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Abstract

Circadian rhythmicity, the 24-hour cycle responsive to light and dark, is determined by peri-
odic oscillations in gene transcription. This phenomenon has broad ramifications in physio-
logic function. Recent work has disclosed more cycles in gene transcription, and to the
uncovering of these we apply a novel signal processing methodology known as the pencil
method and compare it to conventional parametric, nonparametric, and statistical methods.
Methods: In order to assess periodicity of gene expression over time, we analyzed a data-
base derived from livers of mice entrained to a 12-hour light/12-hour dark cycle. We also
analyzed artificially generated signals to identify differences between the pencil decomposi-
tion and other alternative methods. Results: The pencil decomposition revealed hitherto-
unsuspected oscillations in gene transcription with 12-hour periodicity. The pencil method
was robust in detecting the 24-hour circadian cycle that was known to exist, as well as con-
firming the existence of shorter-period oscillations. A key consequence of this approach is
that orthogonality of the different oscillatory components can be demonstrated. thus indicat-
ing a biological independence of these oscillations, that has been subsequently confirmed
empirically by knocking out the gene responsible for the 24-hour clock. Conclusion: System
identification techniques can be applied to biological systems and can uncover important
characteristics that may elude visual inspection of the data. Significance: The pencil method
provides new insights on the essence of gene expression and discloses a wide variety of
oscillations in addition to the well-studied circadian pattern. This insight opens the door to
the study of novel mechanisms by which oscillatory gene expression signals exert their reg-
ulatory effect on cells to influence human diseases.
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Introduction

Gene transcription is the process by which the genetic code residing in DNA is transferred to
RNA in the nucleus as the inauguration of protein synthesis. The latter process is called trans-
lation and occurs in the cytoplasm of the cell. Circadian rhythm, the 24-hour cycle that gov-
erns many functions of the cell, is the result of a complex interaction of transcriptional and
translational processes. The importance of circadian rhythm to physiologic processes has

been underscored in 2017 by the awarding of the Nobel Prize in Physiology or Medicine to the
investigators who described the molecular mechanisms controlling it. However, in addition

to the circadian oscillation driven by light and dark, other so-called infradian and ultradian
rhythms have clear biologic import. Blood pressure, some circulating hormones, and some
physiological functions appear to have 12-hour periodicity whereas other processes such as the
menstrual cycle more closely follow a lunar cycle.

Accordingly, we sought to uncover novel 12-hour oscillations in gene expression. In many
cases, the 12-hour gene oscillation is superimposed on the 24-hour cycle; thus it is hidden in
conventional analysis. Additionally, experiments designed to elucidate the 24-hour circadian
often do not have the granularity required to reveal an interval of less than 24 hours as they are
constrained by the Shannon-Nyquist Sampling Theorem [1].

To reveal periodicities in gene expression other than the 24-hour circadian cycle, we
applied digital signal processing methodology to this biologic phenomenon. Although this
approach is, to our knowledge, less commonly used in the biological field, it is justified because
the transcription of DNA to RNA is indeed a signal, packed with information for making the
enormous repertoire of proteins.

To extract the fundamental oscillations (amplitude and period) present in the data, we uti-
lized publicly available time-series microarray datasets on circadian gene expression in mouse
liver (under constant darkness) [2] and analyzed over 18,000 genes spanning a variety of cellu-
lar process ranging from core clock control, metabolism, and cell cycle to the unfolded protein
responses (UPR), a measure of cell stress. In addition, one set of measurements of RER (respi-
ratory exchange ratio) from wild-type mice (generated by us) was also performed. We con-
structed linear, discrete-time, time-invariant models of low order, driven by initial conditions,
which approximately fit the data and thus reveal the fundamental oscillations present in each
data set. In addition to the 24-hour (circadian) cycle known to be present, other fundamental
oscillations have been revealed using our approach.

Methods

We searched for 12-hour oscillations in several biological systems. Systems were chosen that
represented not only gene transcription but also phenotype; they represent the way in which
these biological systems are expressed in the whole organism. The reasoning was that if the
12-hour oscillation in transcription was biologically significant, it would be represented in
some measurable function of the cell.

Initially, we analyzed a set of transcription data [2] that was collected in mouse liver
obtained from animals in constant darkness after being entrained in a 12-hour light/12-hour
dark environment. Mice were sacrificed at 1-hour intervals for 48 hours, thus providing
enough data points to analyze the signal. The dataset thus obtained contains RNA values for
all coding genes. The RNA data were generated using a standard microarray methodology. In
addition, RER (respiratory exchange ratio) measurements in mice were also measured and
analyzed. The novelty in our analysis consists in using the so-called matrix-pencil method [3].
This is a data-driven system-identification method. It constructs dynamical systems based on
time-series data and finds the dominant oscillations present in the ultradian or infradian
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rhythms. Our purpose here is to compare this method with other established strategies for
spectral estimation, including both parametric spectrum estimation methods like MUSIC
(MUlTtiple Signal Classification), ESPRIT (Estimation of Signal Parameters via Rotational
Invariance Techniques), and Prony’s (least squares) as well as classical nonparametric models
like wavelet transforms and statistical methods like RAIN. These are compared with each
other using both artificial and measured data.

Basic signal processing methods

« The data. We consider finite records of data resulting as described above. Generically they
are denoted byy;, i=1,---, N.

« Basic model: sum of exponentials. We seek to approximate the data by means of linear
combinations of exponentials plus noise. Thus we seek k pairs of complex numbers
a, Bi=1,2,- -k, such that

y(#) = y'(t) + w(t), where Y*(t)=Z%e/"'t, (1)

is the noiseless part of the signal and w(¢) is the noise. The requirement is: y(m) < y,,,, m = 1,
2, - - -, N. Existing approaches to address this problem are MUSIC, ESPRIT, Prony’s (least
squares) method, wavelet transform and statistical methods described later.

