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Abstract. We present an O*(n3) randomized algorithm for estimating the volume of a well-
rounded convex body (e.g., K C R™ if B, C K and Ex~x (]| X]|?) = O*(n)) given by a membership
oracle, improving on the previous best complexity of O*(n%). The new algorithmic ingredient is an
accelerated cooling schedule where the rate of cooling increases with the temperature. Previously, the
known approach for potentially achieving this asymptotic complexity relied on a positive resolution
of the Kannan—Lovész—Simonovits (KLS) hyperplane conjecture, a central open problem in convex
geometry. We also obtain an O*(n3) randomized algorithm for integrating a standard Gaussian
distribution over an arbitrary convex set containing the unit ball. Both the volume and the Gaussian
volume algorithms use an improved algorithm for sampling a Gaussian distribution restricted to a
convex body. In this latter setting, as we show, the KLS conjecture holds and for a spherical Gaussian
distribution with variance o2, the sampling complexity is O* (max{n?3,o2n2}) for the first sample
and O* (max{n2,5%n2}) for every subsequent sample.
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1. Introduction. Computing the volume of a convex body is an ancient and
fundamental problem; it is also a difficult problem, as evidenced by both the #P-
hardness of computing the volume of an explicit polytope [11] and exponential lower
bounds for deterministic algorithms in the general oracle model, even to approxi-
mate the volume to within an exponential factor in the dimension [3, 4]. Against
this backdrop, the breakthrough result of Dyer, Frieze, and Kannan [13, 14] estab-
lished a randomized polynomial-time algorithm for estimating the volume to within
any desired accuracy. In the quarter-century since then, the quest for faster volume
algorithms has revealed an array of powerful and elegant techniques for the design
and analysis of algorithms and has influenced the development of asymptotic convex
geometry [1, 20, 12, 21, 18, 19, 7, 24, 22, 16].

The Dyer—Frieze-Kannan (DFK) algorithm for computing the volume of a con-
vex body K in R" given by a membership oracle uses a sequence of convex bodies
Ky, Ky, ..., K, = K, starting with the unit ball fully contained in K and ending with
K. Each successive body K; = 2//" B, N K is a slightly larger ball intersected with K.
Using random sampling, the algorithm estimates the ratios of volumes of consecutive
bodies. The product of these ratios times the volume of the unit ball was the estimate
of the volume of K. Sampling is achieved by a random walk in the convex body. There
were many technical issues to be addressed, but the central challenge was to show a
random walk that “mixed” rapidly, i.e., converged to its stationary distribution in a
polynomial number of steps. The overall complexity of the algorithm was O*(n?3)
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oracle calls.!

Since then, researchers have improved the complexity of volume computation and
sampling for convex bodies considerably, to O*(n*) for volume estimation and for
obtaining the first random sample [24, 22] and to O*(n?) per sample for subsequent
samples [22, 23]. These improvements rely on continuous random walks, the use of
affine transformations, improved isoperimetric inequalities, and several other devel-
opments. However, throughout the course of these developments, the outer DFK
algorithm using a chain of bodies remained unchanged until the most recent improve-
ment in 2003 [24]. The Lovdsz—Vempala (LV) algorithm [24] relies on sampling a
sequence of logconcave distributions, akin to simulated annealing, starting with one
that is highly concentrated around a point deep inside the convex body and ending
with the uniform distribution (we will discuss these ideas in more detail presently).
The total number of random points needed is only O*(n), down from Q(n?) needed by
all previous algorithms. Combining this with the O*(n3) complexity for each sample
yielded the overall O*(n*) complexity for volume computation. Before running this
algorithm, there is a preprocessing step where the convex body is placed in nearly
isotropic position, ensuring in particular that most of the body is contained in a ball
of radius O(y/n). Crucially, this well-roundedness property is maintained during the
course of the algorithm.

Is there a faster algorithm? In 1995, Kannan, Lovasz, and Simonovits, while an-
alyzing the convergence of the ball walk for sampling, proposed a beautiful geometric
conjecture now known as the Kannan-Lovdsz—Simonovits (KLS) hyperplane conjec-
ture [18]. Roughly speaking, it says that the worst-case isoperimetric ratio for a subset
of a convex body is achieved by a hyperplane to within a constant factor. They were
able to show that hyperplanes are within O(y/n) of the minimum. The convergence
of the ball walk depends on the square of the reciprocal of the isoperimetric ratio;
thus the KLS conjecture had the potential to improve the sampling time by a factor
of n to O*(n?) per sample and thereby indicated the possibility of an O*(n?) volume
algorithm (such an algorithm would have to surmount other substantial hurdles).

The KLS hyperplane conjecture remains unresolved, in spite of intensive efforts
and partial progress towards its resolution [2, 17, 16]. Indeed, it captures two well-
known and much older conjectures from convex geometry, the slicing (or hyperplane)
conjecture and the thin-shell conjecture (these were all shown to be equivalent in a
certain sense recently [15, 16]) and thus has effectively evaded resolution for nearly a
half-century.

Our first result is an O*(n?) algorithm for sampling from the standard Gaussian
distribution in R™ restricted to a convex body containing the unit ball. To achieve this
complexity, we prove the KLS conjecture for such distributions. We then show that
the Gaussian volume or Gaussian measure, i.e., the integral of a standard Gaussian
over a convex body, can be computed in O*(n3) queries, provided the convex body
contains the unit ball.

