Late Breaking Results:
Robustly Executing DNNs in loT Systems Using
Coded Distributed Computing®

Ramyad Hadidi Jiashen Cao
Georgia Tech Georgia Tech
ABSTRACT

Internet of Things (IoT) devices have access to an abundance of raw
data for processing. With deep neural networks (DNNs), not only
the demand for the computing power of IoT devices is increasing,
but also privacy concerns are motivating the importance of close-to-
edge computation. DNN execution by distributing its computation
is common in IoT systems. However, managing unstable latencies
in a network and intermittent failures are serious challenges. Our
work provides robustness and close-to-zero recovery latency by
adapting coded distributed computing (CDC). We analyze robust
execution on a mesh of Raspberry Pis by studying four DNNs.

ACM Reference Format:

Ramyad Hadidi, Jiashen Cao, Michael S. Ryoo, and Hyesoon Kim. 2019. Late
Breaking Results: Robustly Executing DNNs in IoT Systems Using Coded
Distributed Computing. In The 56th Annual Design Automation Conference
2019 (DAC ’19), June 2—6, 2019, Las Vegas, NV, USA. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3316781.3322474

1 MOTIVATION

With ubiquitous wireless networks and the availability of embed-
ded processors, Internet of Things (IoT) devices are rapidly gain-
ing ground. These devices have access to a variety of raw data
that needs to be elucidated with tight real-time and time-sensitive
constraints. Moreover, with the fast-paced advancement of deep
neural networks (DNNs) not only the use cases for IoT devices
are increasing, but also the demanded computational power from
resource-hungry DNN-based applications are escalating. Further-
more, processing raw data on IoT devices reduces the dependency
of the system on the network connectivity and cloud services while
protecting users’ private data. Therefore, with the proliferation of
IoT devices, a new computing paradigm by using these devices has
emerged as edge or fog computing, in which the data processing
is performed at the edge of the network. Since IoT devices have
limited resources to execute DNN models several application-level
techniques such as weight pruning, resource partitioning, quan-
tization and low-precision inference, and binarizing weights are
introduced to reduce the computation load of DNNs. Moreover,
several studies also examined the distributed execution of DNNs

“Supported by NSF CSR 1815047. All correspondence to rhadidi@gatech.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC 19, June 2-6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06...$15.00
https://doi.org/10.1145/3316781.3322474

Michael S. Ryoo
Google Brain

Hyesoon Kim
Georgia Tech

0.010
2'0.008
S 0.006
3

§ 0004
& 0.002

0.000 -

150 200 250 300 350 400 450 500
Arriaval Time (ms)

Figure 1: Arrival times in a four-device IoT system.
on edge devices while utilizing the mentioned technique. However,
since the distributed execution is susceptible to any kind of failures,
from short disconnectivity to losing a device, we may lose valuable
time-sensitive information. This fact, combined with the limited
number of devices and high probability of failures these systems,
necessitates a robust method for tolerating failures.

In this short paper, we propose a coded distributed computing
(CDC) recovery method that enables distributed DNN models on
IoT systems to tolerate failures (i.e., not lose time-sensitive and
real-time information) and mitigate straggler problem (i.e., reduce
average response time by not waiting for straggler data). Our work
introduces robustness by adapting coded distributed computing
(CDC) [4] and provides a close-to-zero recovery latency by trad-
ing off robustness with new computations. (CDC methods reduce
latency in a distributed system with map-reduce workloads by in-
creasing computation per node). Note that a critical difference of
executing DNNs in IoT systems, compared to high performance
computing (HPC) domain, is that in contrast with conventional
multi-batch inferencing of DNNs, in IoT systems, single-batch in-
ferencing is necessary. This is because the number of requests is
limited and understating the data is time sensitive. Therefore, the
introduced computations are derived by studying distribution tech-
niques for single-batch inference in DNNs, or model-parallelism
techniques. The introduced computations are similar in nature to
those of DNNS, so it can easily be balanced among IoT devices using
the same techniques, which is essential for an efficient system.

To illustrate unreliability in the communication latency of IoT
(i.e., straggler problem), Figure 1 shows a histogram of the arrival
times for data packets in a four-device IoT system with Raspberry
Pi 3s that use a WiFi network. A master device sends data packets
to three other devices, each of which performs the computation
for a fully-connected layer of size 2048. The measured time for
the computation of a fully-connected layer of size 2048 on a single
device is 50 ms. As seen, around 34% of the arrival times is within
100 ms, and 42% is within 150 ms. So, even after 2x the computation
time, around 34% of the packets have not arrived yet. Likewise,
to understand how failures are destructive in an IoT system, we

Accuracy
(top-1)
cooo
MR

Figure 2: Accuracy drop of Inception v3 with data loss.

—4—CDC+2VR =@=2MR —#—CDC+2VR =@=2MR

Coverage (%)
Coverage (%)
Coverage (%)

~4—CDC+2MR =@ =2MR

—#—CDC+2MR =@=2MR —#—CDC+2VR =@=2MR

Coverage (%)
Coverage (%)

1 2 3 4 5 6 7 8 1 2

4

devices for

5 6 7 12 3 4 5 6 7 8 9

devices for

#Additional devices for robustness #Additional devices for robustness

(@) (b)

#Additional devices for robustness

(d)

(c) (e)
Figure 3: Coverage of one failure with the number of additional devices for robustness, 2MR and CDC+2MR, with equal failure
probability/device: (a) AlexNet on 5, (b) Action recognition [5] on 8, (c) C3D [1] on 7 (d) C3D on 9, and (e) VGG 16 [2] on 8 devices.

