Late Breaking Results:

LODESTAR: Creating Locally-Dense CNNs for Efficient
Inference on Systolic Arrays®

Bahar Asgari Ramyad Hadidi
Georgia Tech Georgia Tech
ABSTRACT

The performance of sparse problems suffers from lack of spatial
locality and low memory bandwidth utilization. However, the distri-
bution of non-zero values in the data structures of a class of sparse
problems, such as matrix operations in neural networks, is modifi-
able so that it can be matched with an efficient underlying hardware,
such as systolic arrays. Such modification helps addressing the chal-
lenges coupled with sparsity. To efficiently execute sparse neural
network inference on systolic arrays, we propose a structured prun-
ing algorithm that increases the spatial locality in neural network
models, while maintaining the accuracy of inference.

ACM Reference Format:

Bahar Asgari, Ramyad Hadidi, Hyesoon Kim, and Sudhakar Yalamanchili.
2019. Late Breaking Results: LODESTAR: Creating Locally-Dense CNNs for
Efficient Inference on Systolic Arrays. In The 56th Annual Design Automation
Conference 2019 (DAC ’19), June 2—6, 2019, Las Vegas, NV, USA. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3316781.3322472

1 INTRODUCTION AND MOTIVATION

Systolic arrays [7] have seen a resurgence for implementing in con-
volutional neural networks (CNNs) inference, a practical example
of which is in Google’s TPU [6]. Systolic arrays eliminate the need
for irregular intermediate accesses to the memory hierarchy, and
capture data reuse patterns. This approach works particularly well
for computing linear recurrences and dense linear algebra compu-
tations. However, inference using CNNs is a sparse problem, which
presents significant efficiency challenges such as underutilization of
memory bandwidth due to storing data in sparse formats, indirect
memory accesses and transferring of extra meta data.

CNN inference is sparse because, during training, several of
weights are assigned close-to-zero values. Thus, to reduce the
amount of computation as well as the memory footprint, the close-
to-zero values are usually pruned. Since pruning the individual
values of a model [5, 9] results irregular models with consequences
of resource underutilization and high storage overhead, structured
pruning techniques have been proposed, which prune the weights
at the granularity of a vector [1, 9], kernel [1, 9], filter [8-11], chan-
nel [1, 11], or entire layer [11], all of which are optimizations for

“Supported by NSF CCF 1533767. All correspondence to bahar.asgari@gatech.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC 19, June 2—6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06...$15.00
https://doi.org/10.1145/3316781.3322472

Sudhakar Yalamanchili
Georgia Tech

Hyesoon Kim
Georgia Tech

CPUs and GPUs and help in reducing the number of operations,
memory footprint, and computation complexity.

The main challenge is that the preceding optimizations are in-
sufficient to exploit the data reuse in systolic arrays, and the highly
concurrent, synchronous, and rhythmic flow of data from memory.
In fact, the storage adjacency of data resulting from algorithm-
defined pruning (e.g., kernel, filter) is not necessarily matched with
data organizations necessary to directly stream to the interacting
data flows in the systolic array. Hence, our goal is to propose a prun-
ing, the output of which is compatible with a streaming memory
interface to eliminate external buffering/caching for compute.

2 PROPOSED APPROACH

We propose creating locally-dense CNNs for efficient inference on
systolic arrays (LODESTAR), to enable streaming of sparse data
from memory to exploit the distinctive data reuse patterns and
fine-grained concurrency of systolic arrays. LODESTAR produces a
weight matrix such that the non-zero values are clustered spatially
into locally-dense regions, which are compactly stored and effi-
ciently streamed. We examine the correlation among all the filters,
which differs from pruning the individual filters of a CNN [8-11].
To sustain accuracy, we may keep more number of non-zeros com-
pared to common pruning algorithms. However, in achieving higher
performance and efficiency, the distribution of non-zeros is more
influential than their quantity, when optimized for streaming data.

