
RESEARCH ARTICLE

A novel mathematical method for disclosing

oscillations in gene transcription: A

comparative study

Athanasios C. Antoulas1,2,3, Bokai Zhu3, Qiang Zhang1, Brian York3,4, Bert W. O’Malley3,4,

Clifford C. DacsoID
1,3,4*

1 Department of Electrical and Computer Engineering, Rice University, Houston, United States of America,

2 Max-Planck Institute for the Dynamics of Complex Technical Systems, Magdeburg, Germany,

3 Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States of

America, 4 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of

America

* cdacso@bcm.edu

Abstract

Circadian rhythmicity, the 24-hour cycle responsive to light and dark, is determined by peri-

odic oscillations in gene transcription. This phenomenon has broad ramifications in physio-

logic function. Recent work has disclosed more cycles in gene transcription, and to the

uncovering of these we apply a novel signal processing methodology known as the pencil

method and compare it to conventional parametric, nonparametric, and statistical methods.

Methods: In order to assess periodicity of gene expression over time, we analyzed a data-

base derived from livers of mice entrained to a 12-hour light/12-hour dark cycle. We also

analyzed artificially generated signals to identify differences between the pencil decomposi-

tion and other alternative methods. Results: The pencil decomposition revealed hitherto-

unsuspected oscillations in gene transcription with 12-hour periodicity. The pencil method

was robust in detecting the 24-hour circadian cycle that was known to exist, as well as con-

firming the existence of shorter-period oscillations. A key consequence of this approach is

that orthogonality of the different oscillatory components can be demonstrated. thus indicat-

ing a biological independence of these oscillations, that has been subsequently confirmed

empirically by knocking out the gene responsible for the 24-hour clock. Conclusion: System

identification techniques can be applied to biological systems and can uncover important

characteristics that may elude visual inspection of the data. Significance: The pencil method

provides new insights on the essence of gene expression and discloses a wide variety of

oscillations in addition to the well-studied circadian pattern. This insight opens the door to

the study of novel mechanisms by which oscillatory gene expression signals exert their reg-

ulatory effect on cells to influence human diseases.
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Introduction

Gene transcription is the process by which the genetic code residing in DNA is transferred to

RNA in the nucleus as the inauguration of protein synthesis. The latter process is called trans-

lation and occurs in the cytoplasm of the cell. Circadian rhythm, the 24-hour cycle that gov-

erns many functions of the cell, is the result of a complex interaction of transcriptional and

translational processes. The importance of circadian rhythm to physiologic processes has

been underscored in 2017 by the awarding of the Nobel Prize in Physiology or Medicine to the

investigators who described the molecular mechanisms controlling it. However, in addition

to the circadian oscillation driven by light and dark, other so-called infradian and ultradian

rhythms have clear biologic import. Blood pressure, some circulating hormones, and some

physiological functions appear to have 12-hour periodicity whereas other processes such as the

menstrual cycle more closely follow a lunar cycle.

Accordingly, we sought to uncover novel 12-hour oscillations in gene expression. In many

cases, the 12-hour gene oscillation is superimposed on the 24-hour cycle; thus it is hidden in

conventional analysis. Additionally, experiments designed to elucidate the 24-hour circadian

often do not have the granularity required to reveal an interval of less than 24 hours as they are

constrained by the Shannon-Nyquist Sampling Theorem [1].

To reveal periodicities in gene expression other than the 24-hour circadian cycle, we

applied digital signal processing methodology to this biologic phenomenon. Although this

approach is, to our knowledge, less commonly used in the biological field, it is justified because

the transcription of DNA to RNA is indeed a signal, packed with information for making the

enormous repertoire of proteins.

To extract the fundamental oscillations (amplitude and period) present in the data, we uti-

lized publicly available time-series microarray datasets on circadian gene expression in mouse

liver (under constant darkness) [2] and analyzed over 18,000 genes spanning a variety of cellu-

lar process ranging from core clock control, metabolism, and cell cycle to the unfolded protein

responses (UPR), a measure of cell stress. In addition, one set of measurements of RER (respi-

ratory exchange ratio) from wild-type mice (generated by us) was also performed. We con-

structed linear, discrete-time, time-invariant models of low order, driven by initial conditions,

which approximately fit the data and thus reveal the fundamental oscillations present in each

data set. In addition to the 24-hour (circadian) cycle known to be present, other fundamental

oscillations have been revealed using our approach.

Methods

We searched for 12-hour oscillations in several biological systems. Systems were chosen that

represented not only gene transcription but also phenotype; they represent the way in which

these biological systems are expressed in the whole organism. The reasoning was that if the

12-hour oscillation in transcription was biologically significant, it would be represented in

some measurable function of the cell.

Initially, we analyzed a set of transcription data [2] that was collected in mouse liver

obtained from animals in constant darkness after being entrained in a 12-hour light/12-hour

dark environment. Mice were sacrificed at 1-hour intervals for 48 hours, thus providing

enough data points to analyze the signal. The dataset thus obtained contains RNA values for

all coding genes. The RNA data were generated using a standard microarray methodology. In

addition, RER (respiratory exchange ratio) measurements in mice were also measured and

analyzed. The novelty in our analysis consists in using the so-called matrix-pencil method [3].

This is a data-driven system-identification method. It constructs dynamical systems based on

time-series data and finds the dominant oscillations present in the ultradian or infradian
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rhythms. Our purpose here is to compare this method with other established strategies for

spectral estimation, including both parametric spectrum estimation methods like MUSIC

(MUltiple Signal Classification), ESPRIT (Estimation of Signal Parameters via Rotational

Invariance Techniques), and Prony’s (least squares) as well as classical nonparametric models

like wavelet transforms and statistical methods like RAIN. These are compared with each

other using both artificial and measured data.

Basic signal processing methods

• The data. We consider finite records of data resulting as described above. Generically they

are denoted by yi, i = 1, � � �, N.

