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Exploring Frequented Regions in Pan-Genomic
Graphs

Alan Cleary, Thiruvarangan Ramaraj, Indika Kahanda, Joann Mudge, and Brendan Mumey,

Abstract—We consider the problem of identifying regions within a pan-genome De Bruijn graph that are traversed by many sequence
paths. We define such regions and the subpaths that traverse them as frequented regions (FRs). In this work, we formalize the FR
problem and describe an efficient algorithm for finding FRs. Subsequently, we propose some applications of FRs based on
machine-learning and pan-genome graph simplification. We demonstrate the effectiveness of these applications using data sets for the
organisms Staphylococcus aureus (bacterium) and Saccharomyces cerevisiae (yeast). We corroborate the biological relevance of FRs
such as identifying introgressions in yeast that aid in alcohol tolerance, and show that FRs are useful for classification of yeast strains

by industrial use and visualizing pan-genomic space.
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1 INTRODUCTION

2 INTRODUCTION

With the unit cost of DNA sequencing continuing on a
downward trajectory, research institutions and genome se-
quencing consortia have proposed and implemented strate-
gies to sequence multiple genomes per species' [1]. This has
resulted in a large volume of genome sequences of species
that represent major phylogenetic clades [2]. As such, there
is a need for novel methods of analysis that can scale to such
unprecedented quantities of genomic data [3], [4].

A pan-genome represents the collective genomic infor-
mation of multiple individuals or organisms from a related
group or species [5]. Recently, pan-genomes have been
represented using colored De Bruijn graphs [6], [7], [8],
which can succinctly capture structural variation within a
population by giving each genome’s path through the graph
a unique color [9].

An important problem in population genomics is
the identification of synteny, that is, sequences that are
(in)exactly preserved within the population. Though there
exist a variety of whole genome pairwise and multiple
sequence alignment approaches, these are generally not
scalable. In this work we present the Frequented Regions
(FR) problem, which mines regions of a graph that are
frequently traversed by a set of paths in the graph. By
exploiting the structure of the graph we are able to develop
an efficient algorithm that effectively mines inexact syntenic
regions from pan-genomic graphs.

In Section 3 we discuss work related to the FR problem
and in Section 4 we formalize the FR problem and discuss
its computational complexity. In Section 5 we present an
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efficient algorithm for finding FRs, describe some applica-
tions in Section 6 and in Section 7 provide results on two
pan-genome test cases. Lastly, in Section 8 we discuss future
work and make closing remarks.

3 RELATED WORK

The FR problem is somewhat similar to other data mining
problems, especially Frequent Itemset Mining (FI), which
identifies sets of items that frequently occur together in
a database of transactions. Specifically, the database is a
binary matrix where the columns correspond to items and
the rows to transactions. If an item occurred in a trans-
action, then its cell has a 1, otherwise 0. An itemset is
considered frequent if each of its items occurred together
in minsup transactions, where minsup is either a fraction
of the transactions in the database or a minimum number
of transactions. Transactions in which a frequent itemset’s
items occur together are called supporting transactions, since
they support the itemset as being frequent. A seminal FI
algorithm, Apriori, was introduced in [10]. It works by
performing an exhaustive search of the itemset space and
has an exponential run-time complexity. There are variations
of FI that are tolerant to noise in the data [11], [12], [13].
These require that the supporting transactions in the trans-
action matrix meet a row error threshold constraint and/or
the items meet a column error threshold constraint. Like exact
FI algorithms, these do not consider the structure of the
underlying graph and so are likely to generate several false
positives.

Also related is Frequent Subgraph Mining, which is
concerned with finding subgraphs that frequently occur in
a database of graphs [14]. It is a well studied problem [15]
commonly applied to biological datasets [16], [17], [18]. It
could be applied to paths through a graph by treating each
path as a different graph, but little work has been done with
regards to discovering approximate solutions or scalability
[19]. Yet another related problem is Frequent Subpath Min-
ing, which is described in [20]. The author shows that the
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problem of mining exact frequent subpaths is similar to FI,
but differs in that the structure of the graph can be exploited
to achieve more efficient running time. Unfortunately, the
algorithm is incapable of mining frequent subpaths whose
supporting paths contain some error. Furthermore, the algo-
rithm is exhaustive and has exponential run-time complex-
ity. In [21] the authors formulate an approximate version
of the Frequent Subpath Mining problem and present an
efficient algorithm for mining syntenic regions from pan-
genome graphs.

There exist a variety of tools for pan-genome analysis
[22]. Unfortunately few of these are concerned with min-
ing synteny [23] or scale beyond populations of microbial
genomes, both of which are needs of the pan-genomics com-
munity [4]. One exception to the lack of synteny-based ap-
proaches is Sibelia [24], which determines syntenic regions
from pan-genomes by iteratively eliminating bubbles in a
De Bruijn graph with the sequence modification algorithm
[25]. Since all bubbles are eventually merged into a single
syntenic region, regions that are truly divergent will be
falsely identified as syntenic, requiring the user to manually
differentiate between false and true positives - a tedious
task. Furthermore, this method also does not scale beyond
populations of microbial genomes, as noted in Section 7.

4 PROBLEM FORMULATION

We assume the following input and parameters are sup-
plied: A graph G and set of paths P within G. In our appli-
cation, G corresponds to a (compressed) De Bruijn graph
(cDBG) of a pan-genome composed of multiple genomic
sequences. Nodes in G represent specific k-mers (or > k-
mers if the graph has been compressed). An edge (u,v) is
present if and only if the last £ — 1 nucleotides of « match
the first £ — 1 nucleotides of v. Each genomic sequence
corresponds to a path p in G; P is the collection of these
paths.