Efficiently using systolic arrays for matrix multiplication is ap-
plicable to CNNs by converting their convolutional operations
to general matrix-matrix multiplication (GEMM), and flattening
4D weight matrices to 2D ones. Besides the known benefits of
using GEMM for CNNss [3, 4], it offers the opportunity for creat-
ing a locally-dense data by considering correlated filters together.
We prune the flattened weight matrix (i.e., W, g2, K:#filters,
C:#channels, F:filter size) to extract non-zero blocks, the width
of which are selected to match with the width of the target systolic
array, . The matched widths of the non-zero blocks and that of
the systolic array guarantees the correctness of multiplications.
The non-zero blocks of the produced matrix are streamed into the
systolic array. The blocks are created by splitting large weight ma-
trices into F2C/w chunks, and extracting the non-zero blocks in

Layer/Size | Conv1/75x64 Conv2/1600x64 Local3/2304x384 Local4/384x192
Zero (%) 7% 79% 80% 79%

Without
Pruning

Structured
Pruning
(LODESTAR)

g it

Figure 1: Applying Algorithm 1 with /,» = 8 on CifarNet.
The accuracy after pruning 79.8% of model is 93.6%.

3 o} 100%,, = 1 100%
) . 2 23 09)
< T 9 £ T % S
o 8 08 80%8 . % 8 08 80% g
9% E 07 2 g% eo07 o
25 06 60%g E& g 06 60% 2
3% 0 05 e 3® 905 e
S E S o012 20% 8% S E 5 o4 40% 8
<352 03 ¢ <5203 b
£ g o2 20%5 £ go02 20% §
5 01 501 z
0 0% 0 0%
0 10 20 0 _5 10 15 20
(a) Training steps x10000 (b) ~ Training steps ~ x10000

Figure 2: Accuracy and the percentage of zero blocks: a) Ci-
farNet (pruning between step 20k and 100k), and b) VGG16
(pruning between steps 1 and 10k).

each chuck. The adjacent blocks of the pruned models are concate-
nated and stored by assigning them a single index (i.e., the column
index of the first block) and a single length.

Unlike common pruning algorithms, Algorithm 1 (i) incurs some
increase in sparsity while producing locally-dense data, and (ii)
applies pruning to GEMM flattened operand and not individual
weights. The input parameters of the pruning algorithm are the
weight matrix W, threshold 0, length of the window /, and width of
the systolic array o. The width of the window is fixed and is equal
to w. The weight matrix is either the flattened version of the weight
matrix in a convolution layer, or the 2D weight matrix itself in a
fully-connected layer. During pruning, a window of size wx! slides
over W. The size [is a hyperparameter. We choose 1=8, which offers
the best trade-off between sparsity of blocks and storage overhead.

Algorithm 1 Pruning method of LODESTAR

1: function PRUNE(Wpy.y, 0, I, @)
Wiy Weight matrix, 6: Threshold,
w: Systolic array width [: Window length

ip =0, iy :=0,avg:=0
while i,, < w do
avg = BlockAvg([iw, ip], [iw + @ — 1, ip + 1 —1])
if avg < 0 then
Wlis tig +@—1,iptip+1-1]=0
in=ip+1
else
ip=ip+1
if i, > h — [then
ip =0, 0y = iy +©

e N A A

[ER.

During retraining, by increasing 6 in later epochs, the algorithm
maintains the accuracy and convergence. The windows are non-
overlapping in x- and y-axes. Non-overlapping windows in x-axes
is necessary to match with systolic-array width, and in y-axes for
reducing the complexity of the problem from a global to local opti-
mization. Figure 1 illustrates an example of applying the algorithm
on CifarNet. Algorithm 1 does not change the size of the common
axis of the operands of GEMM (ie., F 2C), which leads to following
benefits: (i) no need to change the dimensions of the input matrix
(image), and (ii) both the pruned matrix (weights) and the dense
matrix (inputs) can be either streamed through the systolic array or
be the stationary operand during the multiplication. Thus, based on
the size of the matrices at each layer of a CNN, we can dynamically
swap the role of the two matrices to be streamed or stationary.