• Basic model: sum of exponentials. We seek to approximate the data by means of linear

combinations of exponentials plus noise. Thus we seek k pairs of complex numbers

αi, βi, i = 1, 2, � � �, k, such that

yðtÞ ¼ y�ðtÞ þ wðtÞ; where y�ðtÞ ¼
Xk

i¼1

ai e
bit; ð1Þ

is the noiseless part of the signal and w(t) is the noise. The requirement is: y(m) � ym, m = 1,

2, � � �, N. Existing approaches to address this problem are MUSIC, ESPRIT, Prony’s (least

squares) method, wavelet transform and statistical methods described later.

• Second model: descriptor representation. The equivalent descriptor model uses an associ-

ated internal variable xðtÞ 2 Rk of the system. The resulting equations are:

Exðt þ 1Þ ¼ AxðtÞ; yðtÞ ¼ CxðtÞ þ wðtÞ; x 2 Rk; ð2Þ

with initial condition xð0Þ ¼ x0 2 Rk, where E, A 2 Rk�k, C 2 R1�k.

• Third model: AR (Auto Regressive) representation. The above model can also be

expressed as an AR model driven by an initial condition. As above we let y(t) = y�(t) + w(t),
(where y�(t) is the noiseless term and w(t) the noise). It follows that (1) can be rewritten as:

y�ðn þ kÞ þ gk�1y�ðn þ k � 1Þ þ � � � þ g1y�ðn þ 1Þ þ g0y�ðnÞ ¼ 0; ð3Þ

with initial conditions y�(ℓ), ℓ = 0, 1, � � �, k − 1.

Goal. Discover the fundamental oscillations inherent in the gene data, using these models and

reduced versions thereof.

Processing of the data with the pencil method. The data y1, y2, � � �, yN, are used to form

the Hankel matrix:

H ¼

y
1

y
2

y
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where for simplicity it is assumed that N = 2k. Then we define the quadruple (E, A, B, C):

E ¼ Hð1 : k; 1 : kÞ; A ¼ Hð1 : k; 2 : ðk þ 1ÞÞ; B ¼ Hð1 : k; 1Þ; C ¼ Hð1; 1 : kÞ: ð4Þ

This quadruple constitutes the raw model of the data. This model is linear, time-invariant

and discrete-time with a non-zero initial condition:

Ex½n þ 1� ¼ Ax½n�; y½n� ¼ Cx½n�; Ex½0� ¼ B; n ¼ 0; 1; 2 � � � : ð5Þ

Reduced models and fundamental oscillations. The dominant part of the raw system is

determined using a model reduction approach [4], [5], [6], [3]. The procedure is as follows.

Pencil procedure for obtaining dominant sub-models.

• Compute the SVDs:

½u1; s1; v1� ¼ svd
E

A

" # !

; ½u2; s2; v2� ¼ svdð½E; A�Þ:

• Choose the dimension r of the reduced system (e.g r = 3, r = 5, r = 7 etc.). Then

X ¼ u2ð1:k;1: rÞ; Y ¼ v1ð1:k;1: rÞ;

are used to project the raw system to the dominant subsystem of order r:

Er ¼ XTEY 2 Rr�r;Ar ¼ XTAY 2 Rr�r;Cr ¼ CY 2 R1�r;

and xr ¼ XTx0 2 Rr�1.

The associated reduced model of size r is then:

Erxr½n þ 1� ¼ Arxr½n�; yr½n� ¼ Crxr½n�; Erxr½0� ¼ Br:

Assuming (as is usually the case) that Er is invertible, the approximated data can be

expressed as:

ŷn ¼ C½E�1A�
n�1

½E�1B�:

Estimating r. Important byproducts of the pencil method are the singular values s1 and s2

mentioned above. The accuracy of the approximation is determined by the first neglected sin-

gular singular value σr+1, as the resulting approximation error is proportional to this singular

value. This implies the following rule.

Rule: choose r so that
sr
s1

< �, where � is a tolerance which depends on the data at hand. For

instance � = 0.01, implies roughly speaking that data contributing less than 1% to the overall

result are discarded. In this regard the following remark is in order. The data considered in

this paper are rather short-duration and therefore in many cases we have not truncated the

data.

Partial fraction expansion of the associated transfer function. Hr(z) = Cr(z Er − Ar)
−1 Br.

This involves the eigenvalue decomposition (EVD) of the matrix pencil (Ar, Er), or equiva-

lently of E�1

r Ar; let

E�1

r Ar ¼ VrΛrV
�1

r ;

where the columns of Vr = [v1, � � �, vr] are the eigenvectors, Λr = diag[λ1, � � �, λr] are the

eigenvalues of the reduced system (poles of Hr(z)), and ½v̂1; � � � ; v̂ r� are the rows of V�1

r . The
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approximate data can be expressed as:

ŷn ¼
Xr

i¼1

½Cvi� ½v̂ iB� l
n�1

i ¼
Xr

i¼1

Pi l
n�1

i ¼ ai e
sin ejðoinþyiÞ;

where Pi ¼ ½Cvi� ½v̂ iB�, is the complex amplitude of the ith, oscillation; expressing this in polar

form Pi ¼ aiejyi , αi is the real amplitude and θi the phase. Finally, if we express the eigenvalues

as li ¼ esiþjoi , σi is the decay (growth) rate, and ωi the frequency, of the ith oscillation.

Poles and oscillations. Often in (digital) system theory, the quantity li 2 C is referred to as

pole of the associated system. Oscillatory signals result when σi = 0, which it turn implies that

the magnitude of the pole λi is equal to one: jλij = 1, and the period of oscillation is Ti ¼ 2p

oi
.

For instance a signal with λi = 1, represents a constant (step), while signals with li ¼ ej p
12,

li ¼ ejp6 (which are both on the unit circle with angles 15˚, 30˚ degrees) represent pure oscil-

latory signals with periods 24, 12 hours respectively.

