
Late Breaking Results:

LODESTAR: Creating Locally-Dense CNNs for Efficient
Inference on Systolic Arrays∗

Bahar Asgari
Georgia Tech

Ramyad Hadidi
Georgia Tech

Hyesoon Kim
Georgia Tech

Sudhakar Yalamanchili
Georgia Tech

ABSTRACT

The performance of sparse problems suffers from lack of spatial

locality and lowmemory bandwidth utilization. However, the distri-

bution of non-zero values in the data structures of a class of sparse

problems, such as matrix operations in neural networks, is modifi-

able so that it can be matched with an efficient underlying hardware,

such as systolic arrays. Such modification helps addressing the chal-

lenges coupled with sparsity. To efficiently execute sparse neural

network inference on systolic arrays, we propose a structured prun-

ing algorithm that increases the spatial locality in neural network

models, while maintaining the accuracy of inference.
ACM Reference Format:

Bahar Asgari, Ramyad Hadidi, Hyesoon Kim, and Sudhakar Yalamanchili.

2019. Late Breaking Results: LODESTAR: Creating Locally-Dense CNNs for

Efficient Inference on Systolic Arrays. In The 56th Annual Design Automation

Conference 2019 (DAC ’19), June 2–6, 2019, Las Vegas, NV, USA. ACM, New

York, NY, USA, 2 pages. https://doi.org/10.1145/3316781.3322472

1 INTRODUCTION AND MOTIVATION

Systolic arrays [7] have seen a resurgence for implementing in con-

volutional neural networks (CNNs) inference, a practical example

of which is in Google’s TPU [6]. Systolic arrays eliminate the need

for irregular intermediate accesses to the memory hierarchy, and

capture data reuse patterns. This approach works particularly well

for computing linear recurrences and dense linear algebra compu-

tations. However, inference using CNNs is a sparse problem, which

presents significant efficiency challenges such as underutilization of

memory bandwidth due to storing data in sparse formats, indirect

memory accesses and transferring of extra meta data.

CNN inference is sparse because, during training, several of

weights are assigned close-to-zero values. Thus, to reduce the

amount of computation as well as the memory footprint, the close-

to-zero values are usually pruned. Since pruning the individual

values of a model [5, 9] results irregular models with consequences

of resource underutilization and high storage overhead, structured

pruning techniques have been proposed, which prune the weights

at the granularity of a vector [1, 9], kernel [1, 9], filter [8ś11], chan-

nel [1, 11], or entire layer [11], all of which are optimizations for

∗Supported by NSF CCF 1533767. All correspondence to bahar.asgari@gatech.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3322472

CPUs and GPUs and help in reducing the number of operations,

memory footprint, and computation complexity.

The main challenge is that the preceding optimizations are in-

sufficient to exploit the data reuse in systolic arrays, and the highly

concurrent, synchronous, and rhythmic flow of data from memory.

In fact, the storage adjacency of data resulting from algorithm-

defined pruning (e.g., kernel, filter) is not necessarily matched with

data organizations necessary to directly stream to the interacting

data flows in the systolic array. Hence, our goal is to propose a prun-

ing, the output of which is compatible with a streaming memory

interface to eliminate external buffering/caching for compute.

2 PROPOSED APPROACH

We propose creating locally-dense CNNs for efficient inference on

systolic arrays (LODESTAR), to enable streaming of sparse data

from memory to exploit the distinctive data reuse patterns and

fine-grained concurrency of systolic arrays. LODESTAR produces a

weight matrix such that the non-zero values are clustered spatially

into locally-dense regions, which are compactly stored and effi-

ciently streamed. We examine the correlation among all the filters,

which differs from pruning the individual filters of a CNN [8ś11].

To sustain accuracy, we may keep more number of non-zeros com-

pared to common pruning algorithms. However, in achieving higher

performance and efficiency, the distribution of non-zeros is more

influential than their quantity, when optimized for streaming data.

Efficiently using systolic arrays for matrix multiplication is ap-

plicable to CNNs by converting their convolutional operations

to general matrix-matrix multiplication (GEMM), and flattening

4D weight matrices to 2D ones. Besides the known benefits of

using GEMM for CNNs [3, 4], it offers the opportunity for creat-

ing a locally-dense data by considering correlated filters together.

We prune the flattened weight matrix (i.e., WKxF 2C , K :#filters,

C:#channels, F :filter size) to extract non-zero blocks, the width

of which are selected to match with the width of the target systolic

array, ω. The matched widths of the non-zero blocks and that of

the systolic array guarantees the correctness of multiplications.

The non-zero blocks of the produced matrix are streamed into the

systolic array. The blocks are created by splitting large weight ma-

trices into F
2
C/ω chunks, and extracting the non-zero blocks in

Without

Pruning

Structured

Pruning

(LODESTAR)

Conv1/75x64 Conv2/1600x64 Local3/2304x384 Local4/384x192

Zero (%) 77% 79% 80% 79%

Layer/Size

Figure 1: Applying Algorithm 1 with l ,ω = 8 on CifarNet.

The accuracy after pruning 79.8% of model is 93.6%.

