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Abstract

Motivated by the study of matrix elimination orderings in combinatorial scientific comput-
ing, we utilize graph sketching and local sampling to give a data structure that provides access
to approximate fill degrees of a matrix undergoing elimination in O(polylog(n)) time per elim-
ination and query. We then study the problem of using this data structure in the minimum
degree algorithm, which is a widely-used heuristic for producing elimination orderings for sparse
matrices by repeatedly eliminating the vertex with (approximate) minimum fill degree. This
leads to a nearly-linear time algorithm for generating approximate greedy minimum degree
orderings. Despite extensive studies of algorithms for elimination orderings in combinatorial
scientific computing, our result is the first rigorous incorporation of randomized tools in this
setting, as well as the first nearly-linear time algorithm for producing elimination orderings with
provable approximation guarantees.

While our sketching data structure readily works in the oblivious adversary model, by re-
peatedly querying and greedily updating itself, it enters the adaptive adversarial model where
the underlying sketches become prone to failure due to dependency issues with their internal
randomness. We show how to use an additional sampling procedure to circumvent this problem
and to create an independent access sequence. Our technique for decorrelating the interleaved
queries and updates to this randomized data structure may be of independent interest.
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1 Introduction

Randomization has played an increasingly fundamental role in the design of modern data structures.
The current best algorithms for fully-dynamic graph connectivity [KKM13, NSW17, NS17, Wul17],
shortest paths [HKN14, ACK17], graph spanners [BKS12], maximal matchings [BGS15, Sol16],
and the dimensionality-reductions of large matrices [Woo14, CMP16, KLM+17, KPPS17] all crit-
ically rely on randomization. An increasing majority of these data structures operate under the
oblivious adversary model, which assumes that updates are generated independently of the internal
randomness used in the data structure. In contrast, many applications of data structures are adap-
tive—meaning that subsequent updates may depend on the output of previous queries. A classical
example of this paradigm is the combination of greedy algorithms with data structures, including
Dijkstra’s algorithm for computing shortest paths and Kruskal’s algorithm for finding minimum
spanning trees. The limitations imposed by adaptive adversaries are beginning to receive attention
in the dynamic connectivity [NS17, NSW17] and spanner [BK16] literature, but even for these
problems there remains a substantial gap between algorithms that work in the adaptive adversary
model and those that work only against oblivious adversaries [BKS12, KKM13].

Motivated by a practically important example of adaptive invocations to data structures for
greedy algorithms, we study the minimum degree algorithm for sparse matrix factorization and
linear system solving [DRSL16]. This heuristic for precomputing an efficient pivot ordering is
ubiquitous in numerical linear algebra libraries that handle large sparse matrices [Mat17], and
relies on a graph-theoretic interpretation of Gaussian elimination. In particular, the variables and
nonzeros in a linear system correspond to vertices and edges in a graph, respectively. When the
variable associated with vertex u is eliminated, a clique is induced on the neighborhood of u, and
then u is deleted from the graph. This heuristic repeatedly eliminates the vertex of minimum degree
in this graph, which corresponds to the variable with the fewest nonzeros in its row and column.

Computing elimination orderings that minimize the number of additional nonzeros, known
as fill, has been shown to be computationally hard [Yan81, NSS00], even in parameterized set-
tings [KST99, FV13, WAPL14, BCK+16, CS17]. However, the practical performance of direct
methods has greatly benefited from more efficient algorithms for analyzing elimination order-
ings [ADD04, DGLN04]. Tools such as elimination trees [Liu90, GNP94] can implicitly represent fill
in time that is nearly-linear in the number of original nonzeros, which allows for efficient prediction
and reorganization of future computation and, more importantly, memory bandwidth. In contrast
to the abundance of algorithms built on examining elimination orderings via implicit representa-
tion [HP07, NS12], surprisingly little attention has been given to producing elimination orderings
implicitly. In the survey by Heggernes et al. [HEKP01], the authors give an O(n2m) algorithm for
computing a minimum degree ordering, which is more than the cost of Gaussian elimination itself
and significantly more than the nearly-linear time algorithms for analyzing such orderings [GNP94].

Main Results. We begin our study by combining implicit representations of fill with graph
sketching. The nonzero entries of a partially eliminated matrix can be represented as the set of
vertices reachable within two hops in a graph that undergoes edge contractions [GNP94]. This
allows us to incorporate ℓ0-sketches [Coh97], which were originally developed to estimate the car-
dinality of reachable sets of vertices in directed graphs. By augmenting ℓ0-sketches with suitable
data structures, we obtain the following result for dynamically maintaining fill structure.
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Theorem 1.1. Against an oblivious adversary, we can maintain (1 ± ǫ)-approximations to the
degrees of the graph representation of a matrix undergoing elimination in O(log3 nǫ−2) per operation.

We also give an exact version of this data structure for cases where the minimum degree is always
small (e.g., empirical performance of Gaussian elimination on grid graphs [BMMR97]). Ignoring
issues of potential dependent randomness, the approximation guarantees of this data structure
provide us with an ordering that we call an approximate greedy minimum degree ordering, where
at each step a vertex whose degree is close to the minimum is pivoted. It is unclear if such an
ordering approximates a true minimum degree ordering, but such guarantees are more quantifiable
than previous heuristics for approximating minimum degree orderings [ADD96, HEKP01].

However, using this randomized data structure in a greedy manner exposes the severe limitations
of data structures that only work in the oblivious adversary model. The updates (i.e. the vertices
we eliminate) depend on the output to previous minimum-degree queries, and hence its own internal
randomness. The main result in this paper is an algorithm that uses dynamic sketching, as well as
an additional routine for estimating degrees via local sampling, to generate an approximate greedy
minimum degree sequence in nearly-linear time against adaptive adversaries.

Theorem 1.2. Given an n× n matrix A with nonzero graph structure G containing m nonzeros,
we can produce a (1 + ǫ)-approximate greedy minimum degree ordering in O(m log5 nǫ−2) time.

Techniques. Several components of our algorithm are highly tailored to the minimum degree
algorithm. For example, our dynamic sketches and local degree estimation routine depend on the
implicit representation of intermediate states of Gaussian elimination [GNP94]. That said, our
underlying randomized techniques (e.g., ℓ0-sketches [Coh97] and wedge sampling [KP17, ELRS17])
are new additions to combinatorial scientific computing.

The primary focus of this paper is modifying the guarantees in the oblivious adversary model
from Theorem 1.1 to work within a greedy loop (i.e. an adaptive adversary) to give Theorem 1.2.
However, we do not accomplish this by making the queries deterministic or worst-case as in [BK16,
NS17, NSW17]. Instead, we use an external randomized routine for estimating fill degrees to create
a fixed sequence of updates. The randomness within the sketching data structure then becomes
independent to the update sequence, but its internal state is still highly useful for determining
which vertices could have approximate minimum degree. We then efficiently construct the update
sequence using recent developments for randomized graph algorithms that use exponential random
variables [MPX13, MPVX15]. Our use of sketching can also be viewed as a pseudodeterminstic
algorithm whose goal is to efficiently recover a particular sequence of vertices [GG11, GGR13]. We
believe that both of these views are valuable to the study of randomness and for better understand-
ing the relationship between oblivious and adaptive adversaries.

Organization. In Section 2 we formalize the implicit representation of fill and variants of mini-
mum degree orderings. In Section 3 we give an overview of our results, along with a brief description
of the algorithms and techniques we employ. The use of sketching and sampling to obtain our exact
and approximate algorithms are given in Section 4 and Section 5, respectively. We also detail our
derandomization routine in Section 5, which is crucial for using our randomized data structure
against an adaptive adversary. In Section 6 we demonstrate how to estimate fill degrees via local
sampling, and in Section 7 we show how to maintain sketches as vertices are pivoted. Lastly, in
Section 8 we discuss hardness results for computing the minimum degree of a vertex in a partially
eliminated system and also for producing a minimum degree ordering.
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2 Preliminaries

We assume that function arguments are pointers to objects instead of the objects themselves, and
thus passing an object of size O(n) does not cost O(n) time and space. This is essentially the “pass
by reference” construct in high-level programming languages.

2.1 Gaussian Elimination and Fill Graphs

Gaussian elimination is the process of repeatedly eliminating variables from a system of linear
equations, while maintaining an equivalent system on the remaining variables. Algebraically, this
involves taking an equation involving a target variable and subtracting (a scaled version of) this
equation from all others involving the target variable. We assume throughout the paper that the
systems are symmetric positive definite (SPD) and thus the diagonal will remain positive, allowing
for any pivot order. This further implies that we can apply elimination operations to columns in
order to isolate the target variable, resulting in the Schur complement.

A particularly interesting fact about Gaussian elimination is that the numerical Schur comple-
ment is unique irrespective of the pivoting order. Under the now standard assumption that nonzero
elements do not cancel each other out [GL89], this commutative property also holds for the com-
binatorial nonzero structure. By interpreting the nonzero structure of a symmetric matrix A as
an adjacency matrix for a graph G, we can define the change to the nonzero structure of A as a
graph-theoretic operation on G analogous to the Schur complement.

Our notation extends that of Gilbert, Ng, and Peyton [GNP94], who worked with known elim-
ination orderings and treated the entire fill pattern (i.e. additional nonzeros entries) statically.
Because we work with partially eliminated states, we will need to distinguish between the elimi-
nated and remaining vertices in G. We implicitly address this by letting x and y denote eliminated
vertices and by letting u, v, and w denote remaining vertices. The following definition of a fill graph
allows us to determine the nonzero structure on the remaining variables of a partially eliminated
system.

Definition 2.1. The fill graph G+ = (V +, E+) is a graph on the remaining vertices such that the
edge (u, v) ∈ E+ if u and v are connected by a (possibly empty) path of eliminated vertices.

This characterization of fill means that we can readily compute the fill degree of a vertex v,
denoted by deg+(v) = |N+(v)|, in a partially eliminated state without explicitly constructing
the matrix. We can also iteratively form G+ from the original graph G by repeatedly removing an
eliminated vertex x along with its incident edges, and then adding edges between all of the neighbors
of x to form a clique. This operation gives the nonzero structure of the Schur complement.

Lemma 2.2. For any graph G = (V,E) and vertex v ∈ V , given an elimination ordering S we can
compute deg+(v) at the step when v is eliminated in O(m) time.

Proof. Mark all the vertices appearing in S before v as eliminated, and mark the rest as remaining.
Run a breadth-first search from v that terminates at remaining vertices (not including v). Let T be
the set of vertices where the search terminated. By the definition of G+ we have deg+(v) = |T |.

This kind of path finding among eliminated vertices adds an additional layer of complexity
to our data structures. To overcome this, we contract eliminated vertices into their connected
components (with respect to their induced subgraph in G), which leads to the component graph.
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Definition 2.3. We use G◦ = (V ◦
comp, V

◦
rem, E

◦) to denote the component graph. The set of vertices
in V ◦

comp is formed by contracting edges between eliminated vertices, and the set of vertices that
have not been eliminated is V ◦

rem. The set of edges E◦ is implicitly given by the contractions.

Note that G◦ is quasi-bipartite, as the contraction rule implies there are no edges between vertices
in V ◦

comp. It will be useful to refer to two different kinds of neighborhoods in a component graph.
For any vertex v in G◦, let N◦

rem(v) be the set of neighbors of v are in V ◦
rem, and let N◦

comp(v) denote
the neighbors of v that are in V ◦

comp. Analogously, we use the notation deg◦rem(v) = |N◦
rem(v)| and

deg◦comp(v) = |N◦
comp(v)|.

v1

v2
v5

v4v3

v6

v7

(a)

v1

v2

v4v3

v6

(b)

v1

v2 x1

v4v3

v6

(c)

Figure 1: The (a) original graph, (b) fill graph, and (c) component graph after pivoting v5 and v7.

For example, let us consider Figure 1. The original graph G has seven vertices v1, v2, . . . , v7,
and the algorithm decides to pivot v5 and v7 marked in red. Eliminating these vertices induces a
clique on v1, v2, v4, v6 in the fill graph because each pair of vertices is connected by a path through
the eliminated vertices v5 and v7. Our algorithms implicitly maintain the fill graph by maintaining
the component graph, where v5 and v7 merge to form the connected component x1 with edges
incident to all remaining neighbors of v5 and v7 in the original graph. Note that an upper bound
for the number of edges in a component graph is the number of edges in the original graph. We
repeatedly exploit this property when proving the time and space bounds of our algorithms.

2.2 Minimum Degree Orderings

The minimum degree algorithm is a greedy heuristic for reducing the cost of solving sparse linear
systems that repeatedly eliminates the variable involved in the fewest number of equations [GL89].
Although there are many situations where this is suboptimal, it is remarkably effective and widely
used in practice. For example, the approximate minimum degree algorithm (AMD) [ADD96] is a
heuristic for generating minimum degree orderings that plays an integral role in the sparse linear
algebra packages in MATLAB [Mat17], Mathematica [Wol18], and Julia [BKSE12].

For any elimination ordering (u1, u2, . . . , un), we let Gi be the graph with vertices u1, u2, . . . , ui
marked as eliminated and ui+1, ui+2, . . . , un marked as remaining. We denote the corresponding se-
quence of fill graphs by (G+

0 , G
+
1 , . . . , G

+
n ), where G+

0 = G and G+
n is the empty graph. Throughout

the paper, we frequently use the notation [n] = {1, 2, . . . , n} when iterating over sets.
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Definition 2.4. A minimum degree ordering is an elimination ordering such that for all i ∈ [n],
the vertex ui has minimum fill degree in G+

i−1. Concretely, this means that

deg+i−1(ui) = min
v∈V +

i−1

deg+i−1(v).

The data structures we use for finding the vertices with minimum fill degree are randomized,
so we need to be careful to not introduce dependencies between different steps of the algorithm
when several vertices are of minimum degree. To avoid this problem, we simply require that the
lexicographically-least vertex be eliminated in the event of a tie.

Our notion for approximating a minimum degree ordering is based on finding a vertex at each
step whose degree is close to the minimum in G+

t . Note that this is the goal of the AMD algorithm.

Definition 2.5. A (1 + ǫ)-approximate greedy minimum degree ordering is an elimination ordering
such that at each step i ∈ [n], we have

deg+i−1(ui) ≤ (1 + ǫ) min
v∈V +

i−1

deg+i−1(v).

This decision process has no lookahead, and thus does not in any way approximate the minimum
possible total fill incurred during Gaussian elimination, which is known to be NP-complete [Yan81].

2.3 Related Works

Gaussian Elimination and Fill. The study of pivoting orderings is a fundamental question in
combinatorial scientific computing. Work by George [Geo73] led to the study of nested dissection
algorithms, which utilize separators to give provably smaller fill bounds for planar [RTL76, LRT79]
and separable graphs [GT87, AY10]. A side effect of this work is the better characterization of fill
via component graphs [Liu85], which is used to compute the total fill-in of a specific elimination
ordering [GNP94]. This characterization is also used to construct elimination trees, which are
ubiquitous in scientific computing to preallocate memory and optimize cache behaviors [Liu90].

Finding Low-Fill Orderings. The goal of an elimination ordering is to minimize the total
fill. Unfortunately, this problem is NP-complete [Yan81, BS90]. Algorithms that approximate the
minimum fill-in within polynomial factors have been studied [NSS00], as well as algorithms [KST99,
FV13] and hardness results [WAPL14, BCK+16, CS17] for parameterized variants. Partially due
to the high overhead of the previous algorithms, the minimum degree heuristic remains as one of
the most widely-used methods for generating low-fill orderings [GL89].