Angle between signals and orthogonality. In the sequel we will make use of angles

between signals. Here we briefly define these concepts. Given discrete-time finite duration sig-

nals (vectors)

a ¼ ½aj�
n
j¼1

; b ¼ ½bj�
n
j¼1

2 Cn
;

their inner product is defined as

ha;bi ¼ a�b ¼
Xn

j¼1

a�

j bj;

where (�)� denotes complex conjugation and transposition; the angle between these signals is

defined as

ffða; bÞ ¼ arccos
ha; bi

kakkbk
; ð6Þ

where k�k denotes the Euclidean 2-norm. Orthogonality means that the angle between the

two signals is p

2
, or equivalently that their inner product is zero; this is sometimes denoted by

a ? b. In the sequel we also make use of the symbol to indicate approximate orthogonality,

i.e. an angle between signals close to p

2
radians or 90˚ degrees.

Other methods

To complete the picture, we briefly list other methods which can be used to analyze the gene

data.

MUSIC. The MUSIC algorithm [7], [8], is a parametric spectral estimation method based

on eigenvalue analysis of a correlation matrix. It uses the orthogonality of the signal subspace

and the noise subspace to estimate the frequency of each oscillation. It assumes that a set of

data can be modeled as Y = Γa + n, where Y ¼ ½y1 y2 � � � yN �
T

2 R
N

, is a set of gene tran-

scription data, Γ = [e(ω1) e(ω2) � � � e(ωK)] is the transpose of a Vandermonde matrix, K is the

number of dominant frequencies, and eðoiÞ ¼ ½1 ejoi � � � ejðK�1Þoi �
T
, a = [a1 a2 � � � aK]T con-

tains the amplitudes of the dominant K frequencies, n � N ð0; s2
nIÞ, is white noise. The auto-

correlation matrix is

Rxx ¼
1

M

XM

i¼1
xxH ¼ GL

2
GH þ s2

nI
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where Λ = diag(λi) and M is the number of columns in the Hankel matrix. We can see that the

rank of matrix ΓΛ2 ΓH equals K where the nonzero eigenvalues are flmg
K
m¼1

. Then the sorted

eigenvalues of the autocorrelation matrix Rxx can be expressed as

ln ¼ ~ln þ s2
n; n � K; and s2

n; K < n � N:

It follows that the noise subspace contains the eigenvectors of the autocorrelation matrix Rxx

corresponding to the N − K smallest eigenvalues. Then

RxxG ¼ G diag ½lKþ1; � � � ; lN � ¼ ΓΛ2ΓHG þ s2
nG

so ΓH G = 0, and the frequency values f~lkg
K

k¼1
are the only solutions of e(ω)H GGH e(ω) = 0.

The MUSIC algorithm seeks the peaks of the function 1/[e(ω)H GGH e(ω)], where ω 2 [0, 2π].

The Root MUSIC algorithm seeks the roots of pH(z−1)GGHp(z) that is the Z-transform of e-

(ω)HGGHe(ω) where z = ejω 2 C.

The MUSIC algorithm can only provide the frequency information of the signal. To obtain

the amplitude of each oscillation, we need to apply least squares fitting, where the amplitudes

of dominant oscillations satisfy a = (ΓH Γ)−1 ΓH x. It should mentioned that in contrast with

the pencil method, MUSIC cannot provide the decay (growth) rate of the oscillations.

ESPRIT. This is another parametric spectral estimation algorithm [7], [8]. It analyzes the

subspaces of the correlation matrix. It estimates the poles relying on rotational transformation.

As in MUSIC: Γi;j ¼ zi�1
j , j = 1, � � �, K, i = 1, � � �, N, where zj are the poles. We can construct

Γ1 = Γ(1: N − 1,:), and Γ2 = Γ(2: N,:). The relationship between these two quantities is Γ2 = Γ1

F, where F = diag [z1, z2, � � �, zK], is the phase shift matrix that represents a rotation. Now we

construct a similar structure applying on signal subspace S that contains the eigenvectors of

the autocorrelation matrix Rxx corresponding to the K largest eigenvalues. Let

S1 ¼ Sð1 : N � 1; :Þ; S2 ¼ Sð2 : N; :Þ:

Note that the relationship between S1 and S2 is S2 = S1 C. Because Γ and S have the same

column space (see [7, 8]), we have that Γ = ST, where T is an invertible subspace rotation

matrix. So we have C = T-1 FT. Therefore the poles are the eigenvalues of C. Finally least

square (LS) to obtain C ¼ ðSH
1
S1Þ

�1SH
1
S2: The eigenvalues of C, are the poles zi ¼ ejoiþsi . Thus

ESPRIT can estimate both the frequency and the decay (growth) rate of the oscillations. How-

ever, as with MUSIC, we need to use LS to obtain the amplitude of each oscillation.

Wavelet transform. Wavelet transforms can be divided into two categories, the continu-

ous (CWT) and the discrete (DWT) versions. CWT is more suitable for analyzing biologic

rhythms because of the associated heat maps are two-dimensional.

In CWT a time signal x(t) is convolved with a wavelet function. This leads to a time-fre-

quency representation which provides spectrum information in a local time window. This

transform can be expressed as Wcðt; sÞ ¼
R1

�1

1

s c
� u�t

s

� �
xðuÞdu, where s is the frequency scale,

ψ�(t) is the wavelet function. Since the signal data is obtained by sampling, we can approxi-

mately rewrite the equation as Wcðt; sÞ ¼
P1

n¼�1
c

� n�t
s

� �
xðnÞ. It follows that the integral or

sum is applied on the range −1 to 1 that means the domain of signal x(t) or x(n) should be

the range from −1 to 1. But the signals considered have finite length, in which case the edge

effects become obvious, especially in the low-frequencies.

In practice, there are many wavelet functions that can be chosen, both real- and complex-

valued. Real-valued wavelets are useful for treating peaks and discontinuities of signals while

complex-valued wavelets yield the information of amplitude and phase simultaneously [9].

