®

Check for
updates

Let a Non-barking Watchdog Bite:
Cliptographic Signatures with an Offline
Watchdog

Sherman S. M. Chow!'®, Alexander Russell?®, Qiang Tang?, Moti Yung*?®,
Yongjun Zhao'®)@®, and Hong-Sheng Zhou®

! Chinese University of Hong Kong, Shatin, Hong Kong
{sherman,yjzhao}@ie.cuhk.edu.hk
2 University of Connecticut, Storrs, USA
acr@cse.uconn.edu
3 New Jersey Institute of Technology, Newark, USA
qiang@njit.edu
4 Google Inc., New York, USA
5 Columbia University, New York, USA
moti@cs.columbia.edu
5 Virginia Commonwealth University, Richmond, USA
hszhou@vcu.edu

Abstract. We study how to construct secure digital signature schemes
in the presence of kleptographic attacks. Our work utilizes an offline
watchdog to clip the power of subversions via only one-time black-box
testing of the implementation. Previous results essentially rely on an
online watchdog which requires the collection of all communicating tran-
scripts (or active re-randomization of messages).

We first give a simple but generic construction, without random
oracles, in the partial-subversion model in which key generation and
signing algorithms can be subverted. Then, we give the first digital
signature scheme in the complete-subversion model in which all cryp-
tographic algorithms can be subverted. This construction is based on
the full-domain hash. Along the way, we enhance the recent result of
Russell et al. (CRYPTO 2018) about correcting a subverted random
oracle.

Keywords: Signatures - Subversion resilience - Offline watchdog

S. S. M. Chow—Supported by GRF (CUHK 14210217) of the Research Grants Council,
Hong Kong.

A. Russell—Supported in part by NSF award 1801487.

Q. Tang—Supported in part by NSF award 1801492.

H.-S. Zhou—Supported in part by NSF award 1801470.

© International Association for Cryptologic Research 2019

D. Lin and K. Sako (Eds.): PKC 2019, LNCS 11442, pp. 221-251, 2019.
https://doi.org/10.1007/978-3-030-17253-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17253-4_8&domain=pdf
http://orcid.org/0000-0001-7306-453X
http://orcid.org/0000-0002-8228-6238
http://orcid.org/0000-0001-7380-3806
http://orcid.org/0000-0003-3534-6629
https://doi.org/10.1007/978-3-030-17253-4_8

222 S. S. M. Chow et al.

1 Introduction

Modern cryptography has been spectacularly successful. We have already seen
a flurry of cryptographic tools with versatile functionalities and rigorous secu-
rity analyses. Yet, the formal security guarantees come with an implicit caveat
— they only hold if the implementations faithfully realize the specifications the
formal security proof is analyzing. Our experiences tell us that implementa-
tion can be tricky. Programming bugs may go undetected and subtle errors can
make the implementation faulty. Apart from unintended blunders which may
spoil the security guarantee, implementations of cryptographic algorithms can
be subverted with fully adversarial implementations which look correct even
under fairly intensive (black-box) testing. Such kind of subversion, or in gen-
eral, kleptographic attack [27,28], is not just a pathological concern, but has
been understood as a real threat since the Snowden revelations [22]. Concretely
speaking, whenever a “third-party” software library or hardware device is relied
upon by a bigger cryptographic system, it is hard to assert its security even if
the said cryptographic system is “provably secure” in the traditional sense.

At a high level, kleptography considers a “proud-but-curious” adversary
whose goal is to break the security of a certain cryptographic primitive by sup-
plying a malformed implementation of it without being detected. Under such a
setting, the adversary has many viable attack strategies. For example, the mali-
cious implementation of a signature verification algorithm may always return
“1” when seeing a certain hard-coded string!. For another example, the sub-
verted randomized (e.g., encryption) algorithm may leak secret information via
a steganographic channel [4,23]. These general and powerful attack strategies
are undetectable under offline black-box testing. Given these attacks, it is not
surprising that all existing defense mechanisms rely on extra trust assumptions,
such as trusted online reverse firewall [10,16,21], trusted key generation algo-
rithm [2,5], trusted initialization [17], ete.

Recently, Russell et al. [23] proposed a framework (called cliptography) for
systematically studying how to secure cryptographic primitives in the presence
of kleptographic attacks, i.e., how to clip the power of kleptographic attacks.
The framework is characterized by three parties: an adversary, who may provide
potentially subverted implementations of cryptographic algorithms; a “watch-
dog”, who either certifies or rejects the implementations by subjecting them
to (black-box) interrogation according to the genuine specification of the algo-
rithms; and a challenger, who plays with the adversary in a conventional security
game, but now using the potentially subverted implementations. This frame-
work is capable of capturing a wide range of subversion capabilities and defense
mechanisms.

! This can be viewed as applying the input-triggered attack [13] to signature schemes.

Let a Non-barking Watchdog Bite 223

— Online watchdog vs. offline watchdog. We can define two flavors of
watchdogs, depending on the information given to it. The strong (and less
attractive) model of online watchdog [23] is provided with access to the full
transcript of the challenger-adversary security game. It could be valuable
for establishing feasibility results, but in practice, it is not easy to instantiate
such a watchdog, as it has to piggyback on the implementations, collecting all
communication transcripts to detect abnormal inputs, and “barking” all the
time. The weaker (and perhaps more attractive) model is the offline watchdog
model [23,25]. The watchdog simply interrogates the supplied implementa-
tions, comparing them with the specification of the primitives, and declares
them to be “fit” or “unfit.” In other words, the watchdog only needs to “bark”
once, and then it can go offline afterward.

— Partial subversion vs. complete subversion. The adversary may be more
interested in subverting certain cryptographic algorithms than the others. For
instance, if the attack goal is to learn the secret signing key, the attacker will
be less interested in subverting the verification algorithm than the signing
algorithm, since the verification result can only carry 1-bit of information and
it is likely to be kept locally. It is thus still worthy to consider the partial-
subversion model, in which some algorithms can be explicitly excluded from
subversion in the security game. Some subversion defense methods are estab-
lished in this model, e.g., honest key generation algorithm and honest verifica-
tion algorithm of a digital signature scheme [2]. The cliptography framework
by Russell et al. [23] can easily capture partial subversion by letting the chal-
lenger run the genuine algorithm in the security game. Of course, it is of
great importance to consider a more powerful adversary who can launch a
complete subversion which subverts all the relevant cryptographic elements
of a scheme [23] (excluding the computing base).

— Trusted computing base. Note that the complete-subversion model above
only refers to the functional components, i.e., the cryptographic algorithms,
which should be distinguished from the user computing base for basic opera-
tions such as @, =, “reassembly”, etc. The trusted computing base for (some
of) these operations is provided by the architecture, which is normally not
under the control of the cryptography implementation/library provider.
Russell et al. [23,25] recently proposed the split-program strategy for immu-
nizing kleptographic attacks on randomized algorithms. The idea of this non-
black-box technique is to decompose the algorithm into a constant number
of smaller components. The adversary can still provide subverted implemen-
tations of all these components but the challenger will faithfully amalgamate
these components into a fully functional implementation, which will be used
in the security game. Note that all components are still subject to black-box
interrogation by the (online/offline) watchdog. Such non-black-box testing
and trusted amalgamation can be captured by simply providing specifica-
tions of all small components of the algorithm to the watchdog.

224 S. S. M. Chow et al.

Current Status of Subversion-Resistant Signatures. To the best of our
knowledge, only three previous works considered subversion-resistant signature
schemes. The work by Ateniese et al. [2] not only relies on a priori “verifiability”
condition which essentially requires an online watchdog to instantiate, but also
assumes trusted key generation algorithm (or requires a trusted online “reverse
firewall”). The result of Russell et al. [23], despite in the complete-subversion
model, (explicitly) requires an online watchdog too. Fischlin and Mazaheri [17]
recently proposed a new defense mechanism called “self-guarding” which requires
users to have a trusted initialization phase to generate genuine message signature
pairs for randomly chosen messages. We continue the pursuit of reducing the
trust assumption needed for subversion-resistant signature schemes.

1.1 Owur Contributions

We investigate subversion-resistant EUF-CMA-secure (simply put, cliptographic)
digital signature schemes in the above framework with only an offline watchdog.

A Simple Generic Construction in the Partial-Subversion Model. We
start with a simple construction which works for any existing signature schemes.
So, one can just apply a simple “patch”, or install a “small” (due to its simplic-
ity) add-on without changing the underlying system. Note that for this generic
construction, the verification algorithm is still trusted.