A frequented region (FR) is characterized by a set of nodes
C and a set of supporting subpaths from P that pass
through the nodes in C. There are two error parameters
that we consider: (1) what is the minimum fraction of the
nodes in C that each subpath must contain; we call this the
penetrance parameter o, and (2) if a subpath from P leaves C,
how soon must it return to C' (measured by the length of the
corresponding sequence insertion); we call this the maximum
insertion parameter x. With this in mind, we formalize the
definition of an FR as follows:

Given a path p € P, let p = (n1,ns,...,nr), where
n; is the ith node visited by p and L is the length of the
path. We define a subpath as pli, j] = (n;, nit1,...,n;) and
seq(pl[¢, j]) as the genomic sequence corresponding to pl, j]
in the De Bruijn graph.

Definition 4.1. We say p[i, j] is an («, k)-supporting sub-
path for a set of nodes C'if and only if
1) n;,n; € C and between any two consecutive C
nodes in p[i, j|, any gap of inserted sequence is
at most x in length (see (3) for a computational
definition).
2) pli,j] is maximal in the sense that it cannot be
extended to either the left or right, i.e. # («,k)-
supporting subpath p[i’, j'] s.t. [i, 4] S [, j']-
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Fig. 1: Example FRs: Assuming o < %, the left group of
nodes Cr, = {a,b,c} forms a FR with support 2 (from
the black and blue paths). The right group of nodes Cr =
{d,e, f,g} forms a FR with support 3 (from the back, blue
and red paths). If Cr, and Cr were merged, the merged FR
would have support 2, provided the connecting black and

blue path segments between nodes ¢ and f each have at
most K insertions.

3) Ipli,sJNC = afCl.

Note that («, £)-supporting subpaths do not overlap due
to the maximality requirement; if they did overlap they
could be merged. It is also fairly easy to identify all of the
(o, k)-supporting subpaths for a given path p and node set
C; we just need to identify all maximal runs of C nodes in
p whose corresponding sequences have insertions of length
at most k and then check if the run contains at least «|C|
distinct nodes from C'. Algorithm 7 implements this idea.

Definition 4.2. A frequented region (FR) is a tuple (C,S),
where C'is a set of De Bruijn nodes and S is a set of (o, x)-
supporting subpaths of paths from P.

We say C is the node-set and S is the supporting-subpath-
set for the FR. We define the support of the FR as

support(C, S) = |9| M
and also define the average length of the FR as

> pligles [sea(pli, j])|
5] '

Fig. 1 provides an example. The computational problem
considered is to find FRs that have high support and high
average length.

Computational complexity: Counting exact frequent item-
sets is known to be #P-complete [26]. It can be seen that the
exact frequent itemset problem can be reduced to the FR
problem by setting o = 1,k = oo. Thus, just counting the
number of FRs is also #P-complete.

average-length(FR) =

2

5 FINDING FREQUENTED REGIONS

Due to the vast scale of pan-genomic data, we opted for
a simple heuristic approach to find interesting FRs. The
basic idea of the algorithm is to find FRs in a bottom-up,
agglomerative fashion, where each De Bruijn node starts in
its own cluster and pairs of clusters are iteratively merged.
When an FR is created for a set of nodes C, the correspond-
ing set of supporting subpaths S must be found. This is
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Algorithm 1 Compute supporting path segments

Algorithm 3 Agglomerate FRs

1: function COMPUTESUPPORT(C,p)
2: LetS=10

3 Letm = [i : p[i] € C]

4: start =1

5. while start < |m| do

6 ¢ = start

7 while i < |m|, gap(p,m,?) < k do
8 1=1+1

9: end while
10: if (i — start + 1) > a|C| then
11: S = S U p[m|start], m[i]]
12: end if
13: start =17+ 1
14: end while
15: return S

16: end function

Algorithm 2 Evaluate FR merge

1: function EVALMERGE((C, S1.), (Cr, SRr))
2 Let C = Cp UCRg.

3 Let S = ().

4 forp € P do

5: S = SU COMPUTESUPPORT(C, p)

6

7

8:

end for
return S
end function

accomplished by the COMPUTESUPPORT subroutine shown
as Algorithm 1. Note, in line 7, the gap subroutine returns
the length of the inserted sequence between the consecutive
matching node m[i] and m[i + 1] along the path p; each end
of p[m[i], m[i + 1]] matches a node in C, so the insert gap
length is

gap(p7 m, Z) = maX(O, |seq(p[m[i], m[Z + 1]])|
— [seq(p[mli]])| — [seq(p[m[i + 1]])]). (3)

The idea of the algorithm is to find a pair of existing
FRs and merge them such that the newly created FR has
the greatest possible support. The procedure terminates
when no new FRs with positive support can be found.
Pseudocode of the procedure is provided in Algorithm 3.
Line 10 can be computed efficiently using a priority queue
of possible merges. When a new FR (C,S) is formed by
merging (Cp,Sr) and (Cr,Sg), other potential merges
involving either of these FRs remaining in the queue must
be updated to be potential merges with the newly formed
FR. After Algorithm 3 completes, the FRs will form a
hierarchical clustering with one or more root FRs. The final
step of the algorithm is to filter the FRs with high support.
A simple recursive procedure is used to do this, as outlined
in Algorithm 4. For each root FR (C,S) found, we call
EXPLORE((C, S, 1)). This will recursively explore the tree in
a depth-first manner and report the FR associated with a
tree node t if and only if ¢’s support is greater than any
of its ancestors (superset FRs). All such reported FRs are
considered interesting FRs (iFRs). We limit the analyses in
Section 7 to such FRs.

1: procedure MERGEFRS(G, P)
2 for n € nodes(G) do
3 Let S = 0.
4 forp € P do
5: S = SU COMPUTESUPPORT({n}, p)
6 end for
7 Create FR ({n}, S).
8 end for
9 repeat
10: Compute
(CLv SL)7 (CR7 SR) =

argmax
(CL,S1),(Cr,SR)

|EVALMERGE((C, S1.), (Cr, SR))|

11: Let C = Cp UCpg.

