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GAUSSIAN COOLING AND \bfitO \ast (\bfitn \bfthree ) ALGORITHMS FOR VOLUME
AND GAUSSIAN VOLUME\ast 

BEN COUSINS\dagger AND SANTOSH VEMPALA\dagger 

Abstract. We present an O\ast (n3) randomized algorithm for estimating the volume of a well-
rounded convex body (e.g., K \subseteq \BbbR n if Bn \subseteq K and \sansE X\sim K(\| X\| 2) = O\ast (n)) given by a membership
oracle, improving on the previous best complexity of O\ast (n4). The new algorithmic ingredient is an
accelerated cooling schedule where the rate of cooling increases with the temperature. Previously, the
known approach for potentially achieving this asymptotic complexity relied on a positive resolution
of the Kannan--Lov\'asz--Simonovits (KLS) hyperplane conjecture, a central open problem in convex
geometry. We also obtain an O\ast (n3) randomized algorithm for integrating a standard Gaussian
distribution over an arbitrary convex set containing the unit ball. Both the volume and the Gaussian
volume algorithms use an improved algorithm for sampling a Gaussian distribution restricted to a
convex body. In this latter setting, as we show, the KLS conjecture holds and for a spherical Gaussian
distribution with variance \sigma 2, the sampling complexity is O\ast (max\{ n3, \sigma 2n2\} ) for the first sample
and O\ast (max\{ n2, \sigma 2n2\} ) for every subsequent sample.
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walk, Gaussian isoperimetry
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1. Introduction. Computing the volume of a convex body is an ancient and
fundamental problem; it is also a difficult problem, as evidenced by both the \#P-
hardness of computing the volume of an explicit polytope [11] and exponential lower
bounds for deterministic algorithms in the general oracle model, even to approxi-
mate the volume to within an exponential factor in the dimension [3, 4]. Against
this backdrop, the breakthrough result of Dyer, Frieze, and Kannan [13, 14] estab-
lished a randomized polynomial-time algorithm for estimating the volume to within
any desired accuracy. In the quarter-century since then, the quest for faster volume
algorithms has revealed an array of powerful and elegant techniques for the design
and analysis of algorithms and has influenced the development of asymptotic convex
geometry [1, 20, 12, 21, 18, 19, 7, 24, 22, 16].

The Dyer--Frieze--Kannan (DFK) algorithm for computing the volume of a con-
vex body K in \BbbR n given by a membership oracle uses a sequence of convex bodies
K0,K1, . . . ,Km = K, starting with the unit ball fully contained in K and ending with
K. Each successive body Ki = 2i/nBn\cap K is a slightly larger ball intersected with K.
Using random sampling, the algorithm estimates the ratios of volumes of consecutive
bodies. The product of these ratios times the volume of the unit ball was the estimate
of the volume ofK. Sampling is achieved by a random walk in the convex body. There
were many technical issues to be addressed, but the central challenge was to show a
random walk that ``mixed"" rapidly, i.e., converged to its stationary distribution in a
polynomial number of steps. The overall complexity of the algorithm was O\ast (n23)
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1238 BEN COUSINS AND SANTOSH VEMPALA

oracle calls.1

Since then, researchers have improved the complexity of volume computation and
sampling for convex bodies considerably, to O\ast (n4) for volume estimation and for
obtaining the first random sample [24, 22] and to O\ast (n3) per sample for subsequent
samples [22, 23]. These improvements rely on continuous random walks, the use of
affine transformations, improved isoperimetric inequalities, and several other devel-
opments. However, throughout the course of these developments, the outer DFK
algorithm using a chain of bodies remained unchanged until the most recent improve-
ment in 2003 [24]. The Lov\'asz--Vempala (LV) algorithm [24] relies on sampling a
sequence of logconcave distributions, akin to simulated annealing, starting with one
that is highly concentrated around a point deep inside the convex body and ending
with the uniform distribution (we will discuss these ideas in more detail presently).
The total number of random points needed is only O\ast (n), down from \Omega (n2) needed by
all previous algorithms. Combining this with the O\ast (n3) complexity for each sample
yielded the overall O\ast (n4) complexity for volume computation. Before running this
algorithm, there is a preprocessing step where the convex body is placed in nearly
isotropic position, ensuring in particular that most of the body is contained in a ball
of radius O(

\surd 
n). Crucially, this well-roundedness property is maintained during the

course of the algorithm.
Is there a faster algorithm? In 1995, Kannan, Lov\'asz, and Simonovits, while an-

alyzing the convergence of the ball walk for sampling, proposed a beautiful geometric
conjecture now known as the Kannan--Lov\'asz--Simonovits (KLS) hyperplane conjec-
ture [18]. Roughly speaking, it says that the worst-case isoperimetric ratio for a subset
of a convex body is achieved by a hyperplane to within a constant factor. They were
able to show that hyperplanes are within O(

\surd 
n) of the minimum. The convergence

of the ball walk depends on the square of the reciprocal of the isoperimetric ratio;
thus the KLS conjecture had the potential to improve the sampling time by a factor
of n to O\ast (n2) per sample and thereby indicated the possibility of an O\ast (n3) volume
algorithm (such an algorithm would have to surmount other substantial hurdles).

The KLS hyperplane conjecture remains unresolved, in spite of intensive efforts
and partial progress towards its resolution [2, 17, 16]. Indeed, it captures two well-
known and much older conjectures from convex geometry, the slicing (or hyperplane)
conjecture and the thin-shell conjecture (these were all shown to be equivalent in a
certain sense recently [15, 16]) and thus has effectively evaded resolution for nearly a
half-century.

Our first result is an O\ast (n2) algorithm for sampling from the standard Gaussian
distribution in \BbbR n restricted to a convex body containing the unit ball. To achieve this
complexity, we prove the KLS conjecture for such distributions. We then show that
the Gaussian volume or Gaussian measure, i.e., the integral of a standard Gaussian
over a convex body, can be computed in O\ast (n3) queries, provided the convex body
contains the unit ball.

Our main finding is an O\ast (n3) algorithm for computing the volume of any convex
body containing a unit ball and mostly contained in a ball of radius O\ast (

\surd 
n). Equiv-

alently, it suffices to have \sansE (\| X\| 2) = O\ast (n) for a uniform random point X from the
body. Assuming the body is well-rounded (or sandwiched) in this sense, no further
affine transformation is used, and there is no need to assume or maintain near-isotropy
during the course of the volume algorithm.

To describe the main ideas behind the improvement, we recall the LV algorithm

1The O\ast notation suppresses error terms and logarithmic factors.
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GAUSSIAN COOLING AND O\ast (n3) VOLUME ALGORITHMS 1239

in more detail. It uses a sequence of O\ast (
\surd 
n) exponential distributions, starting

with a distribution that is concentrated inside the unit ball contained in K and then
``flattening"" this distribution to the uniform by adjusting a multiplicative factor in
the exponent.2 In each phase, samples from the previous distribution are used to
estimate the ratio of the integrals of two consecutive exponential functions (by simply
averaging the ratio of the function values at the sample points). It is crucial to keep
the variance of this ratio estimator bounded, and to do this, the distributions could
be cooled by a factor of 1 + 1\surd 

n
in each phase. This leads to O\ast (

\surd 
n) phases in total

and to O\ast (
\surd 
n) samples per phase. Along with the sample complexity of O\ast (n3) per

sample, this gives the bound of O\ast (n4).
The improved complexity for Gaussian volume estimation is achieved by using

a sequence of Gaussians (rather than exponentials as in LV), starting with a highly
concentrated Gaussian centered insideK and ending with the standard Gaussian. The
cooling schedule is the same as in the LV algorithm, but each sample takes only O\ast (n2)
time. For a Gaussian with covariance \sigma 2I, the mixing time is O\ast (max\{ \sigma 2, 1\} n2) (see
Theorem 1.5 below). Since the starting \sigma is small and the last \sigma is 1, this bound is
O\ast (n2) throughout the algorithm. (We encounter additional technical issues such as
maintaining a warm start for the random walks.)

Returning to the usual Lebesgue volume, how could we possibly improve the LV
algorithm without relying on the KLS conjecture? We will also use Gaussian cooling,
starting with a highly concentrated Gaussian and flattening it (i.e., increasing \sigma ) until
we reach the uniform distribution. In the beginning, this is similar to the algorithm
of [9]. But after \sigma becomes higher than 1 (or some constant), we no longer have
quadratic sampling time, as the mixing time of the ball work grows as max\{ \sigma 2, 1\} n2.
Moreover, we need to go until \sigma 2 = \Omega (n), so cooling at the fixed rate of 1+1/n would
be too slow. The main new idea is that for \sigma > 1, the cooling rate can be made
higher, in fact about 1 + \sigma 2/n instead of only 1 + 1/n. This means that the number
of phases to double \sigma 2 is only n/\sigma 2. It can be shown that the number of samples
per ``doubling"" phase is only O\ast (1), giving n/\sigma 2 samples in total. Multiplying by
the sampling time, we have n

\sigma 2 \cdot \sigma 2n2 = n3, a cubic algorithm! The key technical
component of the analysis is to show that the variance of the ratio estimator remains
bounded even at this higher cooling rate of 1 + \sigma 2/n.

We now formally state the problems.

Problem 1.1 (volume). Given a membership oracle for a convex set K in \BbbR n

containing the unit ball Bn, and error parameter \varepsilon > 0, give an algorithm that com-
putes a number V such that with probability at least 3/4,

(1 - \varepsilon )\sansv \sanso \sansl (K) \leq V \leq (1 + \varepsilon )\sansv \sanso \sansl (K).

We denote the Gaussian density function as \gamma (x) = (2\pi ) - n/2 \cdot exp
\bigl( 
 - \| x\| 2/2

\bigr) 
.

Problem 1.2 (Gaussian volume). Given a membership oracle for a convex set
K in \BbbR n containing the unit ball Bn, and error parameter \varepsilon > 0, give an algorithm
that computes a number V such that with probability at least 3/4,

(1 - \varepsilon )

\int 
K

\gamma (x) dx \leq V \leq (1 + \varepsilon )

\int 
K

\gamma (x) dx.

2In the original description, the algorithm first created a ``pencil"" using an extra dimension, but
this can be avoided [22].
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1240 BEN COUSINS AND SANTOSH VEMPALA

1.1. Main results. Our main result can be stated more precisely as follows,
which solves Problem 1.1 in O\ast (n3) assuming the input body K is well-rounded.
We note that the roundness condition can be achieved for any convex body by a
preprocessing step consisting of an affine transformation. It is a significantly weaker
condition than isotropic position.

Theorem 1.1. There is an algorithm that, for any \varepsilon > 0, p > 0 and any convex
body K in \BbbR n that contains the unit ball and has \sansE K(\| X\| 2) = O(n), with probability
1 - p, approximates the volume of K within relative error \varepsilon and has complexity

O

\biggl( 
n3

\varepsilon 2
\cdot log2 n log2

1

\varepsilon 
log2

n

\varepsilon 
log

1

p

\biggr) 
= O\ast \bigl( n3

\bigr) 
in the membership oracle model.

More generally, if \sansE K(\| X\| 2) = R2, then the algorithm has complexity

O

\biggl( 
max\{ R2n2, n3\} 

\varepsilon 2
\cdot log2 n log2

1

\varepsilon 
log2

n

\varepsilon 
log

1

p

\biggr) 
= O\ast \bigl( max\{ R2n2, n3\} 

\bigr) 
.

The current best complexity for achieving well-roundedness, i.e., R2 = O\ast (n),
for a convex body is O\ast (n4) [24]. In previous work, the complexity of generating
the first nearly uniform random point was always significantly higher than for later
points. Here, using a faster cooling schedule, we can generate the first random point
in O\ast (n3) steps under the same assumption that K is well-rounded. Any subsequent
uniform random points also require O\ast (n3) steps.

Theorem 1.2. There is an algorithm that, for any \varepsilon > 0, p > 0 and any convex
body K in \BbbR n that contains the unit ball and has \sansE K(\| X\| 2) = R2, with probability
1 - p, generates random points from a density \nu that is within total variation distance
\varepsilon from the uniform distribution on K. In the membership oracle model, the complexity
of each random point, including the first, is

O

\biggl( 
max\{ R2n2, n3\} log n log2

n

\varepsilon 
log

1

p

\biggr) 
= O\ast \bigl( max\{ R2n2, n3\} 

\bigr) 
.

In addition to volume and uniform sampling, we also have an O\ast (n3) algorithm
for computing the Gaussian volume. This algorithm does not require a rounding pre-
processing step and gives an O\ast (n3) algorithm for any convex set K \subseteq \BbbR n containing
the unit ball.

Theorem 1.3. For any \varepsilon > 0, p > 0 and any convex set K in \BbbR n containing the
unit ball, there is an algorithm that, with probability 1 - p, approximates the Gaussian
volume of K within relative error \varepsilon and has complexity

O

\biggl( 
n3

\varepsilon 2
\cdot log2 (n) log2

\Bigl( n
\varepsilon 

\Bigr) 
log

\biggl( 
1

p

\biggr) \biggr) 
= O\ast (n3)

in the membership oracle model.

Both the uniform volume and the Gaussian volume algorithms utilize an improved
sampling algorithm for Gaussian distributions restricted by convex sets.

Theorem 1.4. For any \varepsilon > 0, p > 0 and any convex set K in \BbbR n containing the
unit ball, there is an algorithm that, with probability 1  - p, can generate a random
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GAUSSIAN COOLING AND O\ast (n3) VOLUME ALGORITHMS 1241

point within total variation distance \varepsilon of the Gaussian density \scrN (0, \sigma 2I) restricted to
K. In the membership oracle model, the complexity of the first random point is

O

\biggl( 
max\{ \sigma 2, 1\} n3 log(n) log2

\Bigl( n
\varepsilon 

\Bigr) 
log

\biggl( 
1

p

\biggr) \biggr) 
= O\ast \bigl( max\{ \sigma 2, 1\} n3

\bigr) 
.

