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Exploring Frequented Regions in Pan-Genomic
Graphs

Alan Cleary, Thiruvarangan Ramaraj, Indika Kahanda, Joann Mudge, and Brendan Mumey,

Abstract—We consider the problem of identifying regions within a pan-genome De Bruijn graph that are traversed by many sequence

paths. We define such regions and the subpaths that traverse them as frequented regions (FRs). In this work, we formalize the FR

problem and describe an efficient algorithm for finding FRs. Subsequently, we propose some applications of FRs based on

machine-learning and pan-genome graph simplification. We demonstrate the effectiveness of these applications using data sets for the

organisms Staphylococcus aureus (bacterium) and Saccharomyces cerevisiae (yeast). We corroborate the biological relevance of FRs

such as identifying introgressions in yeast that aid in alcohol tolerance, and show that FRs are useful for classification of yeast strains

by industrial use and visualizing pan-genomic space.

Index Terms—Pan-genomics, classification, visualization
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1 INTRODUCTION

2 INTRODUCTION

With the unit cost of DNA sequencing continuing on a
downward trajectory, research institutions and genome se-
quencing consortia have proposed and implemented strate-
gies to sequence multiple genomes per species1 [1]. This has
resulted in a large volume of genome sequences of species
that represent major phylogenetic clades [2]. As such, there
is a need for novel methods of analysis that can scale to such
unprecedented quantities of genomic data [3], [4].

A pan-genome represents the collective genomic infor-
mation of multiple individuals or organisms from a related
group or species [5]. Recently, pan-genomes have been
represented using colored De Bruijn graphs [6], [7], [8],
which can succinctly capture structural variation within a
population by giving each genome’s path through the graph
a unique color [9].

An important problem in population genomics is
the identification of synteny, that is, sequences that are
(in)exactly preserved within the population. Though there
exist a variety of whole genome pairwise and multiple
sequence alignment approaches, these are generally not
scalable. In this work we present the Frequented Regions
(FR) problem, which mines regions of a graph that are
frequently traversed by a set of paths in the graph. By
exploiting the structure of the graph we are able to develop
an efficient algorithm that effectively mines inexact syntenic
regions from pan-genomic graphs.

In Section 3 we discuss work related to the FR problem
and in Section 4 we formalize the FR problem and discuss
its computational complexity. In Section 5 we present an
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efficient algorithm for finding FRs, describe some applica-
tions in Section 6 and in Section 7 provide results on two
pan-genome test cases. Lastly, in Section 8 we discuss future
work and make closing remarks.

3 RELATED WORK

The FR problem is somewhat similar to other data mining
problems, especially Frequent Itemset Mining (FI), which
identifies sets of items that frequently occur together in
a database of transactions. Specifically, the database is a
binary matrix where the columns correspond to items and
the rows to transactions. If an item occurred in a trans-
action, then its cell has a 1, otherwise 0. An itemset is
considered frequent if each of its items occurred together
in minsup transactions, where minsup is either a fraction
of the transactions in the database or a minimum number
of transactions. Transactions in which a frequent itemset’s
items occur together are called supporting transactions, since
they support the itemset as being frequent. A seminal FI
algorithm, Apriori, was introduced in [10]. It works by
performing an exhaustive search of the itemset space and
has an exponential run-time complexity. There are variations
of FI that are tolerant to noise in the data [11], [12], [13].
These require that the supporting transactions in the trans-
action matrix meet a row error threshold constraint and/or
the items meet a column error threshold constraint. Like exact
FI algorithms, these do not consider the structure of the
underlying graph and so are likely to generate several false
positives.

Also related is Frequent Subgraph Mining, which is
concerned with finding subgraphs that frequently occur in
a database of graphs [14]. It is a well studied problem [15]
commonly applied to biological datasets [16], [17], [18]. It
could be applied to paths through a graph by treating each
path as a different graph, but little work has been done with
regards to discovering approximate solutions or scalability
[19]. Yet another related problem is Frequent Subpath Min-
ing, which is described in [20]. The author shows that the
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Algorithm 1 Compute supporting path segments

1: function COMPUTESUPPORT(C ,p)
2: Let S = ∅
3: Let m = [i : p[i] ∈ C]
4: start = 1
5: while start ≤ |m| do
6: i = start
7: while i < |m|, gap(p,m, i) ≤ κ do
8: i = i+ 1
9: end while