Our main finding is an O*(n3) algorithm for computing the volume of any convex
body containing a unit ball and mostly contained in a ball of radius O*(y/n). Equiv-
alently, it suffices to have E(||X|?) = O*(n) for a uniform random point X from the
body. Assuming the body is well-rounded (or sandwiched) in this sense, no further
affine transformation is used, and there is no need to assume or maintain near-isotropy
during the course of the volume algorithm.

To describe the main ideas behind the improvement, we recall the LV algorithm

IThe O* notation suppresses error terms and logarithmic factors.
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in more detail. It uses a sequence of O*(y/n) exponential distributions, starting
with a distribution that is concentrated inside the unit ball contained in K and then
“flattening” this distribution to the uniform by adjusting a multiplicative factor in
the exponent.? In each phase, samples from the previous distribution are used to
estimate the ratio of the integrals of two consecutive exponential functions (by simply
averaging the ratio of the function values at the sample points). It is crucial to keep
the variance of this ratio estimator bounded, and to do this, the distributions could
be cooled by a factor of 1 + ﬁ in each phase. This leads to O*(y/n) phases in total

and to O*(y/n) samples per phase. Along with the sample complexity of O*(n?) per
sample, this gives the bound of O*(n?).

The improved complexity for Gaussian volume estimation is achieved by using
a sequence of Gaussians (rather than exponentials as in LV), starting with a highly
concentrated Gaussian centered inside K and ending with the standard Gaussian. The
cooling schedule is the same as in the LV algorithm, but each sample takes only O*(n?)
time. For a Gaussian with covariance oI, the mixing time is O*(max{c?, 1}n?) (see
Theorem 1.5 below). Since the starting o is small and the last ¢ is 1, this bound is
O*(n?) throughout the algorithm. (We encounter additional technical issues such as
maintaining a warm start for the random walks.)

Returning to the usual Lebesgue volume, how could we possibly improve the LV
algorithm without relying on the KLS conjecture? We will also use Gaussian cooling,
starting with a highly concentrated Gaussian and flattening it (i.e., increasing o) until
we reach the uniform distribution. In the beginning, this is similar to the algorithm
of [9]. But after o becomes higher than 1 (or some constant), we no longer have
quadratic sampling time, as the mixing time of the ball work grows as max{c?, 1}n?.
Moreover, we need to go until 02 = (n), so cooling at the fixed rate of 1+ 1/n would
be too slow. The main new idea is that for ¢ > 1, the cooling rate can be made
higher, in fact about 1+ o2/n instead of only 1+ 1/n. This means that the number
of phases to double o2 is only n/o?. It can be shown that the number of samples
per “doubling” phase is only O*(1), giving n/c? samples in total. Multiplying by
the sampling time, we have -02n? = n3, a cubic algorithm! The key technical
component of the analysis is to show that the variance of the ratio estimator remains
bounded even at this higher cooling rate of 1 + o2 /n.

We now formally state the problems.

PROBLEM 1.1 (volume). Given a membership oracle for a convex set K in R™
containing the unit ball B,,, and error parameter € > 0, give an algorithm that com-
putes a number V' such that with probability at least 3/4,

(1 —¢e)vol(K) <V < (14 ¢)vol(K).

We denote the Gaussian density function as y(z) = (2m) /2 - exp (—||z[|?/2).

PROBLEM 1.2 (Gaussian volume). Given a membership oracle for a conver set
K in R™ containing the unit ball By, and error parameter € > 0, give an algorithm
that computes a number V' such that with probability at least 3/4,

(1—6)/1(7(x)dx§V§(1+€)/}<’y(x)daﬁ.

2In the original description, the algorithm first created a “pencil” using an extra dimension, but
this can be avoided [22].
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1.1. Main results. Our main result can be stated more precisely as follows,
which solves Problem 1.1 in O*(n?®) assuming the input body K is well-rounded.
We note that the roundness condition can be achieved for any convex body by a
preprocessing step consisting of an affine transformation. It is a significantly weaker
condition than isotropic position.

THEOREM 1.1. There is an algorithm that, for any € > 0, p > 0 and any convex
body K in R™ that contains the unit ball and has Ex (|| X||?) = O(n), with probability
1 — p, approximates the volume of K within relative error € and has complexity

3 1 1
@) (712 -log® nlog® = log? n log ) =0 (n3)
3 € € p

in the membership oracle model.

More generally, if Ex (|| X||?) = R?, then the algorithm has complexity

2.2 3
(0] (me{Rzn’n} -log® nlog? 110g2 L log 1> =0~ (maX{RQnQ,n3}) .
€ € € P

The current best complexity for achieving well-roundedness, i.e., R? = O*(n),
for a convex body is O*(n*) [24]. In previous work, the complexity of generating
the first nearly uniform random point was always significantly higher than for later
points. Here, using a faster cooling schedule, we can generate the first random point
in O*(n?3) steps under the same assumption that K is well-rounded. Any subsequent
uniform random points also require O*(n?) steps.

THEOREM 1.2. There is an algorithm that, for any € > 0, p > 0 and any convex
body K in R™ that contains the unit ball and has Ex (|| X||?) = R?, with probability
1—p, generates random points from a density v that is within total variation distance
€ from the uniform distribution on K. In the membership oracle model, the complezity
of each random point, including the first, is

1
o (max{R2n2,n3} log n log* g log ) = O* (max{R’n” n%}).
p

In addition to volume and uniform sampling, we also have an O*(n3) algorithm
for computing the Gaussian volume. This algorithm does not require a rounding pre-
processing step and gives an O*(n3) algorithm for any convex set K C R™ containing
the unit ball.