12: Let S = EVALMERGE((C, S1.), (CR, SR))

13: Create FR (C, S)

14: Mark (Cr,SL), (Cr, Sgr) unavailable for subsq.
mergers

15:  until EVALMERGE((CL, SL.), (CRr, Sr)) =0
16: end procedure

5.1 Reverse-complement support

Genes and other relevant sequence features can be encoded
in either the forward or reverse-complement direction on
a particular DNA sequence. We adopt a simple approach
for detecting sequences that support a particular FR in
the reverse-complement direction. For each sequence in the
data set we generate a path p in the forward direction
and a corresponding path p” in the reverse-complement
direction. This permits FRs to have supporting subpaths
from either p or p". Observe that for any FR (C, S), there is a
reverse-complement version of it (C", S”), in which the FR
nodes and supporting subpaths are reverse-complemented.
To reduce the number of iFRs reported, we only report FRs
with supporting path sets that are comprised of at least 50%
paths in the forward direction. If an FR fails to be reported,
there is a corresponding reverse-complemented FR that will
be. This approach can be easily implemented by append-
ing all reverse-complemented sequences from the original
FASTA file to the end of the FASTA file, prior to constructing
the compressed De Bruijn graph. Our FindFRs software
implements this approach and allows users to specify if
reverse-complemented paths should be considered.

5.2 Weighted Support

In Algorithm 3, FR merges are greedily performed in most-
support-first order. We note that this metric can be weighted
so that additional FR properties are emphasized during the
selection process. For example, the total support of each
potential merge can be weighted by the average penetrance
of the supporting paths. This can prevent otherwise co-
herent FRs from being involved in tenuous merges due to
lenient parameterization. Other weights could be based on
insertion length, the size of the FRs being merged, or even
classification labels associated with the sequences.
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Algorithm 4 Report interesting FRs

Algorithm 6 Paralle]l maximal weighted graph matching

1: procedure EXPLORE((C, S), m)
2 if support(C, S) > m then
3 report (C, S).
4 end if

5. if |C| > 1 then
6: Let (Cr, S1) = left-child(C, S5)

7 Let (Cr, Sr) = right-child(C, 5)

8 Let m’ = max(m, support(C, S) + 1)
9: EXPLORE((CL, S.), m’)

10: EXPLORE((Cg, Sgr),m’)

11: end if

12: end procedure

Algorithm 5 Serial maximal weighted graph matching

1: procedure SERIALMATCHING(V, E)

2 forv eV do

3 m(v) = 00

4 end for

5: for {u,v} € FE in order of descending weight do
6 if m(u) == oo and w(v) == oo then
7 m(u) = v

8 w(v) =u

9 end if

10: end for

11: end procedure

5.3 Parallelization

The main loop in Algorithm 2 is trivially parallelizable, as
computing the supporting subpaths for any path p € Pisin-
dependent of the other paths. It is also possible to parallelize
the main loop of Algorithm 3. We observe that merging
FRs can be done consistently in parallel, provided no FR is
involved in more than one merge. This is equivalent to the
requirement that edges representing the FR pairs chosen for
merging form a matching. To parallelize Algorithm 3, we first
compute the score of each merger edge, using Algorithm 2,
which can be done in parallel since each merger edge’s
score is independent of the others. We compute a maximal
weighted matching which will represent the FR mergers to
do in parallel. The matching found is maximal (no further
edges can be added), rather than maximum (best possible),
as matched edges are added greedily.

Finding maximal weighted matchings is a well-studied
problem [27] for which there exists fast parallel [28] and
distributed algorithms [29]. In this work, we consider two
maximal matching algorithms: 1) A simple serial sorting
based algorithm that greedily selects edges in greatest-
weight-first order and achieves a i-approximation of the
optimal maximum weight matching [30]; see Algorithm 5.
(We use this as a baseline to measure the speedup of our
parallel implementation.) And 2) a parallelized version of
the serial algorithm based on locally dominant edges [31];
see Algorithm 6.

Both algorithms utilize a map 7 to report what vertex,
if any, each vertex is matched to. Specifically, Algorithm 5
works by initializing each vertex’s entry in 7 to infinity
(Line 3). It then iterates the edges in greatest-weight-first

1: procedure PARALLELMATCHING(V, E)
2 while E # () do

3 for v € V do parallel

4: m(v) = v.neighbors.first
5: end for

6: for v € V do parallel

7 u=m(v)

8 if m(u) == v then

9: E=FE\{v,u}
10: RemoveNode(F, v)
11: RemoveNode(F, u)
12: else
13: 7(v) = 00
14: end if
15: end for

16: end while

17: end procedure

18: procedure REMOVENODE(E, v)

19: for u € v.neighbors do

20: u.neighbors = u.neighbors \ v
21: E=FE\{v,u}

22: end for

23: end procedure

order, adding edges to the matching only if both its ver-
tices”  values are infinity (Lines 5-10). In order to achieve
parallelism, Algorithm 6 assumes each vertex v maintains
a list of its neighbors in greatest-weight-first order, denoted
v.neighbors. The algorithm works by iterating until the edge
set IV is empty. Each iteration begins by setting each vertex’s
m value to its most weighted neighbor, v.neighbors.first, in
parallel (Lines 3-5). It then iterates the vertices in parallel,
checking if each vertex’s 7 value’s 7 value is equal to itself
- a matching. If so, it removes the corresponding edge from
the edge set and itself from its neighbors” neighbor lists,
otherwise, the vertex’s 7 value is set to infinity (Lines 6-15
and 18-23).