How Difficult Is Our Problem? First, note that the key generation can be han-
dled by the recent double-splitting technique [25]. The main difficulty appears in
the Sign algorithm. Recall that one potential catastrophe of a subverted signing
algorithm is the revelation of the secret key. It is relatively easier to discover
such a subversion if the secret key is blatantly output as the “signature”. A
more sophisticated kleptographic attacker will hide this secret. When the sign-
ing algorithm is randomized, it provides a convenient subliminal channel. A
natural preventative measure is to use clean randomness to re-randomize the
signatures (if they are publicly re-randomizable), with the existence of a crypto-
graphic reverse firewall [21]. Alternatively, a unique signature scheme, in which
there is only one valid signature for each message, simply does not feature any
subliminal channel. These explain in a high-level way the feasibility results of
Ateniese et al. [2]. Nevertheless, many signature schemes, especially those effi-
cient ones with security proven in the standard model, are randomized (e.g. [8]).
So our first question is: can we upgrade the signing algorithm of a probabilistic
signature scheme?

Our Generic Construction. A general defense against input-triggered attacks [13]
is to mandate that the subverted implementation only takes a random message.
Russell et al. [25] construct subversion-resistant encryption schemes in the offline-
watchdog model with this idea. The encryption algorithm invokes two instances
of encryption, one encrypting u @ m and the other encrypting u. Adopting this
strategy naively in the context of signature signing does not work. The scheme
Signgppe (sk, m) = (Signlppe(sk, 1), Sighlpse (sk, u @ m),u) is trivially forgeable.

Let a Non-barking Watchdog Bite 225

We fixed this forgeable scheme by two techniques: (i) Domain-separation:
We append different special symbols to the inputs in the two invocations, so
that the output of the first invocation cannot be interpreted as the second one
(and vice versa); (ii) One-time random tag: We also need to make sure that no
one can mix-and-match (the components of) signatures for different messages to
create new forgeries. To do so, we further include a random tag r that binds the
two signature components together, also making sure that they are one-use only.
We note that the domain-separation technique has been used in other contexts,
such as random oracle instantiation. Similar one-time random tag structure has
also appeared in the context of structure-preserving signature [1], but their work
does not randomize the message to be signed.

Moreover, to handle the subliminal channel attack due to biased randomness,
we decouple the randomness generation from the randomized algorithm [25]. The
randomness generation can be further handled via the double-splitting technique,
while the deterministic counterpart for signing can be safeguarded by only an
offline watchdog as we feed only uniform messages as input.

FDH-Based Construction in the Complete-Subversion Model. Our
main contribution is a secure signature scheme in the complete-subversion model
which further handles the subverted verification algorithm.? This is the first sig-
nature scheme that achieves such security goals. The simple generic construction
above cannot handle subversion of verification algorithm. Indeed, it is not clear
how to generically apply the randomization strategy to the potentially adversar-
ial inputs to be fed to the verification (i.e., the message m and the signature o),
such that the signature verification algorithm still works on these randomized
inputs, without jeopardizing the unforgeability of the signature scheme.

Our second construction hence does not take the generic randomization app-
roach, but instead handles the classical full-domain hash (FDH) [7,11] paradigm.
In this paradigm, the signing algorithm first hashes the message and then inverts
the hashed value via a trapdoor one-way permutation. The adversary is supposed
to provide the implementation of each algorithm: KGyypy,, Signyp, Verify,y;, and
also the implementation of the hash hyp;.

First, we note that the key generation can be handled the same way as our
generic transformation above applying the recent double-splitting technique [25].

Regarding the hash function, we utilize the recent work of Russell et al. [26],
which provides a simple construction that can correct a subverted random oracle,
such that the resulting function will be as good as an ideal random function.
The construction requires some public randomness that is generated after the
implementation of the hash is supplied. To apply their theorems [26], and ensure
that the “corrected” hash can be considered to be a random oracle, we need
to ensure (i) the subversion disagrees on its specification only at a negligible

2 As elaborated above, the trusted computing base including operations like “®” and
“=" are still in place. They are actually necessary due to the known (simple) trigger
attacks [13] assuming only an offline watchdog. Our goal is to reduce the number of
trusted functional components, and keep the remaining as simple as possible, e.g.,
without any trusted large group operations.

226 S. S. M. Chow et al.

fraction; (ii) there is randomness that can be generated and published after
the malicious implementations are supplied; (iii) “interpret” their “replacement
lemma” [26] such that it is suitable for our application. Point (iii) is more complex
than it looks, especially when all the other algorithms are subverted. See below.

It is challenging to deal with the signing algorithm. To avoid the signing
implementation to leak the secret triggered by some hidden input, we will apply
the “corrected” random oracle [26] to the message before passing it into the evalu-
ation function of the underlying one-way permutation. The adversary is required
to provide the implementation of the inversion function, and the implementation
of the hash, separately, to enforce the actual inputs to the implementation of
inversion function are sk, i r(m), which are generated by a known distribution.

However, we remark that simply viewing hgr as a good random oracle
g(+) (trivially applying the replacement lemma [26]) is still problematic. As
the subverted Invyp, could simply use g(z) as the backdoor and output the
secret key sk directly when z appears in a signing query (i.e., Signy. (sk, z) =
Inviyes(sk, g(2)) = sk).

The problem here is that the adversary can query random oracle when gener-
ating the implementations and plant the trigger accordingly. To defend against
such attack, we have to disable the adversary from making useful random oracle
queries during the implementation-generation phase. Observe that if we have
some randomness R generated after Sign,,,, is provided, and R is involved in
the “encoding” of the message before sending to Invyyp;,, then the above problem
could be mitigated. Luckily, the correction function from [26] already involves
randomness generated after the time that implementations are provided. What
we need to adapt here is to derive a “stronger replacement theorem” that the
correction function of [26] is actually “as good as” (in the sense of indifferen-
tiability) a keyed hash (where, the key could be public, but sampled after the
implementation is provided). See Sect. 4.3 for details.

Finally, it is also tricky to deal with the verification algorithm. Suppose the
implementation of the verification takes input public key pk and a message-
signature pair (m, o), and outputs 0 or 1 to decide whether the signature is
valid. The input-triggered attack again can be applied here in a way that, for
some randomly chosen message m*, Verify,,, (-, m*, -) always outputs 1. Opening
up the verification functionality of the full-domain hash signature, it is actually
to check whether evaluating the signature equals to the (“corrected”) hash of
the message. We propose to do such canonical verification explicitly, that the
equality operation (and the “corrected” hash) will be done by the user. The
adversary will provide the implementation of the evaluation function. This simple
decomposition of the verification functionality changes the task of the adversarial
implementation from targeting one bit to predicting a random value, which is
the output of the “corrected” hash. We remark here that, as above, the use of the
public randomness is also critical to prevent the adversary from making useful
random oracle queries during the manufacturing phase of Verify,, ., .

There still exists a subtler attack, that the attacker might use the trigger
signature material o* to directly carry the information of hr(m*). This has to

Let a Non-barking Watchdog Bite 227

be resolved by strictly restricting the length of ¢* and doing a length check.
As o* first needs to carry certain trigger information which is independent of
the output of hgr(m™*), this thus burns the information needed for a precise
prediction of the value of hr(m*).

1.2 Related Works

Kleptography introduced by Young and Yung [27,28] primarily highlighted the
possibility of subverting key generation and left open the problem of defending
against such subversion. A recent line of work of Russell et al. [23,25,26] has ini-
tiated a systematic study of cliptography about defending against kleptographic
attacks by redesigning the specification and leveraging architectural tools. In
particular, they provided a subversion-resistant digital signature, assuming an
online watchdog [23].

Also recently, new attacks and defense mechanisms in the kleptographic set-
ting keep appearing. In particular, Bellare et al. [5] studied subverted randomized
encryption algorithms, building a steganographic channel that leaks secrets bit
by bit. Indeed, subliminal channel attacks turn out to be the major obstacle in
this area, and have been further explored by Ateniese et al. [2], Bellare et al. [3,4],
Degabriele et al. [13], Dodis et al. [15], and Liu et al. [19]. A common feature of
these works [3-5,13] is to adopt deterministic algorithms and to assume honest
key generation to defend against subliminal channel attacks.

Furthermore, these works do not rely merely on testing. In fact, most
require an a priori “decryptability” condition which demands that every mes-
sage encrypted using the implementation should be decrypted correctly using
the specification. A notable exception is the work of Degabriele et al. [13].
However, it relies on an online watchdog that possesses access to the actual
challenger-adversary communication transcript (including the internal state of
the challenger).

Another research line [10,16,21] considered defense mechanisms with a
“reverse firewall” that faithfully “re-randomizes” incoming and outgoing commu-
nication. On one hand, this model is attractive as it may permit quite general
feasibility results. On the other hand, it relies on an independent component
which is a source of trusted randomness (which generalized the “trusted war-
den” [14] used to eliminate subliminal channels in authentication protocols) and
“re-randomizable” structure of the underlying algorithms.