10: if (i− start + 1) ≥ α|C| then
11: S = S ∪ p[m[start],m[i]]
12: end if
13: start = i+ 1
14: end while
15: return S
16: end function

Algorithm 2 Evaluate FR merge

1: function EVALMERGE((CL, SL), (CR, SR))
2: Let C = CL ∪ CR.
3: Let S = ∅.
4: for p ∈ P do
5: S = S∪ COMPUTESUPPORT(C, p)
6: end for
7: return S
8: end function

accomplished by the COMPUTESUPPORT subroutine shown
as Algorithm 1. Note, in line 7, the gap subroutine returns
the length of the inserted sequence between the consecutive
matching node m[i] and m[i+1] along the path p; each end
of p[m[i],m[i + 1]] matches a node in C , so the insert gap
length is

gap(p,m, i) = max(0, |seq(p[m[i],m[i+ 1]])|

− |seq(p[m[i]])| − |seq(p[m[i+ 1]])|). (3)

The idea of the algorithm is to find a pair of existing
FRs and merge them such that the newly created FR has
the greatest possible support. The procedure terminates
when no new FRs with positive support can be found.
Pseudocode of the procedure is provided in Algorithm 3.
Line 10 can be computed efficiently using a priority queue
of possible merges. When a new FR (C, S) is formed by
merging (CL, SL) and (CR, SR), other potential merges
involving either of these FRs remaining in the queue must
be updated to be potential merges with the newly formed
FR. After Algorithm 3 completes, the FRs will form a
hierarchical clustering with one or more root FRs. The final
step of the algorithm is to filter the FRs with high support.
A simple recursive procedure is used to do this, as outlined
in Algorithm 4. For each root FR (C, S) found, we call
EXPLORE((C, S, 1)). This will recursively explore the tree in
a depth-first manner and report the FR associated with a
tree node t if and only if t’s support is greater than any
of its ancestors (superset FRs). All such reported FRs are
considered interesting FRs (iFRs). We limit the analyses in
Section 7 to such FRs.

Algorithm 3 Agglomerate FRs

1: procedure MERGEFRS(G,P )
2: for n ∈ nodes(G) do
3: Let S = ∅.
4: for p ∈ P do
5: S = S∪ COMPUTESUPPORT({n}, p)
6: end for
7: Create FR ({n}, S).
8: end for
9: repeat

10: Compute

(CL, SL), (CR, SR) = argmax
(CL,SL),(CR,SR)

|EVALMERGE((CL, SL), (CR, SR))|

11: Let C = CL ∪ CR.
12: Let S = EVALMERGE((CL, SL), (CR, SR))
13: Create FR (C, S)
14: Mark (CL, SL), (CR, SR) unavailable for subsq.

mergers
15: until EVALMERGE((CL, SL), (CR, SR)) = ∅
16: end procedure

5.1 Reverse-complement support

Genes and other relevant sequence features can be encoded
in either the forward or reverse-complement direction on
a particular DNA sequence. We adopt a simple approach
for detecting sequences that support a particular FR in
the reverse-complement direction. For each sequence in the
data set we generate a path p in the forward direction
and a corresponding path p̄r in the reverse-complement
direction. This permits FRs to have supporting subpaths
from either p or p̄r . Observe that for any FR (C, S), there is a
reverse-complement version of it (C̄r, S̄r), in which the FR
nodes and supporting subpaths are reverse-complemented.
To reduce the number of iFRs reported, we only report FRs
with supporting path sets that are comprised of at least 50%
paths in the forward direction. If an FR fails to be reported,
there is a corresponding reverse-complemented FR that will
be. This approach can be easily implemented by append-
ing all reverse-complemented sequences from the original
FASTA file to the end of the FASTA file, prior to constructing
the compressed De Bruijn graph. Our FindFRs software
implements this approach and allows users to specify if
reverse-complemented paths should be considered.