5.4 Time complexity

Suppose the ¢cDBG contains V' vertices and E edges and
let L be the total length of all the pan-genomic paths in P.
Algorithm 3 is the main program; it begins with creating a
new FR for each node n € G and finds its support. This
can be done in O(V + L) time. Next, we note that there
are at most V' — 1 iterations of the repeat-until loop since
each iteration creates an internal node in a binary tree with
V' leaves. Determining the next FR merger (internal node)
can be done efficiently using a priority queue. After each
FR merger, the queue needs to be updated. Observe that
E = O(V), since at the start of the algorithm each vertex
has O(1) incident edges (the in degree and out degree are
both bounded by 4 in any De Bruijn graph built on DNA
sequences), and |E| can only decrease as merges happen.
This means the queue can be updated in O(V + L + V'1gV)
time, where O(V + L) accounts for computing the support
of all new potential FR mergers with the newly-created FR.
The overall time complexity is thus, O(LV + VZ1g V).
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Algorithm 5 computes a matching in O(Flg E) time,
since it requires the edges be sorted by greatest weight.
On average, the number of FRs merged at each iteration
is half, meaning it takes O(lg V') iterations to construct the
FR hierarchy on average, and O(v) iterations in the worst
case. Accounting for the computation of support and the
decreasing number of edges at each iteration, this results in
an average run-time complexity of O(L1gV + VigV), and
a worst case complexity O(LV + VigV).

In Algorithm 6, if the edge weights are distributed ran-
domly, then the main loop is expected to terminate after
O(lg E) iterations, though the worst case is O(E). By rep-
resenting each vertex’s neighbor list with an efficient data
structure, such as a linked list, the time complexity of all the
vertex operations is dominated by the initial sorting of the
vertex neighbors. Specifically, the accumulated work per-
formed on all vertices is ), .y, O(6(v)1gd(v)) = O(Elg A),
where §(v) is the degree of vertex v and A is the maxi-
mum degree in the graph. Since all vertices are iterated
at each iteration of the algorithm, this gives an expected
time complexity of O(V lg E) and a worst case complexity
of O(VE) [31]. Thus, the overall expected time complexity
is O(L1gV +VI1g?V), and the worst case complexity is
O(LV +VZ1gV).

6 APPLICATIONS

In this section we discuss some applications for FRs includ-
ing classification methods and an approach for pan-genome
graph simplification and visualization.

6.1 Classification with FRs

Like other sequence features, such as SNPs, FRs may pro-
vide sequence characteristics that can be used to distinguish
or categorize groups of genomes. For example, in Section 7
we differentiate between yeast strain genomes based on
their industrial origin. In order to evaluate the effectiveness
of FRs for this task we model this as a multi-class classification
problem in which each strain is annotated with one of the
industrial-origin class labels, and each iFR is a feature. The
problem is then to apply a supervised learning algorithm
to the feature set, or a subset of the feature set, such that
unlabeled strains are labeled with the correct class.

Support Vector Machines (SVMs) [32] have been shown
to be an effective approach to classifying genomes based
on shared genetic features. Traditionally such distinctions
are done with Genome Wide Association Studies (GWAS)
and/or Principal Component Analysis (PCA) [33], however,
SVMs have been shown to be more effective at this task than
GWAS/PCA [34]. Therefore, in this work we use Support
Vector Machines for classifying genomes within a pan-
genome based on their FR content as described below.

Specifically, each example (i.e. genome) is represented
as an n-dimensional vector (n is the total number of FRs
used) in which each individual component of a vector
corresponds to the number of times a certain FR occurs
with that genome. We use these vectors as input to our
SVM model [35] and evaluate its accuracy in predicting the
correct industrial origin based on the FRs they are associated
with (see Section 7.2.3 for results of this study).

However, depending on the parameters used and size of
the pan-genome, a large number of iFRs may be identified
by Algorithm 4. These may span a variety of classes, ranging
from the pan to strain-specific, among others. As such, fea-
ture selection is an important task when trying to maximize
classification power. An effective feature selection strategy
is one that can identify a small number of features that can
discriminate classes based on their attributes.

A simple approach based on multinomial distributions
which we refer to as multinomial-filter is as follows: Suppose
that the sequence paths are divided into a set of groups
{Gl, R Gk} Let

cij = Z supportp(FRj), 4)
pEG;

be the total support of FR; for all sequence paths belonging
to group G;. In other words, ¢;; is a count of the number of
times FR; occursin G;. Let T; = jCijt+ 1 be the total count
of iFRs found in group G; (a pseudo-count of 1 is added to
the count for each group) and let T' = >, T; be the total
across all groups. The frequency with which a random iFR
occurs in G; is then f; = Ti/r. The probability of observing
the group counts for FR; in a random FR is multinomially
distributed with bin probabilities (f;),

n!

Pr(FR;) =~
]

C1j Ckj

ij! k (5)
where n = ). ¢;;. The lower the Pr(FR;) value, the less
likely that the observed group counts for that FR occurred
by random chance. (We note that Pr(FR;) is similar but not
identical to a p-value, as the latter includes the probability
of at least as extreme data under the null hypothesis.) The
Pr(FR;) values are used later to rank iFRs and only some
number of the top-ranked iFRs are kept as features.

6.2 Graph simplification

Visualizing a pan-genome graph is a difficult task, especially
when dealing with larger, complex genomes. It is relatively
simpler to visualize pan-genomes at the microbial level and
with a limited number of genomes, but when the number of
genomes and size increases, the result is an indecipherable
“hairball”, as depicted in the SplitMEM [6] work. To that
end, we would like to use iFRs to create visualizations
of pan-genomes that are human parsable, meaningful and
facilitate knowledge discovery.

One approach is to filter what contents of a pan-genome
are visualized by selecting a group of FRs and restrict at-
tention to how the pan-genome traverses the corresponding
FR node clusters. If we are given a list L = {C4,...C,} of
disjoint FR clusters, we can create a corresponding graph G,
with n vertices, where each vertex represents one of the FR
clusters in L. For each sequence path p in the original cDBG,
we can trace a path in G, according to the order in which
p supports the clusters in L. Fig. 4 shows an application of
the approach to visualize paths in a yeast pan-genome.

7 EXPERIMENTAL RESULTS

The algorithm was implemented in Java and is called
FindFRs. We evaluated FindFRs on two datasets, Staphylo-
coccus aureus and Saccharomyces cerevisiae. The Staphylococcus
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aureus dataset was used to compare against Sibelia [24], the
only other program currently available for mining synteny
from a pan-genome De Bruijn graph. The Saccharomyces
cerevisige dataset was used to illustrate the scalability of the
FindFRs and exhibit a variety of FR-based analyses.