« Second model: descriptor representation. The equivalent descriptor model uses an associ-

ated internal variable x(t) € R* of the system. The resulting equations are:
Ex(t+1) = Ax(t), y(t) = Cx(t) +w(t), x € R, (2)

with initial condition x(0) = x, € R", where E, A € R**, C € R""*.

o Third model: AR (Auto Regressive) representation. The above model can also be
expressed as an AR model driven by an initial condition. As above we let y() = y*() + w(),
(where y*(¢) is the noiseless term and w(¢) the noise). It follows that (1) can be rewritten as:

y(nt+k)+yymn+k—1)++yyHm+1)+yy(n) =0, (3)
with initial conditions y*(¢),€=0,1,---, k- L.

Goal. Discover the fundamental oscillations inherent in the gene data, using these models and
reduced versions thereof.

Processing of the data with the pencil method. The datay;, s, - - -, yn, are used to form
the Hankel matrix:

Y1 Y ¥ o Y Yoo Vi
Ya Ys Yo 0 Yo Y Vi
Yo Yo Y5 o Ve Yz Vs
H= € Rk
Yier Ve Yes 0 Yz Voo Yo
LY Yerr Yz 0 Yoo Yo Yo J
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where for simplicity it is assumed that N = 2k. Then we define the quadruple (E, A, B, C):

E=H(1:k1:k), A=H({1:k2:(k+1)), B=H(1:k1), C=H(1,1:k). (4)

This quadruple constitutes the raw model of the data. This model is linear, time-invariant
and discrete-time with a non-zero initial condition:

Ex[n + 1] = Ax[n], y[n] = Cx[n], Ex[0]=B, n=0,1,2 --- . (5)
Reduced models and fundamental oscillations. The dominant part of the raw system is

determined using a model reduction approach [4], [5], [6], [3]. The procedure is as follows.
Pencil procedure for obtaining dominant sub-models.

o Compute the SVDs:

E
[u,,s,,v,] =svd

), [u,,s,,v,] = svd([E, A]).
A

 Choose the dimension r of the reduced system (e.g r=3,r =5, r=7 etc.). Then

X=u,(l:k1:r), Y=v (1:k1:7),
are used to project the raw system to the dominant subsystem of order r:

E,=X'EY e R A, =X"AY e R™,C, = CY € R",

andx, = X'x, € R™".
The associated reduced model of size r is then:

Ex[n+1] = Ax][n], y,[n] = Cx[n], Ex[0] =B,
Assuming (as is usually the case) that E, is invertible, the approximated data can be
expressed as:

y, = C[E'A]" '[E'B].

Estimating r. Important byproducts of the pencil method are the singular values s; and s,
mentioned above. The accuracy of the approximation is determined by the first neglected sin-
gular singular value o0,,, as the resulting approximation error is proportional to this singular
value. This implies the following rule.

Rule: choose 7 so that :—I < ¢, where € is a tolerance which depends on the data at hand. For

instance € = 0.01, implies roughly speaking that data contributing less than 1% to the overall
result are discarded. In this regard the following remark is in order. The data considered in
this paper are rather short-duration and therefore in many cases we have not truncated the
data.

Partial fraction expansion of the associated transfer function. H,(z) = C,(zE, - A,) ' B,.
This involves the eigenvalue decomposition (EVD) of the matrix pencil (A,, E,), or equiva-
lently of E;'A ; let

E'A =VAV'

revr T

where the columns of V, = [vy, - - -, v,] are the eigenvectors, A, = diag[A;, - - -, A,] are the
eigenvalues of the reduced system (poles of H,(2)), and [V,; - - - ; V,] are the rows of V. '. The
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approximate data can be expressed as:

V.= [Cv] B M= P = o e o)
i=1

i=1

where P, = [Cv,] [V B], is the complex amplitude of the i, oscillation; expressing this in polar
form P, = o,¢", ; is the real amplitude and 6; the phase. Finally, if we express the eigenvalues
as A, = ", g; is the decay (growth) rate, and w; the frequency, of the i oscillation.

Poles and oscillations. Often in (digital) system theory, the quantity A, € C is referred to as
pole of the associated system. Oscillatory signals result when o; = 0, which it turn implies that
the magnitude of the pole A; is equal to one: |A;] = 1, and the period of oscillation is T, = Z}—”

For instance a signal with A; = 1, represents a constant (step), while signals with A, = €%,
A, = €’ (which are both on the unit circle with angles 15°, 30° degrees) represent pure oscil-
latory signals with periods 24, 12 hours respectively.

Angle between signals and orthogonality. In the sequel we will make use of angles
between signals. Here we briefly define these concepts. Given discrete-time finite duration sig-
nals (vectors)

their inner product is defined as
(@ab)=ab=> ab,
=1

where (-)* denotes complex conjugation and transposition; the angle between these signals is
defined as

(a.b)
Talol ©)

/(a,b) = arccos

where ||| denotes the Euclidean 2-norm. Orthogonality means that the angle between the
two signals is Z, or equivalently that their inner product is zero; this is sometimes denoted by
a L b. In the sequel we also make use of the symbol L to indicate approximate orthogonality,
i.e. an angle between signals close to 7 radians or 90" degrees.

Other methods

To complete the picture, we briefly list other methods which can be used to analyze the gene
data.