Analysis of oscillations in gene transcription
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Statistical methods. In this section three statistical methods, namely ARSER, JTK_CYCLE

and RAIN, will be investigated and their ability to detect biological rhythms evaluated. Those

methods focus on the (one) most dominant oscillation in the data, especial JTK_CYCLE and

RAIN. These constitute statistical tests that calculate the p-value to determine whether a certain

rhythm exists in the data [10–12].

ARSER. ARSER uses the autoregressive (AR) model to obtain the period of oscillation. It

then uses linear regression (harmonic) to determine the amplitude and the phase of the oscilla-

tion. Finally applying the F-test to pre-processed data and regressive data determines whether

an oscillation exists.

Pre-processing the data. Because the data may not be stable, ARSER applies linear detrend-

ing to the raw data. It then uses linear regression to fit the data as a straight line. Subsequently

ARSER uses a fourth-order Savizky-Golay algorithm to smooth the data. This low-pass filter

removes the pseudo-peaks in the spectrum.

Finding the period. ARSER uses an autoregressive model to get the period of the oscillation.

Given a pre-processed dataset fytg
N
t¼1

with period interval Δ.

yt ¼
Pn

i¼1
aiyt�i þ �t;

where �t is white noise, αi are AR coefficients, n is the order of model (we choose n = length-

of-data/Δ). To calculate the coefficients, ARSER uses the Yule-Walker method, maximum like-

lihood estimation and the Burg algorithm. After AR modeling, ARSER can calculate the spec-

trum:

sðoÞ ¼ s2
�
=j1 þ

Pn
k¼1

akexp�iok
�
�
�

2

;

where s2
�

is the variance of white noise. ARSER finds the peaks in time window t 2 [20, 28] as

the periods {Ti} the oscillation (the optimal periods are determined by Akaike’s information

criterion).

Harmonic Regression. Now we can express the pre-processed data as:

yt ¼ m þ
Pm

i¼1
fbi1cosð2pt=TiÞ þ bi2sinð2pt=TiÞg þ �t;

where βi1 and βi2 are the amplitudes. ARSER calculates those amplitude through linear

regression.

F-test. Using the F-test compares the approximation data fx̂ tg and pre-processed data {xt}.
The null and the alternative hypotheses are respectively

H0 : A1 ¼ A2 ¼ � � � ¼ Ar; H1 : Ai; 6¼ 0; for at least one value of i;

where Ai are the amplitudes which are calculated using linear regression, and r is the number

of coefficients obtained by linear regression. We can calculate the F coefficient by:

F ¼

PN
i¼1

ðx̂ i � �̂xÞ
2
=ðr � 1Þ

PN
i¼1

ðx̂ i � xiÞ
2
=ðN � rÞ

:

Then we can calculate the p value using the F-distribution p = P(F, r − 1, N − r), where P(�)

is the probability function used to calculate the p value based on F-distribution.

JTK_CYCLE and RAIN. JTK_CYCLE and RAIN use statistical method to detect the

trend in data. The former can find the increasing or decreasing trend in data and RAIN is a

development of JTK_CYCLE which can combine these two.

A periodic waveform should start from the trough and increase to the peak following a

decreasing part to a new trough. Because our data is sampling from the waveform, we can
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regard every time sampling data point as a variable. Thus we can get n variables fFig
n
i¼1

for the

waveform such that T = nΔ (T is the period of the waveform, Δ is the time interval of sampling

point). We assume the variances of those variables are the same. And they have the same mean

value only when the data only have noise without periodic oscillation. So the null and the alter-

native hypotheses are

H0 : F1 ¼ F2 ¼ � � � ¼ Fn; H1 : F1 < F2 < � � � < Fn or F1 > F2 > � � � > Fn:

The alternative hypotheses for RAIN is

H1 : F1 < F2 < � � � < Fe > Feþ1 > � � � > Fn > F1:

Calculating the statistical coefficient of trend. Every variable Fi, corresponds to a sampling data-

set fXijg
mi
j¼1

, where mi is the number of sampling data point of the ith variable (
Pn

c¼1
mc ¼ N). Let

qik;jl
¼ 1 if Xik � Xjl, and 0 otherwise; and Uij ¼

Pmi
k¼1

Pmj
l¼1 qik;jl

, which is the Mann-Whitney U-

statistic for comparison of two variables. For JTK_CYCLE, the statistical coefficient of trend is

s ¼
Xn�1

i¼1

Xn
j¼iþ1

Uij:

For RAIN, the statistical coefficient of trend is

s ¼
Xe�1

i¼1

Xe
j¼iþ1

Uij þ
Xn�1

i¼e

Xn
j¼iþ1

Uij þ
Xn

i¼eþ1
Ui1:

Calculating the p-value. For the test, the p-value pðsÞ ¼
f ðsÞ

Psmax
i¼0

f ðiÞ. In order to calculate the

p-value, we should make clear the distribution f(i) of statistical coefficient s when the null

hypotheses H0 is true. Furthermore the distribution f(i) is computed, using a generating func-

tion GðzÞ ¼
Psmax

i¼0
zif ðiÞ. For JTK_CYCLE and RAIN we have respectively:

GðzÞ ¼
QN

u¼1
ð1 � zuÞ

Qn
d¼1

Qmd
v¼1

ð1 � zvÞ
; GðzÞ ¼

QN1e
u1¼1

ð1 � zu1 Þ
Qe

d¼1

Qmd
v¼1

ð1 � zvÞ
�
QNen

u2¼1
ð1 � zu2 Þ

Qn
d¼e

Qmd
v¼1

ð1 � zvÞ
�

QNðeþ1Þnþm1

u3¼1 ð1 � zu3 Þ
Qm1

v¼1
ð1 � zvÞ �

QNðeþ1Þn
v¼1 ð1 � zvÞ

:

Thus G(z) for JTK_CYCLE and RAIN are both polynomials. We can get the distribution

f(i) by calculating the coefficients of G(z), which can be used in the p-value equation.

Experimental results: Artificial data

In this section we test the performance of different methods using artificially generated signals.

