Folding into the native state S7 proceeds either directly from S8, through an interme-
diate S0 in which the 310 loop is misfolded but stabilized by the hydrophobic core, or second
intermediate S1 possessing an unfolded 310 loop.
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The unfolded ensemble comprises S2,3,4,5,6,8 and accounts for ∼82% of the stationary

probability distribution. This ensemble is dominated by a central molten globule S8 that

itself accounts for ∼69% of the stationary distribution and acts as a kinetic hub for inter-

conversions with the other unfolded metastable conformations. Of the remaining unfolded

states, state S2 is particularly interesting and structurally interpretable. Transitions from S8

to S2 correspond to transitions along TIC1 in the free energy surface visualization in Figure

7a,f). Structurally, this transition can be identified as the rearrangement of the polyproline

II structure (residues 17-20) from an unstructured to an alpha helix-like conformation. In

particular, transitions into S2 are defined by conversions of the Pro18 residue dihedrals from

a P|| (φ = -75◦, ψ = 160◦) to an α (φ = -75◦, ψ = -50◦) configuration. The native fold in

S7 is stabilized by hydrophobic interactions of the Trp6 side chain with Pro12, Pro18, and

Pro19,53 and transitioning into S2 prohibits folding because the Pro18 rotates externally,

facing away from the hydrophobic core and precluding stacking against the Trp6 side chain.

Indeed, Figure 7a,f shows the absence of any pathway along TIC1 from S2 to S7 and Figure 8

shows the absence of any significant flux between these states. Instead, in order to fold the

conformations in S2 must first transition into S8, which effectively “unlocks” the molecule by

enabling Trp6-Pro12 hydrophobic stacking.

The remaining unfolded macrostates, S3, S4, S5, and S6, together account for ∼13% of

the stationary probability distribution, and show negligible flux between one another or to

the folded state S7 or intermediates S0 or S1. Accordingly, folding is mediated through the

compact molten globule S8 as evinced by the fact that the slowest timescale is associated with

transitions from the unfolded to folded ensembles. In other words, mixing of the different

unfolded states occurs at faster timescales than folding transitions, the flux of which is gated

almost exclusively through S8. Deng et al.36 indicate in their analysis of this simulation

data that they find no evidence of kinetic partitioning of the unfolded state space, which is

consistent with a hub-like scenario. Our observation of folding mediate by the molten globule

state is also similar to an observation made by Marinelli et al. 28 in a study of the Trp-cage
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TC5b mutant, although they note a lower occupancy probability of the molten globule state.

An analysis of the same D.E. Shaw trajectory as studied herein by Dickson and Brooks 34 is

also consistent with our model. They calculate a “hub score” for the native state, defining

the degree to which it mediates non-native-to-non-native transitions to determine that a

substantial number of these transitions are not mediated by the native state.

Our model predicts folding to the native state to proceed either directly from the molten

globule kinetic hub S8 → S7, or via one of two intermediates: S8 → S0 → S7, or S8 → S1 →

S7. The intermediates S0 and S1 respectively occupy ∼0.48% and ∼0.81% of the stationary

probability distribution, and bear a great deal of resemblance to both one another and to

the native folded state. They are differentiated almost exclusively by the degree of folding of

of the 310-helix (residues 11-14). Figure 9 shows the distributions of the root mean squared

deviation (RMSD) from the native fold of these four 310-helix residues for the simulation

snapshots populating states S0, S1 and S7. The distributions for S0 and S7 are narrow and

normal, indicating locally stable conformations. S1, on the other hand, displays a much

broader non-normal distribution. This may be characteristic of multiple states grouped

together which cannot be separated at the temporal resolution of our model, or alternatively

of a greater degree of flexibility in the motion of the 310-helix region due to it being unfolded

in this conformation. Focusing on the dihedral angles within the 310-helix, Figure 10 displays

the Ramachandran plots for residues 12 (panels a,c,e) and 14 (panels b,d,f). The unlooping

of intermediate S1 relative to the native fold S7 can be seen most obviously in Pro12, with

this residue transitioning from a native α (φ = -75◦, ψ = -30◦) configuration to a α′′ (φ =

75◦, ψ = 145◦) configuration. The distinction between intermediate S0 and native state S7

is characterized by largely Ser14 β character (φ = -80◦, ψ = 155◦) in the former, compared

to predominantly αL character (φ = 90◦, ψ = -10◦) in the latter. The Ser14 residue in S1

shows occupancy β, αL, and αR (φ = -80◦, ψ = -20◦) configurations owing to the greater

flexibility of the 310 loop in this state.

The state S1 is a well-known structural metastable state – sometimes referred to as
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Figure 9: Distribution of the root mean squared deviation (RMSD) relative to the native
fold of residues 11-14 comprising the 310-helix for states S0, S1 and S5. The folded state S7
and intermediate state S0 are both normally distributed with means of 0.065 nm and 0.135
nm, respectively. The intermediate S1 possesses a much broader non-normal distribution
with mean 0.176 nm.

the “loop” structure – in close proximity to the native fold but possessing an unfolded 310-

helix.30–32,54 This state S1 can be identified as a local minimum in Figure 7b,g existing

as a finger protruding below the direct path linking S8 and S7 along TIC1. Long-range

interactions between the Trp6 core and Pro12 on the 310 loop stabilize the S1 intermediate,

and there is significant flux both into the native state S7 or back to the molten globule S8.