5.2 Weighted Support

In Algorithm 3, FR merges are greedily performed in most-
support-first order. We note that this metric can be weighted
so that additional FR properties are emphasized during the
selection process. For example, the total support of each
potential merge can be weighted by the average penetrance
of the supporting paths. This can prevent otherwise co-
herent FRs from being involved in tenuous merges due to
lenient parameterization. Other weights could be based on
insertion length, the size of the FRs being merged, or even
classification labels associated with the sequences.
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Algorithm 4 Report interesting FRs

1: procedure EXPLORE((C, S),m)
2: if support(C, S) ≥ m then
3: report (C, S).
4: end if
5: if |C| ≥ 1 then
6: Let (CL, SL) = left-child(C, S)
7: Let (CR, SR) = right-child(C, S)
8: Let m′ = max(m, support(C, S) + 1)
9: EXPLORE((CL, SL),m

′)
10: EXPLORE((CR, SR),m

′)
11: end if
12: end procedure

Algorithm 5 Serial maximal weighted graph matching

1: procedure SERIALMATCHING(V,E)
2: for v ∈ V do
3: π(v) = ∞
4: end for
5: for {u, v} ∈ E in order of descending weight do
6: if π(u) == ∞ and π(v) == ∞ then
7: π(u) = v
8: π(v) = u
9: end if

10: end for
11: end procedure

5.3 Parallelization

The main loop in Algorithm 2 is trivially parallelizable, as
computing the supporting subpaths for any path p ∈ P is in-
dependent of the other paths. It is also possible to parallelize
the main loop of Algorithm 3. We observe that merging
FRs can be done consistently in parallel, provided no FR is
involved in more than one merge. This is equivalent to the
requirement that edges representing the FR pairs chosen for
merging form a matching. To parallelize Algorithm 3, we first
compute the score of each merger edge, using Algorithm 2,
which can be done in parallel since each merger edge’s
score is independent of the others. We compute a maximal
weighted matching which will represent the FR mergers to
do in parallel. The matching found is maximal (no further
edges can be added), rather than maximum (best possible),
as matched edges are added greedily.

Finding maximal weighted matchings is a well-studied
problem [27] for which there exists fast parallel [28] and
distributed algorithms [29]. In this work, we consider two
maximal matching algorithms: 1) A simple serial sorting
based algorithm that greedily selects edges in greatest-
weight-first order and achieves a 1

2 -approximation of the
optimal maximum weight matching [30]; see Algorithm 5.
(We use this as a baseline to measure the speedup of our
parallel implementation.) And 2) a parallelized version of
the serial algorithm based on locally dominant edges [31];
see Algorithm 6.

Both algorithms utilize a map π to report what vertex,
if any, each vertex is matched to. Specifically, Algorithm 5
works by initializing each vertex’s entry in π to infinity
(Line 3). It then iterates the edges in greatest-weight-first

Algorithm 6 Parallel maximal weighted graph matching

1: procedure PARALLELMATCHING(V,E)
2: while E 6= ∅ do
3: for v ∈ V do parallel
4: π(v) = v.neighbors.first
5: end for
6: for v ∈ V do parallel
7: u = π(v)
8: if π(u) == v then
9: E = E \ {v, u}

10: RemoveNode(E, v)
11: RemoveNode(E, u)
12: else
13: π(v) = ∞
14: end if
15: end for
16: end while
17: end procedure
18: procedure REMOVENODE(E, v)
19: for u ∈ v.neighbors do
20: u.neighbors = u.neighbors \ v
21: E = E \ {v, u}
22: end for
23: end procedure

order, adding edges to the matching only if both its ver-
tices’ π values are infinity (Lines 5-10). In order to achieve
parallelism, Algorithm 6 assumes each vertex v maintains
a list of its neighbors in greatest-weight-first order, denoted
v.neighbors. The algorithm works by iterating until the edge
set E is empty. Each iteration begins by setting each vertex’s
π value to its most weighted neighbor, v.neighbors.first, in
parallel (Lines 3-5). It then iterates the vertices in parallel,
checking if each vertex’s π value’s π value is equal to itself
- a matching. If so, it removes the corresponding edge from
the edge set and itself from its neighbors’ neighbor lists,
otherwise, the vertex’s π value is set to infinity (Lines 6-15
and 18-23).

5.4 Time complexity

Suppose the cDBG contains V vertices and E edges and
let L be the total length of all the pan-genomic paths in P .
Algorithm 3 is the main program; it begins with creating a
new FR for each node n ∈ G and finds its support. This
can be done in O(V + L) time. Next, we note that there
are at most V − 1 iterations of the repeat-until loop since
each iteration creates an internal node in a binary tree with
V leaves. Determining the next FR merger (internal node)
can be done efficiently using a priority queue. After each
FR merger, the queue needs to be updated. Observe that
E = O(V ), since at the start of the algorithm each vertex
has O(1) incident edges (the in degree and out degree are
both bounded by 4 in any De Bruijn graph built on DNA
sequences), and |E| can only decrease as merges happen.
This means the queue can be updated in O(V + L+ V lg V )
time, where O(V + L) accounts for computing the support
of all new potential FR mergers with the newly-created FR.
The overall time complexity is thus, O(LV + V 2 lg V ).
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Algorithm 5 computes a matching in O(E lgE) time,
since it requires the edges be sorted by greatest weight.
On average, the number of FRs merged at each iteration
is half, meaning it takes O(lg V ) iterations to construct the
FR hierarchy on average, and O(v) iterations in the worst
case. Accounting for the computation of support and the
decreasing number of edges at each iteration, this results in
an average run-time complexity of O(L lg V + V lg V ), and
a worst case complexity O(LV + V lg V ).