For the continuous wavelet transform, we chose the complex morlet wavelet because it allows

changes to the resolution in frequency and time domain. For simulation data, we assume the

data has the form

yðnÞ ¼
Pn

i¼1
f iðnÞ þ wðnÞ;

where w is white noise with zero mean and variance σ2 and fi is the ith oscillation, where:

f iðnÞ ¼ Aie�sin cos
2p

Ti
n þ yi

� �

; ð7Þ

where Ai is the amplitude, σi is the decay (growth) rate, θi is the phase and Ti is the period.

At first we assume that the samples are collected in unit time intervals. The parameters are

defined in the table below; the first oscillation is almost constant with small decay; the other

three oscillations have a period of approximately 24- 12- and 8-hours (see Table 1).

The experiment has the following parts. First, the sensitivity to noise is investigated. Here,

the variance of noise is changed and the performance of each of the different methods is
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examined. Second, the impact of the length of the data is investigated. Finally, the frequency of

data collection (can be referred to as sampling frequency) will be examined.

Recall that the Nyquist sampling theorem provides the lower bound for the sampling fre-

quency in order to prevent aliasing. This can be used to determine appropriate sampling fre-

quencies for continuous-time signals.

Sensitivity to noise. To test the sensitivity of these various methods to noise, we set the

standard deviation of w as σ = [0, 0.03, 0.1, 0.3].

Fig 1 shows curves of different methods and simulation data (length 50) with σ as stated.

The red points are simulation data, blue, green and magenta are the curves of the pencil,

Table 1. Parameters used for the simulation.

i A σ θ T
1 1 0.005 0 1

2 1 0.004 p

2
� 6 24.8

3 0.3 −0.002 p

2
11.8

4 0.1 0.005 p

2
þ 1 7.5

https://doi.org/10.1371/journal.pone.0198503.t001

Fig 1. Curves for simulation data.

https://doi.org/10.1371/journal.pone.0198503.g001
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ESPRIT and MUSIC methods respectively. This figure shows that the pencil and ESPRIT

methods yield a perfect fit in all situations. The MUSIC algorithm gives a good fit only for

small amounts of noise. In Table 2, we display the poles obtained by using each method.

In Fig 2, the heat map of the wavelet transform is shown. It follows that yellow region is

such that we cannot distinguish two oscillations with close periods. We can recognize 12h and

8h oscillations when the noise is weak. However when the noise is strong (σ = 0.3), only the

strongest oscillation can be determined. The edge effect is obvious and there are ghost lines

e.g. around 15h, that may lead to false estimation.

From these considerations, we conclude that the pencil and ESPRIT methods are robust to

noise. This is not the case for MUSIC and CWT.

Impact of data length. The left-hand side plot of Fig 3 shows fit curves using different

methods and simulation data (noise standard deviation 0.05) with duration L = [30, 50, 100,

200]. The time interval for data collection is 1. Red points indicate simulation data, blue, green

and magenta are the fit curves of pencil, ESPRIT and MUSIC algorithms, respectively.

The right-hand side plot shows poles of oscillations estimated with different methods

(noise standard deviation 0.05) with duration L = [30, 50, 100, 200]. The time interval for

data collection is 1. Black � indicates the original poles of the simulation data, blue, green and

Table 2. Poles determined by different methods.

σ = 0.01 σ = 0.1

orig. poles Pencil ESPRIT MUSIC orig. poles Pencil ESPRIT MUSIC

0.990 0.990 0.990 1.000 0.990 0.989 0.989 1.000

0.958 ± 0.248i 0.958 ± 0.248i 0.958 ± 0.248i 0.970 ± 0.239i 0.958 ± 0.248i 0.960 ± 0.248i 0.960 ± 0.249i 0.974 ± 0.225i

0.870 ± 0.502i 0.870 ± 0.512i 0.870 ± 0.512i 0.867 ± 0.497i 0.870 ± 0.502i 0.867 ± 0.511i 0.867 ± 0.512i 0.834 ± 0.551i

0.662 ± 0.735i 0.662 ± 0.735i 0.662 ± 0.735i 0.693 ± 0.721i 0.662 ± 0.735i 0.669 − 0.772i 0.662 ± 0.751i -0.974 ± 0.2235i

σ = 0.03 σ = 0.3

orig. poles Pencil ESPRIT MUSIC orig. poles Pencil ESPRIT MUSIC

0.990 0.990 0.990 1.000 0.990 0.987 0.988 1.000

0.958 ± 0.248i 0.958 ± 0.248i 0.958 ± 0.248i 0.970 ± 0.239i 0.958 ± 0.248i 0.965 ± 0.236i 0.964 ± 0.239i 0.975 ± 0.221i

0.870 ± 0.502i 0.870 ± 0.512i 0.871 ± 0.512i 0.861 ± 0.507i 0.870 ± 0.502i 0.863 ± 0.511i 0.862 ± 0.513i 0.880 ± 0.474i

0.662 ± 0.735i 0.660 ± 0.737i 0.659 ± 0.736i 0.712 ± 0.701i 0.662 ± 0.735i 0.007 ± 1.021i -0.001 ± 1.012i -0.034 ± 0.999i

https://doi.org/10.1371/journal.pone.0198503.t002

Fig 2. Heat maps of the wavelet transform.

https://doi.org/10.1371/journal.pone.0198503.g002
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magenta are the estimated poles using the pencil, ESPRIT and MUSIC algorithm, respectively.

For more accuracy, the poles are also listed in Table 3.

Rate of data collection (sampling frequency). To investigate the impact of sampling of

the underlying continuous-time signal, we generate artificial data with L = 50. Then we apply

all methods to the original dataset, the half-data set (time collection interval I = 2) and third-

data set (that is 1, 4, 7, 10 � � � with time collection interval I = 3). In Fig 4, the left-hand side

plot below shows heat maps (Y-axis is frequency domain, X-axis is time domain) of simulation

data (noise standard deviation 0.05) with duration L = [30, 50, 100, 200]. The right-hand side

plot shows data fit for the various methods.