MUSIC. The MUSIC algorithm [7], [8], is a parametric spectral estimation method based
on eigenvalue analysis of a correlation matrix. It uses the orthogonality of the signal subspace
and the noise subspace to estimate the frequency of each oscillation. It assumes that a set of
data can be modeled as Y =Ta + n, where Y = [y, y, --- y,]" € R", is a set of gene tran-
scription data, I' = [e(w;) e(w,) - - - e(wk)] is the transpose of a Vandermonde matrix, K is the
number of dominant frequencies, and e(w,) = [1 & --- &%) a=[a, a,- - ax]” con-
tains the amplitudes of the dominant K frequencies, n ~ N(0, 62I), is white noise. The auto-
correlation matrix is

1
R, = MZZ] xx! = TA’T" + ¢°I
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where A = diag();) and M is the number of columns in the Hankel matrix. We can see that the
rank of matrix 'A% ' equals K where the nonzero eigenvalues are {i, }" . Then the sorted
eigenvalues of the autocorrelation matrix Ry, can be expressed as

xn=X”+a§, n<K, and ¢?, K<n<N.

It follows that the noise subspace contains the eigenvectors of the autocorrelation matrix Ry,
corresponding to the N — K smallest eigenvalues. Then

R G = Gdiag[Ay.,, -+, Ay =TAT"G+ 4G

so I'"' G = 0, and the frequency values {Xk},lj:l are the only solutions of e(w)” GG" e(w) = 0.
The MUSIC algorithm seeks the peaks of the function 1/ [e(w)” GG e(w)], where w € [0, 271].
The Root MUSIC algorithm seeks the roots of p”(z ' )GG"p(z) that is the Z-transform of e-
(0)'GG e(w) where z = ¢ € C.

The MUSIC algorithm can only provide the frequency information of the signal. To obtain
the amplitude of each oscillation, we need to apply least squares fitting, where the amplitudes
of dominant oscillations satisfy a = (P11 1 x. It should mentioned that in contrast with
the pencil method, MUSIC cannot provide the decay (growth) rate of the oscillations.

ESPRIT. This is another parametric spectral estimation algorithm [7], [8]. It analyzes the
subspaces of the correlation matrix. It estimates the poles relying on rotational transformation.
As in MUSIC: FiJ = zjf’l,j =1,--,K,i=1,---, N, where z;are the poles. We can construct
I'y =I'(1: N-1,:), and I', =I'(2: N,:). The relationship between these two quantities is I, =I"
®, where © = diag [z}, 2, - - -, zx], is the phase shift matrix that represents a rotation. Now we
construct a similar structure applying on signal subspace S that contains the eigenvectors of
the autocorrelation matrix Ry, corresponding to the K largest eigenvalues. Let

S, =S(1:N—-1,:), S,=S(2:N,:).

Note that the relationship between S; and S, is S, = S; . Because I and S have the same
column space (see 7, 8]), we have that I = ST, where T is an invertible subspace rotation
matrix. So we have W = T ®T. Therefore the poles are the eigenvalues of \P. Finally least
square (LS) to obtain ¥ = (S!'S,) 'S"'S,. The eigenvalues of ¥, are the poles z, = €%, Thus
ESPRIT can estimate both the frequency and the decay (growth) rate of the oscillations. How-
ever, as with MUSIC, we need to use LS to obtain the amplitude of each oscillation.

Wavelet transform. Wavelet transforms can be divided into two categories, the continu-
ous (CWT) and the discrete (DWT) versions. CWT is more suitable for analyzing biologic
rhythms because of the associated heat maps are two-dimensional.

In CWT a time signal x(¢) is convolved with a wavelet function. This leads to a time-fre-
quency representation which provides spectrum information in a local time window. This
transform can be expressed as W, (t,s) = [~ 14" (“=*)x(u)du, where s is the frequency scale,
¥’ (1) is the wavelet function. Since the signal data is obtained by sampling, we can approxi-

" (=) x(n). It follows that the integral or
sum is applied on the range —co to oo that means the domain of signal x(#) or x(n) should be

o0

mately rewrite the equationas W, (¢,s) = >~
the range from —oo to co. But the signals considered have finite length, in which case the edge
effects become obvious, especially in the low-frequencies.

In practice, there are many wavelet functions that can be chosen, both real- and complex-
valued. Real-valued wavelets are useful for treating peaks and discontinuities of signals while
complex-valued wavelets yield the information of amplitude and phase simultaneously [9].
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Statistical methods. In this section three statistical methods, namely ARSER, JTK_CYCLE
and RAIN, will be investigated and their ability to detect biological rhythms evaluated. Those
methods focus on the (one) most dominant oscillation in the data, especial JTK_CYCLE and
RAIN. These constitute statistical tests that calculate the p-value to determine whether a certain
rhythm exists in the data [10-12].

ARSER. ARSER uses the autoregressive (AR) model to obtain the period of oscillation. It
then uses linear regression (harmonic) to determine the amplitude and the phase of the oscilla-
tion. Finally applying the F-test to pre-processed data and regressive data determines whether
an oscillation exists.

Pre-processing the data. Because the data may not be stable, ARSER applies linear detrend-
ing to the raw data. It then uses linear regression to fit the data as a straight line. Subsequently
ARSER uses a fourth-order Savizky-Golay algorithm to smooth the data. This low-pass filter
removes the pseudo-peaks in the spectrum.

Finding the period. ARSER uses an autoregressive model to get the period of the oscillation.
Given a pre-processed dataset {y,}i1 with period interval A.