The state we identify as S0 does not receive much mention in the literature, likely due to its

relative instability, possessing about half the stationary probability distribution compared to

S1 (cf. Table 2) and about one sixth of the flux from the molten globule S8 (cf. Figure 8). In

sum, folding proceeds from the molten globule hub S8 into S7,0,1 through the formation of the

hydrophobic core in which the Trp6 sidechain is “caged” by the Tyr3, Leu7, Gly11, Pro12,

Pro18, and Pro19 sidechains, and the N-terminal α-helix (residues 2-8). These structural

formation events are either accompanied by complete folding of the 310-helix (residues 11-

14) through a direct transition into the native state S7, or partial folding of the 310-helix
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Figure 10: Ramachandran plots of backbone dihedrals of residues Pro12 and Ser14 for states
S0 (a-b), S1 (c-d), and S7 (e-f). The recognized “loop structure” S1 is distinguished by an
unfolded 310 loop as reflected in φ12-ψ12 (c). The folding of the 310 loop in S0 is disrupted by
β or P|| character present in φ14-ψ14 (b) as opposed to the native αL conformation (f). State
S1 occupies both the β or P|| and αL conformations in addition to αR owing to the greater
degree of flexibility of the 310 loop in this state.

that leads to one or other of the metastable intermediates S0 or S1 that require subsequent

structural rearrangements of the 310 region to reach the native fold.

In summary, we have demonstrated the use of SRVs to establish a high time resolution

SRV-MSM for the K8A mutant of Trp-cage TC10b at 290 K.25 We carefully selected the

model hyperparameters and verified its dynamic validity through cross-validation, spectral
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analysis, implied timescale convergence, and the Chapman-Kolmogorov test to present free

energy surfaces and a macrostate transition model that sheds new understanding on its

folding. In particular, we identify an unfolded ensemble dominated by a hub-like molten

globule that mediates transitions to the folded state. Folding proceeds either directly through

the simultaneous formation of the hydrophobic core, N-terminal α-helix, and 310-helix, or

indirectly through one of two metastable intermediates that possess misfolded 310-helices. We

note that our results differ from, although not necessarily inconsistent with, the folding model

extracted from this data by Deng et al.36 employing an RMSD-based MSM. Based on that

analysis, Trp-cage folding was reported to proceed by two representative parallel paths as

proposed by Juraszek and Bolhuis31 corresponding to two archetypal mechanisms of protein

folding:32,55–57 (i) a nucleation-condensation mechanism wherein formation of a compact

molten globule precedes folding of the N-terminal α-helix, 310-helix, and native packing of

the hydrophobic core, and (ii) a diffusion-collision mechanism wherein pre-formation of the

α-helix precedes formation of the hydrophobic core and 310-helix. The high resolution SRV-

MSM established in this work establishes the dominance of a molten globule kinetic hub

state that mediates folding. However, this statistical portrait is limited to the resolution of

the 10 ns lagtime, and the fastest implied timescale resulting from PCCA++ macrostate

clustering is ∼100 ns (Figure 5a).

Notwithstanding, our results present three important adjustments to the picture of the

conformational and kinetic landscape. First, the presentation of two independent folding

pathways, starting either from a molten globule or an extended conformation with a pre-

formed helix can be limiting. The molten globule conformation serves as the gateway for

folding and, within the statistical resolution supported by the data and our model, acts

as a source for both folding pathways. Second, the unfolded ensemble possesses structural

and kinetic richness centered upon this molten globule kinetic hub. Third, folding proceeds

either directly to the native state, or through two non-native folded intermediates, which

differ in the nativeness of the 310-helix. The high kinetic resolution MSM enabled by the
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replacement of TICA by SRVs reveals a new intermediate S0 as an important metastable

intermediate for folding. We note that it is not possible to resolve further structural details of

the folding process by introducing additional macrostates into the SRV-MSM since analysis of

the microstate transition matrix eigenvalue spectrum shows the simulation data to support no

more than nine statistically robust macrostates. Resolution of finer-scale folding mechanisms

and pathways from S8 to S7,0,1 would require a more detailed analysis of the microstate

transition matrix, as previously studied by Deng et al., 36 and/or path sampling calculations,

which are beyond the scope of this work.

4 Conclusions

We have presented SRVs as viable and promising modular replacement for TICA in the con-

struction of Markov state models for protein folding. In an application to an ultra-long 208

µs explicit solvent simulation of the K8A mutant of Trp-cage TC10b conducted by D.E. Shaw

Research.,25 we showed SRV coordinates to outperform TICA-MSMs under cross validation

by displaying higher test VAMP-2 scores with lower variance, and also to be more robust to

input feature choices than TICA due to their capacity to learn nonlinear transformations of

the input features. Employing SRVs as a basis set MSM construction produced a superior

convergence rate of implied timescales with respect to lagtime, enabling the construction of

extremely high resolution kinetic models. The resulting SRV-MSM revealed new understand-

ing and insight into the kinetics and mechanisms of Trp-cage folding. A compact molten

globular state acts as a kinetic hub for the unfolded ensemble and serves as the gateway

for transitions into the folded state. The dominant folding pathway proceeds by formation

of the hydrophobic core and N-terminal α-helix either directly into native state or via one

of two intermediates that possess imperfectly folded 310-helices. The high time resolution

MSMs enabled by SRVs represent a valuable new addition to the MSM construction pipeline

that can help squeeze the most out of the simulation data used to parameterize the models
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and produce high-temporal resolution kinetic models to understand and predict biomolecular

folding.
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