Somewhat surprisingly, we were not able to find prior works that compute the minimum degree
ordering in time faster than O(n3) or works that utilize the implicit representation of fill provided
by elimination trees.1 On the other hand, there are various heuristics for finding minimum degree-
like orderings, including multiple minimum degree (MMD) [Liu85] and the approximate minimum
degree algorithm (AMD) [ADD96]. While both of these methods run extremely well in practice,
they have theoretically tight performances of Θ(n2m) for MMD and Θ(nm) for AMD [HEKP01].
Furthermore, AMD is not always guaranteed to produce a vertex of approximate minimum degree.

1 We use speculative language here due to the vastness of the literature on variants of minimum degree algorithms.
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Removing Dependencies in Randomized Algorithms. Our size estimators are dynamic—
the choice of the pivot, which directly affects the subsequent fill graph, is a result of the randomness
used to generate the pivot in the previous step—and prone to dependency problems. Independence
between the access sequence and internal randomness is a common requirement in recent works on
data structures for maintaining spanning trees, spanners, and matchings [BGS15, KKM13, Sol16].
Often these algorithms only have guarantees in the oblivious adversary model, which states that
the adversary can choose the graph and the sequence of updates, but it cannot choose updates
adaptively in response to the randomly-guided choices of the algorithm.

Recent works in randomized dimensionality-reduction have approached this issue of dependency
by injecting additional randomness to preserve independence [LS15]. Quantifying the amount of
randomness that is “lost” over the course of an algorithm has recently been characterized using
mutual information [KNP+17], but their results do not allow for us to consider n adversarial vertex
pivots. Our analysis also has tenuous connections to recent works utilizing matrix martingales to an-
alyze repeated introductions of randomness into graph sparsification algorithms [KS16, KPPS17].

3 Overview

We discuss the main components of our algorithms in three parts. In Section 3.1 we explore how
dynamic graph sketching can be used to construct a randomized data structure that maintains
approximate degrees under vertex eliminations. In Section 3.2 we demonstrate how data structures
that work against oblivious adversaries can fail against adaptive adversaries. We also describe our
approach to circumvent this problem for approximate minimum degree sequences. In Section 3.3
we discuss a local degree estimation routine (the new key primitive) in the context of estimating
the number of nonzero columns of a matrix via sampling. Finally, in Section 3.4 we explain the
implications of our results to the study of algorithms for computing elimination orderings.

3.1 Dynamically Sketching Fill Graphs

The core problem of estimating fill degrees can be viewed as estimating the cardinality of sets
undergoing unions and deletion of elements. Cardinality estimation algorithms in the streaming
algorithm literature often trade accuracy for space [FM85, CM05], but our degree-approximation
data structures use sketching to trade space for accuracy and more efficient update operations.

We first explain the connection between computing fill degrees and estimating the size of reach-
able sets. Assume for simplicity that no edges exist between the remaining vertices in the component
graph G◦. Split each remaining vertex u into two vertices u1 and u2, and replace every edge (u, x)
to a component vertex x by the directed edges (u1, x) and (x, u2). The fill degree of u is the number
of remaining vertices v2 reachable from u1 (not including u1). Cohen [Coh97] developed a nearly-
linear time size-estimation framework for reachability problems using sketching and ℓ0-estimators.
Adapting this framework to our setting for fill graphs leads to the following kind of ℓ0-sketch data
structure. We refer to the set N(u) ∪ {u} as the 1-neighborhood of u, and we call its cardinality
deg(u) + 1 the 1-degree of u.

Definition 3.1. A 1-neighborhood ℓ0-sketch of a graph G is constructed as follows:

1. Each vertex u ∈ V independently generates a random key R(u) uniformly from [0, 1).
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2. Then each vertex determines which of its neighbors (including itself) has the smallest key.
We denote this by the function

Minimizer(u)
def
= arg min

v∈N(u)∪{u}
R(v).

To give some intuition for how sketching is used to estimate cardinality, observe that choosing
keys independently and uniformly at random essentially assigns a random vertex N(u) ∪ {u} to
be Minimizer(u). Therefore, the key value R(Minimizer(u)) is correlated with deg(u) + 1. This
correlation is the cornerstone of sketching. If we construct k = Ω(log nǫ−2) independent sketches,
then by concentration we can use an order statistic of Ri(Minimizer(u)) over all k sketches to give
an ǫ-approximation of deg(u) + 1 with high probability. We gives the full details in Appendix A.

To maintain sketches of the fill graph as it undergoes vertex eliminations, we first need to
implicitly maintain the component graph G◦ (Lemma 6.2). We demonstrate how to efficiently
propagate key values in a sketch as vertices are pivoted in Section 7. For now, it is sufficient to
know that each vertex in a sketch has an associated min-heap that it uses to report and update its
minimizer. Because eliminating vertices leads to edge contractions in the component graph, there
is an additional layer of intricacies that we need to resolve using amortized analysis.

Suppose v is the vertex eliminated as we go from G◦
t to G◦

t+1. The sketch propagates this infor-
mation to relevant vertices in the graph using a two-level notification mechanism. The neighbors
of v are informed first, and then they notify their neighbors about the change, all the while updating
the key values in their heaps. We outline the subroutine PivotVertex(v) that accomplishes this:

1. Update the min-heaps of every remaining neighbor of v.

2. For each component neighbor x of v, if the minimum in its heap changes, then propagate this
change to the remaining neighbors of x and merge x with v.

While it is simple enough to see that this algorithm correctly maintains key values, bounding its
running time is nontrivial and requires a careful amortized analysis to show that the bottleneck
operation is the merging of component vertices.

We can merge two min-heaps in O(log2 n) time, so merging at most n heaps takes O(n log2 n)
time in total. To bound the cost of heap updates due to merges, we define the potential of the
component graph as

Φ(G◦
t )

def
=

∑

u∈V ◦
comp,t

D(u) log(D(u)),

where D(u) is the sum of the original degrees of vertices merged into u. Using the fact that a
merge operation only informs neighbors of at most one of the two merged vertices, we are able to
show that the number of updates to produce G◦

t is of the order of Φ(G◦
t ). It follows that the total

number of updates is at most O(m log n), which gives us a total update cost of O(m log2 n).

3.2 Correlation and Decorrelation

We now discuss how we use the randomized sketching data structure within a greedy algorithm.
We start with a simple concrete example to illustrate a problem that an adaptive adversary can
cause. Consider a data structure that uses sketching to estimate the cardinality of a subset S ⊆ [n]
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under the insertion and deletion of elements. This data structure randomly generates a subset of
keys T ⊆ [n] such that |T | = Θ(log nǫ−2), and it returns as its estimate the scaled intersection

n · |S ∩ T |
|T | ,

which is guaranteed to be within an ǫn-additive error of the true value |S| by Chernoff bounds,
assuming that T is generated independently of S. Clearly this cardinality-estimation algorithm
works in the oblivious adversary model.

However, an adaptive adversary can use answers to previous queries to infer the set of secret
keys T in O(n) updates and queries. Consider the following scheme in Figure 2 that returns S = T .

1. Initialize S = [n].

2. For each i = 1 to n:

(a) Delete i from S. If the estimated size of S changed, reinsert i into S.

3. Return S.

Figure 2: An adaptive routine that amplifies the error of a cardinality-estimation scheme that uses
a fixed underlying sketch.

While the updates performed by a greedy algorithm are less extreme than this, in the setting
where we maintain the cardinality of the smallest of k dynamic sets, having access to elements in
the minimizer does allow for this kind of sketch deduction. Any accounting of correlation (in the
standard sense) also allows for worst-case kinds of adaptive behavior, similar to the scheme above.

To remove potential correlation, we use an external routine that is analogous to the local degree-
estimation algorithm used in the approximate minimum degree algorithm, which runs in time close
to the degree it estimates. In this simplified example, suppose for each cardinality query that
the data structure first regenerates T . Then the probability that i belongs to S is Θ(log nǫ2/n).
Stepping through all i ∈ [n], it follows that the expected number of deletions is Θ(log nǫ−2), and
hence S remains close to size n with high probability.

Reinjecting randomness is a standard method for decorrelating a data structure across steps.
However, if we extend this example to the setting where we maintain the cardinality of k sets
(similar to our minimum degree algorithm), then the previous idea requires that we reestimate
the size of every set to determine the one with minimum cardinality. As a result, this approach
is prohibitively expensive. However, these kinds of cardinality estimations are actually local—
meaning that it is sufficient to instead work with a small and accurate subset of candidates sets. If
we compute the set with minimum cardinality among the candidates using an external estimation
scheme, then this decision is independent of the random choice of T in the sketching data structure,
which then allows us to use the sketching data structure to generate the list candidates.

Our algorithm for generating an approximate greedy minimum degree ordering relies on a similar
external routine called EstimateFill1Degree(u, ǫ), which locally estimates the fill 1-degree of u
at any step of the algorithm in time proportional to deg(u) in the original graph. We further
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describe this estimator in Section 3.3 and present the full sampling algorithm in Section 6. In
Section 5 we show that to generate an approximate greedy minimum degree sequence, it is instead
sufficient to pivot the vertex

arg min
u∈V +

(

1− ǫ · Exp(1)

log n

)

· EstimateFill1Degree

(

u,
ǫ

log n

)

at each step, which we call the ǫ-decayed minimum over all external estimates.
Analogous to the discussion about the set cardinality estimation above, evaluating the degrees

of every remaining vertex using EstimateFill1Degree at each step is expensive and leads to
a total cost of Ω(nm). However, we can reincorporate the sketching data structure and use the
following observations about the perturbation coefficient involving the exponential random variable
Exp(1) to sample a small number of candidate vertices that contains the ǫ-decayed minimum.

• For a set of vertices whose degrees are within 1± ǫ/ log n of each other, it suffices to randomly
select and consider O(1) of them by generating the highest order statistics of exponential
random variables in decreasing order.

• By the memoryless property of the exponential distribution, if we call EstimateFill1Degree,
then with constant probability it will be for the vertex we pivot. Therefore, we can charge the
cost of these evaluations to the original edge count and retain a nearly-linear running time.

Invoking EstimateFill1Degree only on the candidate vertices allows us to efficiently find the
ǫ-decayed minimizer in each step, which leads to the nearly-linear runtime as stated in Theorem 1.2.
The key idea is that any dependence on the ℓ0-sketches stops after the candidates are generated,
since their degrees only depend on the randomness of an external cardinality-estimation routine.

3.3 Local Estimation of Fill Degrees

A critical part of the approximate min-degree algorithm is the EstimateFill1Degree function,
which estimates the fill 1-degree of a vertex u ∈ V + using fresh randomness and O(deg(u) log2 nǫ−2)
oracle queries to the component graph G◦. At the beginning of Section 6 we show how to construct
a (0, 1)-matrix A where each row corresponds to a remaining neighborhood of a component neighbor
of u. The number of nonzero columns in A is equal to deg+(u). Using only the following matrix
operations (which correspond to component graph oracle queries), we analyze the more general
problem of counting the number of nonzero columns in a matrix. We note that this technique is
closely related to recent results in wedge sampling for triangle counting [KP17, ELRS17].

• RowSize(A, i): Returns the number of nonzero elements in row i of A.

• SampleFromRow(A, i): Returns a column index j uniformly at random from the nonzero
entries of row i of A.

• QueryValue(A, i, j): Returns the value of A(i, j).

Lemma 6.1. There is a routine EstimateNonzeroColumns using the three operations above that
takes as input (implicit) access to a matrix A and an error ǫ, and returns an ǫ-approximation to
the number of nonzero columns in A with high probability. The expected total number of operations
used is O(r log2 nǫ−2), where r is the number of rows and n is the number of columns in A.

9



We now give an overview of how EstimateNonzeroColumns works. Let B be the normalized
version of A where every nonzero entry is divided by its column sum. The sum of the nonzero entries
in B is the number of nonzero columns in A, denoted by NonzeroColumns(A). If we uniformly
sample a nonzero entry of B, then the mean of this distribution is NonzeroColumns(A)/nnz(A).
Because random variables sampled from this distribution take their value in [0, 1], we can estimate
their mean using an EstimateMean subroutine (Lemma 6.4), which does the following:

1. Set a threshold σ depending on the accuracy of the desired estimate.

2. Sample k independent random variables from the distribution until their sum first exceeds σ.

3. Return σ/k.

Using the matrix operations above, we can easily sample indices (i, j) of nonzero entries in B,
but evaluating B(i, j) requires that we know the j-th column sum of A. Therefore, to compute this
column sum we estimate the mean of a Bernoulli distribution on the j-th column of A defined by
selecting an entry from A[:, j] uniformly at random. This distribution has mean nnz(A[:, j])/r, and
it is amenable to sampling using the provided operations.

While the previous estimator works satisfactorily, we show how to combine these distributions
and use a hitting time argument to reduce the sample complexity by a factor of O(ǫ−2). Specifically,
for a fixed column, we consider a random variable that has a limited number of attempts to find a
nonzero entry by uniformly sampling rows. By optimizing the number of attempts, we can reduce
our error overhead in the runtime at the expense of a 1/poly(n) perturbation to the approximation.

3.4 Significance to Combinatorial Scientific Computing

Despite the unlikelihood of theoretical gains for solving linear systems by improved direct methods
for sparse Gaussian elimination, we believe our study could influence combinatorial scientific com-
puting in several ways. First, we provide evidence in Section 8 for the nonexistence of nearly-linear
time algorithms for finding exact minimum degree orderings by proving conditional hardness re-
sults. Our reduction uses the observation that determining if a graph can be covered by a particular
union of cliques (or equivalently, that the fill graph is a clique after eliminating certain vertices)
is equivalent to the orthogonal vectors problem [Wil05]. Assuming the strong exponential time
hypothesis, this leads to a conditional hardness of Ω(m4/3−θ) for computing a minimum degree
ordering. However, we believe that this result is suboptimal and that a more careful construction
could lead to Ω(nm1−θ)-hardness.

On the other hand, advances in minimum degree algorithms cannot be justified in practice
solely by worst-case asymptotic arguments. In general, nested dissection orderings are asymptot-
ically superior in quality to minimum degree orderings [HR98]. Furthermore, methods based on
Krylov spaces, multiscale analysis, and iterative methods [Gut07, GGLN13] are becoming increas-
ingly popular as they continue to improve state-of-the-art solvers for large sparse systems. Such
advancements are also starting to be reflected in theoretical works. As a result, from both a theo-
retical and practical perspective, we believe that the most interesting question related to minimum
degree algorithms is whether or not such sequences lead to computational gains for problems of
moderate size.

In our approximate minimum degree algorithm, the O(log5 n) term and convenient choice of
constants preclude it from readily impacting elimination orderings in practice. However, the under-
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lying sketching technique is quite flexible. For example, consider modifying the dynamic ℓ0-sketches
such that:

1. Each vertex maintains k random numbers in the range [0, 1).

2. Each component vertex maintains the smallest k numbers of its remaining neighbors.

3. Each remaining vertex then maintains the smallest k numbers among its component neighbors.

If we repeatedly eliminate the vertex whose median is largest, this routine is similar to using k copies
of the previous type of the sketch. Letting k = Ω(log nǫ−2), we can analyze this variant against an
oblivious adversary using slight modifications to our original sketching algorithm [Mas00]. Although
our analysis demonstrates that new tools are necessary for studying its behavior within a greedy
algorithm, we experimentally observed desirable behavior for such sketches. Therefore, we plan to
continue studying this kind of adaptive graph sketching both theoretically and experimentally.

4 Sketching Algorithms for Computing Degrees

Let us recall a few relevant definitions from Section 2 for convenience. For a given vertex elimination
sequence (u1, u2, . . . , un), let G+

t denote the fill graph obtained by pivoting vertices u1, u2, . . . , ut,
and let δt denote the minimum degree in G+

t . An ℓ0-sketch data structure consists of the following:

1. Each vertex u independently generates a key R(u) from [0, 1) uniformly at random.

2. Then each vertex u determines which neighbor (including itself) has the smallest key value.
We denote this neighbor by Minimizer(u).