We used [7] to construct the cDBGs for each dataset.
Besides the main parameters o and k, we also include
two other parameters minSup and minSize, which serve to
limit the amount of output generated; only iFRs whose
support and size (number of cDBG nodes) are at least these
minimums are reported.

In general, FindFRs parameters should be chosen rel-
ative to the desired level of conservation and prevalence
of the synteny blocks to be mined. Furthermore, the user
should be mindful of the interplay between these parame-
ters and the quality of the results. For example, if o = 1
and x = 0, then only sequences that traverse the exact same
sequence of cDBG nodes will be identified. Conversely,
if o is small and & is large, then the relationship among
the sequences identified will be tenuous, at best. Although
the legitimacy of the evolutionary relationships among the
sequences identified should be determined by a domain
expert, understanding that more lenient parameters increase
the likelihood of false positives is important.

Experiments were run on a server with 4 Intel Xeon
2.2GHz 32 core processors and 1 TB of RAM, however most
data sets could also run on standard desktop PCs, with
longer running times.

71

In this section, we compare FindFRs to Sibelia [24].
We selected Sibelia because it is the only other
tool for finding synteny blocks in pan-genomic data,
specifically from a De Bruijn graph. We use the
same four Staphylococcus aureus strains (JH1, N315,
TW20 and MSSA476) that were used in the Sibelia
paper for comparison. Both programs were run with
k € {25,100,500,1000} values. Two versions of the
FindFRs were used, one that performs merges based on
FR support and one that performs merges based on support
weighted by the average penetrance of the supporting paths,
as described in Section 5.2. Sibelia was run with its
default parameters. The FindFRs parameters were selected
to be minsup = 2, because we were interested in identifying
syntenic blocks present in two or more strains — the same as
Sibelia; a = 0.5, because it is ambiguous what sequence
identity the Sibelia blocks would have, so 50% seemed
neither too stringent or lenient; K = 0, because Sibelia
does not explicitly allow for insertions; and minsize = 2,
because we did not want to identify trivial blocks (single de
Bruijn nodes). The results are shown in Table 1, *iFRs and
*iIFR roots denote the results of FindFRs using weighted
support.

As we can see, FindFRs reports a higher number of
frequented regions with and without weighted support
compared to Sibelias synteny blocks, indicating the finer
scale of partitioning regions based on biological signifi-
cance. For the non-weighted test case, we estimated percent
overlap between regions reported by these two algorithms:
For all k-mer values, approximately 98% of FindFRs FRs

Staphylococcus aureus

TABLE 1: Sibelia versus FindFRs comparison

S. aureus (4 Strains) | k=25 | k=100 | k=500 | k= 1000
Synteny blocks 142 143 132 132
iFRs 10, 740 1,334 2,011 1,351
*1FRs 172 461 1,064 383
iFR roots 392 122 97 134
*1FR roots 50 22 180 101

FindFRs: a = 0.5,x = 0, minSup = 2, minSize = 2
Sibelia: All set to default, except for k values

overlapped with Sibelias synteny blocks. Furthermore,
we also computed overlap in terms of sequence percentage
(i.e. what percentage of the Sibelia block sequences are
contained in FindFRs FRs, and vice versa). For k£ = 25,
alignments showed 91% of Sibelia Synteny block se-
quence base-pairs were contained within FindFRs fre-
quented regions and only 82% of FindFRs frequented re-
gions sequence base-pairs were contained within Sibelia
Synteny blocks, indicating FindFRs FRs captured most of
Sibelia Synteny blocks at the nucleotide base-pair level.

Lastly, to compare the run times of both programs, we
tested a slightly larger dataset consisting of 31 Staphylococcus
aureus (~ 90 Mb) strains. For & = 25, Sibelia took
186 minutes, whereas FindFRs took only 106 seconds (no
threading).

7.2 Saccharomyces cerevisiae

Yeast (Saccharomyces cerevisiae) is a well studied model sys-
tem with some published comparative genomic and pan-
genomic work [36], [37], allowing us to use the existing
knowledge base to assess the quality of the FRs found by our
algorithm. Furthermore, yeast is highly diverse, econom-
ically important, and its multiple industrial applications
enable interesting functional genomics. These attributes,
compounded with a genome size of approximately 12 Mb,
make yeast an interesting and tractable dataset for algorithm
testing.

Our yeast pan-genome was built with assemblies
from the Saccharomyces Genome Database (http://www.
yeastgenome.org/). The dataset consisted of 55 assemblies
from 48 yeast strains over a wide range of industrial applica-
tions and geographic origins; see Table 2 and Table S1 in the
supplementary materials. We constructed Yeast pan-genome
cDBGs for k € {25,100,500,1000}. Again, we chose these
values because it is still not well understood what £ values
are appropriate for pan-genome analysis. Here, no weighted
support was used, and we varied the a and « parameters, as
indicated in the various experiments. As a sample run, we
ran FindFRs with parameter values o = 0.7, x € {0,3000},
minsup = 5, and minsize = 5. Table 3 indicates the size of
the cDBGs created and the number of iFRs found (x = 0
only). Figure 2 shows support versus average length for a
sample run. We note that Sibelia was not able to process
this data set (=~ 600 Mb), so we do not report a comparison.

7.2.1 Parallelization Speedup

FindFRs implements both the serial and parallel maxi-
mal matching algorithms, Algorithm 5 and Algorithm 6,
respectively. Since the number of paths in our datasets are
relatively small, the computation of the maximal match-
ings dominates the run-time complexity. As such, here we
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TABLE 2: The 48 yeast strains with usage and region listed
where known.