THEOREM 1.3. For any e > 0, p > 0 and any convex set K in R™ containing the
unit ball, there is an algorithm that, with probability 1 —p, approrimates the Gaussian
volume of K within relative error € and has complexity

0 (7; log? (n) log? (g) log (;)) — O0*(n®)

in the membership oracle model.

Both the uniform volume and the Gaussian volume algorithms utilize an improved
sampling algorithm for Gaussian distributions restricted by convex sets.

THEOREM 1.4. For anye > 0, p > 0 and any convezr set K in R™ containing the
unit ball, there is an algorithm that, with probability 1 — p, can generate a random
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point within total variation distance € of the Gaussian density N'(0,02I) restricted to
K. In the membership oracle model, the complexity of the first random point is

0 (max{a2, 1} log(n) log? () tog (;)) — 0" (max{o?,1}n?).

For subsequent random points, the complexity is

0 (max{az, 11n2log (g) log (i)) = 0" (max{o?, 1}n?).

The set of random points will be e-independent.

For two random variables X and Y, we say X and Y are e-independent if

sup |Pr(X € AY € B) —Pr(X € A)Pr(Y € B)| <g¢,
A,B

where A, B range over measurable subsets of the ranges of X,Y. The following theo-
rem guarantees we can efficiently obtain Gaussian samples from a warm start.

THEOREM 1.5. Let K be a convex set containing the unit ball, Qo be a start-
ing distribution, and Q be the target Gaussian density N(0,0%1) restricted to K N
4ov/nB,. For any v > 0,p > 0, the lazy Metropolis ball walk with J-steps for
0 = min{o, 1}/(4096+/nlogn/v), starting from Qo, satisfies d,(Qs, Q) < v after
M(QOaQ))

t>C-M(Qo,Q)-max{c? 1} - n?log (%) log (1/

expected steps for an absolute constant C'.
Here M (Qo, Q) is a measure of how close Qg is to @ (also called the warm start
parameter) and is defined as M (Qo, Q) = supgcx %0(—(35)) In other words, the theorem

says that the ball walk mixes in O*(max{c?, 1}n?) steps from a warm start.

Ball Walk(4, f)
At point z:
1. Pick a random point y from z + 6 B,,.
2. Go to y with probability min{1, f(y)/f(x)}; otherwise,
stay at x.

Fic. 1. The ball walk with a Metropolis filter.

2. Algorithm. At a high level, the algorithm relies on sampling random points
from a sequence of distributions using the ball walk with a Metropolis filter. For a
target density proportional to the function f, the ball walk with J-steps is defined in
Figure 1.

After a suitable number of steps, the point x obtained will be from a distribution
close to the one whose density is proportional to f. However, this process is slightly
complicated by the fact that we only know that the point is mixed once a certain
number of proper steps have been taken, i.e., steps where y € K or alternatively
where f(y) # 0.

The algorithm in Figure 2 starts with a Gaussian of variance 1/(4n), with the
mean at the center of the unit ball inside K. This variance is increased over a sequence
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Volume(K, ) We assume B, C K C Cy/nB,,.

16 2, . .
5) ,agzﬁ,k:M,ZZO;xolsarandom

1. Initialize: v = (n po
point from N(0,021) N K.
Define 1
1+ = ifo? <1,
Blo) = "2
1+ ——— otherwise.
2C?%n
2. While 022 < C?n:
(a) Get k points {X1,..., Xy} using the Ball Walk with

d = min{o;,1}/(40964/nlog n/e) ball radius,
fi = f(02, K N40;\/nBy,) target density,
106 max{o?,1}n? - log(1/v) proper steps.

(b) Set 07,4 =07 B(0y); if 02, > C?n, set 07, = oc.
(¢) Compute the ratio estimate

(d) Increment i.
3. Return (2m03)™/?W; ... W; as the volume estimate for K.

Fic. 2. The volume algorithm.

of phases until the distribution becomes uniform over K. Until the variance o2 reaches

1, it is increased by a fixed factor of 1 + 1/n in each phase. After the variance reaches
1, the variance accelerates, increasing by a factor of 1+ ¢2/(2C?n) where o2 is the
current variance. This process is continued until the variance becomes linear in C?n,
at which point one final phase can be used to jump to the uniform distribution. In
each phase, we pick a sample of random points from the current distribution and
compute the average of the ratio of the current density to the next density for each
point. The product of these ratios times a fixed term to account for the integral of
the initial function is the estimate output by the algorithm.

Let f(o?, K) be the function that assigns value exp (—||z[?/(20%)) to points in a
convex set K and zero to points outside. The algorithm below uses a series of such
functions.

3. Outline of analysis.

3.1. Outline of sampling analysis. To show that the random walk quickly
reaches its stationary distribution, we will use the standard method of bounding
the conductance. For the ball walk, this runs into a hurdle, namely that the local
conductance of points near sharp corners of the body can be arbitrarily small, so the
walk can get stuck and waste a large number of steps. To avoid this, we could start the
walk from a random point chosen from a distribution sufficiently close to the target
distribution. But how do we generate random points from such a starting distribution?
We do this by considering a sequence of distributions, each providing a warm start for
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the next. The very first distribution is chosen to be a highly concentrated Gaussian
so that it lies almost entirely inside the unit ball (inside K'). Thus sampling from the
initial distribution is easy by standard rejection sampling. Each successive Gaussian
is “flatter,” with the final one being the target distribution, e.g., standard Gaussian
or uniform distribution.