In this section we show that if an ℓ0-sketch can efficiently be maintained for a dynamic graph,
then we can use the same set of sketches at each step to determine the vertex with minimum fill
degree and eliminate it. We explore the dynamic ℓ0-sketch data structure for efficiently propagating
key values under pivots in detail in Section 7 (and for now we interface it via Theorem 4.4). This
technique leads to improved algorithms for computing the minimum degree ordering of a graph,
which we analyze in three different settings.

First, we consider the case where the minimum degree at each step is bounded. In this case we
choose a fixed number of ℓ0-sketches and keep track of every minimizer of a vertex over all of the
sketch copies. Note that we can always use n as an upper bound on the minimum fill degree.

Theorem 4.1. There is an algorithm DeltaCappedMinDegree that, when given a graph with a
lexicographically-first min-degree ordering whose minimum degree is always bounded by ∆, outputs
this ordering with high probability in expected time O(m∆ log3 n) and uses space O(m∆ log n).

Next, we relax the bound on the minimum degrees over all steps of the algorithm and allow the
time and space complexity to be output sensitive by adaptively increasing the number of ℓ0-sketches
as the algorithm progresses.

Theorem 4.2. There is an algorithm OutputSensitiveMinDegree that, when given a graph
with a lexicographically-first min-degree sequence (δ1, δ2, . . . , δn), outputs this ordering with high
probability in expected time O(m ·maxt∈[n] δt · log3 n) and uses space O(m ·maxt∈[n] δt · log n).
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Lastly, we modify the algorithm to compute an approximate minimum degree vertex at each
step. By maintaining Θ(log nǫ−2) copies of the ℓ0-sketch data structure, we are able to accurately
approximate the 1-degree of a vertex using the (1− 1/e)-th2 order statistic of the key values of its
minimizers. We abstract this idea using the following approximate degree data structure, which
when given an elimination ordering directly leads to a nearly-linear time algorithm.

Theorem 4.3. There is a data structure ApproxDegreeDS that supports the following methods:

• ApproxDegreeDS Pivot(u), which pivots a remaining vertex u.

• ApproxDegreeDS Report(), which provides balanced binary search tree (BST) containers
V1, V2, . . . , VB such that all the vertices in the bucket Vi have 1-degree in the range

[

(1 + ǫ)i−2 , (1 + ǫ)i+2
]

.

The memory usage of this data structure is O(m log nǫ−2). Furthermore, if the pivots are picked
independently from the randomness used in this data structure (i.e., we work under the oblivious
adversary model) then:

• The total cost of all the calls to ApproxDegreeDS Pivot is bounded by O(m log3 nǫ−2).

• The cost of each call to ApproxDegreeDS Report is bounded by O(log2 nǫ−1).

4.1 Computing the Exact Minimum Degree Ordering

We first consider the case where the minimum degree in each of the fill graphs G+
t is at most ∆. In

this case, we maintain k = O(∆ log n) copies of the ℓ0-sketch data structure. By a coupon collector
argument, any vertex with degree at most ∆ contains all of its neighbors in its list of minimizers
with high probability. This implies that for each t ∈ [n], we can obtain the exact minimum degree
in G+

t with high probability. Figure 3 briefly describes the data structures we will maintain for this
version of the algorithm.

Global Variables: graph G that undergoes pivots, degree cap ∆.

1. k, the number of sketches set to 10(∆ + 1)⌈log n⌉.

2. k independent ℓ0-sketch data structures

dynamic sketch[1], dynamic sketch[2], . . . , dynamic sketch[k].

3. For each vertex u, a balanced binary search tree minimizers[u] that stores Minimizeri(u)
across all i ∈ [k] ℓ0-sketches.

4. A balanced binary tree size of minimizers on all vertices u with the key of u set to the
number of different elements in minimizers[u].

Figure 3: Global variables for the ∆-capped min-degree algorithm DeltaCappedMinDegree.

2Note that we use e to refer to the base of the natural logarithm.
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Note that if we can efficiently maintain the data structures in Figure 3, then querying the min-
imum element in size of minimizers returns the (lexicographically-least) vertex with minimum
degree. Theorem 4.4 demonstrates that we can maintain the ℓ0-sketch data structures efficiently.

Theorem 4.4. Given i.i.d. random variables R(v) associated with each vertex v ∈ V +
t , there is a

data structure DynamicSketch that, for each vertex u, maintains the vertex with minimum R(v)
among itself and its neighbors in G+

t . This data structure supports the following methods:

• QueryMin(u), which returns Minimizer(u) for a remaining vertex u in O(1) time.

• PivotVertex(u), which pivots a remaining vertex u and returns the list of all remaining
vertices v whose value of Minimizer(v) changed immediately after this pivot.

The memory usage of this data structure is O(m). Moreover, for any choice of key values R(v):

• The total cost of all the pivots is O(m log2 n).

• The total size of all lists returned by PivotVertex over all steps is O(m log n).

This theorem relies on intermediate data structures described in Section 7, so we defer the proof
until the end of that section. Note that this DynamicSketch data structure will be essential to all
three min-degree algorithms.

Now consider a sketch of G+ and a vertex u with degree deg+(u) ≤ ∆. By symmetry of
the R(v) values, each vertex in N+(u)∪{u} is the minimizer of u with probability 1/(deg+(u)+1).
Therefore, if we maintain O(∆ log n) independent ℓ0-sketches, we can ensure that we have an
accurate estimation of the minimum fill degree with high probability. The pseudocode for this
routine is given in Figure 4. We formalize the probability guarantees in Lemma 4.5 and Lemma 4.6,
which are essentially a restatement of [Coh97, Theorem 2.1].
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DeltaCappedMinDegree(G,∆)
Input: graph G = (V,E), threshold ∆.
Output: exact lexicographically-first min-degree ordering (u1, u2, . . . , un).

1. For each step t = 1 to n:

(a) Set ut ← min(size of minimizers).

(b) DeltaCappedMinDegree Pivot(ut).

2. Return (u1, u2, . . . , un).

DeltaCappedMinDegree Pivot(u)
Input: vertex to be pivoted u.
Output: updated global state.

1. For each sketch i = 1 to k:

(a) (v1, v2, . . . , vℓ)← dynamic sketch[i].PivotVertex(u), the set of vertices in the i-th
sketch whose minimizers changed after pivoting out u.

(b) For each j = 1 to ℓ:

i. Update the values corresponding to sketch i in minimizers[vj ].

ii. Update the entry for vj in size of minimizers with the size of minimizers[vj ].

Figure 4: Pseudocode for the exact ∆-capped min-degree algorithm, which utilizes the global data
structures for DeltaCappedMinDegree defined in Figure 3.

Lemma 4.5. With high probability, for all remaining vertices u such that deg+(u) ≤ 2∆ we have

size of minimizers[u] = deg+(u) + 1.

Proof. The only way we can have size of minimizers[u] < deg+(u) + 1 is if at least one neighbor
of u or u itself is not present in minimizers[u]. Let v be an arbitrary vertex in N+(u) ∪ {u}. The
probability of v not being the minimizer in any of the k = 10(∆ + 1)⌈log n⌉ sketches is

Pr [Minimizeri(u) 6= v for all i ∈ [k]] =

(

1− 1

deg+(u) + 1

)k

≤
(

1− 1

2∆ + 1

)10(∆+1) logn

≤ exp

(

−10(∆ + 1) log n

2∆ + 1

)

≤ 1

n5
.
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We can upper bound the probability that there exists a vertex v ∈ N+(u)∪{u} not in minimizers[u]
using a union bound. It follows that

Pr
[

size of minimizers[u] < deg+(u) + 1
]

≤ |N+(u) ∪ {u}| · Pr [Minimizeri(u) 6= v for all i ∈ [k]]

≤ 1

n4
.

Using a second union bound for the event that there exists a vertex u ∈ V + such that deg+(u) ≤ 2∆
and size of minimizers[u] < deg+(u) + 1 completes the proof.

Lemma 4.6. With high probability, for all remaining vertices u with deg+(u) > 2∆ we have

size of minimizers[u] > ∆ + 1.

Proof. We first upper bound the probability of the event size of minimizers[u] ≤ ∆+1. Let S be
any subset of N+(u)∪ {u} of size deg+(u)−∆ > 0. Using the assumption that deg+(u) ≥ 2∆ + 1,

Pr [S ∩ minimizers[u] = ∅] =

(

1− deg+(u)−∆

deg+(u) + 1

)k

≤ exp

(

−10
(

deg+(u)−∆
)

(∆ + 1) log n

deg+(u) + 1

)

≤ exp

(

−5
(

deg+(u) + 1
)

(∆ + 1) log n

deg+(u) + 1

)

=
1

n5(∆+1)
.

Next, sum over all choices of the set S and use a union bound. Note that this over counts events,
but this suffices for an upper bound. It follows that

Pr [size of minimizers[u] ≤ ∆ + 1] ≤
(

deg+(u) + 1

deg+(u)−∆

)

· Pr [S ∩ minimizers[u] = ∅]

≤
(

deg+(u) + 1

∆ + 1

)

· 1

n5(∆+1)

≤ n∆+1

n5(∆+1)

≤ 1

n4
.

Using a second union bound for the event that there exists a vertex u ∈ V + such that deg+(u) > 2∆
and size of minimizers[u] ≤ ∆ + 1 completes the proof.

Proof of Theorem 4.1. The algorithm correctly pivots the minimum degree vertex by Lemma 4.5
and Lemma 4.6. For the space complexity, each of the k ℓ0-sketch data structures uses O(m)
memory by Theorem 4.4, and for each vertex there is a corresponding balanced binary search tree
minimizers which uses O(k) space. We also have size of minimizers, which uses O(n) space.
Therefore, since we assume m ≥ n, the total space is O(km + nk + n) = O(m∆ log n).
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For the running time, Theorem 4.4 gives a cost of O(m log2 n) across all PivotVertex calls
per sketch, and thus a total cost of O(m∆ log3 n) over all sketches. Theorem 4.4 also states the sum
of ℓ (the length of the update lists) across all steps is at most O(m log n). Each of these updates
leads to two BST updates, so the total overhead is O(m log2 n), which is an equal order term.

4.2 Modifying the Algorithm to be Output Sensitive by Adaptive Sketching

If we do away with the condition that minimum fill degrees are bounded above by ∆, then the
number of copies of the ℓ0-sketch data structure needed depends only on the values of the minimum
fill degree at each step. Therefore, we can modify DeltaCappedMinDegree to potentially be
more efficient by adaptively maintaining the required number of sketches.

To accurately estimate degrees in G+
t we need Ω(δt log n) copies of the ℓ0-sketch data structure,

but we do not know the values of δt a priori. To rectify this, consider the following scheme that
adaptively keeps a sufficient number of copies of the ℓ0-sketch data structures. First, initialize the
value c = δ0 (the minimum degree in G). Then for each step t = 1 to n update c according to:

1. Let δt(c) be the candidate minimum degree in G+
t using k = 10c⌈log n⌉ sketches.

2. If δt(c) > c/2, then set c← 2c and repeat.

The core idea of the routine above is that if the candidate minimum degree is at most c/2,
then with high probability the true minimum degree is at most c. It follows that using O(c log n)
sketching data structures guarantees the minimum degree estimate is correct with high probability.

Proof of Theorem 4.2. The proof is analogous to that of Theorem 4.1. The upper bound for the
minimum degrees is now ∆ = 2 ·maxt∈[n] δt, and so the time and space complexities follow.

4.3 Computing an Approximate Minimum Degree

To avoid bounding the minimum fill degree over all steps and to make the running time independent
of the output, we modify the previous algorithms to obtain an approximate min-degree vertex at
each step. We reduce the number of ℓ0-sketches and use the reciprocal of the (1 − 1/e)-th order
statistic to approximate the cardinality size of minimizers[u] (and hence the 1-degree of u) to
obtain a nearly-linear time approximation algorithm.

There is, however, a subtle issue with the randomness involved with this algorithm. A necessary
condition for the algorithm to succeed as intended is that the sketches at each step are independent
of the past decisions of the algorithm. Therefore, we must remove all dependencies between previous
and current queries. In Section 3.2 we demonstrate how correlations between steps can amplify.
To avoid this problem, we must decorrelate the current state of the sketches from earlier pivoting
updates to the data structures. We carefully address this issue in Section 5. Instead of simply
selecting a vertex with an approximate min-degree, this algorithm instead requires access to all
vertices whose estimated degree is within a certain range of values. Therefore, this approximation
algorithm uses a bucketing data structure, as opposed to the previous two versions that output the
vertex to be pivoted. Figure 5 describes the global data structures for this version of the algorithm.
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Global Variables: graph G, error tolerance ǫ > 0.

1. k, the number of sketches set to 50
⌈

log nǫ−2
⌉

.

2. k independent ℓ0-sketch data structures

dynamic sketch[1], dynamic sketch[2], . . . , dynamic sketch[k].

3. For each vertex u, a balanced binary search tree minimizers[u] that stores Minimizeri(u)
across all i ∈ [k] ℓ0-sketches, and maintains the element in minimizers[u] with rank

⌊

k

(

1− 1

e

)⌋

.

4. A balanced binary tree quantile over all vertices u whose key is the ⌊k (1− 1/e)⌋-ranked
element in minimizers[u].

Figure 5: Global variables and data structures for ApproxDegreeDS, which returns (implicit)
partitions of vertices into buckets with ǫ-approximate degrees.

To successfully use fewer sketches, for a given vertex u we estimate the cardinality of the set of
its minimizers via its order statistics instead of using the exact cardinality as we did before with
the binary search tree size of minimizers[u]. Exploiting correlations in the order statistics of
sketches is often the underlying idea behind efficient cardinality estimation. In particular, we make
use of the following lemma, which is essentially a restatement of [Coh97, Propositions 7.1 and 7.2].

Lemma 4.7. Suppose that we have k copies of the ℓ0-sketch data structure, for k = 50
⌈

log nǫ−2
⌉

.
Let u be any vertex such that deg(u) + 1 > 2ǫ−1, and let Q(u) denote the ⌊k (1− 1/e)⌋-ranked key
value in the list minimizers[u]. Then, with high probability, we have

1− ǫ

deg(u) + 1
≤ Q(u) ≤ 1 + ǫ

deg(u) + 1
.

In [Coh97] they assume that the random keys R(v) are drawn from the exponential distribution
(and hence the minimum key value is also), whereas we assume that R(v) is drawn independently
from the uniform distribution. When deg(u) is large enough though, the minimum of deg(u)
random variables from either distribution is almost identically distributed. For completeness, we
prove Lemma 4.7 when the keys R(v) are drawn from the uniform distribution in Appendix A.

This idea leads to the following subroutine for providing implicit access to all vertices with
approximately the same degree. This is critical for our nearly-linear time algorithm, and we explain
its intricacies in Section 5. The pseudocode for this subroutine is given in Figure 6.
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ApproxDegreeDS Pivot(u)
Input: vertex to be pivoted, u.
Output: updated global state.

1. For each sketch i = 1 to k:

(a) (v1, v2, . . . , vℓ)← dynamic sketch[i].PivotVertex(u), the set of vertices in the i-th
sketch whose minimizers changed after we pivot out u.

(b) For each j = 1 to ℓ:

i. Update the values corresponding to sketch i in minimizers[vj ], which in turn
updates its ⌊k(1− 1/e)⌋-ranked quantile.

ii. Update the entry for vj in quantile with the new value of the ⌊k(1−1/e)⌋-ranked
quantile of minimizers[vj ].

ApproxDegreeDS Report()
Output: approximate bucketing of the vertices by their fill 1-degrees.

1. For each i = 0 to B = O(log nǫ−1):

(a) Set Vi to be the split binary tree in quantile that contains all nodes with ⌊k(1−1/e)⌋-
ranked quantiles in the range

[

(1 + ǫ)−(i+1) , (1 + ǫ)−i
]

.