Y. = Z?:l %Y, it €

where ¢, is white noise, ¢; are AR coefficients, 7 is the order of model (we choose n = length-
of-data/A). To calculate the coefficients, ARSER uses the Yule-Walker method, maximum like-
lihood estimation and the Burg algorithm. After AR modeling, ARSER can calculate the spec-
trum:

2
s(w) = a7 /|1 + 30, aexp

where ¢? is the variance of white noise. ARSER finds the peaks in time window ¢ € [20, 28] as
the periods {T;} the oscillation (the optimal periods are determined by Akaike’s information
criterion).

Harmonic Regression. Now we can express the pre-processed data as:

Yy, =4+ sz:l {Bicos(2nt/T,) + Bosin(2nt/T,)} + €,

where §;; and S, are the amplitudes. ARSER calculates those amplitude through linear
regression.

F-test. Using the F-test compares the approximation data {x,} and pre-processed data {x,}.
The null and the alternative hypotheses are respectively

Hy: A\=A,=---=A,, H, : A,#0, for at least one value of i,

where A; are the amplitudes which are calculated using linear regression, and r is the number
of coefficients obtained by linear regression. We can calculate the F coefficient by:

S G =2 (= 1)
le (’ACi - xi)z/(N - r)

Then we can calculate the p value using the F-distribution p = P(F, r — 1, N — r), where P(:)
is the probability function used to calculate the p value based on F-distribution.

JTK_CYCLE and RAIN. JTK_CYCLE and RAIN use statistical method to detect the
trend in data. The former can find the increasing or decreasing trend in data and RAIN is a
development of JTK_CYCLE which can combine these two.

A periodic waveform should start from the trough and increase to the peak following a
decreasing part to a new trough. Because our data is sampling from the waveform, we can

F =
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regard every time sampling data point as a variable. Thus we can get n variables {F,}_| for the

waveform such that T = nA (T is the period of the waveform, A is the time interval of sampling

point). We assume the variances of those variables are the same. And they have the same mean
value only when the data only have noise without periodic oscillation. So the null and the alter-
native hypotheses are

H0:F1:F2:...:Fn, HljF1<F2<...<Fn0rFl>F2>...>F'

The alternative hypotheses for RAIN is

H: F,<F,<---<FE>F,  >--->F >F,

e+l

Calculating the statistical coefficient of trend. Every variable F;, corresponds to a sampling data-
set {X;; };":"1, where m; is the number of sampling data point of the i" variable (Oor, m, = N).Let
q;,;, = 1if Xix < Xj, and 0 otherwise; and U, = > 7", S q;, ;> Which is the Mann-Whitney U-
statistic for comparison of two variables. For JTK_CYCLE, the statistical coefficient of trend is

_ n—1 n
$= Zi:l Zj:i+1 Uu
For RAIN, the statistical coefficient of trend is

-1 -1
S = Z;:m Uy + i Z;:m U; + > iest Ui

Calculating the p-value. For the test, the p-value p(s) = Z{'f;’) o In order to calculate the
i=0
p-value, we should make clear the distribution f{7) of statistical coefficient s when the null
hypotheses Hy, is true. Furthermore the distribution f(i) is computed, using a generating func-

tion G(z) = Y_,™ Z'f (i). For JTK_CYCLE and RAIN we have respectively:

_ Iz _ IDa-z) | Ihm-ze) o T -z
G(z) Lo ID (=2 (2) Lo IT (A -2) I IDM(-2) T a-2z) LS 1 —2)

Thus G(z) for JTK_CYCLE and RAIN are both polynomials. We can get the distribution
f(i) by calculating the coefficients of G(z), which can be used in the p-value equation.

Experimental results: Artificial data

In this section we test the performance of different methods using artificially generated signals.
For the continuous wavelet transform, we chose the complex morlet wavelet because it allows
changes to the resolution in frequency and time domain. For simulation data, we assume the
data has the form

y(n) = Z:’:1 f,(n) +w(n),

where w is white noise with zero mean and variance ¢? and f; is the i oscillation, where:

f.(n) = A,e " cos (2:: n+ 01) , (7)
where A; is the amplitude, o; is the decay (growth) rate, 0; is the phase and T; is the period.
At first we assume that the samples are collected in unit time intervals. The parameters are
defined in the table below; the first oscillation is almost constant with small decay; the other
three oscillations have a period of approximately 24- 12- and 8-hours (see Table 1).

The experiment has the following parts. First, the sensitivity to noise is investigated. Here,
the variance of noise is changed and the performance of each of the different methods is
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Table 1. Parameters used for the simulation.

i A o 0 T
1 1 0.005 0 [e¢)
2 1 0.004 5—6 24.8
3 0.3 —-0.002 3 11.8
4 0.1 0.005 141 7.5

https://doi.org/10.1371/journal.pone.0198503.t001

examined. Second, the impact of the length of the data is investigated. Finally, the frequency of
data collection (can be referred to as sampling frequency) will be examined.

Recall that the Nyquist sampling theorem provides the lower bound for the sampling fre-
quency in order to prevent aliasing. This can be used to determine appropriate sampling fre-
quencies for continuous-time signals.

Sensitivity to noise. To test the sensitivity of these various methods to noise, we set the
standard deviation of was o = [0, 0.03, 0.1, 0.3].

Fig 1 shows curves of different methods and simulation data (length 50) with o as stated.
The red points are simulation data, blue, green and magenta are the curves of the pencil,

Noised Noise=0.03
3 T T 3 T T
2 2
1 1
0 0
-1 : : : : -1 : : : :
0 10 20 30 40 50 0 10 20 30 40 50
Noise=0.1
3 T T 3
2+t 2+t
17 1r
Or Or
-1 : : : : -1 : : : :
0 10 20 30 40 50 0 10 20 30 40 50

Fig 1. Curves for simulation data.

https://doi.org/10.1371/journal.pone.0198503.9001
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Table 2. Poles determined by different methods.