For subsequent random points, the complexity is

O

\biggl( 
max\{ \sigma 2, 1\} n2 log

\Bigl( n
\varepsilon 

\Bigr) 
log

\biggl( 
1

\varepsilon 

\biggr) \biggr) 
= O\ast \bigl( max\{ \sigma 2, 1\} n2

\bigr) 
.

The set of random points will be \varepsilon -independent.

For two random variables X and Y , we say X and Y are \varepsilon -independent if

sup
A,B

| Pr(X \in A, Y \in B) - Pr(X \in A) Pr(Y \in B)| \leq \varepsilon ,

where A,B range over measurable subsets of the ranges of X,Y . The following theo-
rem guarantees we can efficiently obtain Gaussian samples from a warm start.

Theorem 1.5. Let K be a convex set containing the unit ball, Q0 be a start-
ing distribution, and Q be the target Gaussian density \scrN (0, \sigma 2I) restricted to K \cap 
4\sigma 

\surd 
nBn. For any \nu > 0, p > 0, the lazy Metropolis ball walk with \delta -steps for

\delta = min\{ \sigma , 1\} /(4096
\sqrt{} 
n log n/\nu ), starting from Q0, satisfies dtv(Qt, Q) \leq \nu after

t \geq C \cdot M(Q0, Q) \cdot max\{ \sigma 2, 1\} \cdot n2 log
\Bigl( n
\nu 

\Bigr) 
log

\biggl( 
M(Q0, Q)

\nu 

\biggr) 
expected steps for an absolute constant C.

Here M(Q0, Q) is a measure of how close Q0 is to Q (also called the warm start

parameter) and is defined as M(Q0, Q) = supS\subseteq K
Q0(S)
Q(S) . In other words, the theorem

says that the ball walk mixes in O\ast (max\{ \sigma 2, 1\} n2) steps from a warm start.

Ball Walk(\bfitdelta , \bfitf )
At point x:

1. Pick a random point y from x+ \delta Bn.
2. Go to y with probability min\{ 1, f(y)/f(x)\} ; otherwise,

stay at x.

Fig. 1. The ball walk with a Metropolis filter.

2. Algorithm. At a high level, the algorithm relies on sampling random points
from a sequence of distributions using the ball walk with a Metropolis filter. For a
target density proportional to the function f , the ball walk with \delta -steps is defined in
Figure 1.

After a suitable number of steps, the point x obtained will be from a distribution
close to the one whose density is proportional to f . However, this process is slightly
complicated by the fact that we only know that the point is mixed once a certain
number of proper steps have been taken, i.e., steps where y \in K or alternatively
where f(y) \not = 0.

The algorithm in Figure 2 starts with a Gaussian of variance 1/(4n), with the
mean at the center of the unit ball insideK. This variance is increased over a sequence
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1242 BEN COUSINS AND SANTOSH VEMPALA

Volume(\bfitK , \bfitvarepsilon ) We assume Bn \subseteq K \subseteq C
\surd 
nBn.

1. Initialize: \nu =
\bigl( 
\varepsilon 
n

\bigr) 16
, \sigma 2

0 = 1
4n , k = 512 logC2n

\varepsilon 2 , i = 0; x0 is a random
point from N(0, \sigma 2

0I) \cap K.
Define

\beta (\sigma ) =

\left\{     
1 +

1

n
if \sigma 2 \leq 1,

1 +
\sigma 2

2C2n
otherwise.

2. While \sigma 2
i \leq C2n:

(a) Get k points \{ X1, . . . , Xk\} using the Ball Walk with\left\{     
\delta = min\{ \sigma i, 1\} /(4096

\sqrt{} 
n log n/\varepsilon ) ball radius,

fi = f(\sigma 2
i ,K \cap 4\sigma i

\surd 
nBn) target density,

1016 max\{ \sigma 2, 1\} n2 \cdot log(1/\nu ) proper steps.

(b) Set \sigma 2
i+1 = \sigma 2

i \cdot \beta (\sigma i); if \sigma 
2
i+1 > C2n, set \sigma 2

i+1 = \infty .
(c) Compute the ratio estimate

Wi+1 =
1

k
\cdot 

k\sum 
j=1

fi+1(Xj)

fi(Xj)
.

(d) Increment i.
3. Return (2\pi \sigma 2

0)
n/2W1 . . .Wi as the volume estimate for K.

Fig. 2. The volume algorithm.

of phases until the distribution becomes uniform overK. Until the variance \sigma 2 reaches
1, it is increased by a fixed factor of 1 + 1/n in each phase. After the variance reaches
1, the variance accelerates, increasing by a factor of 1 + \sigma 2/(2C2n) where \sigma 2 is the
current variance. This process is continued until the variance becomes linear in C2n,
at which point one final phase can be used to jump to the uniform distribution. In
each phase, we pick a sample of random points from the current distribution and
compute the average of the ratio of the current density to the next density for each
point. The product of these ratios times a fixed term to account for the integral of
the initial function is the estimate output by the algorithm.

Let f(\sigma 2,K) be the function that assigns value exp
\bigl( 
 - \| x\| 2/(2\sigma 2)

\bigr) 
to points in a

convex set K and zero to points outside. The algorithm below uses a series of such
functions.

3. Outline of analysis.

3.1. Outline of sampling analysis. To show that the random walk quickly
reaches its stationary distribution, we will use the standard method of bounding
the conductance. For the ball walk, this runs into a hurdle, namely that the local
conductance of points near sharp corners of the body can be arbitrarily small, so the
walk can get stuck and waste a large number of steps. To avoid this, we could start the
walk from a random point chosen from a distribution sufficiently close to the target
distribution. But how do we generate random points from such a starting distribution?
We do this by considering a sequence of distributions, each providing a warm start for
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GAUSSIAN COOLING AND O\ast (n3) VOLUME ALGORITHMS 1243

the next. The very first distribution is chosen to be a highly concentrated Gaussian
so that it lies almost entirely inside the unit ball (inside K). Thus sampling from the
initial distribution is easy by standard rejection sampling. Each successive Gaussian
is ``flatter,"" with the final one being the target distribution, e.g., standard Gaussian
or uniform distribution.

The next challenge is to show that, from a warm start, the expected number of
steps to converge to the stationary distribution is only O\ast (n2). This is usually done
by bounding the conductance of the Markov chain. The conductance, \phi , of a Markov
chain with state space K and next-step distribution Px is defined as

\phi = min
S\subset K

\int 
S
Px(K \setminus S) dQ(x)

minQ(S), Q(K \setminus S)
.

Unfortunately, for the ball walk, this can be arbitrarily small, e.g., for points near
corners (but also for points in the interior). To utilize the warm start, we use an idea
from [19], namely the speedy walk. We emphasize that the speedy walk cannot be
implemented efficiently and is only a tool for analysis. It is defined as follows.
At current point x, do the following:

1. Pick random point y from K \cap x+ \delta Bn.
2. Go to y with probability min\{ 1, f(y)/f(x)\} ; otherwise, stay at x.

To capture the stationary distribution of the speedy walk with a Metropolis filter,
we need another parameter. The local conductance at x for the speedy walk, without
a filter, is defined as follows:

\ell (x) =
\sansv \sanso \sansl (K \cap x+ \delta Bn)

\sansv \sanso \sansl (\delta Bn)
.

The following lemma can be proved using detailed balance.

Lemma 3.1. The stationary distribution of the speedy walk with a Metropolis filter
applied with a function f has density proportional to \ell (x)f(x).

For the speedy walk with \delta = O(1/
\surd 
n), we can show that the conductance is

\Omega (1/(\sigma n)), and so the total number of steps needed is only O\ast (\sigma 2n2). This is a factor
n faster than previous best bounds. We do this by establishing a stronger (and nearly
optimal) isoperimetric inequality.

As noted, the speedy walk cannot actually be implemented efficiently. To bound
the Metropolis ball walk, we can view it as an interleaving of a speedy walk with
wasted steps. Let the Markov chain for the original walk be w0, w1, . . . , wi, . . . . The
subsequence wi1 , wi2 , . . . , where we record x if the point y chosen by the Metropolis
ball walk is in K, corresponds to the speedy walk. We then need to estimate the
number of wasted steps from a warm start. We will show that this is at most a
constant factor higher than the number of proper steps. The key ingredient of this
analysis is the (known) fact that, for a body containing the unit ball, the average
local conductance is high for ball radius \delta = O(1/

\surd 
n). Even within the speedy walk,

there are ``null"" steps due to the Metropolis filter. However, by restricting the walk to
a large ball, we ensure that the probability of rejection by the filter is bounded by a
constant, and therefore the number of wasted steps within the speedy walk is at most
a constant fraction of all steps. Also, the speedy walk converges to a distribution
proportional to \ell (x)f(x), but we can map this to a random sample from f with
rejection sampling routine (see section 6.4).

To sample efficiently, we need a warm start for each phase. For two probability

D
ow

nl
oa

de
d 

09
/1

6/
19

 to
 1

65
.2

30
.2

25
.6

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1244 BEN COUSINS AND SANTOSH VEMPALA

distributions P and Q with state space K, the M -warmness of P and Q is defined as

(3.1) M(P,Q) = sup
S\subseteq K

P (S)

Q(S)
.

To keep this parameter bounded by a constant, we use a finer-grained cooling schedule
so that a random point from one phase is a warm start for the next phase. This cooling
schedule is also different in the two parts. In the first part of the algorithm, we can
cool at the rate of 1 + 1/n and use O\ast (n2) steps to sample. In the second part, we cool
at the rate of 1 + \sigma 2/(2C2n), and this is fast enough to compensate for the higher
sample complexity of O\ast (\sigma 2n2). Thus the overall time to obtain a warm start for
every phase of the algorithm is also O\ast (n3). We analyze this in full detail in section 6,
including the proof that this cooling rate maintains a warm start from one phase to
the next.

We can obtain uniform random samples from K given samples from a Gaussian
with variance \sigma 2 = C2n via a simple rejection sampling routine. Since K \subseteq C

\surd 
nBn,

the two distributions will be within a constant factor of each other, and therefore we
can use O(1) expected samples from the Gaussian distribution to obtain a uniform
random point.

3.2. Outline of volume analysis. The sampling time when the variance is \sigma 2

is max\{ 1, \sigma 2\} n2. If we cooled at a rate of 1 + 1/n throughout the algorithm, we would
get an O\ast (n4) algorithm since the last doubling phase, i.e., the set of phases until \sigma 2

doubles, takes \Omega (n) samples, each mixing for \Omega (n3) steps. The main insight that
speeds up our algorithm is the cooling rate of 1 + \sigma 2/(2C2n) once \sigma 2 > 1. Cooling at
a faster rate once \sigma 2 > 1 will allow us to compute volume in time O\ast (n3) by having
fewer phases when the mixing time of the ball walk increases.

The volume algorithm proceeds as a series of phases, where each phase seeks to
estimate a ratio of Gaussian integrals over the convex body K. More precisely, let

f(\sigma 2, x) =

\Biggl\{ 
exp

\bigl( 
 - \| x\| 2/(2\sigma 2)

\bigr) 
if x \in K,

0 otherwise,

and let

F (\sigma 2) =

\int 
\BbbR n

f(\sigma 2, x) dx.

Define \mu i as the probability distribution proportional to f(\sigma 2
i , x); that is, \mu i is a

symmetric Gaussian distribution with variance \sigma 2
i restricted toK. LetX be a random

sample point from \mu i, and let Y = f(\sigma 2
i+1, X)/f(\sigma 2

i , X). We see that the expectation
of Y is the ratio of F (\sigma 2

i+1)/F (\sigma 2
i ):

\sansE (Y ) =

\int 
K

exp

\biggl( 
\| x\| 2

2\sigma 2
i

 - \| x\| 2

2\sigma 2
i+1

\biggr) 
d\mu i(x)

=

\int 
K

exp

\biggl( 
\| x\| 2

2\sigma 2
i

 - \| x\| 2

2\sigma 2
i+1

\biggr) 
\cdot 
exp

\bigl( 
 - \| x\| 2/(2\sigma 2

i )
\bigr) 

F (\sigma 2
i )

dx

=
1

F (\sigma 2
i )

\cdot 
\int 
K

exp

\biggl( 
 - \| x\| 2

2\sigma 2
i+1

\biggr) 
dx =

F (\sigma 2
i+1)

F (\sigma 2
i )

.

Our goal is to estimate \sansE (Y ) within some target relative error. The algorithm es-
timates the quantity \sansE (Y ) by taking random sample pointsX1, . . . , Xk and computing
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the empirical estimate for \sansE (Y ) from the corresponding Y1, . . . , Yk:

W =
1

k

k\sum 
j=1

Yj =
1

k

k\sum 
j=1

fi+1(Xj)

fi(Xj)
.

The variance of Y divided by its expectation squared will give a bound on how
many independent samplesXi are needed to estimate \sansE (Y ) within the target accuracy.
Thus we seek to bound \sansE (Y 2)/\sansE (Y )2. We have that

\sansE (Y 2) =

\int 
K
exp

\Bigl( 
\| x\| 2

2\sigma 2
i
 - \| x\| 2

\sigma 2
i+1

\Bigr) 
dx\int 

K
exp

\Bigl( 
 - \| x\| 2

2\sigma 2
i

\Bigr) 
dx

=
F (

\sigma 2
i+1\sigma 

2
i

2\sigma 2
i - \sigma 2

i+1
)

F (\sigma 2
i )

and

\sansE (Y 2)

\sansE (Y )2
=

F (\sigma 2
i )F (

\sigma 2
i+1\sigma 

2
i

2\sigma 2
i - \sigma 2

i+1
)

F (\sigma 2
i+1)

2
.