The next challenge is to show that, from a warm start, the expected number of
steps to converge to the stationary distribution is only O*(n?). This is usually done
by bounding the conductance of the Markov chain. The conductance, ¢, of a Markov
chain with state space K and next-step distribution P, is defined as

o i s P\ 5)dQ()
ScK minQ(S),Q(K \ S)’

Unfortunately, for the ball walk, this can be arbitrarily small, e.g., for points near
corners (but also for points in the interior). To utilize the warm start, we use an idea
from [19], namely the speedy walk. We emphasize that the speedy walk cannot be
implemented efficiently and is only a tool for analysis. It is defined as follows.
At current point x, do the following;:

1. Pick random point y from K Nx + 0B,,.

2. Go to y with probability min{1, f(y)/f(z)}; otherwise, stay at x.

To capture the stationary distribution of the speedy walk with a Metropolis filter,

we need another parameter. The local conductance at x for the speedy walk, without
a filter, is defined as follows:

vol(K Nx + 0By,)
vol(6By,)

l(z) =

The following lemma can be proved using detailed balance.

LEMMA 3.1. The stationary distribution of the speedy walk with a Metropolis filter
applied with a function f has density proportional to ¢(x)f(x).

For the speedy walk with 6 = O(1/4/n), we can show that the conductance is
Q(1/(on)), and so the total number of steps needed is only O*(o?n?). This is a factor
n faster than previous best bounds. We do this by establishing a stronger (and nearly
optimal) isoperimetric inequality.

As noted, the speedy walk cannot actually be implemented efficiently. To bound
the Metropolis ball walk, we can view it as an interleaving of a speedy walk with
wasted steps. Let the Markov chain for the original walk be wq,w1,...,w;,.... The
subsequence wj, , W;,, . .., where we record x if the point y chosen by the Metropolis
ball walk is in K, corresponds to the speedy walk. We then need to estimate the
number of wasted steps from a warm start. We will show that this is at most a
constant factor higher than the number of proper steps. The key ingredient of this
analysis is the (known) fact that, for a body containing the unit ball, the average
local conductance is high for ball radius § = O(1/+/n). Even within the speedy walk,
there are “null” steps due to the Metropolis filter. However, by restricting the walk to
a large ball, we ensure that the probability of rejection by the filter is bounded by a
constant, and therefore the number of wasted steps within the speedy walk is at most
a constant fraction of all steps. Also, the speedy walk converges to a distribution
proportional to £(z)f(x), but we can map this to a random sample from f with
rejection sampling routine (see section 6.4).

To sample efficiently, we need a warm start for each phase. For two probability
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distributions P and @ with state space K, the M-warmness of P and @ is defined as

(3.1) M(P,Q) = SS]éII){ PE?;

To keep this parameter bounded by a constant, we use a finer-grained cooling schedule
so that a random point from one phase is a warm start for the next phase. This cooling
schedule is also different in the two parts. In the first part of the algorithm, we can
cool at the rate of 1 + 1/n and use O* (n?) steps to sample. In the second part, we cool
at the rate of 1+ 02/(20%n), and this is fast enough to compensate for the higher
sample complexity of O*(0?n?). Thus the overall time to obtain a warm start for
every phase of the algorithm is also O*(n3). We analyze this in full detail in section 6,
including the proof that this cooling rate maintains a warm start from one phase to
the next.

We can obtain uniform random samples from K given samples from a Gaussian
with variance 02 = C?n via a simple rejection sampling routine. Since K C C\/nB,,
the two distributions will be within a constant factor of each other, and therefore we
can use O(1) expected samples from the Gaussian distribution to obtain a uniform
random point.

3.2. Outline of volume analysis. The sampling time when the variance is o2

is max{1,0%}n?. If we cooled at a rate of 1 + 1/n throughout the algorithm, we would
get an O*(n*) algorithm since the last doubling phase, i.e., the set of phases until o2
doubles, takes 2(n) samples, each mixing for Q(n?) steps. The main insight that
speeds up our algorithm is the cooling rate of 1 + 02/(2C?n) once o2 > 1. Cooling at
a faster rate once o2 > 1 will allow us to compute volume in time O*(n?) by having
fewer phases when the mixing time of the ball walk increases.

The volume algorithm proceeds as a series of phases, where each phase seeks to
estimate a ratio of Gaussian integrals over the convex body K. More precisely, let

Flo%z) = {exp (—ll=l?/(20?)) if z € K,

0 otherwise,

and let
F(o?) = f(o? z)dx.
Rn

Define p1; as the probability distribution proportional to f(o2,z); that is, u; is a
symmetric Gaussian distribution with variance o restricted to K. Let X be a random
sample point from p;, and let Y = f(o2,,, X)/f(c7,X). We see that the expectation
of Y is the ratio of F (07 ,)/F(c?):

er) = [ e (;U”— 2”:'1) ()
-/ exp<mn2 ) ||w||2>,exp (lel/2o2)

207 207, F(o?)