0=0.01 0=0.1
orig. poles Pencil ESPRIT MUSIC orig. poles Pencil ESPRIT MUSIC
0.990 0.990 0.990 1.000 0.990 0.989 0.989 1.000
0.958 + 0.248i 0.958 + 0.248i 0.958 + 0.248i 0.970 + 0.239i 0.958 + 0.248i 0.960 + 0.248i 0.960 + 0.249i 0.974 + 0.225i
0.870 + 0.502i 0.870 + 0.512i 0.870 + 0.512i 0.867 + 0.497i 0.870 + 0.502i 0.867 + 0.511i 0.867 + 0.512i 0.834 £ 0.551i
0.662 + 0.7351 0.662 + 0.7351 0.662 + 0.7351 0.693 + 0.721i 0.662 + 0.735i 0.669 — 0.772i 0.662 + 0.751i -0.974 £ 0.2235i
0=0.03 =03
orig. poles Pencil ESPRIT MUSIC orig. poles Pencil ESPRIT MUSIC
0.990 0.990 0.990 1.000 0.990 0.987 0.988 1.000
0.958 + 0.248i 0.958 + 0.248i 0.958 + 0.248i 0.970 + 0.239i 0.958 + 0.248i 0.965 + 0.236i 0.964 + 0.2391 0.975 + 0.221i
0.870 + 0.502i 0.870 + 0.512i 0.871 + 0.512i 0.861 + 0.507i 0.870 + 0.502i 0.863 + 0.511i 0.862 + 0.513i 0.880 + 0.474i
0.662 + 0.735i 0.660 + 0.737i 0.659 + 0.736i 0.712 +0.701i 0.662 + 0.7351 0.007 + 1.021i -0.001 £ 1.012i -0.034 £ 0.999i

https://doi.org/10.1371/journal.pone.0198503.t002

ESPRIT and MUSIC methods respectively. This figure shows that the pencil and ESPRIT
methods yield a perfect fit in all situations. The MUSIC algorithm gives a good fit only for
small amounts of noise. In Table 2, we display the poles obtained by using each method.

In Fig 2, the heat map of the wavelet transform is shown. It follows that yellow region is
such that we cannot distinguish two oscillations with close periods. We can recognize 12h and
8h oscillations when the noise is weak. However when the noise is strong (o = 0.3), only the
strongest oscillation can be determined. The edge effect is obvious and there are ghost lines
e.g. around 15h, that may lead to false estimation.

From these considerations, we conclude that the pencil and ESPRIT methods are robust to
noise. This is not the case for MUSIC and CWT.

Impact of data length. The left-hand side plot of Fig 3 shows fit curves using different
methods and simulation data (noise standard deviation 0.05) with duration L = [30, 50, 100,
200]. The time interval for data collection is 1. Red points indicate simulation data, blue, green
and magenta are the fit curves of pencil, ESPRIT and MUSIC algorithms, respectively.

The right-hand side plot shows poles of oscillations estimated with different methods
(noise standard deviation 0.05) with duration L = [30, 50, 100, 200]. The time interval for
data collection is 1. Black * indicates the original poles of the simulation data, blue, green and
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Fig 2. Heat maps of the wavelet transform.

https://doi.org/10.1371/journal.pone.0198503.g002
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Fig 3. Curves for simulation data.

https://doi.org/10.1371/journal.pone.0198503.g003

magenta are the estimated poles using the pencil, ESPRIT and MUSIC algorithm, respectively.
For more accuracy, the poles are also listed in Table 3.

Rate of data collection (sampling frequency). To investigate the impact of sampling of
the underlying continuous-time signal, we generate artificial data with L = 50. Then we apply
all methods to the original dataset, the half-data set (time collection interval I = 2) and third-
data set (thatis 1,4, 7, 10 - - - with time collection interval I = 3). In Fig 4, the left-hand side
plot below shows heat maps (Y-axis is frequency domain, X-axis is time domain) of simulation
data (noise standard deviation 0.05) with duration L = [30, 50, 100, 200]. The right-hand side
plot shows data fit for the various methods.

Conclusion. From the above considerations it follows that decreasing the sampling fre-
quency does not affect the estimation significantly. This means that the data rate collection
(sampling frequency) is not an important factor. In contrast, the data length is a crucial factor
for all methods.

Experimental results: The pencil method applied to gene data

In this section we analyze a small part of the measured data in order to validata some of the
aspects of the pencil method and its comparison with the other methods.

Table 3. Poles for different methods.

L=30 L =100
orig. poles Pencil ESPRIT MUSIC orig. poles Pencil ESPRIT MUSIC
0.995 0.896 -1.043 1.000 0.995 0.994 0.994 1.000
0.964 + 0.249i 0.778 + 0.661i 0.305 + 0.000i 0.977 + 0.213i 0.964 + 0.249i 0.964 + 0.2491 0.964 + 0.2491 0.969 + 0.2461
0.863 + 0.505i 0.447 + 0.000i 0.772 — 0.653i 0.806 + 0.591i 0.863 + 0.5051 0.863 + 0.5081 0.863 + 0.5081 0.857 + 0.514i
0.665 + 0.739i 1.093 - 0.329i 1.085 + 0.324i 0.456 + 0.889i 0.665 + 0.7391 0.661 + 0.734i 0.659 + 0.733i 0.648 + 0.7611
L=50 L =200
orig. poles Pencil ESPRIT MUSIC orig. poles Pencil ESPRIT MUSIC
0.995 0.995 0.995 1.000 0.995 0.995 0.995 1.000
0.964 + 0.249i 0.964 + 0.250i 0.964 + 0.250i 0.970 + 0.239i 0.964 + 0.249i 0.964 + 0.2491 0.964 + 0.249i 0.972 + 0.234i
0.863 + 0.505i 0.864 + 0.511i 0.863 + 0.510i 0.824 + 0.566i 0.863 + 0.505i 0.863 + 0.5081 0.863 + 0.508i1 0.857 + 0.514i
0.665 + 0.739i 0.655 + 0.727i 0.652 + 0.731i -0.336 £ 0.941i 0.665 + 0.739i 0.663 + 0.737i 0.663 + 0.737i -0.336 + 0.941i