If we let \sigma 2 = \sigma 2
i+1 and \sigma 2

i = \sigma 2/(1 + \alpha ), then we can further simplify to

\sansE (Y 2)

\sansE (Y )2
=

F
\Bigl( 

\sigma 2

1+\alpha 

\Bigr) 
F
\Bigl( 

\sigma 2

1 - \alpha 

\Bigr) 
F (\sigma 2)

2 .

The algorithm has two parts, and the cooling rate \alpha i is different for them. In the
first part, starting with a Gaussian of variance \sigma 2 = 1/(4n), which has almost all its
measure inside the ball contained in K, we increase \sigma 2 by a fixed factor of 1 + 1/n in
each phase until the variance \sigma 2 reaches 1. When cooling at the fixed rate of 1 + 1/n,
Lemma 7.12 implies that the variance of the ratio estimator is small enough that only
O\ast (1) samples suffice. For each \sigma , we sample random points from the corresponding
distribution and estimate the ratio of the densities for the current phase and the next
phase by averaging over samples. The total complexity for the first part is thus

O\ast (n) phases\times O\ast (1) samples per phase\times O\ast (n2) steps per sample = O\ast (n3).

In the second part, we increase the variance until it reaches C2n, after which
one final phase suffices to compare with the target uniform distribution. However,
we cannot afford to cool at the same rate of 1 + 1/n because the time per sample
goes to O\ast (\sigma 2n2) for \sigma > 1. By the end of this part, we would be using O\ast (n3) per
sample, and the overall complexity would be O\ast (n4). Instead we observe that we can
cool at a faster rate of 1 + \sigma 2/(2C2n) and still maintain that the variance of the ratio
estimator is a constant. The following bound on the variance, proved in section 7.1,
allows us to cool at a faster rate as \sigma increases and overcome the increased sampling
cost of O\ast (\sigma 2n2).

Lemma 3.2. Let K \subseteq C
\surd 
nBn and \alpha \leq 1/2. Then

F
\Bigl( 

\sigma 2

1+\alpha 

\Bigr) 
F
\Bigl( 

\sigma 2

1 - \alpha 

\Bigr) 
F (\sigma 2)

\leq exp

\biggl( 
2 \cdot C

2\alpha 2n

\sigma 2

\biggr) 
.

Note that the above right-hand side is \leq 1+\sigma 2/(Cn) if we select \alpha = \sigma 2/(2C2n).
With this rate, the number of phases needed to double the variance is only O(C2n/\sigma 2),
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1246 BEN COUSINS AND SANTOSH VEMPALA

and the number of samples per phase will be O\ast (1). Together, they compensate for
the higher complexity of obtaining each sample. The complexity of the second part
of the algorithm is thus

O\ast 
\biggl( 
C2n

\sigma 2

\biggr) 
phases\times O\ast (1) samples per phase\times O\ast (\sigma 2n2) steps per sample

= O\ast (C2n3).

In section 7.1, we prove that cooling at this accelerated rate still keeps the variance
of the ratio estimator appropriately bounded.

We note that with respect to estimating the volume using Lemma 3.2 there is
a range of cooling rates for the second part of the algorithm that we could select to
obtain an O\ast (C2n3) algorithm. If we instead use the cooling rate 1+ \sigma /(C

\surd 
n), then

the complexity of the algorithm is

O\ast 
\biggl( 
C
\surd 
n

\sigma 

\biggr) 
phases\times O\ast 

\biggl( 
C
\surd 
n

\sigma 

\biggr) 
samples per phase\times O\ast (\sigma 2n2) steps per sample

= O\ast (C2n3).

We could select any \alpha in the range \sigma 2/(C2n) \leq \alpha \leq \sigma /(C
\surd 
n) and cool at the

rate 1 + \alpha , as there is a proportional tradeoff between the number of phases and
samples per phase for this range of \alpha . We select the cooling rate of \alpha = \sigma 2/(2C2n)
for simplicity of the algorithm since this cooling rate also maintains a warm start for
the ball walk sampler, as shown in Lemma 6.8.

4. Preliminaries. A function f : \BbbR n \rightarrow \BbbR + is logconcave if it has convex support
and the logarithm of f , wherever f is nonzero, is concave. Equivalently, f is logconcave
if, for any x, y \in \BbbR n and any \lambda \in [0, 1],

f(\lambda x+ (1 - \lambda )y) \geq f(x)\lambda f(y)1 - \lambda .

Let \gamma : \BbbR n \rightarrow \BbbR + be the density of the standard Gaussian \scrN (0, I).
For two probability distributions P andQ with state spaceK, we will useM(P,Q)

to denote the M -warmness between P and Q as defined in (3.1) and dtv(P,Q) to
denote the total variation distance between P and Q:

dtv(P,Q) = sup
S\subseteq K

| P (S) - Q(S)| .

For a nonnegative function f : \BbbR n \rightarrow \BbbR +, we define the f -distance between two
points u, v \in \BbbR n as

df (u, v) =
| f(u) - f(v)| 

max\{ f(u), f(v)\} 
.

5. Isoperimetry. The following theorem is due to Brascamp and Lieb.

Theorem 5.1 (Theorem 5.1 in [5]). Let \gamma : \BbbR n \rightarrow \BbbR + be the standard Gaussian
density in \BbbR n. Let f : \BbbR n \rightarrow \BbbR + be any logconcave function. Define the density
function h over \BbbR n as follows:

h(x) =
f(x)\gamma (x)\int 

\BbbR n f(y)\gamma (y) dy
.

Fix a unit vector v \in \BbbR n, and let \mu = \sansE h(x). Then, for any \alpha \geq 1,

\sansE h(| vT (x - \mu )| \alpha ) \leq \sansE \gamma (| x1| \alpha ).
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We can use Theorem 5.1 to say that h inherits the following well-known Gaussian
concentration inequality (see, e.g., [6]):

(5.1) Pr
X\sim \scrN (0,I)

\bigl( 
\| X\| 2 \geq n+ ct

\surd 
n
\bigr) 
\leq exp

\bigl( 
 - t2

\bigr) 
for an absolute constant c.

Corollary 5.2. For h as defined in Theorem 5.1 and any t \geq 1,

Pr
h
(\| x - \mu \| 2 \geq n+ ct

\surd 
n) \leq e - t2

for an absolute constant c.

The next lemma about one-dimensional isoperimetry is from [18].

Lemma 5.3 (see [18]). For any one-dimensional isotropic logconcave function f
and any partition S1, S2, S3 of the real line,

\pi f (S3) \geq ln(2) d(S1, S2)\pi f (S1)\pi f (S2).

Theorem 5.4. Let f : \BbbR n \rightarrow \BbbR + be any logconcave function and \gamma : \BbbR n \rightarrow \BbbR + be
the standard Gaussian density. Let \pi denote the probability distribution proportional
to h(x) = f(x)\gamma (x). Let S1, S2, S3 partition \BbbR n such that, for any u \in S1, v \in S2,
either \| u - v\| \geq d/ ln(2) or dh(u, v) \geq 4d

\surd 
n. Then

\pi (S3) \geq 
d

\sigma 
\pi (S1)\pi (S2).

Proof. We prove the theorem for the case \sigma = 1 and then note that by applying
the scaling x = y/\sigma we get the general case.

Our main tool, as in previous work, is the localization lemma of Lov\'asz and
Simonovits [21]. Suppose the conclusion is false. Define h(x) = f(x)\gamma (x). Then there
exists a partition S1, S2, S3 for which, for some positive real number A,\int 

S1

h(x) dx = A

\int 
\BbbR n

h(x) dx,\int 
S3

h(x) dx < dA

\int 
S2

h(x) dx.

By the localization lemma, there must be a ``needle"" given by a, b \in \BbbR n and a non-
negative linear function l : [0, 1] \rightarrow \BbbR + for which\int 

(1 - t)a+tb\in S1\cap [0,1]

h((1 - t)a+ tb)l(t)n - 1 dt

= A

\int 
(1 - t)a+tb\in [0,1]

h((1 - t)a+ tb)l(t)n - 1 dt

and \int 
(1 - t)a+tb\in S3\cap [0,1]

h((1 - t)a+ tb)l(t)n - 1 dt

< dA

\int 
(1 - t)a+tb\in S2\cap [0,1]

h((1 - t)a+ tb)l(t)n - 1 dt.
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1248 BEN COUSINS AND SANTOSH VEMPALA

We can assume that Zi = \{ t : (1 - t)a+tb \in Si\} are intervals that partition [a, b]; other-
wise, we can apply a standard combinatorial argument as in the proof of Theorem 5.2
in [18] to reduce to the interval case. Thus, to reach a contradiction, it suffices to prove
that for a one-dimensional logconcave function h(t) = f((1 - t)a+ tb)\gamma ((1 - t)a+ tb)
with support [a, b] \subset \BbbR and a \leq u \leq v \leq b the following statements hold:

\int b

a

h(t)l(t)n - 1 dt

\int v

u

h(t)l(t)n - 1 dt \geq dh(u, v)

4
\surd 
n

\int u

a

h(t)l(t)n - 1 dt

\int b

v

h(t)l(t)n - 1 dt,

(5.2)

\int b

a

h(t)l(t)n - 1 dt

\int v

u

h(t)l(t)n - 1 dt

\geq ln(2)\| u - v\| 
\int u

a

h(t)l(t)n - 1 dt

\int b

v

h(t)l(t)n - 1 dt.(5.3)

The first inequality (5.2) follows directly from Lemma 3.8 in [19] by taking F = h and
g = \ell . To see the second inequality (5.3), we first note that by applying Theorem 5.1,
with \alpha = 2, we have that the variance of the distribution proportional to h(t)l(t)n - 1

is at most 1. This is because h(t)l(t)n - 1 = (f((1  - t)a + tb)l(t)n - 1)\gamma ((1  - t)a + tb)
and the f((1  - t)a + tb)l(t)n - 1 is itself a logconcave function. Now we note that by
scaling down to increase the variance to exactly 1 the isoperimetric inequality still
holds. Hence, the second inequality is implied by Lemma 5.3.

6. Sampling. The analysis of the sampling algorithm is divided into several
parts: bounding the conductance of the speedy walk, bounding the warmth of the
distribution from one phase to the next, the mixing time of the Metropolis ball walk
from a warm start, and finally the complexity of sampling.

6.1. Conductance. For this section, let f : \BbbR n \rightarrow R denote the Gaussian den-
sity function

f(x) = exp

\biggl( 
 - \| x\| 2

2\sigma 2

\biggr) 
.

For x \in K and S \subseteq K, let Px(S) denote the probability that one step of the
speedy walk from x is in S:

Px(S) =

\int 
S\cap (x+\delta Bn)

min
\Bigl\{ 
1, f(y)

f(x)

\Bigr\} 
dy

\sansv \sanso \sansl (K \cap (x+ \delta Bn))
=

\int 
S\cap (x+\delta Bn)

min
\Bigl\{ 
1, f(y)

f(x)

\Bigr\} 
dy

\ell (x)\sansv \sanso \sansl (\delta Bn)
.

We bound the rate of convergence of the random walk through a lower bound
on the conductance. The conductance \phi of a Markov chain with state space K and
next-step distribution Px is defined as

\phi = min
S\subset K

\int 
S
Px(K\setminus S)dQ(x)

min\{ Q(S), Q(K\setminus S)\} 
.

We will make use of the following theorem of Lov\'asz and Simonovits [21] to
bound the total variation distance between the current distribution and the target
distribution.
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Theorem 6.1 (see [21]). Let Qt be the distribution after t steps of a lazy Markov
chain and Q be its stationary distribution. Suppose that Q0 is M -warm with respect
to Q. Then

dtv(Qt, Q) \leq 
\surd 
M

\biggl( 
1 - \phi 2

2

\biggr) t

.

Lemma 6.2. For the speedy walk applied to a convex body K \subseteq 4\sigma 
\surd 
nBn with

\delta \leq \sigma /(8
\surd 
n), the acceptance probability of the Metropolis filter is at least 1

e .

Proof. Assume that f(x) \leq f(u) (otherwise, the Metropolis filter always accepts).
Then the acceptance probability is

f(x)

f(u)
= exp

\biggl( 
 - \| x\| 2  - \| u\| 2

2\sigma 2

\biggr) 
\geq exp

\biggl( 
 - (\| u\| + \delta )2  - \| u\| 2

2\sigma 2

\biggr) 
= exp

\biggl( 
 - 2\delta \| u\| + \delta 2

2\sigma 2

\biggr) 
\geq exp

\biggl( 
 - \sigma 2 + \sigma 2/(64n)

2\sigma 2

\biggr) 
\geq 1

e
.

Lemma 6.3. Let K \subseteq 4\sigma 
\surd 
nBn be a convex body, and let u, v \in K such that

\| u - v\| \leq \delta /
\surd 
n. If \delta \leq \sigma /(8

\surd 
n), n \geq 2, and

| \ell (u)f(u) - \ell (v)f(v)| 
max\{ \ell (u)f(u), \ell (v)f(v)\} 

<
1

4
,

then
| \ell (u) - \ell (v)| 

max\{ \ell (u), \ell (v)\} 
<

1

2
.

Proof. Assume without loss of generality that \ell (u)f(u) \geq \ell (v)f(v). It follows
that

3f(u)\ell (u)

4
< f(v)\ell (v).

Since \| u  - v\| \leq \delta /
\surd 
n, we have that 2/3 \leq f(v)/f(u) \leq 3/2 for n \geq 2 (by an

argument identical to that in Lemma 6.2). Thus

\ell (u) <
4f(v)\ell (v)

3f(u)
\leq 2\ell (v).