Recently, Fischlin and Mazaheri [17] proposed a new defense mechanism
called “self-guarding”, which assumes that a genuine version of the cryptographic
implementations is available before they get substituted. The self-guarding prim-
itive then leverages information gathered using that genuine implementation at
the initial phase to re-randomize potentially malicious inputs like the reverse
firewall approach (assuming trusted basic operations like exclusive-or or group
operation). They constructed several self-guarding primitives including digital
signature schemes. Besides the trusted “setup”, their signature construction
comes at a price that verification/signing key size and signature size all inflate
by a factor of O(\) where X is the security parameter.

228 S. S. M. Chow et al.

Finally, also motivated by the doubt on the implementation, cryptographers
(e.g., [18,29]) studied combiners of cryptographic primitives such that as long
there exists one component primitive is secure, even if it is not known which one
is that, the combined primitive remains secure.

Organization. In Sect. 2, we define the security for subversion-resistant digital
signature. In Sect. 3, we give our first construction — a simple and generic scheme
in the partial-subversion model; in Sect. 4, we give our second construction — an
FDH-based signature scheme in the complete-subversion model. Both construc-
tions use only an offline watchdog. Finally, the crooked indifferentiability model
can be found at Appendix A.

2 Definition of Subversion-Resistant Signatures

First, we recall the definition of subversion-resistant signatures [23]. Its goal
is fairly simple: the security of the digital signature scheme — unforgeability —
should be preserved even one uses the malicious implementations supplied by the
adversary, as long as the adversarial implementation is not detected. The detec-
tion is done by a trusted entity called watchdog who has the specification of the
algorithms and it will interrogate (via oracle accesses of) the implementation
to see whether it is consistent with the specification. The subversion-resistant
signature game is defined as the classical unforgeability game, except that the
challenger will use the implementations supplied by the adversary instead of the
specification of the algorithms. In particular, the challenger runs the key gener-
ation algorithm KGp;, to generate the challenged signing key and verification
key, uses the signing functionality Sign,,,,, to answer signing queries and use the
implementation of verification functionality Verify,,,, to verify the final forgery
that the adversary made. Definition 1 formalizes the high-level description above.
It can be viewed as a special case of the cliptographic game [23, Definition 2]
under the context of digital signature schemes.

Definition 1. A specification Hsppe = (KGspro, Signgppe, Verifygne) for a digital
signature scheme II is subversion-resistant in the offline-watchdog model, if
there exists a probabilistic polynomial-time (PPT) watchdog W, s.t., for any PPT
adversary A playing the security game (Fig. 1) with the challenger C, either the
advantage of the adversary A in the security game Adv 4(1*) = Pr[be = 1]
is negligible, or the detection probability Detyy 4(1*) of the watchdog W with
respect to A is non-negligible. Here, Detyy (1) is defined by

‘Pr[WKG,W.,,,SignmpL,VerifympL(1)\) _ 1] _ PT[WKGSP.W,SignspEwVerifySPEc(1/\) — 1” .

Let a Non-barking Watchdog Bite 229

TEST PHASE
w A
prepare Il =
[KGIMPLv SignIMPL? VerifYIMPJ
bW P WHNPL(]_)\)

run (pk,sk) KGIMPL(l/\) L..

- query for ¢ times

run o; < Sign,,, (sk, m;) S —

be = 1 if Verify,,, (vk,m",0") =1
Am* & {mu,...,mq}
bc := 0 otherwise

Fig. 1. Subversion-resistant signature game in the offline-watchdog model

As discussed earlier in Sect. 1, depending on the watchdog power, there could
be different variants of the above model. The most realistic watchdog only per-
forms one-time testing, which is called an offline watchdog. In practice, an offline
watchdog can be some industrial labs or security experts. We can also consider a
more stringent online watchdog that additionally checks all communication tran-
scripts between the challenger and the adversary. The online-watchdog model has
been explicitly considered under the context of digital signatures [23]. Clearly, an
online watchdog is much powerful and makes the design of subversion-resistant
scheme easier, but it is also more costly to realize an online watchdog. An online
watchdog has to piggyback on the implementation and actively monitor all com-
munications of an implementation.

Unfortunately, with only an offline watchdog, it is impossible to achieve
unforgeability in the kleptographic setting [2], even if only the Sign algorithm is
subverted. To see, recall the input-triggered attack mentioned above: the sub-
verted signing algorithm Sign,,,,, simply outputs the secret key when signing on
a hard-coded trigger message m which is selected uniformly by the adversary. It
is obvious that the adversary can make one single signing query to totally break
the unforgeability. Previous work [23] got around this by introducing an online
watchdog. Another work [2] introduced a “verifiability” assumption — any sig-
nature generated by the malicious signing implementation should be verified by
the genuine Verify algorithm. This verifiability assumption can only be ensured
with an online watchdog. This impossibility holds when the implementation is
used as a black box, without doing any post-processing. We will show below that
if the user can do some basic operation, e.g., equality check and “®”, then it
is possible to construct a digital signature scheme secure against the powerful

230 S. S. M. Chow et al.

kleptographic attack, with only an offline watchdog that performs non-black-box
testing (i.e., trusted amalgamation).

3 A Simple Generic Construction in the Standard Model

We propose a generic transformation on the signing algorithm which leads us to
a new randomized subversion-resistant signature scheme in the offline-watchdog
model from any deterministic signature scheme that is existentially unforgeable
against adaptive chosen-message attack (EUF-CMA, cf., Definition 8) (assum-
ing trusted verification and “@®”). Our transformation (modulo the underlying
algorithms) holds in the standard model®, and can be easily generalized to han-
dle randomized signatures as well. As discussed in Sect. 2, previous subversion-
resistant signature schemes either rely on an online watchdog [23], or an online
reverse firewall [10], or a strong “verifiability” assumption [2].

Figure 2 below formally describes our construction. For the sake of simplicity,
we describe the transformation for deterministic signature schemes first, and then
show how to generalize the result to handle randomized schemes.

Key Generation. We handle the key generation by adopting the recently
proposed double-splitting technique [25, Theorem 3.5], which we recall in
Appendix B. This guarantees that the implementation of a carefully designed
specification of key generation can be used as good as the specification, as long as
the randomness generation algorithm is executed independently. We refer to [25]
for details. Our result can be lifted to allow malicious key generation by directly
applying the existing technique [25].

Sign. We augment the specification of the signing algorithm dSigng,., with a
random tag generator RGgppe and a random message generator MGgpgc, i.e.,
Signgppe = (RGspros MGsprc, dSigngpse)- RGspre and MGgpge are merely for gener-
ating uniformly random tags and messages of a certain length. Therefore, they
can also be handled? by the double-splitting technique [25, Theorem 3.4], sim-
ilar to the key generation algorithm. To sign a message m, the user first runs
MGy, (the implementation) to sample a random message u, and compute a
message m’ = u®m. The user also runs RGy;;, to generate a random tag r from
some super-polynomial-size domain. The user will call dSign,,,, twice to sign
two distinct messages my = (r||u||“1”) and mg = (r||m/|]“2”) = (r||u ® m||“2"),
where “1” and “2” are two special symbols. The ultimate output of the signing
algorithm is o = (r,u, 01, 02) where 01,05 are the corresponding output of the
two invocations of dSign,p; -

Verify. Verification works straightforwardly: parse o as (r,u,o01,02), compute
m’ = u @ m, compose m; and mgy (using trusted “®”), and verify oy and os.

3 In the full version [24] of [25], the authors discussed how to achieve subversion-
resistant randomness generation in the standard model, at the cost of efficiency. See
Appendix B and [24] for details.

4 RGgppe and MGgpge will be split into three pieces exactly in Fig. 14.

Let a Non-barking Watchdog Bite 231

Given an EUF-CMA-secure deterministic signature SSgpse 1= (KGenlpse, dSignlope,

Verify,,.), and assuming trusted “®”, our subversion-resistant signature scheme
SSseic = (KGengppc, Signgppe, Verifyg,.) is defined below:

— Key generation: (pk,sk) « KGengpsc(A), where KGengpec(A) is the stego-free
version of KGenl,y. in the trusted-amalgamation model (see Theorem 5 [25,
Theorem 3.5] in Appendix B).

— Sign: o « Sign,,,,., (pk, sk, m), where Signg,..(pk, sk, m) is given by:
sample uniformly random string and message r < RGguc(1?), u
MGSPW(IA), where RGgpre and MGgpre are stego-free randomness generation
algorithms (see Theorem 4 [25, Theorem 3.4] in Appendix B);
compute o1 < dSigni.(sk, (r||u||“1”)) and o2 < dSigni.(sk, (r||u @
ml|“2"));
output o = (r,u, 01, 02).

— Verification: b < Verifyg,..(pk, m, o), where Verifyg,,.. is given by:
parse the input o as (r,u, 01, 02);
run Verifyl,..(pk, (r]|ul|“17), 01) and Verifyl,..(pk, (r||u & m||“2”), 02);
return 1 if and only if both verifications succeed.