https://doi.org/10.1371/journal.pone.0198503.t003
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Fig 4. Heat maps (left) and fit curves (right).
https://doi.org/10.1371/journal.pone.0198503.9004

Batch consisting of 171 measurements every 40min The results in this case are summa-
rized in Table 4 and Fig 5 (S1 File. DATA 171 is a 10 x 171 matrix; the first row contains time;
the remaining rows contain the measurements taken from 9 mice.)

Batch consisting of RER for restrictively fed mice (218 meas. every 40min) (see Table 5
and S2 File. DATA 218 is a 10 x 218 matrix; the first row contains time; the remaining rows
the measurements taken from 9 mice.).

Fig 6 shows the approximation by 1, 2 and 3 oscillations (upper pane) and the first four fun-
damental oscillations (lower pane). Table 6 shows the error and the angles (S3 File. DATA 15
is a 15 x 48 matrix; each row corresponds to a different gene; time runs from 1 to 48 hours).

We analyze the relationship among the decomposed oscillations, by calculating the angle
among these oscillations for 10 different genes. We set r = 9, i.e. the gene signals contain four
oscillations f;, i =1, - - -, 4. The approximant is thus y = f, + f, + £, +f, + f,. See also Table 7
(S4 File. DATA 10 is a 10 x 48 matrix; each row corresponds to a different gene; time runs
from 1 to 48 hours.)

From the above tables, we can see that the angle between oscillations is around 90° in most
situations. So oscillations are nearly orthogonal:

£, L8, i#].

It has actually been shown in [13] that these oscillations are independent of each other.
Batch consisting of various measurements using mice—38 min intervals (see Table 8
(S4) and Table 9 as well as Fig 7 (S5 File. DATA 186 is a 6 x 186 matrix; the first row contains

time; the rest represent: food intake, ambulatory activity, total activity, ZTOT and heat.)

Table 4. Data averaged over all mice.

A P T
0.1594 0.9022 -
0.0010 1.0050 1.4483
0.0017 0.9985 1.8434
0.0034 0.9956 9.8050
0.0164 1.0013 23.9361
0.9239 0.9986 dc

https://doi.org/10.1371/journal.pone.0198503.t004
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Fig 5. Plots for averaged data.
https://doi.org/10.1371/journal.pone.0198503.9005

Table 5. Model parameters for mouse # 1.

Mouse #1

A P T
0.0037 1.0005 4.8275
0.0116 0.9961 7.4236
0.0256 0.9993 7.9961
0.0010 1.0043 20.2774
0.0817 1.0001 23.9264
0.8843 1.0001 dc

https://doi.org/10.1371/journal.pone.0198503.t005

Variation of data collection rate. We compare the oscillations using all data (AD), the
first half of the data (FHD), the second half of the data (SHD), odd-position data (OD), and
even-position data (ED). This is done for a particular set of measurements, but the results are
indicative of what happens in general.

Table 10 shows the estimated periods using different part of the data. It follows that the esti-
mation of periods is consistent using AD, FHD, SHD.

Discussion and comments

1. Orthogonality. Recall the definition of angle between signals defined by (6), and let the
original vector of measurements for one gene be denoted by y € R"; letalso f;, i =0, 1,2, 3,
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Fig 6. Plots for mouse #1.
https://doi.org/10.1371/journal.pone.0198503.g006

4, denote the vectors of the DC-component and of the first four fundamental oscillations
obtained by means of the pencil reduction method described above. Then the correspond-
ing approximantisy = f, + f, +f, + f, + f,. It follows that:

a. The fundamental oscillations are approximately orthogonal among themselves: f; - f;, i # j.

Table 6. Errors and angles.

Relative approximation error Angle between approximant & error

3-fit 5-fit 7-fit 9-fit 3-fit 5-fit 7-fit 9-fit
Gene 1 0.1973 0.1276 0.1122 0.1299 Gene 1 88.72 88.65 88.66 90.46
Gene 2 0.2217 0.2028 0.1669 0.1375 Gene 2 88.00 89.84 87.27 86.17
Gene 3 0.2801 0.3940 0.2038 0.2112 Gene 3 91.92 - 92.25 91.54
Gene 4 0.2654 0.2525 - 0.2026 Gene 4 89.82 94.18 - 92.30
Gene 5 0.4296 0.3780 0.1970 - Gene 5 84.35 86.36 89.74 -
Gene 6 0.2493 0.2563 0.1918 0.1929 Gene 6 86.94 91.78 88.39 88.78
Gene 7 0.1971 0.1525 0.1475 0.1547 Gene 7 89.71 88.23 88.33 90.17
Gene 8 0.1914 0.1681 0.1402 0.1619 Gene 8 87.45 88.19 87.02 89.11
Gene 9 0.1832 0.1913 0.1403 0.1357 Gene 9 86.36 92.63 86.64 86.68
Gene 10 0.2016 0.2013 0.1874 0.2089 Gene 10 86.78 87.81 86.42 89.90
Gene 11 0.2637 0.2623 - 0.2083 Gene 11 92.80 91.36 - 90.92
Gene 12 0.2174 0.1681 0.2116 0.1484 Gene 12 91.20 90.18 94.12 90.59
Gene 13 0.3420 0.2154 - 0.2270 Gene 13 87.25 88.50 - 91.57
Gene 14 0.3140 0.2671 0.2452 0.2034 Gene 14 90.36 94.35 93.30 91.35
Gene 15 0.4058 0.3374 0.3052 0.2281 Gene 15 88.15 84.41 91.66 90.31

https://doi.org/10.1371/journal.pone.0198503.t006
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Table 7. Angle between error vector and approximates.