Conclusion. From the above considerations it follows that decreasing the sampling fre-

quency does not affect the estimation significantly. This means that the data rate collection

(sampling frequency) is not an important factor. In contrast, the data length is a crucial factor

for all methods.

Experimental results: The pencil method applied to gene data

In this section we analyze a small part of the measured data in order to validata some of the

aspects of the pencil method and its comparison with the other methods.

Fig 3. Curves for simulation data.

https://doi.org/10.1371/journal.pone.0198503.g003

Table 3. Poles for different methods.

L = 30 L = 100

orig. poles Pencil ESPRIT MUSIC orig. poles Pencil ESPRIT MUSIC

0.995 0.896 -1.043 1.000 0.995 0.994 0.994 1.000

0.964 ± 0.249i 0.778 ± 0.661i 0.305 ± 0.000i 0.977 ± 0.213i 0.964 ± 0.249i 0.964 ± 0.249i 0.964 ± 0.249i 0.969 ± 0.246i

0.863 ± 0.505i 0.447 ± 0.000i 0.772 − 0.653i 0.806 ± 0.591i 0.863 ± 0.505i 0.863 ± 0.508i 0.863 ± 0.508i 0.857 ± 0.514i

0.665 ± 0.739i 1.093 − 0.329i 1.085 ± 0.324i 0.456 ± 0.889i 0.665 ± 0.739i 0.661 ± 0.734i 0.659 ± 0.733i 0.648 ± 0.761i

L = 50 L = 200

orig. poles Pencil ESPRIT MUSIC orig. poles Pencil ESPRIT MUSIC

0.995 0.995 0.995 1.000 0.995 0.995 0.995 1.000

0.964 ± 0.249i 0.964 ± 0.250i 0.964 ± 0.250i 0.970 ± 0.239i 0.964 ± 0.249i 0.964 ± 0.249i 0.964 ± 0.249i 0.972 ± 0.234i

0.863 ± 0.505i 0.864 ± 0.511i 0.863 ± 0.510i 0.824 ± 0.566i 0.863 ± 0.505i 0.863 ± 0.508i 0.863 ± 0.508i 0.857 ± 0.514i

0.665 ± 0.739i 0.655 ± 0.727i 0.652 ± 0.731i -0.336 ± 0.941i 0.665 ± 0.739i 0.663 ± 0.737i 0.663 ± 0.737i -0.336 ± 0.941i

https://doi.org/10.1371/journal.pone.0198503.t003
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Batch consisting of 171 measurements every 40min The results in this case are summa-

rized in Table 4 and Fig 5 (S1 File. DATA 171 is a 10 x 171 matrix; the first row contains time;

the remaining rows contain the measurements taken from 9 mice.)

Batch consisting of RER for restrictively fed mice (218 meas. every 40min) (see Table 5

and S2 File. DATA 218 is a 10 x 218 matrix; the first row contains time; the remaining rows

the measurements taken from 9 mice.).

Fig 6 shows the approximation by 1, 2 and 3 oscillations (upper pane) and the first four fun-

damental oscillations (lower pane). Table 6 shows the error and the angles (S3 File. DATA 15

is a 15 x 48 matrix; each row corresponds to a different gene; time runs from 1 to 48 hours).

We analyze the relationship among the decomposed oscillations, by calculating the angle

among these oscillations for 10 different genes. We set r = 9, i.e. the gene signals contain four

oscillations fi, i = 1, � � �, 4. The approximant is thus ŷ ¼ f0 þ f1 þ f2 þ f3 þ f4. See also Table 7

(S4 File. DATA 10 is a 10 x 48 matrix; each row corresponds to a different gene; time runs

from 1 to 48 hours.)

From the above tables, we can see that the angle between oscillations is around 90˚ in most

situations. So oscillations are nearly orthogonal:

It has actually been shown in [13] that these oscillations are independent of each other.

Batch consisting of various measurements using mice—38 min intervals (see Table 8

(S4) and Table 9 as well as Fig 7 (S5 File. DATA 186 is a 6 x 186 matrix; the first row contains

time; the rest represent: food intake, ambulatory activity, total activity, ZTOT and heat.)

Fig 4. Heat maps (left) and fit curves (right).

https://doi.org/10.1371/journal.pone.0198503.g004

Table 4. Data averaged over all mice.

A P T

0.1594 0.9022 –

0.0010 1.0050 1.4483

0.0017 0.9985 1.8434

0.0034 0.9956 9.8050

0.0164 1.0013 23.9361

0.9239 0.9986 dc

https://doi.org/10.1371/journal.pone.0198503.t004
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Variation of data collection rate. We compare the oscillations using all data (AD), the

first half of the data (FHD), the second half of the data (SHD), odd-position data (OD), and

even-position data (ED). This is done for a particular set of measurements, but the results are

indicative of what happens in general.

Table 10 shows the estimated periods using different part of the data. It follows that the esti-

mation of periods is consistent using AD, FHD, SHD.

Discussion and comments

1. Orthogonality. Recall the definition of angle between signals defined by (6), and let the

original vector of measurements for one gene be denoted by y 2 RN ; let also fi, i = 0, 1, 2, 3,

Fig 5. Plots for averaged data.

https://doi.org/10.1371/journal.pone.0198503.g005

Table 5. Model parameters for mouse # 1.

Mouse #1

A P T

0.0037 1.0005 4.8275

0.0116 0.9961 7.4236

0.0256 0.9993 7.9961

0.0010 1.0043 20.2774

0.0817 1.0001 23.9264

0.8843 1.0001 dc

https://doi.org/10.1371/journal.pone.0198503.t005
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4, denote the vectors of the DC-component and of the first four fundamental oscillations

obtained by means of the pencil reduction method described above. Then the correspond-

ing approximant is ŷ ¼ f0 þ f1 þ f2 þ f3 þ f4. It follows that:

a. The fundamental oscillations are approximately orthogonal among themselves: .