2. Return (V1, V2, . . . , VB).

Figure 6: Pseudocode for the data structure that returns pointers to binary trees containing par-
titions of the remaining vertices into sets with ǫ-approximate degrees.

Observe that because 1-degrees are bounded by n, whenever we call ApproxDegreeDS Report
we have B = O(log nǫ−1) with high probability by Lemma 4.7. Therefore, this data structure can
simply return pointers to the first element in each of the partitions V1, V2, . . . , VB .

Proof of Theorem 4.3. By construction, all vertices in Vi have their ⌊k(1 − 1/e)⌋-ranked quantile
in the range

[

(1 + ǫ)−(i+1), (1 + ǫ)−i
]

.

By Lemma 4.7, the 1-degree of any vertex in bucket Vi lies in the range

[

(1− ǫ)(1 + ǫ)i, (1 + ǫ)i+2
]

with high probability, which is within the claimed range for ǫ ≤ 1/2.
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The proof of time and space complexities is similar to that of Theorem 4.1. Letting the number
of sketches k = O(log nǫ−2) instead of O(∆ log n) proves the space bound. One of the main
differences in this data structure is that we need to store information about the ⌊k(1−1/e)⌋-ranked
quantiles. These queries can be supported in O(log n) time by augmenting a balanced binary search
tree with information about sizes of the subtrees in standard ways (e.g., [CLRS09, Chapter 14]). It
follows that the total cost of all calls to ApproxDegreeDS Pivot is O(m log3 nǫ−2). To analyze
each call to ApproxDegreeDS Report, we use standard splitting operations for binary search
trees (e.g., treaps [SA96]), which allows us to construct each bucket in O(log n) time.

Note that there will be overlaps between the 1-degree intervals, so determining which bucket con-
tains a given vertex is ambiguous if its order statistic is near the boundary of an interval.

An immediate corollary of Theorem 4.3 is that we can provide access to approximate min-degree
vertices for a fixed sequence of updates by always returning an entry from the first nonempty bucket.

Corollary 4.8. For a fixed elimination ordering (u1, u2, . . . , un), we can find (1 + ǫ)-approximate
minimum degree vertices in each of the intermediate states in O(m log3 nǫ−2) time.

It is also possible to adaptively choose the number of sketches for the (1+ǫ)-approximate minimum
degree algorithm by using a subroutine that is similar to the one in Section 4.2.

5 Generating Decorrelated Sequences

In this section we present a nearly-linear (1 + ǫ)-approximate marginal min-degree algorithm. This
algorithm relies on degree approximation via sketching, as described in Theorem 4.3. In particular,
it uses the randomized data structure ApproxDegreeDS, which provides access to buckets of vertices
where the i-th bucket contains vertices with fill 1-degree in the range [(1 + ǫ)i−2, (1 + ǫ)i+2].

Theorem 5.1. There is an algorithm ApproxMinDegreeSequence that produces a (1 + ǫ)-
approximate marginal min-degree ordering in expected O(m log5 nǫ−2) time with high probability.

At each step of this algorithm, reporting any member of the first nonempty bucket gives an ap-
proximate minimum degree vertex to pivot. However, such a choice must not have any dependence
on the randomness used to get to this step, and more importantly, it should not affect pivoting
decisions in future steps. To address this issue, we introduce an additional layer of randomization
that decorrelates the ℓ0-sketches and the choice of vertices to pivot. Most of this section focuses on
our technique for efficiently decorrelating such sequences.

The pseudocode for ApproxMinDegreeSequence is given in Figure 7. This algorithm makes
use of the following global data structures and subroutines.

• ApproxDegreeDS: Returns buckets of vertices with approximately equal 1-degrees (Section 4.3).

• ExpDecayedCandidates: Takes a sequence of values that are within 1 ± ǫ of each other,
randomly perturbs the elements, and returns the new (ǫ-decayed) sequence (Section 5.2).

• EstimateFill1Degree: Gives an ǫ-approximation to the 1-degree of any vertex (Section 6).

We give the formal statement for EstimateFill1Degree in the following result.
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Theorem 5.2. There is a data structure that maintains a component graph G◦ under (adversarial)
vertex pivots in a total of O(m log2 n) time and supports the operation EstimateFill1Degree(u, ǫ),
which given a vertex u and error threshold ǫ > 0, returns with high probability a ǫ-approximation
to the fill 1-degree of u by making O(deg(u) log2 nǫ−2) oracle queries to G◦.

ApproxMinDegreeSequence(G, ǫ)
Input: graph G with n vertices, error ǫ.
Output: (1 + ǫ)-approximate marginal min-degree sequence (u1, u2, . . . , un).

1. Set a smaller error ǫ̂← ǫ/Θ (log n).

2. Initialize the approximate degree reporting data structure ApproxDegreeDS(G, ǫ̂).

3. For each t = 1 to n:

(a) Compute approximate buckets of 1-degrees (implicitly),

(V1, V2, . . . , VB)← ApproxDegreeDS Report().

(b) Let imin be the index of the minimum nonempty bucket.

(c) Set candidates[t]← ∅.
(d) For each i = imin to B, perturb and rank vertices by their approximate 1-degree,

candidates[t]← candidates[t] ∪ ExpDecayedCandidates (Vi, ǫ̂, i) .

(e) Trim candidates[t] so that its entries (δu, u, i) satisfy

(1− δu) (1 + ǫ̂)i < (1 + ǫ̂)7 min
(δv ,v,j)∈candidates[t]

(1− δv) (1 + ǫ̂)j .

(f) Let ut be the vertex that is the minimizer over all (δv, v, i) ∈ candidates[t] of

(1− δv)EstimateFill1Degree (v, ǫ) .

(g) ApproxDegreeDS Pivot (ut).

4. Return (u1, u2, . . . , un).

Figure 7: Pseudocode for the (1 + ǫ)-approximate marginal minimum degree ordering algorithm.

The most important part of this algorithm is arguably the use of exponential random variables
to construct a list of candidates that is completely uncorrelated with the randomness used to
generate the ℓ0-sketches and the choice of previous vertex pivots. The next subsection summarizes
some desirable properties of exponential distributions that we exploit for efficient perturbations.
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5.1 Exponential Random Variables

The exponential distribution is a continuous analog of the geometric distribution that describes
the time between events in a Poisson point process. We utilize well-known facts about its order
statistics, which have also appeared in the study of fault tolerance and distributed graph decom-
positions [MPX13]. For a rate parameter λ, the exponential distribution Exp(λ) is defined by the
probability density function (PDF)

fExp(λ)(x) =

{

λ exp (−λx) if x ≥ 0,

0 otherwise.

We will also make use of its cumulative density function (CDF)

FExp(λ)(x) =

{

1− exp (−λx) if x ≥ 0,

0 otherwise.

A crucial property of the exponential distribution is that it is memoryless. This means that for
any rate λ > 0 and s, t ≥ 0, an exponentially distributed random variable X satisfies the relation

Pr [X > s + t | X > s] = Pr [X > t] .

A substantial portion of our analysis relies on the order statistics of exponential random variables.
Given n random variables X1,X2, . . . ,Xn, the i-th order statistic is the value of the i-th mini-
mum random variable. A useful fact about i.i.d. exponential random variables is that the difference
between consecutive order statistics also follows an exponential distribution. The algorithmic conse-
quences of this property are that we can sample the smallest (or largest) k of n exponential random
variables in increasing (or decreasing) order without ever generating all n random variables.

Lemma 5.3 ([Fel71]). Let Xn
(i) denote the i-th order statistic of n i.i.d. random variables drawn

from the distribution Exp(λ). Then, the n variables Xn
(1),X

n
(2) −Xn

(1), . . . ,X
n
(n) −Xn

(n−1) are inde-

pendent, and the density of Xn
(k+1) −Xn

(k) is given by the distribution Exp((n − k)λ).

One approach to prove Lemma 5.3 uses the i.i.d. assumption to show that the CDF of Xn
(1) is

FXn
(1)

(x) = 1− (1− FExp(λ)(x))n

= 1− exp(−nλx).

This proves that Xn
(1) follows an exponential distribution with rate nλ. Conditioning on Xn

(1), we

see that Xn
(2)−Xn

(1) follows an exponential distribution equal to Xn−1
(1) by the memoryless property.

Therefore, one can repeat this argument to get the density of Xn
(k+1) −Xn

(k) for all k up to n− 1.

5.2 Implicitly Sampling ǫ-Decayed Minimums

The key idea in this section is the notion of ǫ-decay, which we use to slightly perturb approximate
1-degree sequences. It is motivated by the need to decorrelate the list of vertices grouped approx-
imately by their 1-degree from previous sources of randomness in the algorithm. In the following
definition, n is the number of vertices in the original graph before pivoting and c1 > 1 is a constant.
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Definition 5.4. Given a sequence (x1, x2, . . . , xk) ∈ Rk, we construct the corresponding ǫ-decayed
sequence (y1, y2, . . . , yk) by independently sampling the exponential random variables

δi ∼ ǫ̂ · Exp(1),

where ǫ̂ = ǫ/(c1 log n) as in line 1 in ApproxMinDegreeSequence, and letting

yi ← (1− δi) xi.

We say that the ǫ-decayed minimum of (x1, x2, . . . , xk) is the value min(y1, y2, . . . , yk).

Definition 5.5. Given an error parameter ǫ > 0 and an ǫ-approximate 1-degree estimation routine
Estimate1Degree(G,u), an ǫ-decayed minimum degree ordering is a sequence such that:

1. The vertex ut corresponds to the ǫ-decayed minimum of Estimate1Degree
(

G+
t−1, v

)

over
all remaining vertices v ∈ V +

t−1.

2. The fill graph G+
t is obtained after eliminating ut from G+

t−1.

Observe that the randomness of this perturbed degree estimator is regenerated at each step
and thus removes any previous dependence. Next, we show that this adjustment is a well-behaved
approximation, and then we show how to efficiently sample an ǫ-decayed minimum degree.

Lemma 5.6. Let Y be an ǫ-decayed minimum of (x1, x2, . . . , xk). With high probability, we have

Y ≥ (1− ǫ) min (x1, x2, . . . , xk) .

Proof. We bound the probability of the complementary event

Pr [Y < (1− ǫ) min (x1, x2, . . . , xk)] .

Observe that we can upper bound this probability by the probability that some xi decreases to less
than 1 − ǫ times its original value. Recall that we set ǫ̂ = ǫ/(c1 log n) for some constant c1 > 1.
Consider k i.i.d. exponential random variables X1,X2, . . . ,Xk ∼ Exp(1), and let

δi = ǫ̂ ·Xi,

as in the definition of an ǫ-decayed minimum. Using the CDF of the exponential distribution, for
each i ∈ [k] we have

Pr [δi > ǫ] = Pr

[

ǫ

c1 log n
·Xi > ǫ

]

= Pr [Xi > c1 log n]

= exp (−c1 log n) .

It follows by a union bound that

Pr

[

max
i∈[k]

δi > ǫ

]

≤
n
∑

i=1

Pr [δi > ǫ]

= n1−c1 ,

which completes the proof since c1 > 1.
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By the previous lemma, to produce a (1+ǫ)-approximate marginal minimum degree ordering, it
suffices to compute an ǫ-decayed minimum degree ordering. Specifically, at each step we only need
to find the ǫ-decayed minimum among the approximate fill 1-degrees of the remaining vertices.
It turns out, however, that computing the approximate 1-degree for each remaining vertex in
every iteration is expensive, so we avoid this problem by using ExpDecayedCandidates on each
bucket of vertices to carefully select a representative subset of candidates, and then we pivot out
the minimizer over all buckets. The pseudocode for this subroutine is given in Figure 8, where we
again let ǫ̂ = ǫ/(c1 log n) for some constant c1 > 1. Next, we show that this sampling technique is
equivalent to finding the ǫ-decayed minimum over all remaining vertices with high probability.

ExpDecayedCandidates(S, ǫ̂, label)
Input: sequence S = (s1, s2, . . . , sk) whose values are within a factor of (1 + c2ǫ̂) of each other
for some constant c2 > 0, error ǫ̂, label corresponding to S.
Output: candidates for the ǫ-decayed minimum of S.

1. Sample order statistics from Exp(1) in decreasing order such that Xk
(i) ≥ Xk

(k) − c2:

(

Xk
(k),X

k
(k−1), . . . ,X

k
(k−m+1)

)

← SampleDecreasingExponentials(k, c2).

2. For each i = 1 to m, let
δi ← ǫ̂ ·Xk

(k−i+1).

3. Assign each δi to an random element sπ(i) in S without replacement.

4. Return
[(

δ1, sπ(1), label
)

,
(

δ2, sπ(2), label
)

, . . . ,
(

δm, sπ(m), label
)]

.

Figure 8: Pseudocode for generating an expected constant-size list of candidates for the ǫ-decayed
minimum of a sequence of values that are within (1 + c2ǫ̂) of each other.

Note that the input sequence to ExpDecayedCandidates requires that all its elements are
within a factor of (1+c2ǫ̂) of each other. We achieve this easily using the vertex buckets returned by
ApproxDegreeDS Report in Section 4.3 when ǫ̂ is the error tolerance. The next lemma shows
that the approximate vertex 1-degrees in any such bucket satisfy the required input condition.

Lemma 5.7. For any bucket Vi of vertices returned by ApproxDegreeDS Report, there exists
a constant c2 > 0 such that all of the approximate 1-degrees are within a factor of (1 + c2ǫ̂) of each
other. Alternatively, all of the approximate 1-degrees are within a factor of (1 + ǫ̂)7 of each other.

Proof. The bucket Vi has vertices with approximate 1-degrees in the range

[

(1 + ǫ̂)i−2, (1 + ǫ̂)i+2
]

.

by Theorem 4.3. We have oracle access to the component graph G◦
t by Theorem 5.2 and therefore

can invoke EstimateFill1Degree on it. Instead of treating calls to EstimateFill1Degree
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and the values of δi used to generate ǫ-decayed minimums as random variables, we view them as
fixed values by removing the bad cases with high probability. That is, we define

d̃eg+t (u) + 1
def
= EstimateFill1Degree (u, ǫ̂) .

Every call to EstimateFill1Degree is correct with high probability by Theorem 5.2, so we have

(1− ǫ̂)
(

deg+t (u) + 1
)

≤ d̃eg+t (u) + 1 ≤ (1 + ǫ̂)
(

deg+t (u) + 1
)

.

This implies that all the approximate 1-degrees in bucket Vi are in the range
[

(1 + ǫ̂)i−4 , (1 + ǫ̂)i+3
]

,

for ǫ̂ sufficiently small. Therefore, all of these values are within a factor

(1 + ǫ̂)i+3

(1 + ǫ̂)i−4
= (1 + ǫ̂)7 ≤ (1 + c2ǫ̂)

of each other for some c2 > 0, which completes the proof.

The most important part of ExpDecayedCandidates is generating the order statistics effi-
ciently. In Figure 9 we show how to iteratively sample the variables Xk

(i) in decreasing order using
Lemma 5.3. This technique is critically important for us because we only consider order statistics
satisfying the condition Xk

(k) − c2, which is at most a constant number of variables in expectation.

SampleDecreasingExponentials(k, c2)
Input: integer k ≥ 0, real-valued threshold c2 > 0.

Output: order statistics Xk
(k),X

k
(k−1), . . . ,X

k
(k−m+1) from Exp(1) such that Xk

(k−m+1) ≥ Xk
(k)−c2

and Xk
(k−m) < Xk

(k) − c2.

1. Sample Xk
(k) using its CDF

Pr
[

Xk
(k) ≤ x

]

=
(

1− e−x
)k

.

2. For each i = 1 to k − 1:

(a) Sample the difference Y ∼ Exp(i) and let

Xk
(k−i) ← Xk

(k−i+1) − Y.