By assumption, we have that f(u)\ell (u) > f(v)\ell (v). Thus we also have that

\ell (v) < 2\ell (u).

The lemma then follows.
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The following lemma bounds the overlap for a step of the speedy walk with
respect to the speedy walk. We then show that the Gaussian weighting only hurts by
a constant factor. For technical convenience, we define a slightly different one-step
distribution that ignores the Gaussian filter:

P \itu \itn \iti \itf 
x (S) =

\sansv \sanso \sansl (S \cap (x+ \delta Bn))

\ell (x)

for x \in K,S \subseteq K.

Lemma 6.4. Let K be a convex set with S \subseteq K. Let S = K\setminus S. Suppose that
d\ell (u, v) < 1/2 and \| u - v\| \leq \delta /

\surd 
n. Then, for u \in S and v \in S,

P \itu \itn \iti \itf 
u

\bigl( 
S
\bigr) 
+ P \itu \itn \iti \itf 

v (S) >
1

2(e+ 1)
.

Proof. Let Bu = u + \delta Bn, and let C = Bu \cap Bv. By Lemma 3.5 from [18], we
know that

(6.1) \sansv \sanso \sansl (K \cap C) \geq \sansv \sanso \sansl (\delta Bn)

e+ 1
min \{ \ell (u), \ell (v)\} .

We have that

P \itu \itn \iti \itf 
u (S) =

\sansv \sanso \sansl 
\bigl( 
S \cap Bu

\bigr) 
\ell (u)\sansv \sanso \sansl (\delta Bn)

\geq 
\sansv \sanso \sansl 
\bigl( 
S \cap C

\bigr) 
\ell (u)\sansv \sanso \sansl (\delta Bn)

,

and similarly for P \itu \itn \iti \itf 
v (S). Assume that \ell (u) \geq \ell (v), which implies that \ell (u) \leq 2\ell (v).

Therefore,

P \itu \itn \iti \itf 
u (S) + P \itu \itn \iti \itf 

v (S) \geq 
\sansv \sanso \sansl 
\bigl( 
S \cap C

\bigr) 
\ell (u)\sansv \sanso \sansl (\delta Bn)

+
\sansv \sanso \sansl (S \cap C)

\ell (v)\sansv \sanso \sansl (\delta Bn)

\geq 
\sansv \sanso \sansl 
\bigl( 
S \cap C

\bigr) 
2\ell (v)\sansv \sanso \sansl (\delta Bn)

+
\sansv \sanso \sansl (S \cap C)

\ell (v)\sansv \sanso \sansl (\delta Bn)

\geq \sansv \sanso \sansl (K \cap C)

2\ell (v)\sansv \sanso \sansl (\delta Bn)

\geq 1

2(e+ 1)
.

It then follows that the Gaussian filter decreases the overlap by at most a constant
factor.

Corollary 6.5. Let S, S be a partition of a convex body K \subseteq 4\sigma 
\surd 
nBn and

u \in S, v \in S be such that \| u - v\| < \delta /
\surd 
n and dh(u, v) < 1/4, where h(x) = f(x)\ell (x).

Then

Pu(S) + Pv(S) >
1

2e(e+ 1)
>

1

25
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Proof. By Lemma 6.3, we know that d\ell (u, v) < 1/2. We then apply Lemma 6.4,
while noting that the Gaussian weighting affects the one-step distributions by at most
a 1/e factor since that is a lower bound on the acceptance probability of the Metropolis
filter (Lemma 6.2).

We can now prove the desired lower bound on the conductance of the speedy walk
with respect to a Gaussian weighting over a convex set.

Theorem 6.6. Let K be a convex body such that Bn \subseteq K \subseteq 4\sigma 
\surd 
nBn. The

conductance of the speedy walk applied to K with Gaussian density \scrN (0, \sigma 2I) and
\delta \leq \sigma /8

\surd 
n steps is \Omega ( \delta 

\sigma 
\surd 
n
).

Proof. Let h(x) = \ell (x)f(x), and let \pi be the probability distribution proportional
to h. Let S \subset K be an arbitrary measurable set of K, and let S = K\setminus S. Assume
that \pi (S) \leq 1/2. Consider the following partition of K:

S1 =

\biggl\{ 
x \in S : Px(S) <

1

25

\biggr\} 
,

S2 =

\biggl\{ 
x \in S : Px(S) <

1

25

\biggr\} 
,

S3 = K\setminus S1\setminus S2.

By Corollary 6.5, we have that, for any u \in S1, v \in S2, either \| u - v\| \geq \delta /
\surd 
n or

dh(u, v) \geq 1/4.
We may assume that \pi (S1) \geq \pi (S)/2 and \pi (S2) \geq \pi (S)/2. If not, we can bound

the conductance of S as follows (similarly for S):

\phi (S) =

\int 
S

Px(S)h(x) dx

\pi (S)

=
1

2

\int 
S

Px(S)h(x) dx+

\int 
S

Px(S)h(x) dx

\pi (S)

\geq 1

2

\int 
S3

h(x)

20
dx

\pi (S)

=
1

50

\pi (S3)

\pi (S)

\geq 1

100
.

Now we can apply Theorem 5.4 with

d = min

\biggl\{ 
\delta ln 2\surd 

n
,

1

16
\surd 
n

\biggr\} 
to the partition S1, S2, S3 to get

\pi (S3) \geq 
d

\sigma 
\pi (S1)\pi (S2).
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Using the above, we get that

\phi (S) \geq 1

50

\pi (S3)

\pi (S1)

\geq d

50\sigma 

\pi (S1)\pi (S2)

\pi (S1)

\geq d

200\sigma 

\geq \delta 

300\sigma 
\surd 
n
,

which proves the theorem.

6.2. Getting a warm start. The following two lemmas guarantee that the ball
walk in the algorithm will always have a warm start, i.e., the M -warmness (3.1) is
bounded by a constant. The first lemma bounds the warmness under the fixed cooling
rate of 1 + 1/n.

Lemma 6.7. Let K \subseteq \BbbR n, \sigma 2
i+1 = \sigma 2

i (1 + 1/n), and fi(x) = exp
\bigl( 
 - \| x\| 2/(2\sigma 2

i )
\bigr) 
.

Denote Qi as the associated probability distribution of fi over K. Then we can bound
the warmness between successive

M(Qi, Qi+1) \leq 
\surd 
e.

The following lemma bounds the warmness when the cooling schedule begins to
accelerate under the roundness condition.

Lemma 6.8. Let K \subseteq C
\surd 
n \cdot Bn, let \sigma 

2
i+1 = \sigma 2

i (1 + \sigma 2
i /(C

2n)), and let fi(x) =
exp

\bigl( 
 - \| x\| 2/(2\sigma 2

i )
\bigr) 
. Denote Qi as the associated probability distribution of fi over K.

Then we can bound the warmness between successive phases as

M(Qi, Qi+1) \leq 
\surd 
e.

Proof of Lemma 6.7. Let

A =

\int 
K
fi+1(x) dx\int 

K
fi(x) dx

.

Then

M(Qi, Qi+1) = sup
S\subseteq K

Qi(S)

Qi+1(S)

\leq sup
x\in K

Qi(x)

Qi+1(x)

= sup
x\in K

A
fi(x)

fi+1(x)

= A \cdot sup
x\in K

exp

\biggl( 
 - \| x\| 2(1 + 1/n)

2n

\biggr) 
= A,

where the last line follows from the fact that 0 \in K.
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We will now bound A. First, we extend A to be over all \BbbR n instead of K and
then argue that it can only decrease when restricted to K.\int 

\BbbR n

exp
\Bigl( 
 - \| x\| 2

2\sigma 2
i+1

\Bigr) 
dx\int 

\BbbR n

exp
\Bigl( 
 - \| x\| 2

2\sigma 2
i

\Bigr) 
dx

=
\sigma n
i+1

\sigma n
i

\cdot 
1

\sigma n
i+1

\int 
\BbbR n

exp
\Bigl( 
 - \| x\| 2

2\sigma 2
i+1

\Bigr) 
dx

1
\sigma n
i

\int 
\BbbR n

exp
\Bigl( 
 - \| x\| 2

2\sigma 2
i

\Bigr) 
dx

=
\sigma n
i+1

\sigma n
i

=

\biggl( 
1 +

1

n

\biggr) n/2

\leq 
\surd 
e.

Let \mu K(r) be the proportion of the sphere of radius r centered at 0 that is con-
tained in K. Since K is a convex body that contains 0, then r1 > r2 \Rightarrow \mu K(r1) \leq 
\mu K(r2). Then

A =

\int \infty 

0

rn - 1 exp
\Bigl( 
 - r2

2\sigma 2
i+1

\Bigr) 
\mu K(r) dr\int \infty 

0

rn - 1 exp
\Bigl( 
 - r2

2\sigma 2
i

\Bigr) 
\mu K(r) dr

.

Note that

rn - 1 exp
\Bigl( 
 - r2

2\sigma 2
i+1

\Bigr) 
rn - 1 exp

\Bigl( 
 - r2

2\sigma 2
i

\Bigr) 
is a monotonically increasing function in r. Since K is a convex body containing 0, we
can partition K into infinitesimally small cones centered at 0. Consider an arbitrary
cone C. \mu C(r) is 1 for r \in [0, r\prime ] and then 0 for r \in (r\prime ,\infty ) since K is convex. Since
the rest of the integrand is monotonically increasing, the integral over the cone only
gets larger by extending \mu C(r) to be 1 for r \in [0,\infty ). Therefore,\int \infty 

0
rn - 1 exp

\Bigl( 
 - r2

2\sigma 2
i+1

\Bigr) 
\mu C(r)dr\int \infty 

0
rn - 1 exp

\Bigl( 
 - r2

2\sigma 2
i

\Bigr) 
\mu C(r) dr

\leq 

\int \infty 
0

rn - 1 exp
\Bigl( 
 - r2

2\sigma 2
i+1

\Bigr) 
dr\int \infty 

0
rn - 1 exp

\Bigl( 
 - r2

2\sigma 2
i

\Bigr) 
dr

\leq 
\surd 
e.

Since C was an arbitrary cone from a partition of A, we have that A \leq 
\surd 
e.

Proof of Lemma 6.8. Note that

fi+1(x) = exp

\biggl( 
 - \| x\| 2

2\sigma 2
i+1

\biggr) 
= exp

\biggl( 
 - \| x\| 2

2\sigma 2
i (1 + \sigma 2

i /(C
2n))

\biggr) 
= exp

\biggl( 
 - \| x\| 2

2\sigma 2
i

\cdot 
\biggl( 
1 - \sigma 2

i /(C
2n)

1 + \sigma 2
i /(C

2n)

\biggr) \biggr) 
= fi(x) \cdot exp

\biggl( 
\| x\| 2

2C2n
\cdot 1

1 + \sigma 2
i /(C

2n)

\biggr) 
\leq fi(x) \cdot exp

\biggl( 
\| x\| 2

2C2n

\biggr) 
.
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We have that

M(Qi, Qi+1) = sup
S\subseteq K

Qi(S)

Qi+1(S)

\leq 
\int 
K
fi+1(x) dx\int 

K
fi(x) dx

\cdot sup
x\in K

fi(x)

fi+1(x)

=

\int 
K
fi+1(x) dx\int 

K
fi(x) dx

\cdot sup
x\in K

\biggl( 
exp

\biggl( 
 - \| x\| 2

2C2n
\cdot 1

1 + \sigma 2
i /(C

2n)

\biggr) \biggr) 

=

\int 
K
fi+1(x) dx\int 

K
fi(x) dx

\leq 
\int 
K
fi(x) exp

\bigl( 
\| x\| 2/(2C2n)

\bigr) 
dx\int 

K
fi(x) dx

\leq sup
x\in K

\biggl( 
exp

\biggl( 
\| x\| 2

2C2n

\biggr) \biggr) 

\leq 
\surd 
e

since \| x\| \leq C
\surd 
n.

6.3. Bounding wasted steps. The speedy walk is defined as the proper steps
of the ball walk, where the point the ball walk attempts to visit is contained in K.
For convenience, we restate the definition of the speedy walk from earlier (Figure 3).

Speedy Walk(\bfitdelta , \bfitf )
At current point x \in K, do the following:

1. Pick random point y from K \cap (x+ \delta Bn).
2. Go to y with probability min\{ 1, f(y)/f(x)\} ; otherwise,

stay at x.

Fig. 3. The speedy walk with a Metropolis filter.

To prove convergence of the ball walk with a Metropolis filter, we prove conver-
gence of the speedy walk and then bound the number of ``wasted"" steps. Note that
the speedy walk cannot be implemented as described in Figure 3 but is an analysis
tool to prove the mixing time of the ball walk.

Next, we bound the average number of wasted steps of the ball walk, i.e., when
the ball walk tries to visit a point not in K. The average local conductance of the
ball walk is defined as

\lambda (f) =

\int 
K
\ell (x)f(x) dx\int 
K
f(x) dx

.

We say that a density function f : \BbbR n \rightarrow \BbbR + is a-rounded if any level set L
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contains a ball of radius a \cdot \mu f (L). We now show that the average local conductance
is large, i.e., at least a constant.

Lemma 6.9. For any a-rounded logconcave density function f in \BbbR n where K =
supp(f),

\lambda (f) \geq 1 - 32
\delta 1/2n1/4

a1/2
.

Proof. Define \^f as the following smoothened version of f . Let D be a convex
subset of \delta Bn such that 16 \cdot \sansv \sanso \sansl (D) = \sansv \sanso \sansl (\delta Bn).

\^f(x) = min
D

\int 
y\in x+D

f(y) dy

\sansv \sanso \sansl (D)
.

Now Lemma 6.3 from [25] shows that\int 
K

\^f(x) dx \geq 1 - 32
\delta 1/2n1/4

a1/2
.