1 22\ Flo%,)
‘F<o%>'/KeXp (‘2o$+1 W= )

Our goal is to estimate E(Y") within some target relative error. The algorithm es-
timates the quantity E(Y") by taking random sample points X7, ..., X} and computing
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the empirical estimate for E(Y) from the corresponding Y7, ..., Yj:
k
1 1 fH—l(X])
W==» Y =-—
k Z 7k Z fi(X;)
j=1 j=1

The variance of Y divided by its expectation squared will give a bound on how
many independent samples X; are needed to estimate E(Y") within the target accuracy.
Thus we seek to bound E(Y2)/E(Y)%. We have that

HIH2 _ W d F ‘71'2+1‘7?
E(Y2) fK exp 2(7'1.2 0?+1 -z (201.2—0'1.2+1 )
Sy exp (7”21”2 ) dx F(of)

and

If we let 02 = 0?,, and 67 = 0?/(1 + ), then we can further simplify to

ey F () F (%)

E(YV)? F(o2)

The algorithm has two parts, and the cooling rate «; is different for them. In the
first part, starting with a Gaussian of variance o2 = 1/(4n), which has almost all its
measure inside the ball contained in K, we increase o2 by a fixed factor of 1 + 1/n in
each phase until the variance o2 reaches 1. When cooling at the fixed rate of 1 + 1/n,
Lemma 7.12 implies that the variance of the ratio estimator is small enough that only
O*(1) samples suffice. For each o, we sample random points from the corresponding
distribution and estimate the ratio of the densities for the current phase and the next
phase by averaging over samples. The total complexity for the first part is thus

O*(n) phases x O*(1) samples per phase x O*(n?) steps per sample = O*(n?).

In the second part, we increase the variance until it reaches C?n, after which
one final phase suffices to compare with the target uniform distribution. However,
we cannot afford to cool at the same rate of 1+ 1/n because the time per sample
goes to O*(a?n?) for ¢ > 1. By the end of this part, we would be using O*(n®) per
sample, and the overall complexity would be O*(n*). Instead we observe that we can
cool at a faster rate of 1 4+ 02/(2C?n) and still maintain that the variance of the ratio
estimator is a constant. The following bound on the variance, proved in section 7.1,
allows us to cool at a faster rate as o increases and overcome the increased sampling
cost of O*(a?n?).

LEMMA 3.2. Let K C Cy/nB,, and a < 1/2. Then

(72 0'2
F <1+a) F (m) < exp (2' 020;211) '

F(0?) o

Note that the above right-hand side is < 1+02/(Cn) if we select a = 02/(2C?n).
With this rate, the number of phases needed to double the variance is only O(C?n/c?),
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and the number of samples per phase will be O*(1). Together, they compensate for
the higher complexity of obtaining each sample. The complexity of the second part
of the algorithm is thus

C?n
O <2> phases x O* (1) samples per phase x O*(0?n?) steps per sample
o
= 0*(C?n?).
In section 7.1, we prove that cooling at this accelerated rate still keeps the variance
of the ratio estimator appropriately bounded.
We note that with respect to estimating the volume using Lemma 3.2 there is
a range of cooling rates for the second part of the algorithm that we could select to
obtain an O*(C?n?) algorithm. If we instead use the cooling rate 1+ o /(C+/n), then
the complexity of the algorithm is

o* <O\/ﬁ) phases x O* (C\/ﬁ) samples per phase x O*(c?n?) steps per sample
o o
= 0*(C?*n?).

We could select any « in the range 02/(C?n) < a < 0/(C+/n) and cool at the
rate 1 + «, as there is a proportional tradeoff between the number of phases and
samples per phase for this range of a. We select the cooling rate of a = 02/(202n)
for simplicity of the algorithm since this cooling rate also maintains a warm start for
the ball walk sampler, as shown in Lemma 6.8.

4. Preliminaries. A function f : R — R is logconcave if it has convex support
and the logarithm of f, wherever f is nonzero, is concave. Equivalently, f is logconcave
if, for any z,y € R™ and any \ € [0,1],

FOz+ 1 =Ny) = f@) fy)'

Let v : R™ — R, be the density of the standard Gaussian N (0, I).

For two probability distributions P and ) with state space K, we will use M (P, Q)
to denote the M-warmness between P and () as defined in (3.1) and dy, (P, Q) to
denote the total variation distance between P and Q:

dey (P, Q) = sup |P(S) — Q(5)].
SCK
For a nonnegative function f : R” — R, we define the f-distance between two

points u,v € R" as |f(w) — f(v)]
_ ) = f)]
ds(u,0) = @) F)}

5. Isoperimetry. The following theorem is due to Brascamp and Lieb.

THEOREM 5.1 (Theorem 5.1 in [5]). Let vy :R™ — Ry be the standard Gaussian
density in R™. Let f : R® — Ry be any logconcave function. Define the density
function h over R™ as follows:

)
Jan F)Y (W) dy

Fix a unit vector v € R", and let u = Ep(z). Then, for any o > 1,
En(lv” (& — p)|*) < Ey(|an|®).

h(z)
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We can use Theorem 5.1 to say that h inherits the following well-known Gaussian
concentration inequality (see, e.g., [6]):

2 2
(5.1) XNJP\’[{OJ) ([IX]]* = n+ ctv/n) < exp (—t?)

for an absolute constant c.

COROLLARY 5.2. For h as defined in Theorem 5.1 and any t > 1,
Pr(le = ul* > n+cty/m) < e

for an absolute constant c.
The next lemma about one-dimensional isoperimetry is from [18].

LEMMA 5.3 (see [18]). For any one-dimensional isotropic logconcave function f
and any partition Sy, S2,S3 of the real line,

77(S5) > In(2) (S, So)m 7 (S1)75 (o).