Strain Source Region
AWRI1631 Wine South Africa
AWRI796 Wine South Africa
BC187 Wine California
BY4741 Laboratory
BY4742 Laboratory
CBS7960 Bioethanol Brazil
CEN.PK Laboratory
CLIB215 Bakery New Zealand
CLIB324 Bakery Vietnam
CLIB382 Ale Ireland
D273-10B Laboratory
DBVPG6044 Wine West African
EC1118 Wine
EC9-8 Nature Israel
FL100 Laboratory
Foster’s B Ale
Foster’s O Ale
FY1679 Laboratory
JAY291 Bioethanol Brazil
JK9-3d Laboratory
K11 Sake Japan
Kyokai7 Sake Japan
L1528 Wine Chile
LalvinQA23 Wine Portugal
M22 Fruit/Nectar Ttaly
PW5 Wine Nigeria
Red Star Bakery
RMl1-1a Fruit/Nectar California
SEY6210 Laboratory
SK1 Laboratory
T7 Nature Missouri
173 Wine Spain
ucs Sake Japan
UWOPS05_217_3 | Fruit/Nectar Malaysia
VIN13 Wine South Africa
VL3 Wine France
W303 Laboratory
X2180-1A Laboratory
Y10 Fruit/Nectar Coconut
Y55 Laboratory
YIM269 Wine Austria
YJM339 Pathogen
YIM789 Pathogen
YPH499 Laboratory
YPS128 Nature Pennsylvania
YPS163 Nature Pennsylvania
YS9 Bakery Singapore
ZTW1 Bioethanol China

TABLE 3: Number of cDBG nodes and iFRs
(o = .0.7,x = 0, minSup = 5, minSize = 5)

k cDBG nodes iFRs
25 2,260,767 | 479,349
100 1,758,760 366, 502
500 890, 055 107,739

1000 443,764 31,500

compare the run-time of the serial and parallel versions of
FindFRs in terms of the matching computed during the
first iteration of the main loop in Algorithm 3, which is
the largest graph for which a matching is computed during
the run-time of FindFRs. These experiments were run with
parameter values @ = 0.7, Kk = 1, minSize = 1, and
minSupport = 2. Since we are only measuring the run-times
of the first graph matching computed for each dataset the
size of the graphs and therefore the run-times are invariant
with respect to the parameter values. The results are shown
in Figure 3.

As we can see, when run with a single thread, Al-
gorithm 6 has approximately the same run-time as Algo-
rithm 5, incurring approximately 0.5 seconds of threading
overhead on the smaller graphs (¢ = 1000 and k = 500).

25 | commmmes

Support

15 — e .o

1000 10000 100000
Average length (bp)

Fig. 2: Distribution of iFR support versus average length.
Allowing insertions (x = 3000) (orange points) creates some
longer FRs vs. no insertions (x = 0) (blue points).

(k =1000, @ = 0.7, minSup = 5, minSize = 5)

-o-k25
--k100
k500

-0-k1000

Running time (seconds)
N
o
+

10 +

¢
oL
serial 1thread

— .

2 threads 4threads 6 threads 8threads  10threads

Fig. 3: Running times of the serial and parallel maximal
matching algorithms - Algorithm 5 and Algorithm 6, respec-
tively - on the Saccharomyces cerevisiae cDBGs (Table 3).

This indicates that it is indeed running in the expected
amount of time, rather than the worst case. We also see
that the total speed-up and the point at which the number
of threads yields diminishing returns is proportional to the
size of the graph. This suggests that our method can scale
to much larger pan-genomic graphs than considered here.

7.2.2 Consistency with Yeast Biology

Because yeast is one of the simplest eukaryotes, it has been
an important model system for genomic research [36], [37].
Yeast is also economically important. It is used industrially
in bread, biofuels, and alcoholic beverages, including wine,
sake, and ale. Further, yeast is important in other contexts,
being found in natural environmental systems, including as
pathogens of humans.

The ability to thrive in harsh environments, which is
required for industrial specialization in yeast, is often ob-



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. X, NO. Y, MARCH 2018 8

tained by incorporating sets of genes from other organisms
into their own genomes [36], [37]. To determine whether
we could identify some of these foreign genes, we looked
at novel genomic regions (insertions) that have been vali-
dated in the EC1118 yeast strain. These insertions contain
genes that allow EC1118, which is used in wine-making,
to grow in the presence of alcohol. EC1118 has three novel
insertions compared to S288C [38]. While S228C is not in
our dataset, we compared to laboratory strains that were
descended from S288C (BY4741, BY4742, FY1679, X2180-1A,
and YPH499). All three insertions were uncovered using our
FR approach (Fig 4). In order to find FRs that would be large
enough for paths to contain multiple genes but to allow for
divergence between samples, we used a relatively large k
value of 500 but a relatively lenient o value of 0.7.

The shortest insertion is a 17kb (kilobasepair or 1,000
base pair) novel insertion on chromosome XIV [38]. Five
novel genes are inserted near the end of the chromosome be-
tween 5288C genes YNL037C and YNLO38W. This novel re-
gion was found on EC1118 sequence accession FN393084.1,
which contained the insertion with more typical yeast DNA
on either side (Fig. 4A). Multiple alcohol-related strains have
versions of this insertion as indicated by the thicker green
edges as well as green edges that follow alternate paths
through the region. None of the laboratory strains, including
the five S288C-derived strains, show support of any of the
inserted FRs. Most of the nodes in the insertion occur only in
alcohol-related strains (green) (Fig 4a), confirming that this
region could be important in determining alcohol tolerance.

The 38kb insertion of foreign DNA in EC1118 near one
end of chromosome VI [38] (k = 500, o = 0.7, minSup = 4,
minSize = 4) Fig 4B. This is a more complicated insertion
that includes some deletions and rearrangements of chro-
mosomal regions. Briefly, the tip of chromosome VI was
deleted and replaced by a segment of DNA that moved over
from chromosome VIII. The novel 38kb insertion was then
stuck onto the very end of the chromosome.