To complete the proof, we observe that, for any point x,

\ell (x)f(x) \geq \^f(x).

To see this, note that

\ell (x)f(x) = f(x)

\int 
K\cap (x+\delta Bn)

1 dy

\sansv \sanso \sansl (\delta Bn)

\geq 
\int 
x+\delta Bn

min\{ f(x), f(y)\} dy\int 
x+\delta Bn

1 dy

\geq 

\int 
y\in x+\delta Bn:f(y)\leq f(x)

f(y) dy\int 
y\in x+\delta Bn:f(y)\leq f(x)

1 dy

\geq \^f(x).

Lemma 6.10. The Gaussian \scrN (0, \sigma 2I) restricted to K containing a unit ball cen-
tered at 0 is min\{ \sigma , 1\} -rounded.

Proof. The level sets of the distribution are balls restricted to K. For the distri-
bution to be min\{ \sigma , 1\} -rounded, we need that a level set of measure k contains a ball
of radius k \cdot min\{ \sigma , 1\} . Consider the following function of t, which is an upper bound
on the measure of the ball of radius t \leq min\{ \sigma , 1\} since the unit ball is contained
in K:

g(t) =

\int t

0
xn - 1 exp

\Bigl( 
 - x2

2\sigma 2

\Bigr) 
dx\int min\{ \sigma ,1\} 

0
xn - 1 exp

\bigl( 
 - x2

2\sigma 2

\bigr) 
dx

.

Consider the second derivative of g:

g\prime \prime (t) =

\biggl( 
(n - 1) - t2

\sigma 2

\biggr) 
\cdot 

tn - 2 exp
\Bigl( 
 - t2

2\sigma 2

\Bigr) 
\int min\{ \sigma ,1\} 
0

xn - 1 exp
\bigl( 
 - x2

2\sigma 2

\bigr) 
dx

.

For g\prime \prime (t) to be nonnegative, we need \sigma 2(n  - 1)  - t2 \geq 0, which it is for n \geq 
2, t \in [0,min\{ \sigma , 1\} ]. Since g(0) = 0, g(min\{ \sigma , 1\} ) = 1, and the second derivative is
nonnegative, we then have that g(tmin\{ \sigma , 1\} ) \leq t for t \in [0, 1], which proves the
lemma.
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We now show that for an appropriate selection of ball radius the ball walk has
large average local conductance.

Lemma 6.11. If \delta \leq min\{ \sigma , 1\} /(4096
\surd 
n), then the average local conductance,

\lambda (f), for the density function f proportional to the Gaussian \scrN (0, \sigma 2In) restricted to
K containing the unit ball is at least 1/2.

Proof. Using Lemmas 6.9 and 6.10, we have that

\lambda (f) \geq 1 - 32
min\{ \sigma 1/2, 1\} n1/4

64n1/4 min\{ \sigma 1/2, 1\} 
=

1

2
.

The following lemma is shown in [9].

Lemma 6.12. If the average local conductance is at least \lambda , M(Q0, Q) \leq M , and
the speedy walk takes t steps, then the expected number of steps of the corresponding
ball walk is at most Mt/\lambda .

Proof. Since M(Q0, Q) \leq M , we have that, for all S \subseteq K,

Q0(S) \leq MQ(S),

and by induction on i we get that

Qi(S) =

\int 
K

Px(S)dQi - 1(x) \leq M

\int 
K

Px(S)dQ(x) = MQ(S).

For any point x, the expected number of steps until a proper step is made is
1/\ell (x). So, given a point from Qi, the expected number of steps to obtain a point
from Qi+1 is\int 

K

1

\ell (x)
dQi(x) \leq M

\int 
K

1

\ell (x)
dQ(x) = M

\int 
K

1

\lambda 
d \^Q(x) =

M

\lambda 
,

where \^Q is the corresponding distribution for the ball walk with a Metropolis filter
(i.e., with stationary distribution proportional to f(x)). If the speedy walk took t
steps, then by linearity of expectation the expected number of steps for the ball walk
is at most Mt/\lambda .

6.4. Mapping speedy distribution to target distribution. At the point
when the speedy walk has converged, we obtain a point approximately from the
speedy walk distribution \ell (x)f(x). We will use a rejection routine to map a random
point from this distribution to the target distribution f(x) while incurring a small
amount of additional sampling error. We adapt the proof of Theorem 4.16 of [19] to
the Gaussian setting.

Lemma 6.13. Assume that \| P  - \^Q\| tv \leq \varepsilon , Bn \subseteq K, \varepsilon \leq 1/10, and

\delta \leq min\{ \sigma , 1\} 
8
\sqrt{} 
n log(n/\varepsilon )

.

There is an algorithm that will use a constant number of random samples from P , in
expectation, to obtain a distribution R satisfying \| R - Q\| tv \leq 10\varepsilon .

Proof. The rejection routine is as follows: let c = 1 - 1/(2n). For a point u from
distribution \ell (x)f(x), let v = (1/c)u. Accept v with probability f(v)/f(u). Repeat
until we accept a v.
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The correctness of the above routine follows from the following two facts: (i) with
constant probability, the rejection sampling will succeed, and (ii) removing a thin
shell around the boundary makes \ell (x) look close to uniform on average.

Recall that \^Q is the speedy walk distribution and Q is the ball walk distribution.
Consider a level set \mu L = \{ x : f(x) \geq L\} . By logconcavity of f , \mu L is convex.

Recall that the level sets \mu L are balls intersected with K since f is a spherical
Gaussian distribution. From [19], if \mu L contains the unit ball, then\int 

\mu L\cap cK

(1 - \ell (x)) dx \leq \varepsilon \sansv \sanso \sansl (\mu L \cap cK) .

If \mu L does not contain the unit ball, a standard calculation (using that Bn \subseteq K)
shows that the local conductance is at least 1 - \varepsilon for every point, and thus\int 

\mu L\cap cK

(1 - \ell (x)) dx \leq \varepsilon \sansv \sanso \sansl (\mu L \cap cK).

Using the above, we see that\int 
cK

(1 - \ell (x)) f(x) dx =

\int \infty 

0

\int 
\mu L

(1 - \ell (x)) \{ x \in 1cK\} dx dL

\leq 
\int \infty 

0

\varepsilon \sansv \sanso \sansl (\mu L \cap cK) dL

= \varepsilon 

\int 
cK

f(x) dx.

Then

\^Q(cK) =

\int 
cK

\ell (x)f(x) dx\int 
K

\ell (x)f(x) dx

=

\int 
cK

f(x) dx - 
\int 

cK

(1 - \ell (x)) f(x) dx\int 
K

\ell (x)f(x) dx

\geq 
(1 - \varepsilon )

\int 
cK

f(x) dx\int 
K

\ell (x)f(x) dx

(6.2)

=

(1 - \varepsilon )cn
\int 

K

f
\bigl( 
x
c

\bigr) 
dx\int 

K

\ell (x)f(x) dx

\geq 
(1 - \varepsilon )

\int 
K

f(x) dx

2

\int 
K

\ell (x)f(x) dx

\geq 9

20
.(6.3)
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Similarly,

(6.4) \^Q(cS) \leq 

\int 
cS

f(x) dx\int 
K

\ell (x)f(x) dx

.

Let P \prime be the distribution of the first sample from P which satisfies (1/c)x \in K.
Define

z(x) =

\Biggl\{ 
f(cx) if x \in K,

0 otherwise,

and let Z be the probability distribution corresponding to z. Then

P \prime (S) - Z(S) =
P (cS)

P (cK)
 - Q(cS)

Q(cK)

\leq 
\^Q(cS) + \varepsilon 

\^Q(cK) - \varepsilon 
 - Q(cS)

Q(cK)

\leq 

\int 
cS

f(x) dx+ \varepsilon 

\int 
K

\ell (x)f(x) dx

(1 - \varepsilon )

\int 
cK

f(x) dx - \varepsilon 

\int 
K

\ell (x)f(x) dx

 - 

\int 
cS

f(x) dx\int 
cK

f(x) dx

by (6.2), (6.4)

\leq 1 + 3\varepsilon 

1 - 3\varepsilon 
 - 1 by (6.3)

\leq 10\varepsilon .

Then accept a point x with probability f(x)/z(x), which is at least a constant
since \| x\| \leq 4\sigma 

\surd 
n. The overall expected number of rejection steps is a constant since

\^Q(cK) \geq 9/20.

6.5. Proof of sampling theorems. We can now prove Theorems 1.4 and 1.5
for sampling a Gaussian distribution restricted to a convex body.

Proof of Theorem 1.5. By Theorems 6.6 and 6.1, we have that selecting \delta =
min\{ \sigma , 1\} /(4096

\surd 
n) implies that the speedy walk starting from a distribution that

is M -warm will be within total variation distance \nu of the target distribution in
O(max\{ \sigma 2, 1\} n2 log(n/\nu ) log(M/\nu )) steps.

By Lemma 6.12, the ball walk will, in expectation, take at most 2M times as
many steps since the average local conductance \lambda is at least 1/2. Therefore, the
total number of expected ball walk steps is O(M max\{ \sigma 2, 1\} n2 log(n/\nu ) log(M/\nu )).
We then repeat this walk O(1) times until we obtain a point from the proper target
distribution using Lemma 6.13.

Proof of Theorem 1.4. Note that here we are analyzing the sampling phases of
Figure 2 and only the phases when \sigma 2 \leq 1. For these phases, we restrict K to a
ball radius 4\sigma 

\surd 
n, which only ignores an exponentially small fraction of the Gaussian

measure by Corollary 5.2 (note that since K is convex and contains the origin, the
mean of the Gaussian restricted to K is at most 2\sigma 

\surd 
n).

By Theorem 1.5, the ball walk will take O(M max\{ \sigma 2, 1\} n2 log(n/\nu ) log(M/\nu ))
steps in expectation. By Lemma 6.7, each phase will always provide a warm start to
the next, i.e., M = O(1). By assigning a sampling error \nu = (\varepsilon /n)16 to each phase,
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we ensure that the overall sampling failure is at most \varepsilon by a straightforward union
bound. Therefore, each sampling phase takes

O
\Bigl( 
n2 log2

\Bigl( n
\varepsilon 

\Bigr) \Bigr) 
expected steps of the ball walk. Adding up across phases introduces an additional
n log n factor since we increase \sigma 2 by the rate of 1 + 1/n between phases.

If we want to instead run for a fixed number of steps, we can keep a global counter
of the ball walk steps. Say the expected number of ball walk steps is T . If at any point
the number of ball walk steps goes above 2T , we abandon this run of the algorithm.
The probability of a single run failing is at most 1/2 by Markov's inequality. If we
want an overall failure probability of at most p, then we can run log(1/p) iterations
of the algorithm and, with probability 1 - p, at least one of them will succeed.

Proof of Theorem 1.2. The proof of Theorem 1.2, which extends Gaussian sam-
pling to uniform sampling, follows along the same lines as Theorem 1.4. When \sigma 2 \leq 1,
the total expected ball walk steps is

O
\Bigl( 
n3 log(n) log2

\Bigl( n
\varepsilon 

\Bigr) \Bigr) 
.

When \sigma 2 > 1, we additionally use Lemma 6.8, which implies that we can acceler-
ate our cooling rate and still maintain a warm start. This accelerated rate allows us to
overcome the increased mixing time of O\ast (max\{ \sigma 2, 1\} n2) once \sigma 2 \geq 1. Now consider a
``chunk"" of phases as a set of phases until \sigma 2 doubles. There will be O(C2n/\sigma 2) phases
in a chunk, where each chunk has expected mixing time O(\sigma 2n2 log(n/\varepsilon )). Since there
are O(log n) chunks (provided C = poly(n)), the total number of expected ball walk
steps when \sigma 2 > 1 is

O
\Bigl( 
C2n2 log(n) log

\Bigl( n
\varepsilon 

\Bigr) \Bigr) 
.

Note that this will yield a random sample with respect to a Gaussian with \sigma 2 =
C2n restricted to K. We can map this point to a uniform random point using simple
rejection sampling, which will succeed with probability at least 1/e since K \subseteq C

\surd 
n.

If it fails, we can restart the algorithm. As with Theorem 1.4, we can repeat log(1/p)
times to transform the expected ball walk steps into a fixed number of steps with
success probability 1 - p.

7. Analysis of the volume algorithm.

7.1. Accelerated cooling schedule. The goal of this section is to prove Lemma
3.2, which gives a bound on the variance of the random variable we use to estimate the
ratio of Gaussian integrals in the volume algorithm in Figure 2. Here we will actually
prove the inequality to be true for all logconcave functions but only apply it to an
indicator function of a convex body. Let f : \BbbR n \rightarrow \BbbR be a logconcave distribution
such that EX\sim f (\| X\| 2) = R2.

Define

g(x, \sigma 2) = f(x) exp

\biggl( 
 - \| x\| 2

2\sigma 2

\biggr) 
,

and also define

G(\sigma 2) =

\int 
\BbbR n

g(x, \sigma 2) dx.
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1260 BEN COUSINS AND SANTOSH VEMPALA

Define \mu i as the probability distribution proportional to g(x, \sigma 2
i ). Let X be a ran-

dom sample from \mu i, and let Y = g(X,\sigma 2
i+1)/g(X,\sigma 2

i ). From a standard calculation,
we have that

\sansE (Y ) =
G(\sigma 2

i+1)

G(\sigma 2
i )

.