Fig 6. Plots for mouse #1.

https://doi.org/10.1371/journal.pone.0198503.g006

Table 6. Errors and angles.

Relative approximation error Angle between approximant & error

3-fit 5-fit 7-fit 9-fit 3-fit 5-fit 7-fit 9-fit

Gene 1 0.1973 0.1276 0.1122 0.1299 Gene 1 88.72 88.65 88.66 90.46

Gene 2 0.2217 0.2028 0.1669 0.1375 Gene 2 88.00 89.84 87.27 86.17

Gene 3 0.2801 0.3940 0.2038 0.2112 Gene 3 91.92 – 92.25 91.54

Gene 4 0.2654 0.2525 – 0.2026 Gene 4 89.82 94.18 – 92.30

Gene 5 0.4296 0.3780 0.1970 – Gene 5 84.35 86.36 89.74 –

Gene 6 0.2493 0.2563 0.1918 0.1929 Gene 6 86.94 91.78 88.39 88.78

Gene 7 0.1971 0.1525 0.1475 0.1547 Gene 7 89.71 88.23 88.33 90.17

Gene 8 0.1914 0.1681 0.1402 0.1619 Gene 8 87.45 88.19 87.02 89.11

Gene 9 0.1832 0.1913 0.1403 0.1357 Gene 9 86.36 92.63 86.64 86.68

Gene 10 0.2016 0.2013 0.1874 0.2089 Gene 10 86.78 87.81 86.42 89.90

Gene 11 0.2637 0.2623 – 0.2083 Gene 11 92.80 91.36 – 90.92

Gene 12 0.2174 0.1681 0.2116 0.1484 Gene 12 91.20 90.18 94.12 90.59

Gene 13 0.3420 0.2154 – 0.2270 Gene 13 87.25 88.50 – 91.57

Gene 14 0.3140 0.2671 0.2452 0.2034 Gene 14 90.36 94.35 93.30 91.35

Gene 15 0.4058 0.3374 0.3052 0.2281 Gene 15 88.15 84.41 91.66 90.31

https://doi.org/10.1371/journal.pone.0198503.t006
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b. The associated approximant is approximately orthogonal to the error (noise): .

2. Interpretation of orthogonality. Orthogonality means that once an oscillation (e.g. the cir-

cadian or the 12h rythm) has been determined, further computations will not affect these

oscillations. In other words the fundamental oscillations are independent of each other.

3. Manifestation of orthogonality. As we determine higher-order approximants, i.e. as we

add oscillations to the model, the existing ones remain mostly unchanged. Considering the

case of the para probe1 gene, we apply the ESPRIT, LS (Prony’s) and pencil methods. The

statistical methods (e.g. ARSER) are not used because being non-parametric they do not

allow the choice of the order of fit. ESPRIT and LS are not reliable for large orders of fit,

Table 7. Angle between error vector and approximates.

Gene r = 3 r = 5 r = 7 r = 9

Bmal 89.4040 89.0189 88.7227 89.4645

Clock 97.5846 95.6007 – 154.5354

per1 87.3120 87.0905 – 122.6093

per2 84.0943 84.3410 84.2252 97.1281

cry1 83.6787 85.7345 83.9466 –

cry2 88.0607 85.8548 85.7156 87.9577

rorc 88.2740 87.0592 90.5345 –

rora 92.5359 – 90.2449 90.3424

rev-erba 93.4881 92.5612 91.1162 91.4786

reb-rebb 89.2219 89.2972 89.0471 90.6819

https://doi.org/10.1371/journal.pone.0198503.t007

Table 8. Angle between oscillations.

Gene f1 vs f2 f1 vs f3 f1 vs f4 f2 vs f3 f2 vs f4 f3 vs f4
Bmal 90.9499 91.8664 87.7962 85.2451 91.2452 91.7038

Clock 89.4592 87.9364 – 106.0165 – –

per1 85.4061 93.9105 87.4712 74.9960 90.2287 101.0929

per2 91.6425 94.1211 89.7681 88.9246 90.6757 90.4533

cry1 83.3704 87.0513 – 89.2173 – –

cry2 84.0615 91.3131 90.0791 90.9828 86.2981 88.1623

rorc 88.6977 94.5739 87.0044 99.9135 85.2751 93.1401

rora 91.3788 89.7184 89.8657 92.8563 88.6223 90.5763

rev-erba 94.9717 83.6197 88.9055 98.3908 90.8681 91.7753

reb-rebb 88.4669 89.5753 90.7263 90.9262 88.9671 92.8038

https://doi.org/10.1371/journal.pone.0198503.t008

Table 9. Model parameters for various activities.

Food intake Ambulatory activity Total activity ZTOT Heat

A P T A P T A P T A P T A P T

0.0049 1.0014 1.4798 34.3158 1.0029 2.1857 46.2589 0.9996 2.1752 39.9181 1.0055 6.0855 0.0076 1.0013 -

0.0143 0.9946 1.5812 87.9712 0.9997 8.0524 139.9357 1.0002 8.0445 86.2169 1.0052 8.1064 0.0225 0.9936 8.1278

0.0106 1.0002 8.5909 111.7862 1.0004 12.1124 183.2241 1.0009 12.1327 138.1809 1.0052 12.1725 0.0095 1.0019 12.3403

0.0302 0.9977 23.9810 185.3298 1.0016 24.4907 317.1999 1.0021 24.4595 195.7413 1.0071 24.3164 0.0281 1.0027 24.3605

0.1189 0.9992 dc 504.7523 1.0003 dc 1045.0577 1.0005 dc 338.0709 1.0062 dc 0.5181 0.9999 dc

https://doi.org/10.1371/journal.pone.0198503.t009
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therefore the results for the 24-fit model is not shown. The poles of these three methods are

depicted in Tables 11, 12 and 13.

4. Connection with the Fourier transform. The above method provides an almost orthog-

onal decomposition of a discrete-time signal. The question arises therefore as to whether

the same or improved results can be obtained using the Fourier transform and in

Fig 7. Ambulatory activity: Approximation and oscillations.

https://doi.org/10.1371/journal.pone.0198503.g007

Table 10. Periods estimated using different parts of the data.