Many of the EC1118 FRs that were moved to chromo-
some VI from chromosome VIII (12kb) are shared by the
5288C-derived accessions (light blue). This is not surprising
because the S288C-derived accessions have this region on
chromosome VIII. None of the FRs in the 23kb segment
lost in EC1118 show support in EC1118, as expected given
that it has been deleted in EC1118. However, none of the
FRs in the 5kb region that was moved to chromosome X in
EC1118 are contained in EC1118, either, even though this
region occurs on chromosome X. Presumably, it has evolved
away from the S288C version to make it different enough
that our parameters did not link the two regions into the
same set of nodes. The EC1118 FRs stop approximately 38kb
from the end of chromosome VI. No FRs were found in the
38kb novel region, presumably because there wasn’t enough
support among yeast strains to generate FRs. This raises
the issue that sometimes it is interesting to look for regions
where FRs are absent as they are potentially novel.

The final novel insertion is a 65kb region that replaced
the last 9.7kb of chromosome XV [38]. For simplicity, only
EC1118 (green) and BY4741 (light blue) compared to all
others (gray) are shown in Fig 4C and their chromosome
XV paths have been highlighted (k = 500, o = 0.7). The last
gene shared by EC1118 and BY4741, YOR393W, has some
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Fig. 4: The three novel insertion regions [38] showing paths
through FRs from EC1118 (green) compared to S288C (rep-
resented by the 5288C-derived strain BY4741, light blue). (A)
17kb insertion on chromosome XIV showing support from
alcohol (green, including wine, sake, ale and bioethanol
strains), laboratory (light blue), bakery (brown), and other
(gray) strains. (B) A complex insertion event on chromo-
some VI shows that the tip of the chromosome was deleted
and replaced by a DNA segment from chromosome VIII and
the novel insertion. Strains included were EC1118 (green),
5288C-derived (light blue, strains BY4741, BY4742, FY1679,
X2180-1A, and YPH499), and other (gray). (C) A 65kb novel
insertion replaced the end of chromosome XV in EC1118.
Shown are EC1118 (green) and BY4741 (light-blue).

shared FRs and some FRs that have diverged. Thereafter,
the paths diverge. The EC1118 65kb novel insertion, shared
with other yeast strains, is highly conserved as there are
not alternate paths through the region. The 9.7kb region
in BY4741, which was deleted in EC1118 actually has FRs
that are shared with EC1118 because these regions occur
frequently near the ends of chromosomes.

Our pan-genomics approach allowed us to quickly go
beyond confirming EC1118’s inserted regions to exploring
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Fig. 5: The 17kb insertion that brought alcohol tolerance
genes to EC1118 is shown. Yeast strains are highlighted
that share four or more of the FRs (Lalvin QA23=pink,
BC187=orange, L1528=purple, JAY291=red, and T73=blue).
All of these strains are involved in alcohol production. The
five S288C-derived yeast strains are represented in dark
gray while all other strains are light gray. The number of

copies of each path is represented by arrow weight. The
novel inserted region is shaded.

these regions across multiple yeast genomes. As an example,
we mined our graph for FRs from the 17kb EC1118 insertion
in other yeast strains used in generating alcoholic beverages
and biofuels (k = 500, o = 0.7, k = 0, minSup = 2,
minSize = 500, reverse complement included). These pa-
rameters allowed us to collapse the insertion into fewer
FRs but identification of the insertion was robust to the
parameter change. Of 20 additional alcohol-related yeast
strains, 9 shared FRs found in EC1118 in the 17kb insertion
region. Five of these strains shared four or more FRs from
the EC1118 17kb insertion and are highlighted, along with
EC1118, in Fig 5.

Several interesting, biological observations are evident
from the structure of the graph. None of the five S5288C-
derived laboratory lines (dark gray) have the inserted re-
gion on chromosome XIV nor in any other region of the
genome. While the highlighted strains share many of the

17kb insertion FRs with EC1118, none share the same path.
The most closely related path is Lalvin QA23 (pink), which
not only shares all but one of the inserted FRs with EC1118
but also has these FRs integrated into the same region of
the genome. This is evident by the connections between
chromosome XIV nodes flanking the insertion (nodes 1 and
8) and the nodes on either end of the insertion (nodes 2
and 7, respectively). The fact that Lalvin QA23 has all of
the novel nodes inserted into the same genomic region as
EC1118 except one, suggests that they shared the same
insertion event. While node 5 may have been lost from
LalvinQAZ23, the fact that node 5 is so rare (present only in
EC1118 (green) and JAY291 (red; bioethanol strain) but none
of the other 46 yeast strains) suggests that it could represent
another novel insertion.

While LalvinQAZ23 is the only strain with evidence sug-
gesting that it shares an insertion site with EC1118, assembly
fragmentation in some lines may prevent us from identi-
fying their insertion site or confirming that their chr XIV
does not have an insertion. Several lines, however, do show
good evidence that the insertion occurred elsewhere. BC187
(wine; orange), L1528 (wine; purple) and JAY291 (biofuels;
red) all have FR paths from node 1 to 8 to 9, just like the
5288C-derived lines, indicating that this portion of chro-
mosome XIV is intact and does not contain any insertions.
Nevertheless, these strains clearly contain many of the novel
FRs required for survival in high alcohol environments.

Indeed, some of these strains show multiple copies of
these FRs, which may be important in increasing alcohol
tolerance. BC187 has three genomic copies of the node 6
— node 7 — node 2 path that map to three different
genomic regions. Intriguingly, Lalvin QA23, whose insertion
so closely mirrors that of EC1118, appears to have two other
genomic regions that contain subsets of the FR path on
chromosome XIV. Finally, with the exception of the Lalvin
QAZ23 (pink), there is rearrangement in the inserted regions
compared to EC1118. Intriguingly, the four other strains
(BC187, L1528, JAY291, and T73) all have node 7 leading
into node 2. These two nodes make up opposite ends of the
insertion in EC1118.

Our pan-genomics algorithm allowed us to quickly assay
complex insertion events that are important for alcohol
tolerance across multiple yeast strains. We were able to
quickly identify yeast strains with similar regions inserted
and hypothesize about which were independent insertion
events. In addition to insertions, we identified complex re-
arrangements of the DNA that would be difficult to identify
using standard DNA analysis techniques that work best
when genes are in the same genomic location across yeast
strains.