The second moment of Y is given by

\sansE (Y 2) =

\int 
\BbbR n

\biggl( 
g(x, \sigma 2

i+1)

g(x, \sigma 2
i )

\biggr) 2

d\mu i(x)

=

\int 
\BbbR n

\biggl( 
g(x, \sigma 2

i+1)

g(x, \sigma 2
i )

\biggr) 2

\cdot g(x, \sigma 
2
i )

G(\sigma 2
i )

dx

=
1

G(\sigma 2
i )

\int 
\BbbR n

g(x, \sigma 2
i+1)

2

g(x, \sigma 2
i )

dx

=
1

G(\sigma 2
i )

\int 
\BbbR n

g

\biggl( 
x,

\sigma 2
i+1\sigma 

2
i

2\sigma 2
i  - \sigma 2

i+1

\biggr) 
dx

=
G(

\sigma 2
i+1\sigma 

2
i

2\sigma 2
i - \sigma 2

i+1
)

G(\sigma 2
i )

.

To bound the number of samples X needed to estimate Y within a target relative
error, we will bound \sansE (Y 2)/\sansE (Y )2, which is given by

\sansE (Y 2)

\sansE (Y )2
=

G(
\sigma 2
i+1\sigma 

2
i

2\sigma 2
i - \sigma 2

i+1
)G(\sigma 2

i )

G(\sigma 2
i+1)

2
.

Then, letting \sigma 2 = \sigma 2
i+1 and \sigma 2

i = \sigma 2/(1 + \alpha ), we can further simplify to

\sansE (Y 2)

\sansE (Y )2
=

G
\Bigl( 

\sigma 2

1+\alpha 

\Bigr) 
G
\Bigl( 

\sigma 2

1 - \alpha 

\Bigr) 
G(\sigma 2)2

.

The above n-dimensional inequality is difficult to analyze directly. We will reduce
it to a simpler one-dimensional inequality via localization. Define an exponential
needle E = (a, b, \gamma ) as a segment [a, b] \subseteq \BbbR n and \gamma \in \BbbR corresponding to the weight
function e\gamma t applied to the segment [a, b]. The integral of an n-dimensional function
h : \BbbR n \rightarrow \BbbR over this one-dimensional needle is\int 

E

h =

\int | b - a| 

0

h(a+ tu)e\gamma t dt, where u =
b - a

| b - a| 
.

We use the following theorem from [18].

Theorem 7.1 (Theorem 2.7 in [18]). Let f1, f2, f3, f3 be four nonnegative con-
tinuous functions defined on \BbbR n, and let \alpha , \beta > 0. Then the following are equivalent:

1. For every logconcave function F defined on \BbbR n with compact support,\biggl( \int 
\BbbR n

F (t)f1(t) dt

\biggr) \alpha \biggl( \int 
\BbbR n

F (t)f2(t) dt

\biggr) \beta 

\leq 
\biggl( \int 

\BbbR n

F (t)f3(t) dt

\biggr) \alpha \biggl( \int 
\BbbR n

F (t)f4(t) dt

\biggr) \beta 

.

D
ow

nl
oa

de
d 

09
/1

6/
19

 to
 1

65
.2

30
.2

25
.6

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GAUSSIAN COOLING AND O\ast (n3) VOLUME ALGORITHMS 1261

2. For every exponential needle E,\biggl( \int 
E

f1

\biggr) \alpha \biggl( \int 
E

f2

\biggr) \beta 

\leq 
\biggl( \int 

E

f3

\biggr) \alpha \biggl( \int 
E

f4

\biggr) \beta 

.

A crucial aspect of our proof is that we can restrict the support of our target
logconcave function f , which then allows us to consider a restricted family of needles.
Recall that we assumed \sansE X\sim f (\| X\| 2) = R2. Set R1 = 2R \cdot log(1/\varepsilon ). By the following
lemma from [25], if we restrict the support of f to be R1 \cdot Bn, we only lose an \varepsilon /2
fraction of the mass.

Lemma 7.2 (Lemma 5.17 in [25]). Let X \in \BbbR n be a random point from a log-
concave distribution with \sansE (X2) = R2. Then, for any t > 1, Pr(\| X\| > tR) <
exp ( - R+ 1).

We can now reduce the desired inequality to a simpler form of exponential needles,
which are restricted to lie in the interval [ - R1, R1].

Lemma 7.3. If, for all intervals [\ell , u] \subseteq [ - R1, R1] and \gamma > 0,\int u

\ell 

exp (\gamma t) exp
\Bigl( 
 - t2(1+\alpha )

2\sigma 2

\Bigr) 
dt \cdot 

\int u

\ell 

exp (\gamma t) exp
\Bigl( 
 - t2(1 - \alpha )

2\sigma 2

\Bigr) 
dt\biggl( \int u

\ell 

exp (\gamma t) exp
\bigl( 
 - t2

2\sigma 2

\bigr) 
dt

\biggr) 2 \leq c,

then, for all logconcave functions f defined on \BbbR n whose support is a compact subset
of R1 \cdot Bn,

G( \sigma 2

1+\alpha )G( \sigma 2

1 - \alpha )

G(\sigma 2)2
\leq c.

Proof. Define \left\{         
f1(x) = exp

\Bigl( 
 - \| x\| 2(1+\alpha )

2\sigma 2

\Bigr) 
if x \in R1Bn,

f2(x) = exp
\Bigl( 
 - \| x\| 2(1 - \alpha )

2\sigma 2

\Bigr) 
if x \in R1Bn,

f3(x) = f4(x) = exp
\Bigl( 
 - \| x\| 2

2\sigma 2

\Bigr) 
if x \in R1Bn,

and define fi(x) = 0 for all x /\in R1Bn, i = 1, 2, 3, 4. Applying Theorem 7.1, by setting
F (x) = f(x) and \alpha = \beta = 1 we have that

G( \sigma 2

1+\alpha )G( \sigma 2

1 - \alpha )

G(\sigma 2)2
\leq c

if, for all exponential needles E \subseteq \BbbR n,

(7.1)

\int 
E

f1(x) dx

\int 
E

f2(x) dx\biggl( \int 
E

f3(x) dx

\biggr) 2 \leq c.

To prove the lemma, we will show that we can reduce the inequality in (7.1) for an
arbitrary exponential needle E \subseteq \BbbR n to the simpler form. E is defined by an interval
\scrI in \BbbR n and an arbitrary exponential function exp (\gamma t) on \scrI . Note that we may set
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\scrI = \scrI \cap R1Bn without altering inequality (7.1). Define z as the closest distance from
the origin to the extension of the \scrI in both directions. Parameterize the interval \scrI in
terms of t, where t = 0 gives the closest point along the extension of \scrI to the origin
(note that t = 0 does not necessarily have to be on \scrI ). Also define the minimum
and maximum values of t on \scrI as \ell and u, respectively, where [\ell , u] \subseteq [ - R1, R1] since
\scrI \subseteq R1Bn. We then have that\int 

E

g(\sigma 2, x) dx =

\int u

\ell 

exp (\gamma t) exp

\biggl( 
 - t2 + z2

2\sigma 2

\biggr) 
dt

= exp

\biggl( 
 - z2

2\sigma 2

\biggr) 
\cdot 
\int u

\ell 

exp (\gamma t) exp

\biggl( 
 - t2

2\sigma 2

\biggr) 
dt.

Note that in the integral ratio the terms with z cancel out since

exp

\biggl( 
 - (1 + \alpha )z2

2\sigma 2
 - (1 - \alpha )z2

2\sigma 2
+

2z2

2\sigma 2

\biggr) 
= 1,

which then proves the lemma.

Before bounding the simpler form of the variance inequality obtained by
Lemma 7.3, we first prove the following two helper lemmas.

Lemma 7.4. Let X be a random variable with \sansE (X4) < \infty , and let a \leq X \leq b.
Then

\sansE (X4) - \sansE (X2)2 \leq 4max\{ a2, b2\} \sansV \sansa \sansr (\sansX ).

Proof. Let Y be an independent random variable drawn from the same distribu-
tion as X. Then

2\sansV \sansa \sansr (X2) = \sansV \sansa \sansr (X2) + \sansV \sansa \sansr (Y 2)

= \sansE (X4) - \sansE (X2)2 + \sansE (Y 4) - \sansE (Y 2)2

= \sansE (X4) - 2\sansE (X2)\sansE (Y 2) + \sansE (Y 4)

= \sansE 
\bigl( 
(X2  - Y 2)2

\bigr) 
= \sansE 

\bigl( 
(X + Y )2(X  - Y )2

\bigr) 
\leq 4max\{ a2, b2\} \sansE 

\bigl( 
(X  - Y )2

\bigr) 
= 4max\{ a2, b2\} \sansE 

\bigl( 
X2  - 2XY + Y 2

\bigr) 
= 8max\{ a2, b2\} \sansV \sansa \sansr (X).

Lemma 7.5. Let [\ell , u] \subseteq [ - R1, R1] and

v(x) =

\int u

\ell 
t2 exp (\gamma t) exp

\Bigl( 
 - t2x

2\sigma 2

\Bigr) 
dt\int u

\ell 
exp (\gamma t) exp

\bigl( 
 - t2x

2\sigma 2

\bigr) 
dt

.

Then v\prime (x) \geq  - 2R2
1/x.

Proof. For convenience, define

s(x, t) = exp (\gamma t) exp

\biggl( 
 - t2x

2\sigma 2

\biggr) 
.
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We have that

v\prime (x) =

\biggl( 
1

2\sigma 2

\biggr) 
\cdot 

\biggl( \int u

\ell 

t2s(x, t) dt

\biggr) 2

 - 
\int u

\ell 

s(x, t) dt

\int u

\ell 

t4s(x, t) dt\biggl( \int u

\ell 

s(x, t) dt

\biggr) 2 .

Observe that the above quantity is the difference of moments of a truncated Gaussian
distribution. We then have that

v\prime (x) =

\biggl( 
1

2\sigma 2

\biggr) 
\cdot 
\bigl( 
\sansE (X2)2  - \sansE (X4)

\bigr) 
, where X \sim \scrN 

\biggl( 
\gamma \sigma 2

x
,
\sigma 2

x

\biggr) \bigm| \bigm| \bigm| \ell \leq X \leq u

\geq  - 2R2
1

\sigma 2
\cdot \sansV \sansa \sansr (X) by Lemma 7.4

\geq  - 2R2
1

\sigma 2
\cdot \sigma 

2

x
by Theorem 5.1

=  - 2R2
1

x
,

where in the second-to-last step we used the fact that by truncating a Gaussian its
variance can only go down. To see this, let Z \sim \scrN (0, 1) and Zh \sim Z \cap [a, b] for any
[a, b] \subseteq \BbbR . Then Theorem 5.1 says that \sansV \sansa \sansr (Zh) \leq \sansV \sansa \sansr (Z) by letting \alpha = 2; the case
for general Gaussians is then obtained by rescaling and shifting.

The following lemma now proves the variance bound.

Lemma 7.6. Let [\ell , u] \subseteq [ - R1, R1] and \alpha \leq 1/2. Then\int u

\ell 

exp (\gamma t) exp
\Bigl( 
 - t2(1+\alpha )

2\sigma 2

\Bigr) 
dt \cdot 

\int u

\ell 

exp (\gamma t) exp
\Bigl( 
 - t2(1 - \alpha )

2\sigma 2

\Bigr) 
dt\biggl( \int u

\ell 

exp (\gamma t) exp
\bigl( 
 - t2

2\sigma 2

\bigr) 
dt

\biggr) 2 \leq exp

\biggl( 
2 \cdot R

2
1\alpha 

2

\sigma 2

\biggr) 
.

Proof. Again for convenience, define

s(x, t) = exp (\gamma t) exp

\biggl( 
 - t2x

2\sigma 2

\biggr) 
.

Define

h(\alpha ) :=

\int u

\ell 

s(1 + \alpha , t) dt \cdot 
\int u

\ell 

s(1 - \alpha , t) dt\biggl( \int u

\ell 

s(1, t) dt

\biggr) 2 .

Note that the lemma is equivalent to bounding h(\alpha ). We first prove the following
claim, from which the lemma will easily follow.

Claim 7.7. For \alpha \leq 1/2,

h\prime (\alpha ) \leq 4 \cdot \alpha R2 \cdot h(\alpha )
\sigma 2
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Proof. First, observe that

\partial 

\partial \alpha 

\Bigl( 
s(1 + \alpha , t)

\Bigr) 
=

\partial 

\partial \alpha 

\biggl( \int u

\ell 

exp (\gamma t) exp

\biggl( 
 - t2(1 + \alpha )

2\sigma 2

\biggr) 
dt

\biggr) 

=
 - 1

2\sigma 2

\biggl( \int u

\ell 

t2 exp (\gamma t) exp

\biggl( 
 - t2(1 + \alpha )

2\sigma 2

\biggr) 
dt

\biggr) 
,

and similarly

\partial 

\partial \alpha 

\Bigl( 
s(1 - \alpha , t)

\Bigr) 
=

1

2\sigma 2

\biggl( \int u

\ell 

t2 exp (\gamma t) exp

\biggl( 
 - t2(1 - \alpha )

2\sigma 2

\biggr) 
dt

\biggr) 
.

Then taking the derivative of h(\alpha ) with respect to \alpha gives

\partial 

\partial \alpha 
(h(\alpha )) =

\partial 

\partial \alpha 

\left(     
\int u

\ell 

s(1 + \alpha , t) dt \cdot 
\int u

\ell 

s(1 - \alpha , t) dt\biggl( \int u

\ell 

s(1, t) dt

\biggr) 2

\right)     

=
1

2\sigma 2
\cdot 

\int u

\ell 

s(1 + \alpha , t) dt \cdot 
\int u

\ell 

t2s(1 - \alpha , t) dt - 
\int u

\ell 

s(1 - \alpha , t) dt \cdot 
\int u

\ell 

t2s(1 + \alpha , t) dt\biggl( \int u

\ell 

s(1, t) dt

\biggr) 2 .