(b) If Xk
(k−i) < Xk

(k) − c2, let m← i and exit the loop.

3. Return
(

Xk
(k),X

k
(k−1), . . . ,X

k
(k−m+1)

)

.

Figure 9: Pseudocode for iteratively generating order statistics of exponential random variables in
decreasing order within a threshold c2 of the maximum value Xk

(k).
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To show that our algorithm is correct, we must prove that (1) the algorithm selects a bounded
number of candidates in expectation at each step, and (2) the true ǫ-decayed minimum belongs to
the candidate list. We analyze both of these conditions in the following lemma.

Lemma 5.8. If x1, x2, . . . , xk are within a factor of (1+c2ǫ̂) of each other, then the ǫ-decayed min-
imum is among the candidates returned by ExpDecayedCandidates((x1, x2, . . . , xk), ǫ̂, ·). Fur-
thermore, the expected number of candidates returned is bounded by the constant ec2 .

Proof. Let X1,X2, . . . ,Xk ∼ Exp(1) be i.i.d. and let the order statistic Xk
(k) = max{X1,X2, . . . ,Xk}.

We first verify the correctness of SampleDecreasingExponentials. Using the CDF of the ex-
ponential distribution, it follows that the CDF of Xk

(k) is

FXk
(k)

(x) = Pr [max{X1,X2, . . . ,Xn} ≤ x]

=

k
∏

i=1

Pr [Xi ≤ x]

=
(

1− e−x
)k

.

The memoryless property implies that we can generate Xk
(k−1),X

k
(k−2), . . . ,X

k
(1) iteratively by sam-

pling their differences from an exponential distribution whose rate is given by Lemma 5.3.
Now we show that the ǫ-decayed minimum is among the candidates. We claim that it suffices

to sample every Xk
(i) such that Xk

(i) ≥ Xk
(k) − c2, or equivalently every δi such that δi ≥ δk − c2ǫ̂.

To see this, suppose for contradiction that the ǫ-decayed minimum xπ(j) is not included. Then we
have δj < δk − c2ǫ̂, so it follows that

(1− δj)xπ(j) > (1− δk + c2ǫ̂)
xπ(k)

1 + c2ǫ̂
≥ (1− δk)xπ(k),

which is a contradiction. Therefore, our candidate list contains the ǫ-decayed minimum.
Lastly, to count the expected number of candidates, we count the number of values δj generated.

Let Zi be the indicator variable for the event Xi ≥ Xk
(k) − c2. Then Z =

∑k
i=1 Zi indicates the size

of the candidate list. Using the memoryless property of exponential random variables, we have

E[Z] =

k
∑

i=1

E[Zi]

=

k
∑

i=1

Pr
[

Xk
(i) ≥ Xk

(k) − c2

]

= 1 +
k−1
∑

i=1

Pr
[

Xk
(i) ≥ Xk

(k) − c2

]

= 1 +
k−1
∑

i=1

Pr
[

Xi
(i) ≤ c2

]

= 1 +

k−1
∑

i=1

(

1− e−c2
)i

≤ ec2 ,
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where the final equality considers the geometric series. Therefore, at most a constant number of
exponential random variables are generated as we sample backwards from the maximum.

We cannot simply work with the first nonempty bucket because the randomness introduces a
1±ǫ peturbation. Furthermore, the bucket containing the vertex with minimum degree is dependent
on the randomness of the sketches (as discussed in Theorem 4.3). To bypass this problem we inject
additional, uncorrelated randomness into the algorithm at each step to find O(1) candidates for
each of the O(log nǫ̂−1) buckets, which increases the number of global candidates to O(log nǫ̂−1).
Then in the penultimate step of each iteration, before we compute the approximate 1-degrees of
candidate vertices (which is somewhat expensive), we carefully filter the global list so that the
global ǫ-decayed minimum remains in the list with high probability.

Lemma 5.9. Let (δu, u, i) be the entry over all (δv , v, j) ∈ candidates[t] that minimizes

(1− δv)EstimateFill1Degree(v, ǫ).

Then, with high probability, we have

(1− δu) (1 + ǫ̂)i ≤ (1 + ǫ̂)7 min
(δv ,v,j)∈candidates[t]

(1− δv) (1 + ǫ̂)j .

Proof. Let (δv, v, j) be an arbitrary entry in candidates[t]. By assumption, we have

(1− δu)EstimateFill1Degree(u, ǫ) ≤ (1− δv)EstimateFill1Degree(v, ǫ).

Using inequalities in Lemma 5.7, it follows that

EstimateFill1Degree(u, ǫ) ≥ (1 + ǫ̂)i−4

and
EstimateFill1Degree(v, ǫ) ≤ (1 + ǫ̂)j+3

with high probability. Substituting these into the previous inequality gives us the result.

5.3 Analysis of the Approximation Algorithm

Now that we have all of the building blocks from the previous subsection, we prove the correctness
of the (1 + ǫ)-approximate marginal minimum degree algorithm and bound its running time.

Lemma 5.10. For any graph G and any error ǫ, the output of ApproxMinDegreeSequence(G, ǫ)
is a (1 + ǫ)-approximate marginal minimum degree sequence with high probability.

Proof. We prove by induction that for some constant c > 1, after t steps of the algorithm, the output
is a (1 + ǫ)-approximate marginal min-degree ordering with probability at least 1− tn−c. The base
case when t = 0 follows trivially because nothing has happened. For the inductive hypothesis,
assume that after t steps the sequence (u1, u2, . . . , ut) is a (1 + ǫ)-approximate min-degree ordering
and let the graph state be G+

t , where the eliminated vertices u1, u2, . . . , ut have been pivoted.
By Lemma 5.7, all values in a given bucket are within a factor of 1 + c2ǫ̂ of each other. We

use the guarantees of Lemma 5.8 to compute the ǫ-decayed minimum candidate of each bucket. It
follows from Lemma 5.9 that after we trim the candidate list, one of the remaining candidates is
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the original minimizer of (1−δv)EstimateFill1Degree(v, ǫ) with high probability. Therefore, ut
is the ǫ-decayed minimum over all values of EstimateFill1Degree(v, ǫ) with high probability.
Lastly, invoking the bound on distortions incurred by ǫ-decay in Lemma 5.6 and accounting for the
error of EstimateFill1Degree, the 1-degree of ut is within 1+ ǫ of the minimum 1-degree in the
fill graph G+

t with high probability. Taking a union bound over all the high probability claims, we
have a failure probability of at most n−c. Thus, the inductive hypothesis also holds for t + 1.

We now analyze the cost of the algorithm. To do this, we first show that if a vertex is close to
the global ǫ-decayed minimum, then there is a reasonable chance that it actually is the minimizer.
In other words, if the algorithm queries the approximate degree of a vertex, then it is likely that
this vertex belongs to the ǫ-decayed approximate degree sequence. This explains the trimming
condition in ApproxMinDegreeSequence.

Lemma 5.11. For any constant c3 ≥ 1, choice of error ǫ̂, sequence of values (x1, x2, . . . , xk), and
index i ∈ [k], we have

Pr [i corresponds to the ǫ-decayed minimum of (x1, x2, . . . , xk)]

≥ exp (−2c3) Pr

[

(1− δi)xi < (1 + ǫ̂)c3 min
j∈[k]

(1− δj) xj

]

.

Proof. Without loss of generality, suppose we generate δi last. Let

m = min
j∈[k]\{i}

(1− δj)xj

be the previous ǫ-decayed minimum. If m ≥ xi then both probabilities in the claim are equal
to 1 and the result holds trivially. Otherwise, consider the probability that i corresponds to the
minimizer conditioned on the event

(1− δi) xi < (1 + ǫ̂)c3 m.

Equivalently, assume that δi > γ, for some γ such that (1− γ)xi = (1 + ǫ̂)c3 m. By the memoryless
property of the exponential distribution, we have

Pr [δi > γ + 2c3ǫ̂ | δi > γ] = Pr [δi > 2c3ǫ̂]

= exp (−2c3) .

Therefore, with probability at least exp(−2c3), it follows that

(1− δi) xi < (1− γ − 2c3 ǫ̂) xi

≤ (1− 2c3ǫ̂) (1− γ)xi

= (1− 2c3ǫ̂) (1 + ǫ̂)c3 m

≤ m.

This means that if the decayed value of xi is within a threshold of the previous minimum m, then xi
itself will decay below m with at least constant probability.

Making the substitution c3 = 7, as in line 3e of ApproxMinDegreeSequence in Figure 7,
gives the following corollary, which allows us to prove our main result.
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Corollary 5.12. If a vertex v is in candidates[t] after line 3e of ApproxMinDegreeSequence,
then with probability at least exp(−14), v is the ǫ-decayed minimum.

Proof of Theorem 5.1. The correctness follows from Lemma 5.10. We can maintain access to all of
the buckets across the sequence of pivots in a total time of

O
(

m log3 nǫ̂−2
)

= O
(

m log5 nǫ−2
)

by Theorem 4.3, so all that remains is bounding the total cost of the calls to EstimateFill1Degree.
By Theorem 5.2, the cost of maintaining the component graph under pivots is O(m log2 n), a

lower order term. To analyze the aggregate cost of the calls to EstimateFill1Degree, we utilize
Corollary 5.12, which states that any vertex in candidates[t] (after trimming) is the one we pivot
with constant probability. Specifically, we prove by induction on the number of remaining vertices
that for some constant c4 the expected cost of calling EstimateFill1Degree is bounded by

c4





∑

u∈V +
t

deg◦rem,t (u)



 log2 nǫ̂−2.

The base case t = n follows trivially since no vertices remain. Now suppose that the claim is true
for t+ 1 vertices. By the induction hypothesis, the expected cost of the future steps is bounded by

∑

u∈V +
t

Pr [u is the ǫ-decayed minimum] · c4



− deg◦rem,t(u) +
∑

v∈V +
t

deg◦rem,t(v)



 log2 nǫ̂−2

= c4





∑

u∈V +
t

deg◦rem,t(u)



 log2 nǫ̂−2 − c4
∑

u∈V +
t

Pr [u is the ǫ-decayed minimum] · deg◦rem,t(u) log2 nǫ̂−2.

Now we consider the cost of evaluating EstimateFill1Degree(u, ǫ̂) at time t if u ∈ candidates[t].
By Corollary 5.12 and expanding the conditional probability, we have

Pr [u is the ǫ-decayed minimum] ≥ exp(−14) Pr [u ∈ candidates[t]] .

Therefore, using Theorem 5.2, the expected cost of these calls is

∑

u∈V +
t

Pr [u ∈ candidates[t]] · c3 deg◦rem,t(u) log2 nǫ̂−2

≤ c3 exp(14)
∑

u∈V +
t

Pr [u is the ǫ-decayed minimum] · deg◦rem,t(u) log2 nǫ̂−2.

It follows that the inductive hyptothesis holds for all t by letting c4 = c3 exp(14). The initial sum
of the remaining degrees is O(m), so the total expected cost of calling EstimateFill1Degree is

O
(

m log2 nǫ̂−2
)

= O
(

m log4 nǫ−2
)

,

which completes the proof.
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6 Estimating the Fill 1-Degree of a Vertex

This section discusses routines for approximating the fill 1-degree of a vertex in a partially eliminated
graph. We also show how to maintain the partially eliminated graph throughout the course of the
algorithm, which allows us to prove Theorem 5.2. The partially eliminated graph we use for degree
estimation is the component graph G◦, where connected components of the eliminated vertices are
contracted into single vertices called component vertices. See Section 2.1 for a detailed explanation.

Our goal is to efficiently approximate the fill 1-degree of a given remaining vertex u. By the
definition of fill 1-degree and the neighborhoods of component graphs, it follows that

deg+(u) + 1 =

∣

∣

∣

∣

∣

∣

{u} ∪N◦
rem(u) ∪

⋃

x∈N◦
comp(u)

N◦
rem(x)

∣

∣

∣

∣

∣

∣

.

In other words, the fill 1-neighborhood of u is set of remaining 1-neighbors of u in the original
graph in addition to the remaining neighbors of each component neighbor of u.

This union-of-sets structure has a natural (0, 1)-matrix interpretation, where columns corre-
spond to remaining vertices and rows correspond to neighboring component neighborhoods of u
(along with an additional row for the 1-neighborhood of u). For each row i, set the entry A(i, j) = 1
if vertex j is in the i-th neighborhood set and let A(i, j) = 0 otherwise. The problem can then be
viewed as querying for the number of nonzero columns of A. Specifically, we show how one can
accurately estimate fill 1-degrees using the following matrix queries:

• RowSize(A, i): Return the number of nonzero elements in row i of A.

• SampleFromRow(A, i): Returns a column index j uniformly at random from the nonzero
entries of row i of A.

• QueryValue(A, i, j): Returns the value of A(i, j).

The main result in this section is the follow matrix sampler.

Lemma 6.1. There is a routine EstimateNonzeroColumns using the three operations above that
takes as input (implicit) access to a matrix A and an error ǫ, and returns an ǫ-approximation to
the number of nonzero columns in A with high probability. The expected total number of operations
used is O(r log2 nǫ−2), where r is the number of rows and n is the number of columns in A.

Before analyzing this matrix-based estimator, we verify that Lemma 6.1 can be used in the
graph-theoretic setting to prove Theorem 5.2. We use the following tools for querying degrees and
sampling neighbors in a component graph as it undergoes pivots.

Lemma 6.2. We can maintain a component graph under vertex pivots in a total time of O(m log2 n).
Additionally, this component graph data structure grants O(log n) time oracle access for:

• Querying the state of a vertex.

• Querying the component or remaining neighborhood (and hence degree) of a vertex.

• Uniformly sampling a remaining neighbor of a component or remaining vertex.

• Uniformly sampling a random component vertex.
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We defer the proof of Lemma 6.2 to Section 7.
Assuming the correctness of Lemma 6.1 and Lemma 6.2, we can easily prove Theorem 5.2,

which allows us to efficiently estimate the fill 1-degrees of vertices throughout the algorithm.

Proof of Theorem 5.2. We can implicitly construct A and simulate the matrix operations as follows.
Storing the adjacency list of the component graph using binary search trees clearly implies that
we can implement RowSize and SampleFromRow. Moreover, in this setting QueryValue
corresponds to querying connectivity, which again is simple because we use binary search trees.
Substituting in the runtime bounds gives the desired result.

The rest of the section is outlined as followed. We prove a weaker but relevant version of the
matrix estimator (Lemma 6.1) in Section 6.1. This algorithm relies on a subroutine to estimate
the mean of a distribution, which we discuss in Section 6.2. Then by more carefully analyzing the
previous two algorithms, we prove the original estimation result in Section 6.3.

6.1 Approximating the Number of Nonzero Columns using Mean Estimators

We begin by defining an estimator for counting the number of nonzero columns of A. Let

ColumnSum(A, j)
def
=

r
∑

i=1

A(i, j),

and consider the normalized matrix B such that

B(i, j) =

{

0 if A(i, j) = 0

ColumnSum(A, j)−1 if A(i, j) = 1.

If we know the number of nonzeros in B and can uniformly sample nonzero entries of B, then we
can use this distribution on B as an unbiased estimator for the number of nonzero columns in A.
We explicitly capture this idea with the following lemma.

Lemma 6.3. If X is a uniformly random nonzero entry of B, then

E [X] =
NonzeroColumns(A)

nnz(A)
.

Assuming that we can uniformly sample indices (i, j) of nonzero entries of B, Lemma 6.3 implies
that it is sufficient to estimate column sums. We show how to do this by estimating the mean of an
appropriately chosen Bernoulli distribution on the column. All of our estimators in this section use
a general-purpose EstimateMean algorithm (given in Figure 10), for any distribution over [0, 1].
We present its accuracy guarantees and sample complexity next, and defer the proof to Section 6.4.
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EstimateMean(D,σ)
Input: access to a distribution D over [0, 1], cutoff threshold σ > 0.
Output: estimation of the mean of D.