Fig. 2. Subversion-resistant signature scheme SSgpic in the offline-watchdog model

Before detailing the security analysis, we briefly explain how our design
ensures security. First, KGgppe is subversion resistant because we are directly
applying the result in [25] (also see Theorem 5). Second, the Signg,,, algorithm
is subversion resistant because by design the input to dSignl,,, comes from a
public (uniform) distribution. A simple watchdog can further guarantee that
dSign,,p;, is consistent with the specification when the output is sampled from
SK x R x M x {“17, “27}, where SK denotes the space of signing keys, R
denotes the super-polynomial-size tag space, and M denotes the message space.
Third, the special symbols (“1” and “2”) and the random tag r ensure EUF-CMA-
security as follows: (1) the two special symbols separate the input domain so that
the output of the first invocation of dSigng,,. (with “1” appended) cannot be the
output of the second invocation (with “2” appended) for a forgery of Signgp.c,
and vice versa; (2) the random tag r drawn from a super-polynomial-size domain
makes sure that the signature o = (01, 02) for some message m is one-use only:
the adversary cannot mix-and-match different signatures to create new forgeries.

Theorem 1. For any EUF-CMA-secure deterministic digital signature scheme
S8, the specification SSsppe described in Fig. 2 is subversion resistant in
the trusted-amalgamation model, assuming a trusted “®” operation and trusted
the verification algorithm, and RGgppe outputs uniformly random tag from some

super-polynomial-size domain.

Proof. The watchdog for SSgpic is a combination of the watchdogs of the under-
lying components, including watchdogs for key generation (KGgpgc), random
tag generation (RGgpgc), random message generation (MGgpc). There is also a
watchdog that makes sure dSign,,,,, is consistent with the specification on inputs

232 S. S. M. Chow et al.

sampled from SK x R x M x {¥1”} and SK x R x M x {“2”} (¢f. Theorem 7)
because these two distributions are both public.

To see, the inputs to dSigng,,. consist of the signing key sk from KGengyp
and the concatenation of the following: a uniformly random tag r from RGpy,
a uniform message u or u & m (where u comes from MGy), and a special
symbol (“1” or “2”). With the trusted “®” operation, u & m will look uniform
to dSign!,,,, , hence its distribution is also MGyypy.

The rest of the proof consists of two parts. The first part is a series of
game transitions showing that from the adversary’s point of view, the subversion
game (as defined in Fig. 1) is indistinguishable from a standard EUF-CMA game
(namely SSyyp1, is replaced by SSspic), conditioned on the event that the watch-
dogs above do not detect any abnormal behavior of SSyp,. The second part
shows that SSg¢pgc is indeed EUF-CMA-secure, so that the adversary’s advantage
is indeed negligible.

Now we sketch the game changes and explain the negligible differences arise
during a series of game transitions from SSyp, to SSgprc, conditioned on the
watchdog’s result (Verify,,,,, is assumed trusted). Let the advantage of the adver-
sary A in game G; be Advf‘".

Game-0. Gy is the original game as described in Fig.1 with a trusted
amalgamation.

Game-1. GG is identical to Gy except that the key generation implementation
KGypy, is replaced by its specification KGgpg.

Lemma 1. |Advi0 - Advf‘l\ < negl(A).

Proof. This lemma follows straightforwardly from Theorem 5 [25, Theorem 3.5].
Namely, if KGen is split into RGqy, RG1, @, dKG, and RGq, RG; are executed inde-
pendently, the resulting implementation would be stego-free, i.e., indistinguish-
able from the specifications even to the adversary. (The formal definition of
stego-freeness is recalled in Appendix B. Readers are referred to [25] for a more
detailed discussion.) O

Game-2. (G5 is the same as Gy except MGy, is replaced by MGgpyc.

Game-3. (I3 is the same as G5 except RGyp,, is replaced by RGgpgc.
Lemma 2. |Advi2 - Advil\ < negl(A\) and |Advi3 - Advfﬂ < negl(A).

Proof. These two inequalities follow directly from Theorem 4 [25, Theorem 3.4].
Taking the first inequality as an example, if there exists an adversary A such
that \Advfi2 - Advfil\ is non-negligible, we can build another adversary B
breaking stego-freeness game for MGip,. The reduction is straightforward: B
simulates the rest of the game for A, receives all malicious implementations
(MGyypr,, dSigny,., ete.), but forwards only MGy, to its own watchdog and
challenger. Whenever A queries the signing oracle for some m;, B asks its own

Let a Non-barking Watchdog Bite 233

challenger to obtain wu; generated either by MGyp, or by MGgpge, and uses u;
to compute appropriate responses for A using implementations provided by .A.
Finally, B outputs whatever A outputs. It is easy to see that the simulation is
perfect, and the advantage of B is the same as the advantage of A. The second
inequality follows the same argument. [

Game-4. G, is the same as G3 except dSign],,,, is replaced by dSign,... Note
that in G4, all the implementations have been replaced by their genuine specifi-
cations.

Lemma 3. |Adv§4 — Advfia\ < negl(A).

Proof. This again follows from Theorem 5 using a similar argument as in
Lemma 1. Note that the inputs to dSign’ are drawn from public distributions

(either SK X R x M x {17} or SK x R x M x {“27}). 0

Finally, we need to show that Advi4 is indeed negligible, which is equivalent
to showing that SSgppc is indeed an EUF-CMA-secure signature scheme. To this
end, we design a simple reduction algorithm reducing the EUF-CMA-security
of Signg. to that of dSignl,,.. Suppose there is an adversary A that breaks
EUF-CMA-security of Signg,,., we design an adversary B that breaks dSignl,,..
For any signing query m, B randomly chooses (r,), and submits signing queries
(r[|u|[“17) and (r|ju @ m||“2") to the oracle O95€%c(.). B locally maintains a
list of records in the form (r,u,m,o1,02) where 01,09 are the responses from
OdSig”;PEC(-), and forwards o = (r,u, 01, 03) to A. Eventually A outputs a forgery
(o*,m*), where o* = (r*,u*, 07, 03), with non-negligible probability.

To see how B can extract a valid forgery for dSignl,,. from A’s forgery
(o*, m*), notice that by (¢*, m*) being a valid forgery for Sign,,, it means that
both (oF, (r*||u*||“1”)) and (o3, (r*||u* & m*||“2”)) are valid message-signature
pairs for dSign,,.., and that A has never queried the signing oracle for m*.
The latter indicates that B’s local list does not contain any entry in the form
(-,-,m*, -, -). We discuss several cases:

1. Tag r* does not appear in any entries of B’s record: Both (oF, (r*||u*||“1”))
and (o3, (r*||u* @ m*||“2")) are valid forgeries for dSigngp.;

2. Tag r* exists in some records in the form (r*,u, -, -, -): By our assumption that
the tags are supposed to be drawn from a super-polynomial-size space, with
overwhelming probability all the tags in B’s record are unique. Without loss
of generality, assume that this unique record is (r*,u, m, o1, 02). That means
(r*[|u||“17) and (r*|Ju@m||“2”) are the only queries sent, to O95%8%:c (-) which
begin with tag r*. If u* # u, then (of, (r*||u*||“1”)) must be a valid forgery
for dSignppc;

3. r* and u* appear in a unique entry of the form (r*,u*, m, o1, 02): Using the
same argument above, (r*||u*||“1”) and (r*||u* @m||“2”) are the only queries
sent to 958w (.) which begin with tag r*. It must hold that m* # m.
Otherwise, A must have asked for a signature for m* from B. Given that
m* # m, (o3, (r*||u* @ m*||“2”)) must be a valid forgery for dSignyp.

234 S. S. M. Chow et al.

By our assumption that dSign(,,. is EUF-CMA-secure, Advfi4 is negligible.
Putting all the lemmas above together, we complete our proof. (|

It is straightforward to generalize Theorem 1 to handle randomized signa-
tures. Basically, the randomized signing algorithm rSigng,,.(sk,m) needs to be
split into two components RG..,.(1) and dSigng,.(7; (sk,m)). RGL,,. generates
uniform randomness needed by rSigng,,., and dSigng.,. is a deterministic algo-
rithm, so that for all sk, m, it holds that rSigng,,.(sk,m) = dSigngpe(RGlpgc (11);
(sk,m)). Both RG., and dSigng,,. can be made subversion-resistant easily. The
security proof above only needs to be augmented with an additional hybrid game

that replaces RG,,,, with RG}, ..

Corollary 1. For any EUF-CMA-secure (randomized) digital signature scheme
SSline, the specification SSsppe described above is subversion-resistant in the
trusted-amalgamation model, assuming a trusted “®” operation and trusted ver-
ification algorithm, and RGgpre outputs uniformly random tag from some super-
polynomial-size domain.