We now have that h\prime (\alpha )/h(\alpha ) is equal to

1

2\sigma 2
\cdot 

\left(  \int u

\ell 
t2 exp (\gamma t) exp

\Bigl( 
 - t2(1 - \alpha )

2\sigma 2

\Bigr) 
dt\int u

\ell 
exp (\gamma t) exp

\Bigl( 
 - t2(1 - \alpha )

2\sigma 2

\Bigr) 
dt

 - 

\int u

\ell 
t2 exp (\gamma t) exp

\Bigl( 
 - t2(1+\alpha )

2\sigma 2

\Bigr) 
dt\int u

\ell 
exp (\gamma t) exp

\Bigl( 
 - t2(1+\alpha )

2\sigma 2

\Bigr) 
dt

\right)  .

Let

v(x) =

\int u

\ell 
t2 exp (\gamma t) exp

\Bigl( 
 - t2nx

2\sigma 2

\Bigr) 
dt\int u

\ell 
exp (\gamma t) exp

\bigl( 
 - t2nx

2\sigma 2

\bigr) 
dt

.

We then have that

h\prime (\alpha )

h(\alpha )
=  - 1

2\sigma 2

\biggl( \int 1+\alpha 

1 - \alpha 

v\prime (x) dx

\biggr) 
\leq 1

2\sigma 2

\biggl( \int 1+\alpha 

1 - \alpha 

2R2
1

x
dx

\biggr) 
by Lemma 7.5

=
R2

1

\sigma 2
ln

\biggl( 
1 + \alpha 

1 - \alpha 

\biggr) 
\leq 2R2

1\alpha 

\sigma 2(1 - \alpha )
using ln(1 + x) \leq x

\leq 4R2
1\alpha 

\sigma 2
.
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By Claim 7.7, we then have a bound on h(\alpha ) as follows:

lnh(\alpha ) = lnh(0) +

\int \alpha 

0

d

dx
(lnh(x)) dx

= ln(1) +

\int \alpha 

0

h\prime (x)

h(x)
dx

\leq 
\int \alpha 

0

4R2
1x

\sigma 2
dx

\leq 2R2
1\alpha 

2

\sigma 2
,

and thus

h(\alpha ) \leq exp

\biggl( 
2R2

1\alpha 
2

\sigma 2

\biggr) 
.

Lemma 7.8. Suppose a logconcave function f : \BbbR n \rightarrow \BbbR has support contained in
R1 \cdot Bn. Let g(x, \sigma 2) = f(x) exp

\bigl( 
 - \| x\| 2/(2\sigma 2)

\bigr) 
. Let X be drawn from a distribution

proportional to g(x, \sigma 2), and let Y = g(X,\sigma 2(1 + \alpha ))/g(X,\sigma 2). Then, for \alpha \leq 1/2,

\sansE (Y 2)

\sansE (Y )2
\leq exp

\biggl( 
2R2

1\alpha 
2

\sigma 2

\biggr) 
.

Proof. It follows immediately from Lemmas 7.3 and 7.6.

The bound in Lemma 3.2 then follows by applying Lemma 7.8 with the indicator
function of a convex body.

7.2. Proof of the main theorem. In this section, we prove Theorem 1.1 by
analyzing the runtime of the algorithm in Figure 2 and also showing that the volume
estimate it computes is accurate.

The following two lemmas say that the beginning and ending \sigma 2 for the algorithm
are sufficient.

Lemma 7.9. If \sigma 2 \leq 1/(n+
\sqrt{} 
8n ln(1/\varepsilon )) and Bn \subseteq K, then\int 

K

exp

\biggl( 
 -  - \| x\| 2

2\sigma 2

\biggr) 
dx \geq (1 - \varepsilon )

\int 
\BbbR n

exp

\biggl( 
 -  - \| x\| 2

2\sigma 2

\biggr) 
dx.

Proof. We will use the following concentration bound on a spherical Gaussian in
\BbbR n with mean \mu and variance \sigma 2, which is valid for t > 1 (see, e.g., [6]):

Pr(\| X  - \mu \| 2  - \sigma 2n > t\sigma 2
\surd 
n) \leq e - t2/8.

Selecting \mu = 0, t =
\sqrt{} 
8 ln(1/\varepsilon ), and \sigma 2 = 1/(n+ t

\surd 
n) gives

Pr(\| X\| 2 > 1) \leq \varepsilon ,

and therefore all but an \varepsilon -fraction of the Gaussian is contained inside Bn (and there-
fore K).

Lemma 7.10. Let K \subseteq C
\surd 
nBn, fi(x) = exp( - \| x\| 2

2\sigma 2
i
), \sigma 2

i \geq C2n, and \sigma 2
i+1 = \infty .

Then, for X drawn from a distribution proportional to fi\cap K and Y = fi+1(X)/fi(X),

\sansE (Y 2)

\sansE (Y )2
\leq e2.
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1266 BEN COUSINS AND SANTOSH VEMPALA

Proof. Observe that fi(X) \geq 1/e since \| X\| 2 \leq C2n, and thus Y \leq e. Also note
that Y \geq 1. Therefore, \sansE (Y 2)/\sansE (Y )2 \leq e2.

We now bound the variance when \sigma 2 is small. First, we will need the following
lemma that is proved in [24].

Lemma 7.11 (Lemma 3.2 in [24]). Let K \subseteq \BbbR n be a convex body and f : K \rightarrow \BbbR 
be a logconcave function. For any a > 0, define

Z(a) =

\int 
K

f(ax)dx.

Then anZ(a) is a logconcave function of a.

Lemma 7.12. Assume n \geq 3. Let X be a random point in K with density pro-

portional to fi(x) = exp
\bigl( 
 - \| x\| 2

2\sigma 2
i

\bigr) 
, \sigma 2

i+1 = \sigma 2
i (1 + \alpha ), and Y = fi+1(X)/fi(X). If

\alpha = 1/n, then
\sansE (Y 2)

\sansE (Y )2
< 1 +

2

n
.

Proof. For convenience, let \sigma = \sigma i+1. Then

\sansE (Y 2)

\sansE (Y )2
=

\int 
K

exp
\Bigl( 
 - \| x\| 2(1 - \alpha )

2\sigma 2

\Bigr) 
dx

\int 
K

exp
\Bigl( 
 - \| x\| 2(1+\alpha )

2\sigma 2

\Bigr) 
dx\biggl( \int 

K

exp
\Bigl( 
 - \| x\| 2

2\sigma 2

\Bigr) 
dx

\biggr) 2 .

By Lemma 7.11, the function z(a) = an+1
\int 
K
exp

\bigl( 
 - a\| x\| 2/2

\bigr) 
dx is logconcave,

and thus

z

\biggl( 
1 - \alpha 

\sigma 2

\biggr) 
z

\biggl( 
1 + \alpha 

\sigma 2

\biggr) 
\leq z

\biggl( 
1

\sigma 2

\biggr) 2

.

Therefore, \int 
K

exp

\biggl( 
 - \| x\| 2(1 - \alpha )

2\sigma 2

\biggr) 
dx

\int 
K

exp

\biggl( 
 - \| x\| 2(1 + \alpha )

2\sigma 2

\biggr) 
dx

\leq 
\biggl( 

1

1 - \alpha 2

\biggr) n+1\biggl( \int 
K

exp

\biggl( 
 - \| x\| 2

2\sigma 2

\biggr) 
dx

\biggr) 2

.

Setting \alpha = 1/n, we have that

\sansE (Y 2)

\sansE (Y )2
\leq 
\biggl( 

1

1 - 1/n2

\biggr) n+1

=

\biggl( 
1 +

1

n2  - 1

\biggr) n+1

\leq exp

\biggl( 
1

n - 1

\biggr) 
\leq 1 +

2

n
.

We now show that the volume estimate computed in Algorithm 2 is accurate.
Define Ri as the ith integral ratio, i.e.,

Ri :=
F (\sigma 2

i+1)

F (\sigma 2
i )

=

\int 
K
exp

\bigl( 
 - \| x\| 2/(2\sigma 2

i+1)
\bigr) 
dx\int 

K
exp ( - \| x\| 2/(2\sigma 2

i )) dx
,

and let Wi denote the estimate of the algorithm for Ri.
For two random variables X,Y , we will measure their independence by the fol-

lowing:
\mu (X,Y ) = sup

A,B
| P (X \in A, Y \in B) - P (X \in A)P (Y \in B)| ,
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where A,B range over measurable subsets of the ranges of X,Y .
We will give an argument similar to that in [24] and use the following lemmas

that were proved there.

Lemma 7.13 (Lemma 3.5 in [24]). If f and g are two measurable functions, then

\mu (f(X), g(Y )) \leq \mu (X,Y ).

Lemma 7.14 (Lemma 3.6 in [24]). Let X,Y be random variables such that 0 \leq 
X \leq a and 0 \leq Y \leq b. Then

| \sansE (XY ) - \sansE (X)E(Y )| \leq ab\mu (X,Y ).

Lemma 7.15 (Lemma 3.9 in [24]). Let X \geq 0 be a random variable, let a > 0,
and let X \prime = min(X, a). Then

\sansE (X \prime ) \geq E(X) - \sansE (X2)

4a
.

Lemma 7.16. With probability at least 4/5,

(1 - \varepsilon )R1 . . . Rm \leq W1 . . .Wm \leq (1 + \varepsilon )R1 . . . Rm.

Proof. Let (Xi
0, X

i
1, X

i
2, . . . , X

i
k) be the sequence of sample points for the ith vol-

ume phase. The distribution of each Xi is approximately the correct distribution
but slightly off based on the error parameter \nu in each phase that bounds the total

variation distance. We will define new random variables X
i

j that have the correct
distribution for each phase.

Note that X0
j would be sampled from the exact distribution and then rejected

if outside of K. Therefore, Pr(X0
j = X

0

j ) = 1. Suppose that the total number of
sample points throughout the algorithm is t. Using induction and the definition of
total variation distance, we see that

(7.2) Pr(Xj
i = X

j

i \forall i, j) \geq 1 - t\nu .

Let

Y i
j =

exp
\Bigl( 
 - \| Xi

j\| 
2

2\sigma 2
i+1

\Bigr) 
exp

\Bigl( 
 - \| Xi

j\| 2

2\sigma 2
i

\Bigr) and W i =
1

k

k\sum 
j=1

Y i
j .

Note that, for a fixed i, all of the Y i
j have the same expectation since they are from

the exact distribution, and it is equal to \sansE (W i). Suppose that we have \sansE ((Y i
j )

2) \leq 
ci\sansE (Y

i
j )

2. Then

\sansE (W
2

i ) =
1

k2

\left(  k\sum 
j=1

\sansE ((Y i
j )

2) + k(k  - 1)R2
i

\right)  
\leq 
\biggl( 
1 +

ci  - 1

k

\biggr) 
\cdot \sansE (W i)

2.(7.3)

When \sigma 2 \leq 1 and we use a fixed cooling rate, then ci \leq 1 + 2/n by Lemma 7.12,
and (7.3) gives that

(7.4) \sansE (W
2

i ) \leq 
\biggl( 
1 +

2

kn

\biggr) 
\sansE (W i)

2.
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1268 BEN COUSINS AND SANTOSH VEMPALA

The following claim bounds the variance of our ratio estimator under a faster
cooling rate, which we use to bound the variance when 1 \leq \sigma 2 \leq C2n. It follows from
Lemma 3.2.

Claim 7.17. Suppose that K \subseteq C
\surd 
nBn and let \alpha = \sigma 2/(2C2n). Then

\sansE 
\bigl( 
(Y i)2

\bigr) 
\sansE (Y i)2

< 1 +
\sigma 2

C2n
.

Suppose that we had independence between samples, and consider bounding the
cumulative error for all phases of the algorithm. When \sigma 2 \leq 1, we can bound the
number of phases for the first part as m1 \leq 2n log 4n. When \sigma 2 > 1, we will analyze
the phases in chunks, where a chunk is the set of phases until \sigma 2 doubles. Note that
the number of phases in a chunk starting with variance \sigma 2 is at most 2C2n/\sigma 2. Also
there are at most log(C2n) chunks. Observe that for a single chunk with starting
variance \sigma 2, where i, j are the starting and ending phases of the chunk, we have

(7.5)
\sansE (W

2

i . . .W
2

j )

R2
i . . . R

2
j

\leq 
\biggl( 
1 +

2\sigma 2

kC2n

\biggr) 2C2n/\sigma 2

\leq 
\biggl( 
1 +

5

k

\biggr) 
.

Then there is one final phase when we switch to the uniform distribution, which has
variance at most 1+e2 by Lemma 7.9. Note that this, together with (7.4), (7.5), gives
the following bound for all 1 \leq i \leq m:

(7.6) \sansE (W
2

i ) \leq 
\biggl( 
1 +

e2

k

\biggr) 
\sansE (W i)

2.

Let m denote the total number of phases. Note that, from above, we have that

m \leq 4C2n log(C2n). Consider bounding the product of the \sansE (W
2

i ) terms:

\sansE (W
2

1 . . .W
2

m)

R2
1 . . . R

2
m

\leq 
\biggl( 
1 +

2

kn

\biggr) m1
\biggl( 
1 +

5

k

\biggr) logC2n\biggl( 
1 +

e2

k

\biggr) 
\leq exp

\biggl( 
2m1

kn
+

5 log(C2n)

k
+

e2

k

\biggr) 
\leq exp

\biggl( 
\varepsilon 2

50

\biggr) 
.(7.7)

If we had independence between samples, then we could use Lemma 7.12 and
Claim 7.17 with Chebyshev's inequality to bound the probability of failure:

Pr

\biggl( 
| W 1 . . .Wm  - R1 . . . Rm| 

R1 . . . Rm
\geq \varepsilon 

2

\biggr) 
\leq 4\sansV \sansa \sansr (W 1 . . .Wm)

\varepsilon 2R2
1 . . . R

2
m

=
4

\varepsilon 2

\Biggl( 
\sansE (W

2

1 . . .W
2

m)

R2
1 . . . R

2
m

 - 1

\Biggr) 

\leq 4

\varepsilon 2

\biggl( 
exp

\biggl( 
\varepsilon 2

50

\biggr) 
 - 1

\biggr) 
by (7.7)

\leq 4

\varepsilon 2

\biggl( \biggl( 
1 +

\varepsilon 2

40

\biggr) 
 - 1

\biggr) 
=

1

10
.
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However, subsequent samples are dependent, and we must carefully bound the
dependence. The analysis is somewhat involved, but will follow essentially the same
template as in [24, 9], which utilizes the following lemma to bound dependence between
subsequent samples, where \nu is the target total variation distance for each sample
point. For convenience, denote the entire sequence of t samples points used in the
algorithm as (Z0, Z1, . . . , Zt - 1).