1. Initialize counter← 0 and sum← 0.

2. While sum < σ:

(a) Generate X ∼ D.

(b) sum← sum + X.

(c) counter← counter + 1.

3. Return σ/counter.

Figure 10: Pseudocode for an algorithm that estimates the mean of a distribution D on [0, 1].

Lemma 6.4. Let D be any distribution over [0, 1] with (an unknown) mean µ. For any cutoff σ > 0
and error ǫ > 0, with probability at least 1− exp(−ǫ2σ/5), the algorithm EstimateMean(D,σ):

• Generates O(σ/µ) samples from the distribution.

• Produces an estimated mean µ such that (1− ǫ)µ ≤ µ ≤ (1 + ǫ)µ.

An immediate corollary of Lemma 6.4 is a routine ApproxColumnSum for estimating column
sums of A, where the running time depends on the column sum itself. We give the pseudocode for
this estimator in Figure 11, and then we prove its correctness and running time in Lemma 6.5.

ApproxColumnSum(A, j, ǫ, δ)
Input: matrix A with r rows, column index j, error ǫ > 0, failure probability δ > 0.
Implicit access to the number of rows r and the number of remaining vertices n.
Output: estimation for ColumnSum(A, j).

1. Let Dcol(j) denote the distribution for the random variable that:

(a) Chooses a row i ∈ [r] uniformly at random.

(b) Returns the value of A(i, j).

2. Set σ ← 5ǫ−2 log (1/δ).

3. Return r ·EstimateMean(Dcol(j), σ).

Figure 11: Pseudocode for approximating the column sum of a matrix.
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Lemma 6.5. For any (0, 1)-matrix A ∈ Rr×n, column index j, error ǫ > 0, and failure rate δ > 0,
invoking ApproxColumnSum returns an ǫ-approximation to ColumnSum(A, j) with probability
at least 1− δ while making

O

(

r log (1/δ)

ColumnSum(A, j)ǫ2

)

oracle calls to the matrix A in expectation.

Proof. Observe that Dcol(j) is a Bernoulli distribution with mean ColumnSum(A, j)/r. The suc-
cess probability follows directly from our choice of σ and the success probability of EstimateMean
for Bernoulli distributions (Lemma 6.4). Moreover, the total number of matrix-entry queries is

O

(

σ

ColumnSum(A, j)/r

)

= O

(

r log(1/δ)

ColumnSum(A, j)ǫ2

)

,

as desired.

We can simulate sampling from the nonzero entries of the reweighted matrix B by using the
inverse of ApproxColumnSum to estimate B(i, j). Moreover, by sampling enough entries of B so
that their sum is O(log nǫ−2), we can accurately estimate NonzeroColumns(A) by Lemma 6.3.
We give the slow version of this estimator in Figure 12, and we prove its running time in Lemma 6.1.

EstimateNonzeroColumns Slow(A, ǫ)
Input: oracle access to the matrix A with r rows and n columns, error threshold ǫ > 0.
Output: estimation for the number of nonzero columns in A.

1. Compute nnz(A), the total number of nonzeros in A.

2. Let Dglobal denote the distribution for the random variable that:

(a) Chooses a uniformly random nonzero index (i, j) in A (by first picking a row with
probability proportional to its number of nonzeros and then picking a random nonzero
entry from that row).

(b) Returns
1

ApproxColumnSum(A, j, ǫ, n−10)
,

where the value of ApproxColumnSum(A, j, ǫ, n−10) is generated once per each
column and reused on subsequent calls (via storage in a binary search tree).

3. Set σ ← 50ǫ−2 log(n)

4. Return nnz(A) ·EstimateMean(Dglobal, σ).

Figure 12: Pseudocode for (slowly) estimating the number of nonzero columns of a (0, 1)-matrix.

Next, we prove the correctness of EstimateNonzeroColumns Slow, and then we bound the
expected number of times it generates samples from Dglobal(j).

32



Lemma 6.6. With high probability, the estimation EstimateNonzeroColumns Slow(A, ǫ) is
within a factor of 1± ǫ of the number of nonzero columns of A.

Proof. To start, we extract all of the randomness out of EstimateNonzeroColumns Slow by
considering running all calls to ApproxColumnSum(A, j, ǫ, n−10) beforehand. By Lemma 6.5,
with high probability, for each column j we have

(1− ǫ)ColumnSum (A, j) ≤ ApproxColumnSum
(

A, j, ǫ, n−10
)

≤ (1 + ǫ)ColumnSum (A, j) .

Therefore, by Lemma 6.3 it follows that

(1− 2ǫ)
NonzeroColumns(A)

nnz(A)
≤ µ (Dglobal) ≤ (1 + 2ǫ)

NonzeroColumns(A)

nnz(A)
,

for sufficiently small ǫ. Incorporating the accuracy guarantee from Lemma 6.4 gives

(1− 4ǫ)
NonzeroColumns(A)

nnz(A)
≤ EstimateMean (Dglobal, σ) ≤ (1 + 4ǫ)

NonzeroColumns(A)

nnz(A)
.

The desired bound follows by quartering ǫ and multiplying by nnz(A).

Initial Proof of Lemma 6.1 (using O(r log2 nǫ−4) operations). The correctness is a consequence of
Lemma 6.6, so we must bound the total number of queries to entries of A. Using Lemma 6.4 and
Lemma 6.3, the expected number of queries made to Dglobal is

O

(

nnz(A) log n

NonzeroColumns(A)ǫ2

)

.

Therefore, it suffices to bound the expected cost of each sample generated from Dglobal.
Applying Lemma 6.5 to each column j, the expected number of queries to A made by ColumnSum(A, j)

is

O

(

r log n

ColumnSum (A, j) ǫ2

)

.

Summing over all ColumnSum(A, j) nonzero entries in column j gives

O

(

r log n

ǫ2

)

queries to A per nonzero column. It follows that the expected number of queries to A per sample
generated from Dglobal is

O

(

NonzeroColumns(A)

nnz(A)
· r log n

ǫ2

)

.

Multiplying this by the expected number of queries to Dglobal gives the overall result.

We note that this sample complexity bound also holds with high probability (instead of only
in expectation) by invoking Chernoff bounds. This is because the cost of each query to Dglobal is
bounded by O(r log nǫ−2) and the overall cost bound is larger by a factor of at least Ω(log n).
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6.2 Estimating the Mean of a Distribution

We now provide the details for the mean estimation algorithm, which proves the correctness of the
column sum estimator. We analyze the following scheme:

1. Generate an infinite stream of i.i.d. samples X1,X2, . . . from any distribution D over [0, 1].

2. Let counter = min
{

t ≥ 0 :
∑t

i=1 Xi ≥ σ
}

.

3. Output σ/counter.

This process generates more samples than EstimateMean in Figure 10, but the extra evaluations
happen after the subroutine terminates and thus does not affect the outcome.

Let µ be the (hidden) mean of the distribution D. For any error ǫ > 0, define the two cutoffs

L (D, ǫ)
def
=

σ

(1 + ε)µ

and
R (D, ǫ)

def
=

σ

(1− ε)µ
.

For convenience we write L = L(D, ǫ) and R = R(D, ǫ). We claim that if L ≤ counter ≤ R, then
the estimation we output will be sufficiently accurate. Therefore, we first bound the probabilities
of the complementary events counter < L and counter > R.

Lemma 6.7. Let D be any distribution over [0, 1]. For any sequence X1,X2,X3, . . . of i.i.d. random
variables generated from D and any choice of σ ≥ 0, we have

Pr

[

L
∑

i=1

Xi ≥ σ

]

≤ exp

(

−ǫ2σ

4

)

.

Proof. By the linearity of expectation we have

E

[

L
∑

i=1

Xi

]

= Lµ.

Since X1,X2, . . . ,XL are independent random variables with values in [0, 1], Chernoff bounds give

Pr

[

L
∑

i=1

Xi ≥ (1 + ǫ)Lµ

]

≤ exp

(

−ǫ2Lµ

3

)

≤ exp

(

−ǫ2σ

4

)

by letting σ = (1 + ǫ)Lµ and considering ǫ sufficiently small. This completes the proof.

Lemma 6.8. Let D be any distribution over [0, 1]. For any sequence X1,X2,X3, . . . of i.i.d. random
variables generated from D and any choice of σ ≥ 0, we have

Pr

[

R
∑

i=1

Xi ≤ σ

]

≤ exp

(

−ǫ2σ

4

)

.
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Proof. Consider the proof of Lemma 6.7, and use a Chernoff bound for the lower tail instead.

Proof of Lemma 6.4. We will show that the estimator behaves as intended when L ≤ counter ≤ R.
Considering the complementary events, it is easy to see that

Pr [counter ≤ L] ≤ Pr

[

L
∑

i=1

Xi ≥ σ

]

and

Pr [counter ≥ R] ≤ Pr

[

R
∑

i=1

Xi ≤ σ

]

.

Therefore, by Lemma 6.7 and Lemma 6.8 it follows that

Pr [L ≤ counter ≤ R] ≥ 1− 2 exp

(

−ǫ2σ

4

)

≥ 1− exp

(

−ǫ2σ

5

)

.

Assume that L ≤ counter ≤ R and recall the definitions of L and R. It follows that the number
of samples generated is O(σ/µ). To prove that σ/counter is an accurate estimate, observe that

σ

(1 + ǫ)µ
≤ counter ≤ σ

(1− ǫ)µ
,

and therefore
(1− ǫ)µ ≤ σ

counter
≤ (1 + ǫ)µ.

This completes the proof.

6.3 Improving the Error Bounds Through a More Holistic Analysis

We now give a better running time bound by combining the analyses of the two previous estimators
in a more global setting. Pseudocode for this final estimation routine is given in Figure 13.
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EstimateNonzeroColumns(A, ǫ)
Input: oracle access to the matrix A with r rows, error ǫ > 0.
Output: estimate for the number of nonzero columns of A.

1. Compute nnz(A), the total number of nonzeros in A.

2. Set lim← 10r⌈log n⌉.

3. Let Dnormalized denote the distribution for the random variable that:

(a) Chooses a uniformly random nonzero index (i, j) in A (by first picking a row with
probability proportional to its number of nonzeros and then picking a random nonzero
entry from that row).

(b) Initializes counter← 0.

(c) While counter < lim:

i. counter← counter + 1.

ii. Sample row uniformly at random from 1 to r.

iii. If A(row, j) = 1, break.

(d) Returns counter/lim.

4. Set σ ← 5ǫ−2 log n.

5. Return
nnz(A) · lim

r
· EstimateMean(Dnormalized, σ).

Figure 13: Pseudocode for a faster estimation of the number of nonzero columns of a matrix.

The essence of this algorithm can be better understood by analyzing a simpler version of Dnormalized.
The difference between these two distributions is that we artificially force Dnormalized to be a distri-
bution over [0, 1] (first by truncating and then normalizing) so that we can use the EstimateMean
algorithm. We show that our threshold of O(r log n) for truncating the number of sampled rows
can perturb the expected value by at most a factor of 1/poly(n).

Definition 6.9. We define the simpler variant Dsimple of Dnormalized as follows:

1. Sample a nonzero index (i, j) from A uniformly at random.

2. Return the minimum of 10r⌈log n⌉ and the number of random rows row until A(row, j) = 1.

Now we analyze the expected value of Dsimple and relate it to that of Dnormalized to prove the
correctness of EstimateNonzeroColumns and bound the time needed to sample from Dnormalized.

Lemma 6.10. If X is a random variable drawn from Dnormalized, then
(

1− 1

n

)

r ·NonzeroColumns(A)

lim · nnz(A)
≤ E [X] ≤ r ·NonzeroColumns(A)

lim · nnz(A)
,
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and the expected cost of each sample generated from Dnormalized is

O

(

r ·NonzeroColumns(A)

nnz(A)

)

.

Proof. For each column j, denote by nnz(A[:, j]) the number of nonzero entries in the column, and
let the probability of picking a nonzero entry from this column be

pj
def
=

nnz(A[:, j])

r
.

When considering columns selected by Dcombined and Dsimple, the column necessarily has a nonzero
entry so pj > 0.

Next, define the random variable Hj to be the number of times it takes to independently sample
a row row between 1 and r uniformly at random such that A(row, j) = 1. For all integers k ≥ 1,

Pr [Hj = k] = (1− pj)
k−1 pj.

It follows that the expected value of Hj is

E [Hj ] =
∞
∑

k=1

k Pr [Hj = k]

= pj

∞
∑

k=1

k (1− pj)
k−1

=
pj

(1− (1− pj))
2

=
r

nnz (A[:, j])
,

where the second to last line uses the Maclaurin series

∞
∑

k=1

kxk−1 =
1

(1− x)2
,

for all |x| < 1. Note that we can apply this formula because pj > 0.
To account for truncation, consider the random variable Zj = min(Hj, lim) and observe that

E [Zj ] =
lim
∑

k=1

k Pr [Hj = k] +
∞
∑

k=1

(lim + k − k) Pr [Hj = lim + k]

= E [Hj]− (1− pj)
lim pj

∞
∑

k=1

k (1− pj)
k−1

= E [Hj]−
(1− pj)

lim

pj
,
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where we again use the Maclaurin series above. Recalling that nnz(A[:, j]) ≥ 1 and r ≤ n, it follows
from the definition of pj that

(1− pj)
lim

pj
≤ n (1− pj)

lim

≤ n exp

(

−nnz(A[:, j])

r
· 10r log n

)

= n

(

1

n

)10·nnz(A[:,j])

≤ 1

n9
.

Therefore, by truncating the number of row samples, we deviate from E[Hj] by at most 1/poly(n).
Letting Z be a random variable drawn from Dsimple, we have the conditional expectation bound

r

nnz (A[:, j])
− 1

n9
≤ E [Z | Z chooses column j] ≤ r

nnz (A[:, j])
.

If we now consider the probability that Z selects column j, it follows that

r ·NonzeroColumns(A)

nnz(A)

(

1− 1

n7

)

≤ E [Z] ≤ r ·NonzeroColumns(A)

nnz(A)
,

since nnz(A) = O(n2). To prove the claim for the second distribution Dnormalized, we use the same
argument and the additional fact that lim = O(n2). The expected running time per sample follows
from the expected value of Dsimple.

Proof of Lemma 6.1. Since Dnormalized is a distribution over [0, 1], we can use EstimateMean to
approximate the expected value within a factor of ǫ with high probability by Lemma 6.4. The
correctness of EstimateNonzeroColumns follows from our choice of σ and Lemma 6.10.

It remains to bound the running time of the estimator. By Lemma 6.4 and Lemma 6.10, the
expected number of times we sample Dnormalized is

O

(

nnz(A) · lim · log nǫ−2

r ·NonzeroColumns(A)

)

.

The expected cost per sample generated from Dnormalized is

O

(

r ·NonzeroColumns(A)

nnz(A)

)

by Lemma 6.10. Multiplying these expectations gives that the total expected running time is

O
(

lim · log nǫ−2
)

= O
(

r log2 nǫ−2
)

.

Furthermore, since the cost per sample from Dnormalized is bounded by lim = O(r log n), it follows
that the running time is concentrated around this value with high probability.
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7 Maintaining Graphs Under Pivots

In this section we first show how to efficiently maintain the component graph under pivots in such a
way that supports component and remaining neighborhood queries. This proves Lemma 6.2, which
in turns completes the proof of Theorem 5.2. Then we spend the rest of the section demonstrating
how to maintain a dynamic 1-neighborhood sketch (described in Definition 3.1) of a fill graph as it
undergoes vertex eliminations to prove Theorem 4.4.

For convenience, we restate our claim about supporting dynamic component graphs G◦.