THEOREM 5.4. Let f: R™ — Ry be any logconcave function and v : R™ — R be
the standard Gaussian density. Let w denote the probability distribution proportional
to h(z) = f(z)v(x). Let Si,S2,Ss partition R™ such that, for any u € S1,v € Sa,
either |[u — v|| > d/In(2) or dp(u,v) > 4dy/n. Then

W(Sg) 2 gw(sl)w(Sg).

Proof. We prove the theorem for the case 0 = 1 and then note that by applying
the scaling * = y/o we get the general case.

Our main tool, as in previous work, is the localization lemma of Lovész and
Simonovits [21]. Suppose the conclusion is false. Define h(z) = f(x)y(z). Then there
exists a partition S1, S5, S3 for which, for some positive real number A,

h(z)de =A [ h(x)dz,
51 R"

h(z)dzx < dA/ h(z) dx.

Sg S2

By the localization lemma, there must be a “needle” given by a,b € R™ and a non-
negative linear function [ : [0, 1] — R4 for which

/ h((1 —t)a + th)l(t)" ' dt

(1—t)a+tbeS1N[0,1]

=A h((1 —t)a + th)l(t)" ' dt
(1—t)a+tbe[0,1]

and

/ h((1 —t)a + th)l(t)" ' dt
(1—t)a+tbeS3n[0,1]

< dA/ R((1 — t)a + tb)I(t)" " dt.
(1—t)a+tbeS2N|0,1]
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We can assume that Z; = {t : (1—t)a+tb € S;} are intervals that partition [a, b]; other-
wise, we can apply a standard combinatorial argument as in the proof of Theorem 5.2
in [18] to reduce to the interval case. Thus, to reach a contradiction, it suffices to prove
that for a one-dimensional logconcave function h(t) = f((1 —t)a+tb)y((1 — t)a + tb)
with support [a,b] C R and a < u < v < b the following statements hold:

(5.2)

[ woner=a [ pr=racs 20D [y [ oy

v

/b h(t)I(t) ! dt/ UG

u

(5.3) > In(2 ||ufv||/ ) ldt/bh(t)l(t)”ldt.

The first inequality (5.2) follows directly from Lemma 3.8 in [19] by taking F' = h and
g = £. To see the second inequality (5.3), we first note that by applying Theorem 5.1,
with a = 2, we have that the variance of the distribution proportional to h(t)l(t)"~!
is at most 1. This is because h(t)I()" 1 = (f((1 — t)a + th)l(t)"~H)y((1 — t)a + tb)
and the f((1 —t)a + tb)l(t)" ! is itself a logconcave function. Now we note that by
scaling down to increase the variance to exactly 1 the isoperimetric inequality still
holds. Hence, the second inequality is implied by Lemma 5.3. 0

6. Sampling. The analysis of the sampling algorithm is divided into several
parts: bounding the conductance of the speedy walk, bounding the warmth of the
distribution from one phase to the next, the mixing time of the Metropolis ball walk
from a warm start, and finally the complexity of sampling.

6.1. Conductance. For this section, let f : R™ — R denote the Gaussian den-

sity function
_ [l
f(z) =exp < 557 ) -

For x € K and S C K, let P,(S) denote the probability that one step of the
speedy walk from z is in S:

/ mln{ ( } dy / min{L ;Ezg} dy
SN(z+06By,) SN(z+06By)

)
vol(K N (x + dBy)) B £(x)vol(dBy,)

Pu(S) =

We bound the rate of convergence of the random walk through a lower bound
on the conductance. The conductance ¢ of a Markov chain with state space K and
next-step distribution P, is defined as

[ P0\8)iQ
sck min{Q(S), Q(K\S)}

¢ =

We will make use of the following theorem of Lovédsz and Simonovits [21] to
bound the total variation distance between the current distribution and the target
distribution.
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THEOREM 6.1 (see [21]). Let Q; be the distribution aftert steps of a lazy Markov
chain and Q be its stationary distribution. Suppose that Qqy is M -warm with respect
to Q. Then

0(Qu, Q) < VM (1 _ f)t

LEMMA 6.2. For the speedy walk applied to a convex body K C 4o+/nB, with
§ < 0 /(8y/n), the acceptance probability of the Metropolis filter is at least .

Proof. Assume that f(z) < f(u) (otherwise, the Metropolis filter always accepts).
Then the acceptance probability is

fz) ||9C||2 ||U||2
f(u)
. ( |u|\+6 Sl
e 2§Hu||+§2
TP T e
- o +02/ 64n)
- 202
> 1 0
e

LEMMA 6.3. Let K C 40+/nB,, be a convex body, and let u,v € K such that
lu—v]| <§/v/n. If§ <o/(8n), n>2, and

[fw) f(w) = L) f(v)] 1
max{¢(u)f(u),£(v) f(v)} ~ 4’

then
[£(u) — £(v) 1
max{¢(u), (o)} =2

Proof. Assume without loss of generality that £(u)f(u) > £(v)f(v). It follows
that

3f(w)l(u)
? < f(U)K(U)

Since |lu — v|| < &/+4/n, we have that 2/3 < f(v)/f(u) < 3/2 for n > 2 (by an
argument identical to that in Lemma 6.2). Thus

4f (w)t(v)
3 < 20(v).

By assumption, we have that f(u)f(u) > f(v)¢(v). Thus we also have that

(u) <

L(v) < 20(u).