In Algorithm 6, if the edge weights are distributed ran-
domly, then the main loop is expected to terminate after
O(lgE) iterations, though the worst case is O(E). By rep-
resenting each vertex’s neighbor list with an efficient data
structure, such as a linked list, the time complexity of all the
vertex operations is dominated by the initial sorting of the
vertex neighbors. Specifically, the accumulated work per-
formed on all vertices is

∑
v∈V O(δ(v) lg δ(v)) = O(E lg∆),

where δ(v) is the degree of vertex v and ∆ is the maxi-
mum degree in the graph. Since all vertices are iterated
at each iteration of the algorithm, this gives an expected
time complexity of O(V lgE) and a worst case complexity
of O(V E) [31]. Thus, the overall expected time complexity
is O(L lg V + V lg2 V ), and the worst case complexity is
O(LV + V 2 lg V ).

6 APPLICATIONS

In this section we discuss some applications for FRs includ-
ing classification methods and an approach for pan-genome
graph simplification and visualization.

6.1 Classification with FRs

Like other sequence features, such as SNPs, FRs may pro-
vide sequence characteristics that can be used to distinguish
or categorize groups of genomes. For example, in Section 7
we differentiate between yeast strain genomes based on
their industrial origin. In order to evaluate the effectiveness
of FRs for this task we model this as a multi-class classification
problem in which each strain is annotated with one of the
industrial-origin class labels, and each iFR is a feature. The
problem is then to apply a supervised learning algorithm
to the feature set, or a subset of the feature set, such that
unlabeled strains are labeled with the correct class.

Support Vector Machines (SVMs) [32] have been shown
to be an effective approach to classifying genomes based
on shared genetic features. Traditionally such distinctions
are done with Genome Wide Association Studies (GWAS)
and/or Principal Component Analysis (PCA) [33], however,
SVMs have been shown to be more effective at this task than
GWAS/PCA [34]. Therefore, in this work we use Support
Vector Machines for classifying genomes within a pan-
genome based on their FR content as described below.

Specifically, each example (i.e. genome) is represented
as an n-dimensional vector (n is the total number of FRs
used) in which each individual component of a vector
corresponds to the number of times a certain FR occurs
with that genome. We use these vectors as input to our
SVM model [35] and evaluate its accuracy in predicting the
correct industrial origin based on the FRs they are associated
with (see Section 7.2.3 for results of this study).

However, depending on the parameters used and size of
the pan-genome, a large number of iFRs may be identified
by Algorithm 4. These may span a variety of classes, ranging
from the pan to strain-specific, among others. As such, fea-
ture selection is an important task when trying to maximize
classification power. An effective feature selection strategy
is one that can identify a small number of features that can
discriminate classes based on their attributes.

A simple approach based on multinomial distributions
which we refer to as multinomial-filter is as follows: Suppose
that the sequence paths are divided into a set of groups
{G1, . . . , Gk}. Let

cij =
∑

p∈Gi

support
p
(FRj), (4)

be the total support of FRj for all sequence paths belonging
to group Gi. In other words, cij is a count of the number of
times FRj occurs in Gi. Let Ti =

∑
j cij+1 be the total count

of iFRs found in group Gi (a pseudo-count of 1 is added to
the count for each group) and let T =

∑
i Ti be the total

across all groups. The frequency with which a random iFR
occurs in Gi is then fi = Ti/T . The probability of observing
the group counts for FRj in a random FR is multinomially
distributed with bin probabilities 〈fi〉,

Pr(FRj) =
n!

c1j ! · · · ckj !
f
c1j
1 · · · f

ckj

k , (5)

where n =
∑

i cij . The lower the Pr(FRj) value, the less
likely that the observed group counts for that FR occurred
by random chance. (We note that Pr(FRj) is similar but not
identical to a p-value, as the latter includes the probability
of at least as extreme data under the null hypothesis.) The
Pr(FRj) values are used later to rank iFRs and only some
number of the top-ranked iFRs are kept as features.