7.2.3 Using FRs for classification

In this Section, we explore the efficacy of classifying strains
based on their mined FR content. As mentioned in Sec-
tion 6.1, we use SVMs as our supervised learning model.
Specifically, we applied two different one-against-rest multi-
class SVM classifiers, one with linear kernels and one with
degree 2 polynomial kernels, both with margin parameter
C = 10. We chose one-against-rest due to its computational
efficiency and interpretability. We normalized the data using
L1 normalization and then used stratified cross-validation
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Fig. 6: Box plot of the AUROC curve results for both
SVM configurations (linear vs degree 2 polynomial ker-
nels) on unfiltered and filtered (top 1000, 500, and 250)
Saccharomyces cerevisiae iFRs computed with FindFrs (o €
{0.7,0.75,0.8,0.85,0.9}, K = 0, minSup € {5,10,15,20},
and minSize € {5,10, 25, 50, 100}).
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Fig. 7: Box plot of the AUROC curve results for the poly-
nomial kernel SVM configuration on unfiltered and filtered
(top 1000, 500, and 250) Saccharomyces cerevisiae iFRs com-
puted with FindFrs (o € {0.7,0.75,0.8,0.85,0.9}, k = 0,
minSup € {5, 10}, and minSize = 100).

to evaluate the effectiveness of the model. In this work,
we used these SVM configurations to predict the industrial
origin for a given yeast strain.

We implemented the SVM models using the scikit-learn
Python machine learning library?. We then used the models
to classify the strains in the yeast dataset by their industrial
application, or rather source from Table 2. The dataset is com-

2. http:/ /scikit-learn.org/

posed of 55 strains/examples annotated with nine distinct
class labels, one label per example. Given the distribution of
the source labels in the data set, we used two-fold stratified
cross-validation. For « € {0.7,0.75,0.8,0.85,0.9}, x = 0,
minSup € {5, 10, 15, 20}, and minSize € {5, 10, 25, 50, 100},
we computed the average Area Under Receiver Operating
Characteristic (AUROC) curve [39] for 10 iterations of strati-
fied cross-validated classifier training. We used such a broad
set of parameters because it was unclear what parameters
would yield FRs that are amenable to being used as classifi-
cation features, if any. Additionally, we performed the same
experiments while selecting the top 1000, 500, and 250 FRs
(features) in the training examples using our multinomial-
filter. The box plot of the SVMs” AUROC results is shown in
Figure 6.

As we can see, both the linear and polynomial kernel
classifiers generally perform better than random chance,
though the polynomial kernel is consistently better than the
linear. We also observe that the multinomial-filter appears
to slightly decrease the classification power of the SVMs.
An observation not apparent in Figure 6 is that the support
and size of the FRs seems to directly affect the classifi-
cation power of the polynomial kernel. Specifically, FRs
with low support and large size tend to have much higher
classification power across k values. For example, Figure 7
shows a box plot of the AUROC results for the polynomial
kernel SVM on the k = 1000 data for only the low support
(minsup € {5,10}) and large size (minsize = 100) datasets.
As we can see, the outliers from Figure 6 are in fact these
low support, large size datasets. We also observe that, in
this case, the multinomial-filter appears to improve the
classification power of the polynomial kernel SVM. This
suggests that when mining FRs for classification purposes
it is advised that FindFRs should be appropriately param-
eterized according to the kernel being used; iFRs with low
support and large size in conjunction with the multinomial-
filter appears to work well for the polynomial kernel.

7.2.4 Visualizing pan-genomic space

We also applied multidimensional-scaling [40], using the
isoMDS method in R, to provide a visual representation of
the industrial uses for yeast. The ranking method described
in Section 6.1 was first used to determine the top 500 iFRs by
p-value (eqn. 5) for discriminating the nine industrial uses
from Table 2. Distances between usages were found using
the Canberra method, an appropriate metric for count-based
data, provided by R’s dist function. As can be seen in
Fig. 8, the plot provides a visual interpretation of yeast
usages based entirely on the aggregate genomic content of
each group.

8 CONCLUSIONS

Frequented regions provide new approaches to analyze pan-
genomic space. While we have described a few examples
showing biological relevance above, there are many other
biological problems to which our pan-genomic method can
be applied [4].

FRs permit analyzing multiple related assemblies si-
multaneously without reference bias to find patterns both
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Fig. 8: Yeast industrial usage multidimensional-scaling
(MDS) plot based on the top 500 discriminative iFRs found.
MDS aims to place each object in a 2D box, such that the
between-object distances are preserved as well as possible.
The Canberra distance in R was used to compute distances
from iFR frequency data for strains associated with each
industrial usage and the MDS plot was generated using the
isoMDS function. (k = 500, « = 0.7, k = 0)

of divergence (novelty) and conservation. Identification of
divergent regions (regions that do not fall into FRs even
with lenient parameters) allows the detection of novel genes
that are not present in the reference sequence and/or in
other assemblies from a species. These genes could represent
genes obtained through horizontal transfer, hybridization,
or strong positive selection, and may have important adap-
tive functions. On the other hand, identification of regions
that are conserved enables the determination of core gene
sets that are required for the species. Determining unan-
notated regions that are conserved across the species is also
important. Such conservation could imply that purifying se-
lection has been active to keep important regions conserved.
Such regions could also lead to the identification of new
genes or important regulatory elements.

Path-based approaches could also be applied at the
amino acid level and potentially at the domain, gene, gene
family, operon, or molecule (ie. chromosome or plasmid)
level. Our FR approach would be best integrated into a
visual tool to help researchers understand and explore pan-
genomic data, e.g. graph visualizations allowing users to
expand iFR nodes into the underlying structure or perform
analyses on their genetic content, such as multiple sequence
alignment. Furthermore, existing annotation data could be
superimposed on the graph to guide the user’s inquiry.

Software: github.com/abi-pangenomics/FindFRs
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