Lemma 6.2. We can maintain a component graph under vertex pivots in a total time of O(m log2 n).
Additionally, this component graph data structure grants O(log n) time oracle access for:

• Querying the state of a vertex.

• Querying the component or remaining neighborhood (and hence degree) of a vertex.

• Uniformly sampling a remaining neighbor of a component or remaining vertex.

• Uniformly sampling a random component vertex.

Proof. We maintain the adjacency list of G◦ explicitly, where each node stores its state as well as
its neighbors in balanced binary search trees. When we pivot a remaining vertex v, we examine
all all of its neighbors that are component vertices (i.e. N◦

comp(u)) and merge the neighborhood
lists of these vertices. By always inserting elements from the smaller list into the larger, we can
guarantee that each element is inserted at most O(log n) times. The total number of elements in
the neighborhood lists is m, so since each insertion costs O(log n) time, it follows that the total
cost across all m edges is O(m log2 n).

When a vertex is pivoted, we also need to move it from the remaining vertex list to the com-
ponent vertex list for each of its neighbors. This can be done by iterating over all the edges of the
vertex once. The cost is O(m) because each vertex is pivoted at most once and prior to pivoting no
edges are added to the graph. By maintaining all lists using balanced binary search trees, we can
make all updates and sample a random remaining (or component) neighbor in O(log n) time. A
global list that tracks all remaining and component vertices also allows for O(log n) time uniform
sampling.

We now focus on proving Theorem 4.4. We maintain a 1-neighborhood ℓ0-sketch data struc-
ture for a fill graph as it undergoes pivots (starting with the original graph) similarly to how we
maintain the adjacency list of the component graph. Because the minimum key value R(v) in the
1-neighborhood of a vertex u continually changes, we show how to track the minimizer of a vertex
via an eager-propagation routine. This protocol informs the neighbors of a pivoted vertex about its
minimum key, which ultimately propagates minimum key values throughout the graph as needed.

In Figure 14, we give a brief description about the data structures we use to achieve this. When
we refer to maintaining sets of vertices, the underlying data structure is a balanced binary search
tree. Recall that min heaps (e.g. binary heaps) of size O(n) support the methods Min, Insert,
and Delete which require O(1), O(log n), and O(log n) time respectively. Additionally, we use a
standard subroutine HeapMerge to merge two heaps in O(log2 n) time.
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1. A set V ◦
rem containing the remaining vertices.

2. A set V ◦
comp containing the component vertices.

3. For each x ∈ V ◦
comp, a corresponding min heap

remaining[x]

that contains the key values R(v) of its remaining neighbors v ∈ N◦
rem(x).

4. For each u ∈ V ◦
rem, a corresponding min heap

fill[u]

that contains the union of remaining[x].Min() for each component vertex x ∈ N◦
comp(u),

as well as the key values of the vertices in N◦
rem(u).

Figure 14: Data structures needed to maintain G◦ and an ℓ0-sketch of G+ under vertex pivots.

As a brief intuition behind the algorithm, consider the case where no vertex is deleted, but we
merge neighborhoods of vertices. In this case, as the neighborhood of a particular vertex grows,
the expected number of times the minimum R value in this neighborhood changes is O(log n). To
see this, consider the worst case where each time, the neighborhood of v increases by 1. Then the
expected number of changes in the minimum is

1/2 + 1/3 + . . . + 1/(n − 1) ≤ O(log n).

The major difficulty dealing with this is that deletions reduce degrees. In particular, it is possible
for the min at some vertex to change Ω(n) times due to repeated deletions. As a result, we can
only bound the total, or average number of propagations. This leads to a much more involved
amortized analysis, where we also use backwards analysis to explicitly bound the probability of
each informing operation.

Given a component graph G◦
t and a (remaining) vertex u to be pivoted, we use the routine

PivotVertex to produce a new graph G◦
t+1. In terms of the structure of the graph, our routine

does the same thing as the traditional quotient graph model for symmetric factorization [GL81].
Therefore we turn our attention to the problem of maintaining the minimum R values of the

neighborhoods. For a subset of vertices V ′ ⊆ V ◦
comp, let Rmin(V ′) denote the minimum R value

among all its vertices. Specifically, we want to maintain the values Rmin(N◦
rem(w)) for every w ∈

V ◦
comp and Rmin(N+(v)) for every v ∈ V ◦

rem. This update procedure is basically a notification
mechanism. When the status of a vertex changes, we update the data structures of its neighbors
correspondingly. The fill[u] heap will then give Rmin(N+(u)) and be used to estimate the fill-
degree of each remaining vertex as described in Section 4.

Suppose a remaining vertex v is pivoted. Then, for a component vertex w, the content of
remaining[w] changes only if v is its neighbor. Pseudocode of this update (PivotVertex) is
given in Figure 15. In particular, since v is no longer a remaining vertex, its entry needs to be
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removed from remaining[z]. Since v is now a component vertex, we need to construct remaining[v],
and update the fill heaps of its remaining neighbors appropriately. Furthermore, if R(v) was the
minimum element in remaining[w], this is no longer the case and the other remaining neighbors
of w need to be notified of this (so they can update their fill heaps). This is done via the call
to InformRemaining in Line 5b of the algorithm. The last step consists of melding the (now
component) vertex v with its existing component neighbors via calls to Meld. The pseudocode for
this routine is in Figure 16. Note that, at all times, we make a note of any remaining vertex whose
Minimizer is updated due to the pivoting.

PivotVertex(v)
Input: (implicitly as a global variable) a component graph G◦

t = 〈V ◦
rem, V

◦
comp, E

◦〉 along with
associated data structures.
A vertex v ∈ V ◦

rem to be pivoted,
Output: A list of vertices in V ◦

rem whose Minimizers have changed.

1. Initialize changed list← ∅.

2. Create an empty min-heap remaining[v]

3. For each vertex y ∈ N◦
rem(v) in lexicographical order

(a) fill[y].Delete(R(v))

(b) remaining[v].Insert(R(y))

(c) If R(v) was the old minimum in fill[y]:

changed list← changed list ∪ {y}

4. For each vertex y ∈ N◦
rem(v) in lexicographical order

(a) fill[y].Insert(remaining[v].Min()) (if not already present)

(b) If the minimum in fill[y] changes:

changed list← changed list ∪ {y}

5. For each vertex w ∈ N◦
comp(v) in lexicographical order

(a) remaining[w].Delete(R(v)).

(b) If R(v) was the old minimum in remaining[w]:

changed list← changed list ∪ InformRemaining(w,R(v), remaining[w].Min())

(c) Meld(v,w);

6. Update V ◦
comp,V ◦

rem and E◦ to form G◦
t+1;

7. Return changed list.

Figure 15: Pseudocode for pivoting a vertex
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Meld(v,w)
Input: (implicitly as a global variable) A graph state G = 〈V ◦

rem, V
◦
comp, E〉 along with associated

data structures.
Two component vertices v (the pivoted vertex) and w to be melded.
Output: A list of vertices in N◦

rem(v) ∪N◦
rem(w) whose Minimizers have changed.

1. Initialize changed list← ∅.

2. If remaining[v].Min() < remaining[w].Min()

(a) changed list← InformRemaining(w, remaining[w].Min(), remaining[v].Min());

3. Else If remaining[w].Min() < remaining[v].Min()

(a) changed list← InformRemaining(v, remaining[v].Min(), remaining[w].Min());

4. remaining[v]← HeapMerge(remaining[v], remaining[w])

5. Return changed list.

Figure 16: Pseudocode for melding two component vertices, and informing their neighbors of any
changes in the minimizers of N◦

rem.

For every component vertex w such that R(v) is the minimum value in remaining(w), the
routine InformRemaining (Pseudocode in Figure 17) is responsible for updating the contents in
the fill heaps of remaining vertices adjacent to w. This routine is also required when we merge
two component vertices in the algorithm Meld, since there are now more entries in the fill heaps
of adjacent remaining vertices.
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InformRemaining(w,Rold, Rnew)
Input: (implicitly as a global variable) a component graph G◦ = 〈V ◦

rem, V
◦
comp, E

◦〉 along with
associated data structures;
a vertex w ∈ V ◦

comp that’s causing updates;
old and new values for Rmin(N◦

rem(w)): Rold and Rnew.
Output: A list of vertices v ∈ N◦

rem(w) whose Minimizers have changed.

1. Initialize changed list← ∅.

2. For each v ∈ N◦
rem(w)

(a) Delete the entry Rold from fill[v] if it exists

(b) Add the entry Rnew to fill[v]

(c) If fill[v].Min() changed, changed list← changed list ∪ {v}.

3. Return changed list.

Figure 17: Pseudocode for propagating to remaining vertex neighbors

We break down the cost of calls to InformRemaining into two parts: when it is invoked by
PivotVertex, and when it is invoked by Meld. The first type of calls happens only when a
remaining vertex v is pivoted, and v is the minimum entry of the remaining heap of a compo-
nent vertex. The following lemma gives an upper bound on the expected cost of such calls to
InformRemaining by arguing that this event happens with low probability.

Lemma 7.1. The expected total number of updates to remaining vertices made by InformRemain-
ing when invoked from PivotVertex (Line 5b) over any sequence of n pivots that are independent
of the R values is O(m).

Proof. Let G◦ be the component graph at a certain instant in the algorithm. Let v ∈ V ◦
rem be the

vertex to be pivoted, and let w ∈ N◦
comp(v) be a neighboring component vertex. We only invoke

InformRemaining if R(v) is the minimum value in remaining[w], which occurs with probability
1/|N◦

rem(w)| and would cost O(|N◦
rem(w)|) updates. Therefore the expected number of updates is

only O(1) for each edge between a remaining vertex and a component vertex. When a remaining
vertex v is pivoted, its degree is the same as in the original graph. Therefore the number of edges
between v and a component vertex is bounded by the degree of v and hence the total expected
number of updates is O

(
∑

v∈V deg(v)
)

= O(m).

The calls to Meld are the primary bottlenecks in the running time, but will be handled similarly.
Its pseudocode is given in Figure 16.

We will show that the expected number of vertices updated by InformRemaining that result
from any fixed sequence of calls to Meld is bounded by O(m log n). We first analyze the number
of updates during a single meld in the following lemma.
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Lemma 7.2. Let u and v be two component vertices in a graph stage G◦. Then the expected number
of updates to vertices by InformRemaining when melding u and v is at most:

2 |N◦
rem(u)| · |N◦

rem(v)|
|N◦

rem(u)|+ |N◦
rem(v)| ,

Proof. Let us define:

ncommon = |N◦
rem(u) ∩N◦

rem(v)| ,
nu = |N◦

rem(u) \N◦
rem(u)| ,

nv = |N◦
rem(u) \N◦

rem(v)| .

If the minimum R value is generated by a vertex from N◦
rem(u)∩N◦

rem(v), then no cost is incurred.
If it is generated by a vertex from N◦

rem(u)\N◦
rem(v), we need to update the every vertex in N◦

rem(v)
(line 2a). This happens with probability

nu

ncommon + nu + nv
≤ nu + ncommon

2ncommon + nu + nv

=
|N◦

rem(u)|
|N◦

rem(u)|+ |N◦
rem(v)| .

Therefore the expected number of updates is bounded by:

|N◦
rem(u)| · |N◦

rem(v)|
|N◦

rem(u)|+ |N◦
rem(v)| ,

and we get the other term (for updating u’s neighborhood) similarly.

This allows us to carry out an amortized analysis for the number of updates to remaining ver-
tices. We will define the potential function of an intermediate component graph during elimination
in terms of the degrees of component vertices in the original graph G, in which adjacent component
vertices are not contracted. Let u◦ denote the set of vertices in V (G) which have been melded into
u in G◦.

Φ(G◦)
def
=

∑

u∈V ◦
comp

D(u) log (D(u)) ,

where D(u) for a vertex u ∈ V ◦
comp is defined to be

D(u) =
∑

v∈u◦

degG(u).

This function starts out at 0, and can be at most m log n.

Lemma 7.3. When melding two neighboring component vertices in a graph G◦
t to create G◦

t+1, the
expected number of vertex updates by InformRemaining is at most

2
(

Φ(G◦
t+1)− Φ(G◦

t )
)

.
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Proof. When melding two component vertices u and v in G◦
t to form G◦

t+1, the change in potential
is given by

Φ(G◦
t+1)− Φ(G◦

t ) = (D(u) + D(v)) log(D(u) + D(v))−D(u) log D(u)−D(v) log D(v).

On the other hand, by Lemma 7.2 the expected number of remaining vertices updated is

2 |N◦
rem(u)| · |N◦

rem(v)|
|N◦

rem(u)|+ |N◦
rem(v)| ≤

2D(u)D(v)

D(u) + D(v)
.

To see that the above statement is true, observe that N◦
rem(u) ≤ D(u), N◦

rem(v) ≤ D(v), and that
both the LHS and RHS can be viewed as two resistors in parallel. Now it suffices to show the
following the algebraic identity:

2x log x + 2y log y +
2xy

x + y
≤ 2 (x + y) log (x + y) ,

and let x = D(u) and y = D(v). By symmetry, we can assume x ≤ y without loss of generality.
Then we get

xy

x + y
≤ xy

y

= y · x
y

≤ y · log

(

1 +
x

y

)

,

where the last inequality follows from log(1 + z) ≥ z when z ≤ 1. Plugging this in then gives:

2x log x + 2y log y +
2xy

x + y
≤ 2x log x + 2y

(

log y + log

(

1 +
x

y

))

= 2x log x + 2y log (x + y)

≤ 2 (x + y) log (x + y) .

Lemma 7.4. Over any fixed sequence of calls to Meld, the expected number of updates to the
fill heaps in remaining vertices (lines 2a and 3a) is bounded by O(m log n).

Proof. By Lemma 7.3, the number of updates is within a constant of the potential increase. Since
our potential function Φ is bounded between 0 and O(m log n), and at no point can it decrease.
Hence, the total number of updates is also bounded by O(m log n).

Combining the above lemmas gives our main theorem from Section 4 on maintaining one copy
of the 1-neighborhood sketch.

Proof. (of Theorem 4.4) Given any graph G and a fixed sequence of vertices for pivoting, we use
the PivotVertex routine to produce the sequence of graph states

G = G◦
0, G

◦
1, G

◦
2, . . . , G

◦
n = ∅.

Recall that the goal is to maintain Rmin(N◦
rem(w)) for all w ∈ V ◦

comp and Rmin(N+(v)) for all
v ∈ V ◦

rem. This is achieved by maintaining the two min-heaps, remaining and fill.
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When pivoting a remaining vertex v, PivotVertex first makes a constant number of updates
to v’s remaining neighbors, which are bounded above by the original degree of v. Next, it removes
v from the remaining heaps among v’s component vertex neighbors (line 5a), which are again at
most as many as the original degree of v. Therefore the total cost of this part of the algorithm is
O(m log n). The major chunk of the running time cost is incurred by updates to the fill heaps
in InformRemaining. By Lemma 7.1 and Lemma 7.4, the number of such updates is bounded
by O(m log n). As each update is a O(log n) operation on a heap, the the total running time is
O(m log2 n). The final step of a meld consists of merging two remaining heaps. Since two min-
heaps can be merged in time O(log2 n), and the number of merges for a pivoted vertex can be
bounded by its original degree, the cost of this step can be bounded by O(m log2 n).

8 SETH-Hardness for Computing Minimum Degree Orderings

Our hardness results for computing the minimum fill degree and the min-degree ordering are based
on the strong exponential time hypothesis (SETH), which states that for all θ > 0 there exists a k
such that solving k-SAT requires Ω(2(1−θ)n) time. Many hardness results based on SETH, including
ours, go through the OrthogonalVectors problem and make use of the following result.

Theorem 8.1 ([Wil05]). Assuming SETH, for any θ > 0, there does not exist an O(n2−θ) time
algorithm that takes n binary vectors with Θ(log2 n) bits and decides if there is an orthogonal pair.