6.2 Graph simplification

Visualizing a pan-genome graph is a difficult task, especially
when dealing with larger, complex genomes. It is relatively
simpler to visualize pan-genomes at the microbial level and
with a limited number of genomes, but when the number of
genomes and size increases, the result is an indecipherable
“hairball”, as depicted in the SplitMEM [6] work. To that
end, we would like to use iFRs to create visualizations
of pan-genomes that are human parsable, meaningful and
facilitate knowledge discovery.

One approach is to filter what contents of a pan-genome
are visualized by selecting a group of FRs and restrict at-
tention to how the pan-genome traverses the corresponding
FR node clusters. If we are given a list L = {C1, . . . Cn} of
disjoint FR clusters, we can create a corresponding graph GL

with n vertices, where each vertex represents one of the FR
clusters in L. For each sequence path p in the original cDBG,
we can trace a path in GL according to the order in which
p supports the clusters in L. Fig. 4 shows an application of
the approach to visualize paths in a yeast pan-genome.

7 EXPERIMENTAL RESULTS

The algorithm was implemented in Java and is called
FindFRs. We evaluated FindFRs on two datasets, Staphylo-
coccus aureus and Saccharomyces cerevisiae. The Staphylococcus
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aureus dataset was used to compare against Sibelia [24], the
only other program currently available for mining synteny
from a pan-genome De Bruijn graph. The Saccharomyces
cerevisiae dataset was used to illustrate the scalability of the
FindFRs and exhibit a variety of FR-based analyses.

We used [7] to construct the cDBGs for each dataset.
Besides the main parameters α and κ, we also include
two other parameters minSup and minSize, which serve to
limit the amount of output generated; only iFRs whose
support and size (number of cDBG nodes) are at least these
minimums are reported.

In general, FindFRs parameters should be chosen rel-
ative to the desired level of conservation and prevalence
of the synteny blocks to be mined. Furthermore, the user
should be mindful of the interplay between these parame-
ters and the quality of the results. For example, if α = 1
and κ = 0, then only sequences that traverse the exact same
sequence of cDBG nodes will be identified. Conversely,
if α is small and κ is large, then the relationship among
the sequences identified will be tenuous, at best. Although
the legitimacy of the evolutionary relationships among the
sequences identified should be determined by a domain
expert, understanding that more lenient parameters increase
the likelihood of false positives is important.

Experiments were run on a server with 4 Intel Xeon
2.2GHz 32 core processors and 1 TB of RAM, however most
data sets could also run on standard desktop PCs, with
longer running times.

7.1 Staphylococcus aureus

In this section, we compare FindFRs to Sibelia [24].
We selected Sibelia because it is the only other
tool for finding synteny blocks in pan-genomic data,
specifically from a De Bruijn graph. We use the
same four Staphylococcus aureus strains (JH1, N315,
TW20 and MSSA476) that were used in the Sibelia

paper for comparison. Both programs were run with
k ∈ {25, 100, 500, 1000} values. Two versions of the
FindFRs were used, one that performs merges based on
FR support and one that performs merges based on support
weighted by the average penetrance of the supporting paths,
as described in Section 5.2. Sibelia was run with its
default parameters. The FindFRs parameters were selected
to be minsup = 2, because we were interested in identifying
syntenic blocks present in two or more strains – the same as
Sibelia; α = 0.5, because it is ambiguous what sequence
identity the Sibelia blocks would have, so 50% seemed
neither too stringent or lenient; κ = 0, because Sibelia

does not explicitly allow for insertions; and minsize = 2,
because we did not want to identify trivial blocks (single de
Bruijn nodes). The results are shown in Table 1, *iFRs and
*iFR roots denote the results of FindFRs using weighted
support.