3 SIGNIFICANT FINDINGS

Methodology: For iteratively pruning and training three CNN mod-
els, VGG16, CifarNet, and LeNet on ImageNet, Cifar10, and MNIST
datasets, we use Tensorflow ™. To compare the inference perfor-
mance of structured models with that of baselines, all executed on
systolic arrays, we model a 64 X 64 systolic array (3 cycles latency
@2GHz for multipliers and adder trees, similar to [2]) connected
to high-bandwidth memory (HBM), using an in-house cycle-level
simulator. The model estimates the power consumption by using

B Unpruned @lrregular @LODESTAR

[
.
«
=}

4
o o

N

i
=
o
=

S o o
ES
o
=]

N
o

Memory Bandwidth
Uitlization
Power Efficiency
(GFLOPS/W)

Throughput (TFOPs/Sec)
o [

(:) LeNet CifarNet VGG16 (3) LeNet CifarNet VGG16 (3)
Figure 3: (a) Memory bandwidth utilization, (b) Throughput,
and (c) Power efficiency of LODESTAR and the baselines.
Kitfox1.1 library at 16nm technology and McPAT model for com-
pute units. We assume access energy of 6 pJ/bit for HBM.
Accuracy: Figure 2 illustrates the test accuracy (normalized to un-
pruned) and the percentage of zero blocks of CifarNet and VGG16
models, during training steps. For VGG16, we use a pre-trained
model so we start pruning from the beginning. During pruning,
as the percentage of zero blocks increases, the distribution of zero
blocks and/or their densities keep changing, and the accuracy os-
cillates. After stoping pruning, training continues to maximize the
accuracy. For LeNet, CifarNet, and VGG16, we prune 75%, 79.8%,
and 40% of models and respectively achieve 99%, 93.6%, and 70%
top-1 accuracy on validation set. The top-1 accuracy of unpruned
models are 99% for LeNet, 94% for CifarNet, and 71.5% for VGG-16.
Performance: We compare the performance of LODESTAR against
irregular sparse CNNs and unpruned models from three perspec-
tives: (i) Memory bandwidth utilization: as Figure 3a illustrates,
similar to the unpruned models, LODESTAR utilizes memory band-
width better than irregular models. The reasons are streaming data,
less number of memory references, and less meta-data for storing
the sparse models; (ii) Throughput: in addition to bandwidth uti-
lization, compute utilizations impacts the throughput. Figure 3b
illustrates the effect of both on throughput. Although the number
of operations in a structured model could be more than those in
an irregular sparse model, the locality of them in leads lower la-
tency. As a result, the combination of fast computation and high
bandwidth utilization leads LODESTAR to work closer to the peak
throughput of the engine, which is 32.78TFLOPs/Sec (i.e., 512GB/s
X 64FLOP/B); (iii) Power efficiency: LODESTAR impacts the power
consumption by reducing the number of memory accesses and by
modifying the number of operations. In terms of the contribution of
memory accesses, LODESTAR works better than irregular pruning.
However, the contribution of computations in power consump-
tion is the opposite, because the structured pruning may increase
the number of operations, and the systolic array executes spatial
operations much faster than sparse operation. Thus, the ratio of
memory-access reduction to increase in compute density is a key
factor. As Figure 3c shows, the reduction in memory accesses carries
more weight and helps achieving better power efficiency.
REFERENCES

[1] ANWAR, S., ET AL. Structured pruning of deep cnns. JETC 13, 3 (2017), 32.
[2] Ascari, B., ET AL. Memory slices: A modular building block for scalable, intelli-
gent memory systems. arXiv preprint arXiv:1803.06068 (2018).
CHETLUR, S., ET AL. cudnn: Efficient primitives for deep learning. arXiv:1410.0759.
Hapjis, S., ET AL. Caffe con troll: Shallow ideas to speed up deep learning. In
Proceedings of the Fourth Workshop on Data analytics in the Cloud (2015), ACM.
[5] HaN, S, ET AL. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv:1510.00149 (2015).
Jouppr, N. P, ET AL. In-datacenter performance analysis of a tensor processing
unit. In ISCA (2017), IEEE, pp. 1-12.
[7] Kung, H.-T. Why systolic architectures? IEEE computer 15,1 (1982), 37-46.
[8] Ly, H., ET AL. Pruning filters for efficient convnets. arXiv:1608.08710 (2016).
[9] Mao, H., ET AL. Exploring the regularity of sparse structure in cnns.
arXiv:1705.08922.
[10] MovrcHANOV, P, ET AL. Pruning convolutional neural networks for resource
efficient inference. arXiv:1611.06440.
[11] WEN, W,, ET AL. Learning structured sparsity in dnns. In NIPS (2016).

[3
[4

I6