Gene

Bmal
Clock
perl

per2

cryl

cry2

rorc

rora

rev-erba
reb-rebb

https://doi.org/10.1371/journal.pone.0198503.t007

r=3
89.4040
97.5846
87.3120
84.0943
83.6787
88.0607
88.2740
92.5359
93.4881
89.2219

r=5
89.0189
95.6007
87.0905
84.3410
85.7345
85.8548
87.0592
92.5612
89.2972

r=7
88.7227

84.2252
83.9466
85.7156
90.5345
90.2449
91.1162
89.0471

r=9

89.4645
154.5354
122.6093

97.1281

87.9577

90.3424
91.4786
90.6819

b. The associated approximant is approximately orthogonal to the error (noise): y te =y — 3.

2. Interpretation of orthogonality. Orthogonality means that once an oscillation (e.g. the cir-
cadian or the 12h rythm) has been determined, further computations will not affect these
oscillations. In other words the fundamental oscillations are independent of each other.

3. Manifestation of orthogonality. As we determine higher-order approximants, i.e. as we
add oscillations to the model, the existing ones remain mostly unchanged. Considering the
case of the para probel gene, we apply the ESPRIT, LS (Prony’s) and pencil methods. The
statistical methods (e.g. ARSER) are not used because being non-parametric they do not
allow the choice of the order of fit. ESPRIT and LS are not reliable for large orders of fit,

Table 8. Angle between oscillations.

Gene fivsh fivsfs fivsfa Lvsfs Hvsfy fvsfy

Bmal 90.9499 91.8664 87.7962 85.2451 91.2452 91.7038

Clock 89.4592 87.9364 - 106.0165 -

perl 85.4061 93.9105 87.4712 74.9960 90.2287 101.0929

per2 91.6425 94.1211 89.7681 88.9246 90.6757 90.4533

cryl 83.3704 87.0513 - 89.2173 -

cry2 84.0615 91.3131 90.0791 90.9828 86.2981 88.1623

rorc 88.6977 94.5739 87.0044 99.9135 85.2751 93.1401

rora 91.3788 89.7184 89.8657 92.8563 88.6223 90.5763

rev-erba 94.9717 83.6197 88.9055 98.3908 90.8681 91.7753

reb-rebb 88.4669 89.5753 90.7263 90.9262 88.9671 92.8038
https://doi.org/10.1371/journal.pone.0198503.t008

Table 9. Model parameters for various activities.

Food intake Ambulatory activity Total activity ZTOT Heat
A P T A P T A P T A P T A P T

0.0049 | 1.0014 1.4798 | 343158 | 1.0029 2.1857 46.2589 | 0.9996 2.1752 | 39.9181 | 1.0055 6.0855 | 0.0076 | 1.0013 -
0.0143 | 0.9946 1.5812 | 87.9712 | 0.9997 8.0524 139.9357 | 1.0002 8.0445 | 86.2169 | 1.0052 8.1064 | 0.0225 | 0.9936 8.1278
0.0106 | 1.0002 8.5909 | 111.7862 | 1.0004 | 12.1124 | 1832241 | 10009 | 12.1327| 138.1809 | 1.0052 | 12.1725] 0.0095 | 1.0019 | 12.3403
0.0302 | 0.9977 23.9810 | 185.3298 | 1.0016 24.4907 | 317.1999 | 1.0021 24.4595 | 195.7413 | 1.0071 24.3164 | 0.0281 | 1.0027 24.3605
0.1189 | 0.9992 dec| 504.7523 | 1.0003 dc| 1045.0577 | 1.0005 dc| 338.0709 | 1.0062 dc| 05181 | 0.9999 de
https://doi.org/10.1371/journal.pone.0198503.t009
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Fig 7. Ambulatory activity: Approximation and oscillations.

https://doi.org/10.1371/journal.pone.0198503.9007

therefore the results for the 24-fit model is not shown. The poles of these three methods are
depicted in Tables 11, 12 and 13.

4. Connection with the Fourier transform. The above method provides an almost orthog-
onal decomposition of a discrete-time signal. The question arises therefore as to whether
the same or improved results can be obtained using the Fourier transform and in

Table 10. Periods estimated using different parts of the data.

AD/h FHD/h SHD/h OD/h ED/h
1 24.37 23.01 24.36 24.37 24.37
2 12.34 12.41 12.46 11.90 12.58
3 8.12 8.42 7.45 8.25 8.13

https://doi.org/10.1371/journal.pone.0198503.t010

Table 11. Poles for the ESPRIT method.