As we can see, FindFRs reports a higher number of
frequented regions with and without weighted support
compared to Sibelias synteny blocks, indicating the finer
scale of partitioning regions based on biological signifi-
cance. For the non-weighted test case, we estimated percent
overlap between regions reported by these two algorithms:
For all k-mer values, approximately 98% of FindFRs FRs

TABLE 1: Sibelia versus FindFRs comparison

S. aureus (4 Strains) k = 25 k = 100 k = 500 k = 1000

Synteny blocks 142 143 132 132

iFRs 10, 740 1, 334 2, 011 1, 351

*iFRs 172 461 1, 064 383

iFR roots 392 122 97 134

*iFR roots 50 22 180 101

FindFRs: α = 0.5,κ = 0, minSup = 2, minSize = 2

Sibelia: All set to default, except for k values

overlapped with Sibelias synteny blocks. Furthermore,
we also computed overlap in terms of sequence percentage
(i.e. what percentage of the Sibelia block sequences are
contained in FindFRs FRs, and vice versa). For k = 25,
alignments showed 91% of Sibelia Synteny block se-
quence base-pairs were contained within FindFRs fre-
quented regions and only 82% of FindFRs frequented re-
gions sequence base-pairs were contained within Sibelia

Synteny blocks, indicating FindFRs FRs captured most of
Sibelia Synteny blocks at the nucleotide base-pair level.

Lastly, to compare the run times of both programs, we
tested a slightly larger dataset consisting of 31 Staphylococcus
aureus (≈ 90 Mb) strains. For k = 25, Sibelia took
186 minutes, whereas FindFRs took only 106 seconds (no
threading).

7.2 Saccharomyces cerevisiae

Yeast (Saccharomyces cerevisiae) is a well studied model sys-
tem with some published comparative genomic and pan-
genomic work [36], [37], allowing us to use the existing
knowledge base to assess the quality of the FRs found by our
algorithm. Furthermore, yeast is highly diverse, econom-
ically important, and its multiple industrial applications
enable interesting functional genomics. These attributes,
compounded with a genome size of approximately 12 Mb,
make yeast an interesting and tractable dataset for algorithm
testing.

Our yeast pan-genome was built with assemblies
from the Saccharomyces Genome Database (http://www.
yeastgenome.org/). The dataset consisted of 55 assemblies
from 48 yeast strains over a wide range of industrial applica-
tions and geographic origins; see Table 2 and Table S1 in the
supplementary materials. We constructed Yeast pan-genome
cDBGs for k ∈ {25, 100, 500, 1000}. Again, we chose these
values because it is still not well understood what k values
are appropriate for pan-genome analysis. Here, no weighted
support was used, and we varied the α and κ parameters, as
indicated in the various experiments. As a sample run, we
ran FindFRs with parameter values α = 0.7, κ ∈ {0, 3000},
minsup = 5, and minsize = 5. Table 3 indicates the size of
the cDBGs created and the number of iFRs found (κ = 0
only). Figure 2 shows support versus average length for a
sample run. We note that Sibelia was not able to process
this data set (≈ 600 Mb), so we do not report a comparison.

7.2.1 Parallelization Speedup

FindFRs implements both the serial and parallel maxi-
mal matching algorithms, Algorithm 5 and Algorithm 6,
respectively. Since the number of paths in our datasets are
relatively small, the computation of the maximal match-
ings dominates the run-time complexity. As such, here we
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Fig. 8: Yeast industrial usage multidimensional-scaling
(MDS) plot based on the top 500 discriminative iFRs found.
MDS aims to place each object in a 2D box, such that the
between-object distances are preserved as well as possible.
The Canberra distance in R was used to compute distances
from iFR frequency data for strains associated with each
industrial usage and the MDS plot was generated using the
isoMDS function. (k = 500, α = 0.7, κ = 0)

of divergence (novelty) and conservation. Identification of
divergent regions (regions that do not fall into FRs even
with lenient parameters) allows the detection of novel genes
that are not present in the reference sequence and/or in
other assemblies from a species. These genes could represent
genes obtained through horizontal transfer, hybridization,
or strong positive selection, and may have important adap-
tive functions. On the other hand, identification of regions
that are conserved enables the determination of core gene
sets that are required for the species. Determining unan-
notated regions that are conserved across the species is also
important. Such conservation could imply that purifying se-
lection has been active to keep important regions conserved.
Such regions could also lead to the identification of new
genes or important regulatory elements.

Path-based approaches could also be applied at the
amino acid level and potentially at the domain, gene, gene
family, operon, or molecule (ie. chromosome or plasmid)
level. Our FR approach would be best integrated into a
visual tool to help researchers understand and explore pan-
genomic data, e.g. graph visualizations allowing users to
expand iFR nodes into the underlying structure or perform
analyses on their genetic content, such as multiple sequence
alignment. Furthermore, existing annotation data could be
superimposed on the graph to guide the user’s inquiry.

Software: github.com/abi-pangenomics/FindFRs
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