4 FDH-Based Signatures Under Complete Subversion

Now we describe our second construction of signature scheme which only requires
an offline watchdog when all cryptographic algorithms (KG, Sign, Verify) and the
hash functions are subjected to subversion. Our scheme follows the full-domain
hash [7,11] paradigm, one of the most classical applications of random oracles.

4.1 High-Level Ideas

In an FDH-based signature scheme, the signing algorithm first hashes the mes-
sage and then inverts the hashed value using a trapdoor one-way permuta-
tion. Suppose the adversary can subvert the implementation of each algorithm:
KGupr, Signpypy, Verify,», and also the implementation of the hash hjyp.,. Several
natural questions arise. Let us examine the algorithms one by one.

As discussed in the introduction, we will handle those algorithms one by one.
Here we elaborate a bit more. The intuition for defending against the trigger
is that the Sign algorithm cannot be fed with a random message. Without the
trusted re-randomization, our idea is to hash the message. While hashing alone
does not resolve the problem as the trigger can be trivially propagated through
the hash. One simple observation is to hash the message together with some
random element that is not known to the attacker, e.g., public-key material.
Now, this naturally leads us to consider hash subversion.

Fortunately, Russell et al. [26] provided a simple construction that can correct
a subverted random oracle, such that the resulting function will be as good as
an ideal random function. To apply their theorems [26], we need to ensure (i)
the subversion disagrees with its specification only at a negligible fraction; (ii)
there is randomness that can be generated and published after the malicious
implementations are supplied; (iii) interpret the “replacement” lemma to be

Let a Non-barking Watchdog Bite 235

suitable for our application. Requirement (i) is easy and repeatedly used in the
cliptography literature [23,25]. As the hash function is a deterministic function,
the offline watchdog can simply evaluate the implementation and compare with
the output of the specification. For (ii), observe that the implementation of key
generation KGyyp, will produce a public key, which should be unpredictable to
the adversary (otherwise, the watchdog can keep sampling to find a collision
to differentiate KGpypy, from KGgpgc). It follows that if KGpyp, can be treated as
honestly generated (see above), we can extend the key generation to also output
some randomness R which will be part of the public key. Requirement (iii) is a
bit subtler. Simply replacing the corrected hash with a trusted random oracle is
not enough. See the next point of subverting Sign,,; and Sect. 4.3 below.

The traditional implementation of the verification takes input public key pk
and a message-signature pair (m,o), and outputs 0 or 1 to decide whether
the signature is valid. The input-triggered attack can be applied here easily.
Verifyp.(-,m*,+) can just always outputs 1 for some randomly chosen mes-
sage m™* (or a special signature element o*). In the full-domain hash, opening up
the verification functionality, it is actually to check whether evaluating the sig-
nature is equal to the (“corrected”) hash of the message. We first propose to do
such a canonical verification explicitly, that the equality operation will be done by
the user. The adversary will provide the implementation of the evaluation func-
tion of the one-way permutation. This simple decomposition of the verification
functionality changes the task of the adversarial implementation from targeting
one bit to predicting a random value, which is the output of the “corrected”
hash. We remark here that, same as above, the use of the public randomness is
also important for preventing the adversary from making useful random oracle
queries during the manufacturing phase of Verify,, ., .

There still exists a subtler attack, that the attacker might use the trigger
signature material o* to directly carry the information of hg(m*). Such kind
of attack looks like the “big brother” A is communicating directly to the “little
brother” — the subverted implementation for action items. This has to be resolved
by strictly restricting the length of o* and doing a length check. We note that in
the setting of FDH, since we use trapdoor one-way permutation, thus the length
is tight, and the simple length checking already works. See the proof of Lemma, 7.

4.2 Owur Subversion-Resistant FDH-Based Signature Scheme
in the Offline-Watchdog Model

Given a trapdoor one-way permutation, with specification denoted by Fgppe :=

(KGS],;EC, Evalg;Ec7 Invg;Ec)7 and a public hash function (or a family of hash func-
tions for consistency) with specification {hi :{0,1}* — {0, 1}”} g where

we assume the message space is M = {0, 1}"; we construct a subversion-resistant
signature scheme SS with specification SSgppe 1= (KGSS ., SignSS ., Verify$S).

Note that the family of {h;}{_, may be simply derived from one hash using
different indices, e.g., Vx, h;(x) = h(i,z), where i = 1,..., £ =3n + 1.

236 S. S. M. Chow et al.

— Key generation: (pk,sk) «— KGS5.(\), where KGS5.? is given by:

The algorithm generates (f,td;) «— KGL..(\), and R = ri,...,7p
{0,137

The algorithm sets pk := (f, R) and sk := tdy;
~ Sign: o — Signgi, (pk, sk,m), where Sign§e. := ({hi}_o, Invsprc) is given by:

Upon receiving message m, the algorithm first computes m = hg(m) =

ho (@le hi (mEBr,»)) , and then generate the signature as o = InvZ, . (sk, 7).

Signgpse = ({hi}_1, Inveprc) means, explicitly, the adversary should follow
this decomposition, and provide implementations of {h;}¢_; and Invyp,, indi-
vidually.

— Verification: b « Verify5e.(pk, m, o), where VerifySs. == ({hi}._,, Evalspsc)
is given by:

Upon receiving message-signature pair (m, o) and a public key pk, the algo-
rithm only proceeds if the length of o* is correct (equals to the hash out-

put length n), it then computes m = hgr(m) = hg <@f_1 hi(m & ri)>, if
Eval;i,sEC(pk,a) =1, set b := 1; otherwise, set b := 0. Here, pk = (f, R).

Likewise, Verify$s. := ({hi}!_,, Evalsppc) means that for Verify the adversary
should supply the implementation of Evalyyp, (while {h;} can be reused).

4.3 How to Use the Replacement Theorem [26]

To prepare us for the security proof, we first strengthen the previous result
about correcting random oracle. Let us recall the replacement theorem [26] for
establishing that a corrected random oracle is as good as a truly random function
when used in larger systems.

General Replacement with Crooked Indifferentiability. Security-preserving
replacement has been shown in the indifferentiability framework [20]: if C9
is indifferentiable from F, then CY can replace F in any cryptosystem, and
the resulting cryptosystem in the G model is at least as secure as that in the F
model. It has been shown [26] that the replacement property can also hold in the
crooked indifferentiability framework (see Appendix A.2 and [26] for a detailed
definition).

To model “as secure” (when correcting a subverted object) when used in
larger systems (see illustration in Fig. 3 excluding R), consider an ideal primitive
G, we can define the G-crooked-environment & as follows: Initially, the crooked
environment £ manufactures and then publishes a subverted implementation

® We remark here that the KGgo, algorithm will be split into four pieces exactly as [25].

Let a Non-barking Watchdog Bite 237

of G, denoted by G. Then & runs the attacker A, and the cryptosystem P is
developed. In the G model, cryptosystem P has oracle accesses to C' whereas
attacker A has oracle accesses to G; note that, C' has oracle accesses to (_3, not
directly to G. In the F model, both P and A have oracle accesses to F. Finally,
the crooked environment £ returns a binary decision output. It was shown [26]
that if a construction C is G-crooked indifferentiable with another object F, C'Y
would be as secure as F when used in any larger system P.

Fig. 3. Environment & interacts with cryptosystem P and Attacker A: In the G model
(left), P has oracle accesses to C' whereas A has oracle accesses to G; the algorithm C
has oracle accesses to the subverted G. In the F model, both P and S4 have oracle
accesses to F.

An Easier-to-Use Interpretation for Correcting Subverted Random Oracles.
Using the definition and the theorem as is, however, will cause some trouble when
applying the result of correcting a subverted random oracle, especially when
plugging it to a larger system. We first reflect the public randomness generated
after implementation is provided more explicitly in the model. Moreover, we also
need to adjust the “ideal world” a little bit so that the targeted ideal object (in
particular, a random oracle here) is also utilizing such public randomness, which
yields a slightly stronger object of (ideal) keyed hash. These two adjustments
will be critical for the application to our FDH construction.

For simplicity, we focus only on random oracles here. Consider a random ora-
cle G, we augment the G-crooked-environment £ as follows: Initially, the crooked
environment & deploys the attacker A to query G for some preprocessing. It
follows immediately £ deploys the crooked implementation G and the cryptosys-
tem P (which itself could be malicious or containing subverted components).
Some randomness R is then drawn and published, which is utilized by con-
struction C'. On the other hand, in the world using random oracle F, originally

238 S. S. M. Chow et al.

after R is generated, F(-) becomes F(R,-) (with the first half of inputs fixed
by a randomly selected R). The interactions among A, P, £ and the rest of the
definition of “as secure” remain the same. See Fig. 3.