The lemma then follows. 0
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The following lemma bounds the overlap for a step of the speedy walk with
respect to the speedy walk. We then show that the Gaussian weighting only hurts by
a constant factor. For technical convenience, we define a slightly different one-step
distribution that ignores the Gaussian filter:

vol(SN (z+46B,,))

unif —

forz e K,5S C K.

LEMMA 6.4. Let K be a convex set with S C K. Let S = K\S. Suppose that
de(u,v) <1/2 and ||u—v|| < §/y/n. Then, foru e S andv € S,

unif (Q unif
Py (S) + P (S) > T D)

Proof. Let B, = uw+ 0By, and let C = B, N B,. By Lemma 3.5 from [18], we
know that

vol(6By,) o
e+

(6.1) vol (K NC) > in {¢(u),l(v)} .

We have that

vol (? N Bu)
L(u)vol(6By,)

vol (Eﬂ C)

2 L(u)vol(6By,)’

Pymi (8) =

and similarly for P*™f (S). Assume that £(u) > £(v), which implies that £(u) < 2/(v).
Therefore,

it wni vol (SN C vol (SN C)
Py (8) + P f(5)>>e@osou533) TOICED)
vol (SN C) vol (SN C)
— 2(v)vol(6B,,)  £(v)vol(0B,,)
vol (K NC)
~ 20(v)vol(6By)
1
~2(e+1)

It then follows that the Gaussian filter decreases the overlap by at most a constant
factor.

COROLLARY 6.5. Let S, S be a partition of a conver body K C 4o+/nB, and
u € S v €S be such that ||u—v| < §/v/n and dp(u,v) < 1/4, where h(z) = f(z)l(z).
Then

_ 1 1
Pu)+ PulS) > 5 > 5
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Proof. By Lemma 6.3, we know that d¢(u,v) < 1/2. We then apply Lemma 6.4,
while noting that the Gaussian weighting affects the one-step distributions by at most
a 1/e factor since that is a lower bound on the acceptance probability of the Metropolis
filter (Lemma 6.2). 0

We can now prove the desired lower bound on the conductance of the speedy walk
with respect to a Gaussian weighting over a convex set.

THEOREM 6.6. Let K be a convex body such that B, C K C 40+/nB,. The
conductance of the speedy walk applied to K with Gaussian density N'(0,02I) and

§ < o/8y/n steps is Q(%)

Proof. Let h(x) = £(z) f(x), and let m be the probability distribution proportional
to h. Let S C K be an arbitrary measurable set of K, and let S = K\S. Assume
that 7(S) < 1/2. Counsider the following partition of K:

— 1
Slz{xeS:PI(S)<25},

— 1
ng{xeS:Px(S)<25},
S3 = K\S1\Sa.

By Corollary 6.5, we have that, for any u € Sy,v € S, either ||u —v|| > §//n or
dp(u,v) > 1/4.

We may assume that 7(S;) > m(S)/2 and 7(S3) > (S)/2. If not, we can bound
the conductance of S as follows (similarly for S):

Y

1 W(Sg)

50 7(S)
1

100°

>
Now we can apply Theorem 5.4 with
d . 6Iln2 1
=ming ——, ——
Vvn ' 16y/n
to the partition S, .52, .53 to get

7T(S3) Z 7T(51)7T(SQ).

SHESH
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Using the above, we get that

|
w
S
3
A
L

>
~ 3000/n’
which proves the theorem. 0

6.2. Getting a warm start. The following two lemmas guarantee that the ball
walk in the algorithm will always have a warm start, i.e., the M-warmness (3.1) is
bounded by a constant. The first lemma bounds the warmness under the fixed cooling
rate of 14 1/n.

LEMMA 6.7. Let K C R", 02, = 0?(1 +1/n), and f;(z) = exp (—||z[?/(202)).
Denote Q; as the associated probability distribution of f; over K. Then we can bound
the warmness between successive

M(Q;,Qit1) < Ve.

The following lemma bounds the warmness when the cooling schedule begins to
accelerate under the roundness condition.

LEMMA 6.8. Let K C C\/n- By, let 07, = 07(1 4 07/(C?n)), and let fi(x) =
exp (—[|z]|?/(20%)). Denote Q; as the associated probability distribution of f; over K.
Then we can bound the warmness between successive phases as

M(Qi,Qig1) < Ve.

Proof of Lemma 6.7. Let

_ foi+1(l‘)d$

Then

(S
M(Qi, Qiv1) = sup @%(;)
sup ule)
vek Qit1(z)
B fi(z)
- SEEAJ%H(JU)

= A - sup exp (
zeK

IN

l[1*(1 + 1/n)
a 2n )

= A,

where the last line follows from the fact that 0 € K.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/16/19 to 165.230.225.67. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

GAUSSIAN COOLING AND O*(n3) VOLUME ALGORITHMS 1253

We will now bound A. First, we extend A to be over all R™ instead of K and
then argue that it can only decrease when restricted to K.