Lemma 7.18 (Lemma 4.3 in [24]).
(a) For 0 \leq i < t, the random variables Zi and Zi+1 are \nu -independent, and the

random variables Zi and Zi+1 are (3\nu )-independent.
(b) For 0 \leq i < t, the random variables (Z0, . . . , Zi) and Zi+1 are (3\nu )-

independent.
(c) For 0 \leq i < m, the random variables W 1 . . .W i and W i+1 are (3km\nu )-

independent.

The variables W i are not bounded, but we will introduce a new set of random
variables based on W i that are bounded so we can later apply Lemma 7.14. Let

\alpha =
\varepsilon 1/2

8(m\mu )1/4
,

where

\mu = 3km\nu = \Theta 

\biggl( 
\varepsilon 14 log2 C2n

n15

\biggr) 
.

Note that \alpha is much larger than one. Define

(7.8) Vi = min\{ W i, \alpha \sansE (W i)\} .

It is clear that \sansE (Vi) \leq \sansE (W i), and we also have

\sansE (Vi) \geq \sansE (W i) - 
\sansE (W

2

i )

4\alpha \sansE (W i)
by Lemma 7.15

\geq 
\biggl( 
1 - 1

4\alpha 

\biggl( 
1 +

e2

k

\biggr) \biggr) 
\sansE (W i) by (7.6)

\geq 
\biggl( 
1 - 1

2\alpha 

\biggr) 
\sansE (W i).(7.9)

Let U0 = 1, and define recursively

(7.10) Ui = min\{ Ui - 1Vi, \alpha \sansE (V1) . . .\sansE (Vi)\} .

We will now show that

(7.11)

\biggl( 
1 - i - 1

\alpha 

\biggr) 
\sansE (V1) . . .\sansE (Vi) \leq \sansE (Ui) \leq 

\bigl( 
1 + 2\mu \alpha 2i

\bigr) 
\sansE (V1) . . .\sansE (Vi).

We first show the upper bound in (7.11). To see the independence of Ui - 1

and Vi, observe that Ui - 1 = f(W 1, . . . ,W i - 1) for some function f . Note that
\alpha \sansE (V1) . . .\sansE (Vi - 1) is a fixed constant. Similarly, Vi = g(W i) for some function g.
Thus, by Lemmas 7.13 and 7.18, the random variables Ui - 1 and Vi are \mu -independent.

Then

| \sansE (Ui - 1Vi) - \sansE (Ui - 1)\sansE (Vi)| \leq \mu \alpha \sansE (V1) . . .\sansE (Vi - 1)\alpha \sansE (W i) by Lemma 7.14

\leq 2\mu \alpha 2\sansE (V1) . . .\sansE (Vi) by (7.9) since \alpha \geq 1.(7.12)
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1270 BEN COUSINS AND SANTOSH VEMPALA

We can now get the upper bound on \sansE (Ui) by induction:

\sansE (Ui) \leq \sansE (Ui - 1Vi) from (7.10)

\leq \sansE (Ui - 1)\sansE (Vi) + 2\mu \alpha 2\sansE (V1) . . .\sansE (Vi) by (7.12)

\leq (1 + 2\mu \alpha 2i)\sansE (V1) . . .\sansE (Vi) using an inductive hypothesis.(7.13)

To obtain a lower bound in (7.11), we first upper bound the second moment
by a similar sequence of steps. Observe that \sansE (U2

i - 1) and \sansE (V 2
i ) are \mu -independent.

Therefore,

| \sansE (U2
i - 1V

2
i ) - \sansE (U2

i - 1)\sansE (V
2
i )| \leq \mu \alpha 2\sansE (V1)

2 . . .\sansE (Vi - 1)
2\alpha 2\sansE (W i)

2

\leq 2\mu \alpha 2\sansE (V 2
1 ) . . .\sansE (V

2
i ).

And using induction we see that

\sansE (U2
i ) \leq \sansE (U2

i - 1V
2
i )(7.14)

\leq (1 + 2\mu \alpha 4i)\sansE (V 2
1 ) . . .\sansE (V

2
i ).(7.15)

Now for the lower bound in (7.11) we have that

\sansE (Ui) \geq \sansE (Ui - 1Vi) - 
\sansE (U2

i - 1V
2
i )

4\alpha \sansE (V1) . . .\sansE (Vi)
by Lemma 7.15

\geq \sansE (Ui - 1Vi) - 
\bigl( 
1 + 2\mu \alpha 4i

\bigr) \sansE (V 2
1 ) . . .\sansE (V

2
i )

4\alpha \sansE (V1) . . .\sansE (Vi)
by (7.15).(7.16)

For \alpha \geq 3k, we have that

\sansE (V 2
1 ) . . .\sansE (V

2
i ) \leq \sansE (W

2

1) . . .\sansE (W
2

i ) by (7.8)

\leq exp

\biggl( 
\varepsilon 2

50

\biggr) 
\sansE (W

2

1) . . .\sansE (W i)
2 by (7.7)

\leq exp

\biggl( 
\varepsilon 2

50

\biggr) 
1

(1 - 1/(2\alpha ))2i
\sansE (V1)

2 . . .\sansE (Vi)
2 by (7.9)

\leq exp

\biggl( 
\varepsilon 2

50
+

8C2n logC2n

2\alpha 

\biggr) 
\sansE (V1)

2 . . .\sansE (Vi)
2 (i \leq 4C2n logC2n)

\leq exp

\biggl( 
\varepsilon 2

40

\biggr) 
\sansE (V1)

2 . . .\sansE (Vi)
2.(7.17)

Combining (7.16) and (7.17),

\sansE (Ui) \geq \sansE (Ui - 1Vi) - 
1

4\alpha 

\bigl( 
1 + 2\mu \alpha 4i

\bigr) 
exp

\biggl( 
\varepsilon 2

40

\biggr) 
\sansE (V1) . . .\sansE (Vi)

\geq \sansE (Ui - 1Vi) - 
1 + 2\mu \alpha 4i

2\alpha 
\sansE (V1) . . .\sansE (Vi)

\geq \sansE (Ui - 1)\sansE (Vi) - 
1 + 3\mu \alpha 4i

2\alpha 
\sansE (V1) . . .\sansE (Vi) by (7.12)

\geq \sansE (Ui - 1)\sansE (Vi) - 
1

\alpha 
\sansE (V1) . . .\sansE (Vi) since 3\mu \alpha 4i < 1.
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Then, by induction on i,

(7.18) \sansE (Ui) \geq \sansE (V1) . . .\sansE (Vi) - 
i - 1

\alpha 
\sansE (V1) . . .\sansE (Vi).

Putting (7.13) and (7.18) together, we now have a proof of (7.11). Thus

\sansE (Um) \leq 
\bigl( 
1 + 2\mu \alpha 2m

\bigr) 
\sansE (V1) . . .\sansE (Vm) by (7.11)

\leq 
\Bigl( 
1 +

\varepsilon 

4

\Bigr) 
\sansE (V1) . . .\sansE (Vm) by the definition of \alpha 

\leq 
\Bigl( 
1 +

\varepsilon 

4

\Bigr) 
\sansE (W 1) . . .\sansE (Wm).

We also have that

\sansE (Um) \geq 
\biggl( 
1 - m - 1

\alpha 

\biggr) 
\sansE (V1) . . .\sansE (Vm) by (7.11)

\geq 
\biggl( 
1 - m - 1

\alpha 

\biggr) \biggl( 
1 - 1

2\alpha 

\biggr) m

\sansE (W 1) . . .\sansE (Wm) by (7.9)

\geq 
\Bigl( 
1 - \varepsilon 

4

\Bigr) 
\sansE (W 1) . . .\sansE (Wm) since \alpha \geq 4m/\varepsilon .

We also have an upper bound on the second moment of Um:

\sansE (U2
m) \leq 

\bigl( 
1 + 2\mu \alpha 4m

\bigr) 
\sansE (V 2

1 ) . . .\sansE (V
2
m) by (7.15)

\leq 
\bigl( 
1 + 2\mu \alpha 4m

\bigr) 
exp

\biggl( 
\varepsilon 2

40

\biggr) 
\sansE (V1)

2 . . .\sansE (Vm)2 by (7.17)

\leq 
\bigl( 
1 + 2\mu \alpha 4m

\bigr) 
exp

\biggl( 
\varepsilon 2

40

\biggr) 
1

(1 - (m - 1)/\alpha )2
\sansE (Um)2 by (7.11)

\leq 
\biggl( 
1 +

\varepsilon 2

64

\biggr) 
E(Um)2.(7.19)

Using Chebyshev's inequality, we see that

Pr
\Bigl( 
| Um  - \sansE (Um)| \leq \varepsilon 

2
\sansE (W 1) . . .\sansE (Wm)

\Bigr) 
\geq 1 - 4\sansV \sansa \sansr (Um)

\varepsilon 2\sansE (W 1)2 . . .\sansE (Wm)2

\geq 1 - 4\sansE (Um)2

64\sansE (W 1)2 . . .\sansE (Wm)2
by (7.19)

\geq 0.9 by (7.11).

Then, applying Markov's inequality,

Pr (Ui+1 \not = UiVi+1) = Pr (UiVi+1 > \alpha \sansE (V1) . . .\sansE (Vi+1))

\leq 2

\alpha 
by (7.13).

Similarly,

Pr(Vi \not = W i) = Pr
\bigl( 
W i > \alpha \sansE (W i)

\bigr) 
\leq 1

\alpha 
.
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Applying a union bound, we see that with probability at least 1 - 3k/\alpha we have
Um = W 1 . . .Wm. Also, from (7.2), we have that W 1 . . .Wm = W1 . . .Wm with
probability at least 1 - 2km\nu . Recall that \sansE (W 1) . . .\sansE (Wm) = R1 . . . Rm. Therefore,
with probability at least 4/5,

| W1 . . .Wm  - R1 . . . Rm| \leq \varepsilon 

2
R1 . . . Rm,

which proves the lemma.

We can now prove the main theorem.

Proof of Theorem 1.1. We assume that \varepsilon \geq 2 - n, which only ignores cases which
would take exponential time. Then, by Lemma 7.9, selecting \sigma 2

0 = 1/(4n) implies
that all but a negligible amount of volume of the starting Gaussian is contained in K.

Recall that our algorithm only has a bound on the expected number of steps. To
account for this, we will run the algorithm O(1) times to obtain a run which takes
at most a constant factor of ball walk steps to proper steps, say with probability
1/20. By Lemma 7.16, the answer returned by the algorithm will be within the target
relative error with probability at least 4/5. Thus the overall probability of failure is
3/4. Note that we can boost this probability of failure to 1 - p by the standard trick
of repeating the algorithm log 1/p times and returning the median.

We now analyze the runtime of the algorithm in Figure 2. Set C = R log(1/\varepsilon )/
\surd 
n.

Assume that C \geq 1 (otherwise, arbitrarily increase C). When \sigma 2 \leq 1, using the value
of k, the mixing time assigned to each phase, and the fact that there are O(n log n)
phases, O(n2.5k log n log2(n/\varepsilon )) = O(n3 log2 n log2(n/\varepsilon )/\varepsilon 2) = O\ast (n3) is the total
number of ball walk steps taken. When \sigma 2 > 1, the analysis is very similar if we note
that the faster cooling rate and fewer number of samples cancel out the slower mixing
time of O\ast (\sigma 2n2). Thus it follows that the total number of ball walk steps taken is

O

\Biggl( 
C2n3 log2 n log2 n

\varepsilon 

\varepsilon 2

\Biggr) 
= O

\biggl( 
R2n2

\varepsilon 2
\cdot log2 n log2

1

\varepsilon 
log2

n

\varepsilon 

\biggr) 
= O\ast (R2n2).

8. Conclusion. We make a few concluding remarks:
1. In our algorithm, the complexity of volume computation for well-rounded

bodies is essentially the same as the amortized complexity of generating a single
uniform random sample---both are O\ast (n3). This is in contrast to all previous volume
algorithms where the amortized complexity of sampling is lower by at least a factor
of n compared to the complexity of volume computation.

2. It would be interesting to extend our algorithm to integrating any well-rounded
logconcave function; we expect this should be possible with essentially the same com-
plexity. The variance of the ratio of integrals computed in each phase, as well as
the isoperimetric inequality, are already proven in full generality for all logconcave
functions.

3. The accelerated cooling schedule used in our algorithm can be seen as a worst-
case analysis of the cooling schedule used in a practical algorithm for volume compu-
tation [8, 10]; in the latter, we used an adaptive schedule by empirically estimating
the maximum tolerable change in the variance of the Gaussian that keeps the variance
of the ratio estimator bounded by a constant.

4. An important open task is to find an O\ast (n3) rounding algorithm for arbitrary
convex bodies. The current best rounding complexity is O\ast (n4) [24].
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