Definition 2. Consider random oracles G and F (both with variable input
length). A cryptosystem P is said to be at least as secure in the augmented
G-crooked model with algorithm C as in the F model, if for any augmented G-
crooked-environment € and any attacker A in the augmented G-crooked model,
there exists an attacker Sy in the F model, such that:

PrE(PC°, A%) = 1] - PrIE(PF,8%) = 1] < .
where € is a negligible function of the security parameter .

We can prove a similar theorem as the replacement theorem [26] for the aug-
mented definition (with essentially an identical proof technique, see the dashed
frames in Fig. 4 and we refer to [26] for details).

Corollary 2. Let P be a cryptosystem with oracle accesses to a random ora-
cle F. Let C be an algorithm such that CY is G-crooked-indifferentiable from F.
Then cryptosystem P is at least as secure in the augmented G-crooked model
with algorithm C as in the F model.

4.4 Security Analysis

Theorem 2. If Fepnc is a trapdoor permutation, the specification of {h;}i=o,... ¢
are random oracles, then the signature scheme SS with specification SSgppc con-
structed above is subversion resistant with an offline watchdog, assuming the
“©” and “=” operations are honestly carried out (and execute the pieces inde-
pendently as [25]).

Fig. 4. Construction of attacker S4 from attacker A and simulator S

Let a Non-barking Watchdog Bite 239

Proof. First, to simplify the presentation of the analysis in the cliptographic
setting, we ignore the checking phase of the offline watchdog in the game tran-
sitions, while taking the simple guarantees such as deterministic function will
be correct on an overwhelming portion of inputs as the condition. The secu-
rity can then be seen simply by walking through the sequence of game hopping
over games G;’s (closer to the usual case). Let the advantage of adversary A in
game G; be Advii.

Game-0. G is exactly the same security game as defined in Definition 1 (the exe-
cute phase with the challenger C using implementations provided by the adver-
sary A) instantiating with our construction described in Sect. 4.2. See Fig. 5.

Game-1. G7 is identical to Gg except that the key generation implementation
KGypy, is substituted with its specification KGgpge. See Fig. 6.

Lemma 4. |Advf‘O - Advfﬂ < negl(A).

Proof. The proof is identical to the one for Lemma 1. |

Game-2. Gy is identical to G except that the message encoding function using
corrected hash hr(-) is replaced with a truly random g parameterized by R, i.e.,
g(R,-). See Fig. 7.

Lemma 5. |Adv§’{1 - Advfﬂ < negl(A).

Proof. This follows directly from Corollary 2 that the corrected function using
subverted random oracle hg(-) can be replaced with a truly random function g
indexed by the randomness R which is generated after.

We can simply view the augmented h-crooked environment in the corollary as
the actual adversary here in the game, and the larger cryptosystem P is simply
composed of the signature implementations. O

EXECUTE PHASE

c A
run (f, R, tds) + KGppi (1Y) h,RE
i query for ¢ times
hr(m;) = u;
run o; < Invie (tdy, u;) %
m*’ O_*
-—

be =1 if Eva|mpL(f7 U*) = }NLR(m*)
Am* ¢ {m17 .. .,mq}
be := 0 otherwise

Fig. 5. Game-0: The original cliptographic signature game

240 S. S. M. Chow et al.

EXECUTE PHASE

c A
run (f, R, tdy) < KGunne (1) kil
mi query for ¢ times
run o; < Invie, (tdy, u;) %
m*70'*
-

bC =1if EVallxIPL(f7 O'*) = ER(m*)
Am* Q {ml, .. .,mq}
be := 0 otherwise

Fig. 6. Game-1: Honest key generation

Game-3. G3 is identical to G2 except that the implementation of the actual
signing function Invyyp, is substituted with its specification Invgppc. See Fig. 8.

Lemma 6. |Adv§2 — Advig‘\ < negl(A).

Proof. Now we need to demonstrate that when a keyed hash is used (the key
is public but sampled after the implementation of the signing functionality is
provided), Invgpge is actually stego-free in the sense that the adversary cannot
distinguish whether she is interacting with Invyp;, or Invgpse, even if she can
freely choose potentially triggered inputs.

EXECUTE PHASE

c A
run (f, R, tdy) < KGpeo(1%) LR
L query for g times
g(R,m;) = uy,
run o; < Invie (Edy, u;) %
m*7 0_*
-

be :=1if Evalnwr(f,0%) = g(R, m")
AmM* & {ma,...,mq}
be := 0 otherwise

Fig. 7. Game-2: Corrected keyed hash

Let a Non-barking Watchdog Bite 241

EXECUTE PHASE
C A

run (f, R, tdy) < KGeppc (1Y) hR
i query for ¢ times
run oy < Invsppe (tdys, u;) 9,
m*7 o_*
R

bC =1 if EV3|1MPL(f7 U*) = g(R’ m*)
AmS & {ma,...,mq}
be := 0 otherwise

Fig. 8. Game-3: Honest Sign

Let us first look at a simpler challenge game. Consider a random oracle
h:{0,1}* — {0,1}"™. Suppose an attacker A makes some g; number of queries
to h, define a target set T' C {0, 1}" with a polynomially large size g2, generate
uniform randomness R with length A, and R public. The adversary will try
to find an input x such that h(R,z) falls into 7. It is not hard to see that
Pr[h(R,z) € T| = %4 which is negligible in A if the adversary makes one
attempt (and remains negligible if A makes polynomially many attempts).

Now instantiating such statement under our setting: simply using the points
that Invyp, differ from Invgpge to define such T' (the offline watchdog ensures that
the “discrepancy set” T has to be exponentially small). Now when the adversary
makes a signing query m, it is to find such an input that makes the output of
g(R,m) to fall into the target set T. This probability would be negligible. It
follows that the output of Invyyp, and Invgepe when evaluating on g(R,) will be
the same for an overwhelming probability for every x. Thus Invyp, satisfies the
stego-free notion even with an adversarially chosen input x. (Il

Game-4. G4 is identical to G3 except that the implementation of the actual
verification function Evalyp, is substituted with its specification Evalgppc. Now
all the implementations are actually honestly generated, thus G4 essentially falls
back to the classical unforgeability game for FDH signatures. See Fig. 9.

242 S. S. M. Chow et al.

EXECUTE PHASE

c A
run (f, R, tds) < KGsppc(1) fR
mi query for ¢ times
run o; < Invspre (td s, u;) 9
m*7 o_*
-

be := 1 if Evalseuc(f,0*) = g(R, m™)
Am* & {mi,...,mq}
be := 0 otherwise

Fig. 9. Game-4: Honest Verify

Lemma 7. [Advy® — Adv§'| < negl()).

Proof. Now we need to demonstrate that when a keyed hash is used (the key
is public but sampled after the implementation of the signing functionality is
provided), and a trusted equality test is in place, Evalyp, performs essentially
the same as Evalgppe when predicting an output of g(R, m*).

Suppose Evalyp(f, 0*) # Evalgpre(f, 0*), that means o* falls into the set of
inputs that Evalyyp, and Evalgpye differ. To escape from the watchdog’s detection
of this inconsistency, those inputs must contain at least w(A) bits of entropy
about some trigger that Evalyp, can explore to recognize those inputs to deviate
from the specification. Otherwise, the watchdog would be able to trivially find
such a trigger point. Moreover, that information is independent of g(R, m*), as R
is chosen after Eval,y, was created. On the other hand, since |o*| = |g(R, m*)],
there are at most n — w(A) bits left in o* that can contain information about
g(R,m*). While g(R,m*) is a uniform value in the range of Evalspgc, it follows
that for any o*, Pr[Evalyp.(0*) = g(R, m*)] = negl(A). O

G4 is essentially the original FDH security game, thus putting together all
those lemmas, we can complete the proof. O

A The Model: Crooked Indifferentiability

A.1 Preliminary: Indifferentiability

The notion of indifferentiability proposed in the elegant work of Maurer et al. [20]
has been found very useful for studying the security of hash function and many
other primitives. This notion is an extension of the classical notion of indistin-
guishability, when one or more oracles are publicly available. The indifferentiabil-
ity notion is originally given in the framework of random systems [20] providing

Let a Non-barking Watchdog Bite 243

interfaces to other systems. Coron et al. [12] demonstrate an equivalent indif-
ferentiability notion but in the framework of Interactive Turing Machines (as
in [9]). The indifferentiability formulation in this subsection is essentially taken
from Coron et al. [12]. In the next subsection, we will introduce our new notion,
crooked indifferentiability.

Defining Indifferentiability. An ideal primitive is an algorithmic entity which
receives inputs from one of the parties and returns its output immediately to
the querying party. We now proceed to the definition of indifferentiability [12,20]:

Definition 3 (Indifferentiability [12,20]). A Turing machine C with oracle
accesses to an ideal primitive G is said to be (tp,ts,q, €)-indifferentiable from an
ideal primitive F, if there is a simulator S, such that for any distinguisher D, it
holds that:

[Pr[DYY = 1] - Pr[D”° =1]| <.