ESPRIT
3 — fit 5 — fit 7 — fit 9 — fit
0.993 0.993 0.993 0.993
0.939+0.273i 0.944+0.272i 0.943+0.274i 0.944+0.274i
0.859+0.509i 0.866+0.5051 0.866+0.5051
0.370+0.892i 0.374+0.899i
—0.832+0.213i

https://doi.org/10.1371/journal.pone.0198503.t011
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Table 12. Poles for the LS method.
LS (Prony’s method)

3 — fit 5 — fit 7 — fit 9 — fit

0.967 0.970 0.972 0.994
0.363 0.435%0.319i 0.339+0.354i 0.863+0.384i
—0.486+0.3661 —0.517+0.3801 0.319+0.863i

0.363 —0.475+0.745i

—0.806+0.299i

https://doi.org/10.1371/journal.pone.0198503.t1012

Table 13. Poles for the pencil method.

Pencil method
3-fit 5-fit 7-fit 9-fit 24-fit (all data)
0.9933 0.9932 0.9931 0.9930 0.9915
0.9436 + 0.2734i 0.9449 +0.2730i 0.9446 + 0.2742i 0.9447 +0.2747i 0.9489 + 0.2843i
0.8609 +0.5132i 0.8659 +0.5086i 0.8672 +0.5068i 0.8729 + 0.4812i
0.3831 +£0.9159i 0.3902 + 0.9121i 0.3214 + 1.1528i

-0.9780 £0.3415i -0.9368 £0.3683i
https://doi.org/10.1371/journal.pone.0198503.1013

particular the DFT. Applying the DFT to a length N sequence we obtain a decomposition
in terms of the N given frequencies or periods, which are (in decreasing order)

48, 24, 16, 12, ¥, 8, £, 6, £, ... 1 Therefore unless the frequencies of the
underlying oscillations are exactly among the ones above, the results of the DFT are not
useful.

5. The least squares (Prony’s) method. This method is not appropriate for cases where the
poles are on or close to the unit circle (pure or almost pure oscillations). Fig 8 depicts this fact
in the case of the RER data. The conclusion is that while the matrix pencil method (red dots)
gives oscillatory poles, this is by far not the case with the LS (prony’s) method (green dots).

6. Comparison of different methods (see Table 14).

Eigenvalues of 19th order pencil (red triangles)
and LS (green circles) models -- unit circle: blue
T T T T T

T T T

T T T

| 1 I | 1 T 1 I 1 | I

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fig 8. Comparison between pencil and LS poles.

https://doi.org/10.1371/journal.pone.0198503.9008
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Table 14. Strengths and weaknesses of the various methods.

Method Parameter Estimation Estimation Performance Detection of orthogonality
Period Decay Rate Amplitude Phase Accuracy Robustness

DFT Yes No Yes Yes Low Yes No
Wavelet Yes Yes Yes No Low No No
MUSIC Yes No No No High No No
ESPRIT Yes Yes No No High Yes No
Prony (LS) Yes Yes No No No No No
Pencil Yes Yes Yes Yes High Yes Yes

https://doi.org/10.1371/journal.pone.0198503.t014

Final result

We considered a dataset consisting of 18484 genes; transcription is analyzed using the pencil
method [3], the ESPRIT method, Prony’s method and the three statistical methods. The distri-
bution of the poles follow; recall that the poles of ideal oscillations have magnitude equal to 1.

Furthermore the DFT and wavelet methods are also not competitive.

Fig 9 shows that the pencil method has uncovered real oscillations, since the mean of the
magnitude of all poles is 1.0058 and the standard deviation is 0.0010. The ESPRIT method
follows in terms of discovering oscillations, while the Prony or LS (least squares) method and
the three statistical methods give weak results. As explained above the main drawback of the
ESPRIT method is that it has nothing to say about the orthogonality of the oscillations, which
proves to be a key outcome of the pencil method.

Concluding remarks and outlook

The matrix pencil method allows the consistent determination of the dominant reduced-order
models, thus revealing the fundamental oscillations present in the data. The essence of the
matrix pencil method is that it provides a continuous-time tool for treating a discrete-time
(sampled-data) problem. The DFT, in contrast, is only a discrete-time tool for treating a dis-
crete-time problem; hence its failure in this setting.

Pencil (num = 2354, mean=1.0056,var=0.0010677 skew=0.069728)
100 T T T T T T T
50 - B
0
0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

ESPRIT (num = 2345 ,mean=0.98779,var=0.0012169,skew=-0.23674)
T T T T T T T

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

Prony (num = 265,mean=0.93397,var=0.00089266 skew=1.4874)
T T T T T T T

a 1 | | JI
0.98 1 1.02 1.04 1.06 1.08

0.92 0.94 0.96
Fig 9. Results of analysis of 18484 genes using various methods.

https://doi.org/10.1371/journal.pone.0198503.g009
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A key consequence of the matrix-pencil approach is the demonstration of orthogonality of
the different oscillatory components, in particular the 24-hour and the 12-hour cycles. This
points to an independence of these oscillations. This assertion has been subsequently con-
firmed in the laboratory experiments reported in [13].

This analysis demonstrates the applicability of signal processing methodologies to biological
systems and further shows the ability of the matrix pencil decomposition to demonstrate inde-
pendence of biological rhythms.

Supporting information

S1 File. DATA 171 is a 10 x 171 matrix; the first row contains time; the remaining rows
contain the measurements taken from 9 mice.
(MAT)

S2 File. DATA 218 is a 10 x 218 matrix; the first row contains time; the remaining rows the
measurements taken from 9 mice.
(MAT)

S3 File. DATA 15 is a 15 x 48 matrix; each row corresponds to a different gene; time runs
from 1 to 48 hours.
(MAT)

S4 File. DATA 10 is a 10 x 48 matrix; each row corresponds to a different gene; time runs
from 1 to 48 hours.
(MAT)

S5 File. DATA 186 is a 6 x 186 matrix; the first row contains time; the rest represent: Food
intake, ambulatory activity, total activity, ZTOT and heat.
(MAT)
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