We remark that OrthogonalVectors is often stated as deciding if there exists a pair of or-
thogonal vectors from two different sets [Wil15], but we can reduce the problem to a single set by
appending [1; 0] to all vectors in the first set and [0; 1] to all vectors in the second set.

The first hardness observation for computing the minimum fill degree in a partially eliminated
graph is a direct reduction to OrthogonalVectors. To show this, we construct a bipartite graph
that demonstrates how OrthogonalVectors can be interpreted as deciding if a union of cliques
covers the edges of a clique on the remaining vertices of a partially eliminated graph.

Lemma 8.2. Assuming SETH, for any θ > 0, there does not exist an O(m2−θ) time algorithm that
takes as input G with a set of eliminated vertices and computes the minimum fill degree in G+.

Proof. Consider an OrthogonalVectors instance with n vectors a1,a2, . . . ,an ∈ {0, 1}d, and
construct a bipartite graph G = (Vvec, Vdim, E) such that each vertex in Vvec corresponds to a
vector a i and each vertex in Vdim uniquely corresponds to a dimension 1 ≤ j ≤ d. For the edges,
we connect vertices i ∈ Vvec with j ∈ Vdim if and only if a i(j) = 1.

Consider the graph state with all of Vdim eliminated and all of Vvec remaining. We claim that
there exists a pair of orthogonal vectors among a1,a2, . . . ,an if and only if there exists a remaining
vertex v ∈ V (G+) with deg(v) < n − 1. Let u, v ∈ Vvec be any two different vertices, and let au

and av be their corresponding vectors. The vertices u and v are adjacent in G+ if and only if there
exists an index 1 ≤ j ≤ d such that au(j) = av(j) = 1.

Suppose there exists an O(m2−θ) time algorithm for implicitly finding the minimum fill degree
in a partially eliminated graph, for some θ > 0. Then for d = Θ(log2 n) we can use this algorithm
to compute the vertex with minimum fill degree in the bipartite graph described above in time

O
(

m2−θ
)

= O
(

(

n log2 n
)2−θ

)

= O
(

n2−θ/2
)

,

which contradicts SETH by Theorem 8.1.
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Building on the previous observation, we now show that an exact linear-time algorithm for
computing min-degree elimination orderings is unlikely. In particular, our main hardness result is:

Theorem 8.3. Assuming SETH, for any θ > 0, there does not exist an O(m4/3−θ) time algorithm
for producing a min-degree elimination ordering.

The main idea behind our construction is to modify the bipartite graph in the proof of Lemma 8.2
in such a way that a minimum degree ordering has the effect of eliminating the d vertices in Vdim

before any vertex in Vvec. This allows us to use MinDegreeOrdering to efficiently solve any
instance of OrthogonalVectors. A limitation of the initial construction is that vertices in Vdim

can have degree as large as n, so requiring that they be eliminated first is difficult to guarantee.
To overcome this problem, we create a degree hierarchy by splitting each vertex in Vdim into Θ(n)
vertices with degree O(

√
n). We call this construction a covering set system because it maintains

all two-step connections between vertices in Vvec.

Lemma 8.4. Given any positive integer n, we can construct in O(n3/2) time a covering set system
of the integers [n] = {1, 2, . . . , n}. This system is collection of subsets I1, I2, . . . , Ik ⊆ [n] such that:

• The number of subsets k = O(n).

• The cardinality |Ij | ≤ 10
√
n, for all 1 ≤ j ≤ k.

• For each (i1, i2) ∈ [n]2 there exists a subset Ij such that i1, i2 ∈ Ij.

We also pad each vertex in Vvec with Ω(
√
n) edges to ensure that it is eliminated after the vertices

introduced by the covering set systems. We formally describe this construction in Figure 18.

1. Create one vertex per input vector a1,a2, . . . ,an, and let these vertices be Vvec.

2. For each dimension j = 1 to d:

(a) Construct a covering set system for [n].

(b) Create a vertex in Vdim for each subset in this covering set system.

(c) For each vector a i such that a i(j) = 1, add an edge between its vertex in Vvec and
every vertex corresponding to a subset in this covering system that contains i.

3. Introduce 20
√
n extra vertices called Vpad:

(a) Connect all pairs of vertices in Vpad.

(b) Connect each vertex in Vpad with every vertex in Vvec.

Figure 18: Construction for reducing OrthogonalVectors to MinDegreeOrdering.

Lemma 8.5. For any OrthogonalVectors instance with n vectors of dimension d, let G be
the graph produced by the construction in Figure 18. We have |V | = O(nd) and |E| = O(n3/2d).
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Proof. The number of vertices in G is

|V | = 20
√
n + n + d ·O (n) = O (nd) .

Similarly, an upper bound on the number of edges in G is

|E| =
(

20
√
n

2

)

+ 20
√
n · n + d · 10

√
n · O (n) = O

(

n3/2d
)

,

where the terms on the left-hand side of the final equality correspond to edges contained in Vpad,
the edges between Vpad and Vvec, and edges between Vvec and Vdim, respectively.

Lemma 8.6. Consider a graph G constructed from an OrthogonalVectors instance as de-
scribed in Figure 18. For any min-degree ordering of G, the vertices in Vdim are the first to be
eliminated. Furthermore, the fill degree of the next vertex to be eliminated is minv∈Vvec deg+(v).

Proof. Let the graph be G = (V,E), such that V is partitioned into

V = Vvec ∪ Vdim ∪ Vpad,

as described in Figure 18. Initially, for every vertex vpad ∈ Vpad we have

deg (vpad) =
(

20
√
n− 1

)

+ n.

For every vertex vvec ∈ Vvec we have

deg (vvec) = 20
√
n + |E (vvec, Vdim)| ≥ 20

√
n,

and for every vertex vdim ∈ Vdim we have

deg (vdim) ≤ 10
√
n.

Pivoting out a vertex in Vdim does not increase the fill degree of any other vertex in Vdim since
no two vertices in Vdim are adjacent. As these vertices are pivoted, we still maintain

deg+(v) ≥ 20
√
n,

for all v ∈ Vvec. Therefore, the first vertices to be pivoted must be all v ∈ Vdim. After all the
vertices in Vdim have been pivoted, the next vertex has fill degree minv∈Vvec deg+(v), because either
a vertex in Vvec will be eliminated or all remaining vertices have fill degree 20

√
n + n− 1.

Proof of Theorem 8.3. Suppose for some θ > 0 there exists an O(m4/3−θ) time algorithm for Min-
DegreeOrdering. Construct the graph G = (V,E) with covering sets as described in Figure 18.
For d = Θ(log2 n), it follows from Lemma 8.5 that |V | = O(n log2 n) and |E| = O(n3/2 log2 n).
Therefore, by the assumption, we can obtain a min-degree ordering of G in time

O
(

m4/3−θ
)

= O

(

(

n3/2 log2 n
)4/3−θ

)

= O
(

n2−θ
)

.

By Lemma 8.6, after the first |Vdim| vertices have been pivoted, the fill graph G+ is essentially
identical to the partially eliminated state of the bipartite graph in the proof of Lemma 8.2. We
can then compute the fill degree of the next vertex to be eliminated in O(m) = O(n2−θ) time by
Lemma 2.2. Checking whether the fill degree of this vertex is 20

√
n + n − 1 allows us to solve

OrthogonalVectors in O(n2−θ) time, which contradicts SETH.
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All that remains is to efficiently construct the covering set system defined in Lemma 8.4. We
can interpret this construction as a way to cover all the edges of Kn using O(n) K10

√
n subgraphs.

We note that our construction is closely related to Steiner systems obtained via finite affine planes
as well as existence results for covering problem with fixed-size subgraphs [CCLW13, CY98].

Proof of Lemma 8.4. We use a simple property of finite fields. Let p = NextPrime(
√
n), which

we can compute in O(n) since p < 4
√
n by Bertrand’s postulate. Clearly [n] ⊆ [p2], so it suffices to

find a covering for [p2]. Map the elements of [p2] to the coordinates of a p×p array in the canonical
way so that 1 7→ (0, 0), 2 7→ (0, 1), . . . , p2 7→ (p− 1, p − 1). For all (a, b) ∈ {0, 1, . . . , p − 1}2, define

D (a, b) =
{

(x, y) ∈ {0, 1, . . . , p− 1}2 : y ≡ ax + b (mod p)
}

to be the diagonal subsets of the array, and define

R (a) =
{

(x, y) ∈ {0, 1, . . . , p − 1}2 : x ≡ a (mod p)
}

to be the row subsets of the array. Let the collection of these subsets be

S = {D (a, b) : a, b ∈ {0, 1, . . . , p − 1}} ∪ {R (a) : a ∈ {0, 1, . . . , p − 1}} .

The construction clearly satisfies the first two conditions. Consider any (a, b) ∈ [p2]2 and their
coordinates in the array (x1, y1) and (x2, y2). If x1 = x2, then (x1, y1), (x2, y2) ∈ R(x1). Otherwise,
it follows that (x1, y1) and (x2, y2) are solutions to the line

y ≡ y1 − y2
x1 − x2

(x− x1) + y1 (mod p),

so the third condition is satisfied.
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A Guarantees for Selection-Based Estimators

In this section we prove Lemma 4.7, which states that the reciprocal of the ⌊k(1 − 1/e)⌋-quantile
in minimizers[u] can be used to accurately approximate of deg(u). Our proofs follow the same
outline as in [Coh97, Section 7], but we consider keys R(u) drawn uniformly from [0, 1) instead of
the exponential distribution. We restate the lemma for convenience.

Lemma 4.7. Suppose that we have k copies of the ℓ0-sketch data structure, for k = 50
⌈

log nǫ−2
⌉

.
Let u be any vertex such that deg(u) + 1 > 2ǫ−1, and let Q(u) denote the ⌊k (1− 1/e)⌋-ranked key
value in the list minimizers[u]. Then, with high probability, we have

1− ǫ

deg(u) + 1
≤ Q(u) ≤ 1 + ǫ

deg(u) + 1
.

We start by stating Hoeffding’s tail inequality for sums of independent Bernoulli random vari-
ables, and then we give a useful numerical bound that relates the approximation error and degree
of a vertex to the probability that the quantile Q(u) variable deviates from its expected value.

Lemma A.1 (Hoeffding’s inequality). Let X1,X2, . . . ,Xn be i.i.d. Bernoulli random variables such
that Pr[Xi = 1] = p and Pr[Xi = 0] = 1− p. Then for any δ > 0 we have the inequalities

Pr

[

n
∑

i=1

Xi ≤ (p− δ)n

]

≤ exp(−2δ2n),

Pr

[

n
∑

i=1

Xi ≥ (p + δ)n

]

≤ exp(−2δ2n).
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Lemma A.2. For any |ǫ| < 0.1 and d ≥ 1, we have

exp

(

−1 + ǫ− 1

d + 1

)

≤
(

1− 1− ǫ

d + 1

)d+1

≤ exp (−1 + ǫ) .

Proof. The Maclaurin series for log(1− x) is

log (1− x) = −x− 1

2
x2 − 1

3
x3 − 1

4
x4 . . . ,

for −1 ≤ x < 1. Whenever |x| ≤ 0.1, we have the inequality

∣

∣

∣

∣

1

3
x +

1

4
x2 +

1

5
x3 + . . .

∣

∣

∣

∣

≤ 0.1

3
+

0.01

4
+

0.001

5
+ · · · ≤ 1

2
.

It follows that
−x− x2 ≤ log (1− x) ≤ −x.

Applying this inequality when d + 1 ≥ 10 and x = (1− ǫ)/(d + 1) < 0.1 gives

− 1− ǫ

d + 1
− 1

(d + 1)2
≤ log

(

1− 1− ǫ

d + 1

)

≤ − 1− ǫ

d + 1
.

The result for d + 1 ≥ 10 follows by multiplying the inequalities by d + 1 and then exponentiating.
Checking the remaining cases numerically completes the proof.

For convenience, we split the proof of Lemma 4.7 into two parts—one for the upper tail inequality
and one for the lower tail inequality.

Lemma A.3. Assuming the hypothesis in Lemma 4.7, we have

Pr

[

Q(u) ≥ 1 + ǫ

deg(u) + 1

]

≤ 1

n4
.

Proof. For each sketch i ∈ [k], we have

Pr

[

R (Minimizeri(u)) ≥ 1 + ǫ

deg(u) + 1

]

=
∏

v∈N(u)∪{u}
Pr

[

Ri(v) ≥ 1 + ǫ

deg(u) + 1

]

=

(

1− 1 + ǫ

deg(u) + 1

)deg(u)+1

.

Letting Ii be the indicator variable for the event R(Minimizeri(u)) ≥ (1 + ǫ)/(deg(u) + 1), it
follows that

E[Ii] =

(

1− 1 + ǫ

deg(u) + 1

)deg(u)+1

and

Pr

[

Q(u) ≥ 1 + ǫ

deg(u) + 1

]

= Pr

[

k
∑

i=1

Ii ≥ ⌈k/e⌉
]

.
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Since E [Ii] ≤ exp(−(1 + ǫ)), we let δ = 1/e−E[Ii] > 0 and use Hoeffding’s inequality to show that

Pr

[

k
∑

i=1

Ii ≥ k/e

]

≤ exp
(

−2kδ2
)

≤ exp
(

−100 log n (δ/ǫ)2
)

,

where the last inequality uses the fact that k = 50
⌈

log nǫ−2
⌉

. For any ǫ < 1, we have

δ

ǫ
≥ 1

ǫ

(

1

e
− 1

e1+ǫ

)

≥ 1

5
.

Therefore, it follows that

Pr

[

Q(u) ≥ 1 + ǫ

deg(u) + 1

]

≤ Pr

[

k
∑

i=1

Ii ≥ k/e

]

≤ 1

n4
,

as desired.

Lemma A.4. Assuming the hypothesis in Lemma 4.7, we have

Pr

[

Q(u) ≤ 1− ǫ

deg(u) + 1

]

≤ 1

n4
.

Proof. For each sketch i ∈ [k], we have

Pr

[

R (Minimizeri(u)) ≥ 1− ǫ

deg(u) + 1

]

=
∏

v∈N(u)∪{u}
Pr

[

Ri(v) ≥ 1− ǫ

deg(u) + 1

]

=

(

1− 1− ǫ

deg(u) + 1

)deg(u)+1

.

Letting Ji be the indicator variable for the event R(Minimizeri(u)) ≥ (1 − ǫ)/(deg(u) + 1), it
follows that

E [Ji] =

(

1− 1− ǫ

deg(u) + 1

)deg(u)+1

and

Pr

[

Q(u) <
1− ǫ

deg(u) + 1

]

= Pr

[

k
∑

i=1

Ji ≤ ⌈k/e⌉
]

.

Let δ = E[Ji]− 1/e. Using Lemma A.2 and the assumption that deg(u) + 1 > 2ǫ−1, observe that

δ ≥ exp

(

−1 + ǫ− 1

deg(u) + 1

)

− 1/e > 0.
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Therefore, by Hoeffding’s inequality we have

Pr

[

k
∑

i=1

Ji ≤ k/e

]

≤ exp(−2kδ2)

≤ exp
(

−100 log n (δ/ǫ)2
)

.

For any ǫ < 1, using the lower bound for δ and the assumption that deg(u) + 1 > 2ǫ−1 gives

δ

ǫ
≥ 1

e · ǫ

(

exp

(

ǫ− 1

deg(u) + 1

)

− 1

)

≥ eǫ/2 − 1

e · ǫ ≥ 1

2e
.

Therefore, it follows that

Pr

[

Q(u) ≤ 1− ǫ

deg(u) + 1

]

≤ Pr

[

k
∑

i=1

Ji ≤ ⌈k/e⌉
]

≤ 1

n4
,

which completes the proof.
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