The simulator S has oracle accesses to F and runs in time at most ts. The
distinguisher D runs in time at most tp and makes at most q queries. Stmilarly,
CY is said to be (computationally) indifferentiable from F if € is a negligible
function of the security parameter X (for polynomially bounded tp and ts). See

Fig. 10.

Fig. 10. Indifferentiability: Distinguisher D either interacts with algorithm C and ideal
primitive G, or with ideal primitive F and simulator S. Algorithm C has oracle access
to G, while simulator S has oracle access to F.

As illustrated in Fig. 10, the role of the simulator is to simulate the ideal
primitive G so that no distinguisher can tell whether it is interacting with C
and G, or with F and S; in other words, the output of S should look “consistent”
with what the distinguisher can obtain from F. Note that the simulator does
not see the distinguisher’s queries to F; however, it can call F directly when
needed for the simulation.

Replacement. Tt is shown that [20] if C9 is indifferentiable from F, then CY
can replace F in any cryptosystem, and the resulting cryptosystem is at least as
secure in the G model as in the F model.

We use the definition of [20] to specify what it means for a cryptosystem to be
at least as secure in the G model as in the F model. A cryptosystem is modeled

244 S. S. M. Chow et al.

as an Interactive Turing Machine with an interface to an adversary A and to a
public oracle. The cryptosystem is run by an environment £ which provides a
binary output and also runs the adversary. In the G model, cryptosystem P has
oracle access to C' whereas attacker A has oracle access to G. In the F model,
both P and A have oracle access to F. The definition is illustrated in Fig. 11.

BH
E
—/

I |

'SR
™
tn

-/

Fig. 11. Environment £ interacts with cryptosystem P and attacker A: In the G model
(left), P has oracle access to C' whereas A has oracle access to G. In the F model, both
P and S4 have oracle access to F.

Definition 4. A cryptosystem is said to be at least as secure in the G model with
algorithm C as in the F model, if for any environment £ and any attacker A in
the G model, there exists an attacker S in the F model, such that:

PriE(PC, A9) = 1] — Pr[€(PT,8)) =1] < e

where € is a negligible function of the security parameter A. Similarly, a cryp-
tosystem is said to be computationally at least as secure, etc., if £, A, and Sy
are polynomial-time in .

We have the following security-preserving (replacement) theorem, which says
that when an ideal primitive is replaced by an indifferentiable one, the security
of the “bigger” cryptosystem remains.

Theorem 3 ([12,20]). Let P be a cryptosystem with oracle accesses to an ideal
primitive F. Let C be an algorithm such that C9 is indifferentiable from F. Then
cryptosystem P is at least as secure in the G model with algorithm C as in the F
model.

A.2 Crooked Indifferentiability

The ideal primitives that we focus on in this paper are random oracles. A random
oracle [6] is an ideal primitive which provides a random output for each new

Let a Non-barking Watchdog Bite 245

query, and for the identical input queries the same answer will be given. Next, we
will formalize a new notion called crooked indifferentiability. Our formalization is
for random oracles. We remark that the formalization can be trivially extended
for all ideal primitives.

Crooked Indifferentiability for Random Oracles. As mentioned in the Introduc-
tion, we are considering to repair a subverted random oracle, such that the
corrected construction can be used as good as an unsubverted one. It is thus
natural to consider the indifferentiability notion. However, we need to adjust
the notion to reflect the subversion and to avoid trivial impossibility. There are
two main modifications to the original indifferentiability notion.

1. The deterministic construction will have oracle accesses to the random oracle
only via the subverted implementation H but not via the ideal primitive H.
This creates lots of difficulty (and even impossibility) for us to develop a
suitable construction. For that reason, the construction is allowed to access
to trusted but public randomness r.

2. The simulator will also have oracle accesses to the subverted implementa-
tion H and also the public randomness 7.

The second one is necessary. It is clearly impossible to have an indifferentiability
definition with a simulator that has no accesses to H , as the distinguisher can
simply make query an input such that C will use a value that is modified by H
while § has no way to reproduce it. More importantly, we will show below that,
the security will still be preserved to replace an ideal random oracle with a con-
struction satisfying our definition (with an augmented simulator). We will prove
the security-preserving (i.e., replacement) theorem from [20] and [12] similarly

with our adapted notions.

Definition 5 (H-crooked indifferentiability). Consider a distinguisher D
and the following multi-phase real execution.

Initially, the distinguisher D who has oracle accesses to ideal primitive H,
publishes a subverted implementation of H, and denotes it by H.

Secondly, a uniformly random string r is sampled and published.

Thirdly, a deterministic construction C is developed: the construction C has
random string r as input, and has oracle accesses to H (which can be considered
as a crooked version of H).

Finally, the distinguisher 73, after having random string r as input, and oracle
accesses to the pair (C, H), returns a decision bit b. Often, we call D the H-
crooked-distinguisher.

In addition, consider the corresponding multi-phase ideal execution with the
same H -crooked-distinguisher D, where ideal primitive F is provided.

The first two phases are the same (as those in the real execution).

In the third phase, a simulator S will be developed: the simulator has random
string r as input, and has oracle accesses to H, as well as the ideal primitive F.

In the last phase, the H -crooked-distinguisher D, after having random string r
as input, and having oracle accesses to an alternative pair (F,S), returns a
decision bit b.

246 S. S. M. Chow et al.

We say that construction C is (tz,ts,q, €)-H-crooked-indifferentiable from
ideal primitive F, if there is a simulator § so that for any H-crooked-
distinguisher D, it satisfies that the real execution and the ideal execution are
indistinguishable. Specifically, the following difference should be upper bounded
by e(N):

Pr |He—D : D" HN\)y =1| - P |H—D : D750 =1||.
u,r, H w,r,F

Here u is the coins of D, H : {0,1}* — {0,1}* and F : {0,1}* — {0,1}" denote
random functions. See Fig. 12 for a detailed illustration of the last phase in both
the real and ideal executions.

S
(o) | @

Fig. 12. H-crooked Indifferentiability: distinguisher ﬁ, in the first phase, manufactures
and publishes a subverted implementation denoted by H , for ideal primitive H; then
in the second phase, a random string r is published; after that, in the third phase,
algorithm C, and simulator S are developed; the H-crooked-distinguisher D, in the
last phase, either interacting with algorithm C' and ideal primitive H, or with ideal
primitive F and simulator S, returns a decision bit. Here, algorithm C has oracle
accesses to H, while simulator S has oracle accesses to F and H.

B Stego-Free Specifications for Randomness Generation
and Randomized Algorithms with Known Input
Distribution

We recall the definition of stego-free randomness generation and stego-free ran-
domized algorithms with public input distributions [25], and the general results
that yield stego-free specifications for them in the trusted-amalgamation model.

Definition 6 (Stego-free randomness generation [25, Definition 3.1]). For
a randomized algorithm G with specification Ggpge, we say such specification Ggpge
is stego-free in the offline-watchdog model, if there exists a PPT watchdog W so
that for any PPT adversary A playing the game in Fig. 13 with challenger C, at
least one of the following conditions hold:

Adv 4 is negligible or Detyy 4 is non-negligible,

Let a Non-barking Watchdog Bite 247

TEST PHASE
w(1*) A(1, st)
GIMPL

bW P WGII\H‘I.(1>\)

EXECUTE PHASE
c(1?) AP, st)
B + {1MPL, SPEC}
1q

fori=1toq —
- Ga(1? {viticla

yi = Gg(17) ——ﬁ/

-

be:=1if =4
be := 0 otherwise

Fig. 13. Stego-freeness game for randomness generation

where Adv 4(1*) = | Prlbe = 1] — 3| and Detyy 4(1*) = |Pr[WCum (1) = 1] —
Pr[WGs= (14) = 1]|.

Theorem 4 ([25, Theorem 3.4]). Consider randomness generation RG with
specification (RGY.., RGlpe, Pprc) as described below (see Fig. 14):

~ Given 1%, RGY,,. and RGL,.. output uniformly random strings of length \;
— Dgppe 18 a hash function so that Pspre(w) has length [|w]/2];
~ the specification for RG(1%) is the trusted composition:

gpSPEC(RGSPEc(l)\)’ RG:PEC(l)\))'
Then RGgpyc is stego-free if @Pgppc s modeled as a random oracle.

Note that the above theorem only asserts how to purify randomness gen-
eration algorithm G in the random oracle model by splitting G into a constant
number of components. It is possible to extend the result to the standard model if
we are willing to have polynomially many segments. Such result is demonstrated
in the full version [24] of [25]. We quote their result as follows:

0
RGhe| —20__
Dprc > T

T1
1 /

Fig. 14. Subversion-resistant specification for randomness generation

248 S. S. M. Chow et al.

Proposition 1 ([24]). There exists a specification for the randomness gener-
ation that outputs n bits that is stego-free with the trusted amalgamation and
O(n¢/logn) segments for any constant €. Similar results hold for randomized
algorithms with public input distribution.