AD/h FHD/h SHD/h OD/h ED/h

1 24.37 23.01 24.36 24.37 24.37

2 12.34 12.41 12.46 11.90 12.58

3 8.12 8.42 7.45 8.25 8.13

https://doi.org/10.1371/journal.pone.0198503.t010

Table 11. Poles for the ESPRIT method.

ESPRIT

3 − fit 5 − fit 7 − fit 9 − fit

0.993 0.993 0.993 0.993

0.939±0.273i 0.944±0.272i 0.943±0.274i 0.944±0.274i
0.859±0.509i 0.866±0.505i 0.866±0.505i

0.370±0.892i 0.374±0.899i
−0.832±0.213i

https://doi.org/10.1371/journal.pone.0198503.t011
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particular the DFT. Applying the DFT to a length N sequence we obtain a decomposition

in terms of the N given frequencies or periods, which are (in decreasing order)

48; 24; 16; 12; 48

5
; 8; 48

7
; 6; 16

3
; � � � ; 48

47
. Therefore unless the frequencies of the

underlying oscillations are exactly among the ones above, the results of the DFT are not

useful.

5. The least squares (Prony’s) method. This method is not appropriate for cases where the

poles are on or close to the unit circle (pure or almost pure oscillations). Fig 8 depicts this fact

in the case of the RER data. The conclusion is that while the matrix pencil method (red dots)

gives oscillatory poles, this is by far not the case with the LS (prony’s) method (green dots).

6. Comparison of different methods (see Table 14).

Table 12. Poles for the LS method.

LS (Prony’s method)

3 − fit 5 − fit 7 − fit 9 − fit

0.967 0.970 0.972 0.994

0.363 0.435±0.319i 0.339±0.354i 0.863±0.384i
−0.486±0.366i −0.517±0.380i 0.319±0.863i

0.363 −0.475±0.745i
−0.806±0.299i

https://doi.org/10.1371/journal.pone.0198503.t012

Table 13. Poles for the pencil method.

Pencil method

3-fit 5-fit 7-fit 9-fit 24-fit (all data)

0.9933 0.9932 0.9931 0.9930 0.9915

0.9436 ± 0.2734i 0.9449 ±0.2730i 0.9446 ± 0.2742i 0.9447 ±0.2747i 0.9489 ± 0.2843i
0.8609 ±0.5132i 0.8659 ±0.5086i 0.8672 ±0.5068i 0.8729 ± 0.4812i

0.3831 ±0.9159i 0.3902 ± 0.9121i 0.3214 ± 1.1528i
-0.9780 ±0.3415i -0.9368 ±0.3683i

https://doi.org/10.1371/journal.pone.0198503.t013

Fig 8. Comparison between pencil and LS poles.

https://doi.org/10.1371/journal.pone.0198503.g008
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Final result

We considered a dataset consisting of 18484 genes; transcription is analyzed using the pencil

method [3], the ESPRIT method, Prony’s method and the three statistical methods. The distri-

bution of the poles follow; recall that the poles of ideal oscillations have magnitude equal to 1.

Furthermore the DFT and wavelet methods are also not competitive.

Fig 9 shows that the pencil method has uncovered real oscillations, since the mean of the

magnitude of all poles is 1.0058 and the standard deviation is 0.0010. The ESPRIT method

follows in terms of discovering oscillations, while the Prony or LS (least squares) method and

the three statistical methods give weak results. As explained above the main drawback of the

ESPRIT method is that it has nothing to say about the orthogonality of the oscillations, which

proves to be a key outcome of the pencil method.

Concluding remarks and outlook

The matrix pencil method allows the consistent determination of the dominant reduced-order

models, thus revealing the fundamental oscillations present in the data. The essence of the

matrix pencil method is that it provides a continuous-time tool for treating a discrete-time

(sampled-data) problem. The DFT, in contrast, is only a discrete-time tool for treating a dis-

crete-time problem; hence its failure in this setting.

Table 14. Strengths and weaknesses of the various methods.

Method Parameter Estimation Estimation Performance Detection of orthogonality

Period Decay Rate Amplitude Phase Accuracy Robustness

DFT Yes No Yes Yes Low Yes No

Wavelet Yes Yes Yes No Low No No

MUSIC Yes No No No High No No

ESPRIT Yes Yes No No High Yes No

Prony (LS) Yes Yes No No No No No

Pencil Yes Yes Yes Yes High Yes Yes

https://doi.org/10.1371/journal.pone.0198503.t014

Fig 9. Results of analysis of 18484 genes using various methods.

https://doi.org/10.1371/journal.pone.0198503.g009
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A key consequence of the matrix-pencil approach is the demonstration of orthogonality of

the different oscillatory components, in particular the 24-hour and the 12-hour cycles. This

points to an independence of these oscillations. This assertion has been subsequently con-

firmed in the laboratory experiments reported in [13].

This analysis demonstrates the applicability of signal processing methodologies to biological

systems and further shows the ability of the matrix pencil decomposition to demonstrate inde-

pendence of biological rhythms.

Supporting information

S1 File. DATA 171 is a 10 x 171 matrix; the first row contains time; the remaining rows

contain the measurements taken from 9 mice.

(MAT)

S2 File. DATA 218 is a 10 x 218 matrix; the first row contains time; the remaining rows the

measurements taken from 9 mice.

(MAT)

S3 File. DATA 15 is a 15 x 48 matrix; each row corresponds to a different gene; time runs

from 1 to 48 hours.

(MAT)

S4 File. DATA 10 is a 10 x 48 matrix; each row corresponds to a different gene; time runs

from 1 to 48 hours.

(MAT)

S5 File. DATA 186 is a 6 x 186 matrix; the first row contains time; the rest represent: Food

intake, ambulatory activity, total activity, ZTOT and heat.

(MAT)
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