’
2 a’
w1l w1z w1k 1 @

w21 w22 ... W2k al a
w31 w2 ... W3k 2 it
x |9 =
. a
Wm1 Wm2 - Wmk = mxk ap d g1 z - mX1
Weights Inputs

ig utputs
(divided among nodes) (every node needs a copy) (each node independently)

Figure 4: Output-splitting method distribution.

perform another experiment. In this experiment, the result of which
is shown in Figure 2, the accuracy drop in Inception v3 is shown
when some part of data in only one layer is lost. Although DNN
models contain many layers, as seen, for data loss of > 30% the
accuracy drop is significant and with data loss of > 50% the accuracy
is close to zero. In fact, complex DNN models are more sensitive to
data loss because they rely more on the nuances in data.

2 PROPOSED APPROACH & FINDINGS

To execute DNNSs on an IoT system, model-parallelism methods,
which reduce the amount of work and the memory footprint of a
task are utilized [1-3]. The two extremes of model-parallelism are
input and output splittings. In output splitting, creating outputs
is divided among the devices. Therefore, for each activation, its
whole computation is performed on a device. In input splitting,
each device computes a part of the entire output. The input is split
and each device computes all parts of the output that are depen-
dent on their particular part of the input. Since the computation of
fully-connected layers are basically a matrix multiplication, these
splitting methods are easily applied on these layers. The convo-
lution layer, which applies the same set of weights (i.e., filters) to
patches of input, can be also split with similar techniques. To do
so, similar to machine learning frameworks, we transform the com-
putations as a single matrix-matrix multiplication (GEMM). The
essence of the transformation is to unroll the input patches (a 3D
matrix) and filters (a 4D matrix) in 2D in a way that a single matrix-
matrix multiplication produces the unrolled version of the output
in 2D. Figure 4 illustrates how output splitting affects weight and
output matrices for an example with four devices. Since each device
calculates a set of separate outputs, the output matrix is created
separately by each device and concatenated later. Such separation
in output generation divides the weight matrix along the y-axis,
which has a one-by-one relationship with the output matrix. Since
input splitting does not have this property, it is not analyzed here.

Now, we present a basic example of CDC for robustness. Con-
sider a fully-connected layer with two input (a”) and output element
(a). Assume we are distributing this computation so that one device
performs the computations of one output element (i.e., output split-
ting). Now, by adding a row to the weight matrix with the value of
[w11 + w21 w12 + woz], we can create a summation of two outputs,
or aj + as. Therefore, with such addition, we have:

w11 w12 a ai
w21 wa |x|)= a (1)
wi1 + wop wi2 + wag 2 aj +az

Since the summation of the weights can be done offline and does

40
30
20
10

0

3 4 5 6
Number of Devices

(a) (b)
Figure 5: (a) New CDC node and its weight (b) Straggler mit-
igation performance improvement on AlexNet from [2].
cdc

LY []
Output Splitting for 4 nodes

Yy v One Failure Tolerance

Performance
Improvement
(%)

not change afterward, we can write w11 +wa1 as wi*“ and wiz +wa2
as de” Newly added weights to the weight matrlx are the column
sums of the weight matrix (Figure 5a). This new row in the weight
matrix creates a new output that is the sum of a; and ay. By adding
another device that performs this computation, we can guarantee
to recover from missing one value with only a subtraction. In fact,
the subtraction of two local values is much faster than recovery.
Another benefit of this technique is that this extra computation
in nature is similar to the computation of a; and ag; thus, the
distribution of its computation follows the same rules. In reality,
however, a device computes hundreds of output elements. To extend
this technique to multiple outputs per device we basically need to
perform our extra calculation based on below weight matrix,
WIHWIR)y WIzEW(gy e Wik W)k
wz1+w(m+2)1 woo+W, 7“)2 w2k+w(%+z)k

@)

WmtWml Wm,tWmo wm AWk
2 2 2

Bxk

in which k and m are the total number of input and out elements,
respectively. In fact, this extended weight matrix, has all the prop-
erties of our basic example. Furthermore, with another extension,
we can tolerate more failures. In short, by adding new devices that
perform computations based on the summation of some rows of
weights instead of all of them, we can increase robustness to multi-
ple failures. To see how our method covers whole system, we study
several distributed implementations [1, 2, 5] with tolerance to one
failure with 2MR-only (N-modular redundancy with N = 2) and
CDC+2MR. As seen, since CDC requires fewer devices than 2MR to
cover the devices with model parallelism, the number of additional
devices for full coverage for CDC+2MR is smaller than that of 2MR.
The amount of difference depends on how layers are distributed
with model parallelism and how many devices are used per layer.
Figure 5b shows the performance benefits of straggler mitigation
using our method for an AlexNet distributed system.

REFERENCES

[1] Hapipy, R, ET AL. Collaborative execution of deep neural networks on internet of
things device. arXiv preprint (2018).

[2] Hapipy, R, ET AL. Distributed perception by collaborative robots. IEEE RA-L,

Invited IROS 2018 3, 4 (Oct 2018), 3709-3716.

Hapipr, R, ET AL. Real-time image recognition using collaborative iot devices. In

ReQuEST ’18 co-located with ASPLOS’18 (2018), ReQuEST ’18, ACM.

[4] Lt S, ET AL. A fundamental tradeoff between computation and communication in

distributed computing. IEEE Trans. Inf. Theory 64, 1 (Jan 2018), 109-128.

Ryoo, M. S, ET AL. Extreme low resolution activity recognition with multi-siamese

embedding learning. In AAAI’'18 (Feb. 2018), IEEE.

(3

5