The definition and theorems above cover elementary randomness generation
algorithms that only takes a security parameter as input. They can be generalized
to consider algorithms that take additional inputs from a large domain in which
the adversary specifies a randomized input generator |G, which implicitly defines
G(1*,1G(1*)). This class of randomized algorithm includes key generation and
bit encryption etc.

Formally, let G be a randomized algorithm using A random bits for inputs
of length n. The stego-free game is revised as follows: the challenges {y;} are
generated by first sampling m; « IG(1*), and then obtaining y; «— Gg(1*,m;)
by calling Gg. The watchdog is provided oracle access to 1G to test Giypr.

Definition 7 (Stego-free randomized algorithm [25, Definition 3.2]). For
a randomized algorithm G, we say the specification Ggppc 1S stego-free in the
offline-watchdog model, if there exists an offline PPT watchdog W, for any PPT
adversary A playing the following game in Fig. 15 with challenger C, such that
either

Adv 4 is negligible, or, Detyy 4 is non-negligible,

where Adv 4(1*) = | Pr[be = 1] — 1| and Detyy 4(1*) = |Pr[Wer(1%) = 1] —
Pr[WGsee (1) = 1]|.

Russell et al. [25] established a general transformation yielding a stego-
free specification for randomized algorithms with a public input distribution.
Consider a randomized algorithm G which uses A random bits for inputs of
length n. Let (dG,RG) denote the natural specification of G that isolates ran-
domness generation: RG(1*) produces A uniformly random bits and dG(r,m)
is a deterministic algorithm so that for every m « IG(1}), G(m) is equal to
dG(RG(1*,m)) for n = |m|. Consider the transformed specification for G of the
form (RGg,RGy,®,dG) where dG is as above. RGo(1*) and RG;(1%) output A
uniform bits, and @ is a hash function that carries strings of length 2\ to strings
of length A. We have the following theorem:

Theorem 5 ([25, Theorem 3.5]). For any randomized algorithm G, consider
the specification Gspre := (RGgprc, dGsprc), where RGgpre and dGgpre are as above.
Let (RG,., RGL o, Psprc) be the double-split specification of RGspye as in Fig. 14.
Gspic 18 stego-free with a trusted amalgamation (according to Definition 7). Here

Do 18 modeled as a random oracle.

Let a Non-barking Watchdog Bite 249

TEST PHASE
W(IA) A(lA, st)
GlMPL, IG

bW — WGH\IPLaIG(lk)

EXECUTE PHASE
c(1?) AQ?, st)
B « {IMPL, SPEC}

fori=1toq -—
mi +— 1G(1*)
Yi = Gﬂ(l)\vmi)
{yitielq
B/

be:=1ifB=p
be := 0 otherwise

Fig. 15. Stego-freeness game for randomized algorithms with input distribution

(1" % 1G

C Signature Schemes

A signature scheme is a triple of algorithms SS = (KGen, Sign, Verify). The
KGen algorithm takes as input the security parameter A and outputs a pair of
verification/signing key (vk, sk). The Sign algorithm takes as input sk, a message
m € M (and random coins r € R if Sign is probabilistic), and outputs a signature
o € X. The Verify algorithm takes as input vk and a pair (m, o) and outputs a
bit indicating whether the signature is valid for message m under vk.

Definition 8 (Existential unforgeability). Let SS = (KGen, Sign, Verify) be
a signature scheme. We say that S8S is (t,q, €)-existentially unforgeable under
adaptive chosen-message attack (EUF-CMA-secure) if for all PPT adversaries A
running in time t it holds:

Pr Verify(vk, (m*,0%)) =1 (vk, sk) « KGen(1%); <

Am*¢Q " (m*,0%) — ASEERI) (vK) | =
where @ = {m1,...,my} denotes the set of queries to the signing oracle. When-
ever €(\) = negl and ¢ = poly, we simply say that SS is EUF-CMA-secure.

250

S. S. M. Chow et al.

References

1.

10.

11.

12.

13.

14.

15.

Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. J. Cryptology 29(4), 833-878 (2016)

. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:

Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 364-375. ACM Press, New
York (2015)

. Bellare, M., Hoang, V.T.: Resisting randomness subversion: fast deterministic and

hedged public-key encryption in the standard model. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 627-656. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_21

. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state: strongly

undetectable algorithm-substitution attacks. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM CCS 2015, pp. 1431-1440. ACM Press, New York (2015)

. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against

mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 1-19. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44371-2_1

. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing

efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62-73. ACM Press,
New York (1993)

. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with

RSA and Rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399-416. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_34

. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH

assumption in bilinear groups. J. Cryptology 21(2), 149-177 (2008)

. Canetti, R.: Universally composable security: a new paradigm for cryptographic

protocols. In: 42nd FOCS, pp. 136-145. IEEE Computer Society Press, October
2001

Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F., Zhang, M.: Cryptographic reverse
firewall via malleable smooth projective hash functions. In: Cheon, J.H., Takagi,
T. (eds.) ASTACRYPT 2016, Part I. LNCS, vol. 10031, pp. 844-876. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_31

Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229-235. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6_14

Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgard revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430-448. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_26
Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to security
against mass surveillance. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp.
579-598. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-
528

Desmedt, Y.: Abuses in cryptography and how to fight them. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 375-389. Springer, New York (1990).
https://doi.org/10.1007/0-387-34799-2_29

Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treat-
ment of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 101-126. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5_5

https://doi.org/10.1007/978-3-662-46803-6_21
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/978-3-662-53887-6_31
https://doi.org/10.1007/3-540-44598-6_14
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/0-387-34799-2_29
https://doi.org/10.1007/978-3-662-46800-5_5

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Let a Non-barking Watchdog Bite 251

Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse
firewalls—secure communication on corrupted machines. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 341-372. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53018-4_13

Fischlin, M., Mazaheri, S.: Self-guarding cryptographic protocols against algorithm
substitution attacks. In: 31st IEEE Computer Security Foundations Symposium,
CSF 2018, Oxford, United Kingdom, 9-12 July 2018, pp. 76-90 (2018)

Giacon, F., Heuer, F., Poettering, B.: KEM combiners. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 190-218. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-76578-5_7

Liu, C., Chen, R., Wang, Y., Wang, Y.: Asymmetric subversion attacks on signature
schemes. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 376—
395. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_22
Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21-39. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1_2

Mironov, 1., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 657-686.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_-22
Perlroth, N., Larson, J., Shane, S.: NSA able to foil basic safeguards of privacy on
web. The New York Times, September 2013

Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASTACRYPT 2016, Part
II. LNCS, vol. 10032, pp. 34-64. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53890-6_2

Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Destroying steganography via amal-
gamation: kleptographically CPA secure public key encryption. Cryptology ePrint
Archive, Report 2016/530 (2016). http://eprint.iacr.org/2016/530

Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Generic semantic security against a
kleptographic adversary. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D.
(eds.) ACM CCS 2017, pp. 907-922. ACM Press, New York (2017)

Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Correcting subverted random oracles.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 241-271. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_9
Young, A., Yung, M.: The dark side of “black-box” cryptography or: should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89-103.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_8

Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62-74. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0-6

Zhang, C., Cash, D., Wang, X., Yu, X., Chow, S.S.M.: Combiners for chosen-
ciphertext security. In: Dinh, T.N., Thai, M.T. (eds.) COCOON 2016. LNCS,
vol. 9797, pp. 257—-268. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
42634-1_21

https://doi.org/10.1007/978-3-662-53018-4_13
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-319-93638-3_22
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2
http://eprint.iacr.org/2016/530
https://doi.org/10.1007/978-3-319-96881-0_9
https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/3-540-69053-0_6
https://doi.org/10.1007/978-3-319-42634-1_21
https://doi.org/10.1007/978-3-319-42634-1_21

	Let a Non-barking Watchdog Bite: Cliptographic Signatures with an Offline Watchdog
	1 Introduction
	1.1 Our Contributions
	1.2 Related Works

	2 Definition of Subversion-Resistant Signatures
	3 A Simple Generic Construction in the Standard Model
	4 FDH-Based Signatures Under Complete Subversion
	4.1 High-Level Ideas
	4.2 Our Subversion-Resistant FDH-Based Signature Scheme in the Offline-Watchdog Model
	4.3 How to Use the Replacement Theorem C:RTYZ18
	4.4 Security Analysis

	A The Model: Crooked Indifferentiability
	A.1 Preliminary: Indifferentiability
	A.2 Crooked Indifferentiability

	B Stego-Free Specifications for Randomness Generation and Randomized Algorithms with Known Input Distribution
	C Signature Schemes
	References