2
exp( 2”’”” ) dx " 1 exp( lz] ) dz
R 0L+ . 041 Tit1 Rn ‘TL+1

n
/ exp (— |2”f7”;> dx i Ulﬁ/ exp( Hw‘|2) dx
R" 4 i Rn

( 1)71/2
n
< Ve

Let px (1) be the proportion of the sphere of radius r centered at 0 that is con-
tained in K. Since K is a convex body that contains 0, then 71 > ro = pr(r1) <

px (r2). Then
" Lexp r’ wr(r)dr
/0 ( ) ) _

/ rn—lexp (—%) i (r)dr
0 i

n—1 __r
r" Lexp ( 20?+1)

n—1 _r?
r exp( 20%)

is a monotonically increasing function in r. Since K is a convex body containing 0, we
can partition K into infinitesimally small cones centered at 0. Consider an arbitrary
cone C. pc(r)is 1 for r € [0,7] and then 0 for r € (', 00) since K is convex. Since
the rest of the integrand is monotonically increasing, the integral over the cone only
gets larger by extending pc(r) to be 1 for r € [0, 00). Therefore,

2 2
fooo r"~lexp (— 3 TQH ) pe(r)dr B fooo r"~Lexp (— 522

) dr
' i+ < Je.
X n—1 r2 - X n—-1 r2 - \/E
Jo T lexp (- 557 pe(r)dr Jo mmlexp (- 557 dr

Since C' was an arbitrary cone from a partition of A, we have that A < /e. ]

Proof of Lemma 6.8. Note that

2
fiy1(z) = exp < 2”;” 1)
i+

Note that

< [Edls )
202( 21 +02/(022)) ,
:exp( H;;H < 1;;;7(6?2)71)))
= fil@) - exp (2||g2|n 1+o21/(02 >)

o Bl
< fi(@) -exp | 5 |-
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We have that

M(Qi, Qiv1) = 53%@%5(;)

Ji fn(@)dz - fi(2)
= Ji filz) dzx vek fori(x)

_ M - sup <exp ( Ll ' 1 >)

o fol-(x)dx e K 2C%n 14 02/(C?n)

_ Jx fin (@) de
fK fi(z)dx

_ S fi@)exp (]2 (2C*n)) do
- fK f1($) dz

< sup [exp [ES
_HCEK 20211

< Ve
since ||z|| < Cy/n. 0

6.3. Bounding wasted steps. The speedy walk is defined as the proper steps
of the ball walk, where the point the ball walk attempts to visit is contained in K.
For convenience, we restate the definition of the speedy walk from earlier (Figure 3).

Speedy Walk(94, f)
At current point x € K, do the following:
1. Pick random point y from K N (z + JB,,).
2. Go to y with probability min{1, f(y)/f(z)}; otherwise,
stay at x.

F1c. 3. The speedy walk with a Metropolis filter.

To prove convergence of the ball walk with a Metropolis filter, we prove conver-
gence of the speedy walk and then bound the number of “wasted” steps. Note that
the speedy walk cannot be implemented as described in Figure 3 but is an analysis
tool to prove the mixing time of the ball walk.

Next, we bound the average number of wasted steps of the ball walk, i.e., when
the ball walk tries to visit a point not in K. The average local conductance of the
ball walk is defined as

B fK L(z) f(x)dx

Af) = T F(0)de

We say that a density function f : R™ — Ry is a-rounded if any level set L
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contains a ball of radius a - us(L). We now show that the average local conductance
is large, i.e., at least a constant.

LEMMA 6.9. For any a-rounded logconcave density function f in R™ where K =

su ,
pp(f) sie 1
Af)>1— 32—

Proof. Define f as the following smoothened version of f. Let D be a convex
subset of 0By, such that 16 - vol(D) = vol(d B,,).

. w0 f(Y)dy
f(z) = min —fye"H_D (9)
D vol(D)
Now Lemma 6.3 from [25] shows that
§1/2p,1/4
/ fa)de>1-322-" " 7

To complete the proof, we observe that, for any point x,

() f(x) > f(x).
To see this, note that

fKﬂ(x+5Bn) Ldy

(@) f(@) = F@) =055

fx.,.(;B" min{ f(z), f(y)} dy
fa;-‘,—(SBn 1 dy

fye;c+6Bn:f(y)§f(x) fly) dy
Jyewsomasw<se 1
> f(x). 0

LEMMA 6.10. The Gaussian N(0,0%1) restricted to K containing a unit ball cen-
tered at 0 is min{o, 1}-rounded.

Proof. The level sets of the distribution are balls restricted to K. For the distri-
bution to be min{c, 1}-rounded, we need that a level set of measure k contains a ball
of radius k- min{o, 1}. Consider the following function of ¢, which is an upper bound
on the measure of the ball of radius ¢ < min{e, 1} since the unit ball is contained

in K:
f(f 2" Lexp ( 202> dx
g(t) = min{o,1}
In " anlexp (— £ ) dz

Consider the second derivative of ¢:

2
42 "2 exp —;7
g”(t) = ((TL - 1) - ) ) fmin{a,l} ( )
0

n 1exp( ) dz

>

Y

For ¢”(t) to be nonnegative, we need o%(n — 1) — t2 > 0, which it is for n >
2,t € [0,min{o, 1}]. Since g(0) = 0, g(min{o,1}) = 1, and the second derivative is
nonnegative, we then have that g(tmin{o,1}) < t for ¢ € [0, 1], which proves the
lemma. |
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We now show that for an appropriate selection of ball radius the ball walk has
large average local conductance.

LEMMA 6.11. If 6 < min{o,1}/(4096y/n), then the average local conductance,
A(f), for the density function f proportional to the Gaussian N (0,021,) restricted to
K containing the unit ball is at least 1/2.

Proof. Using Lemmas 6.9 and 6.10, we have that

min{c'/?, 1}nt/4 1
64nt/4min{c1/2,1} 2’

A(f)=1-32

The following lemma is shown in [9].

LEMMA 6.12. If the average local conductance is at least A, M (Qo,Q) < M, and
the speedy walk takes t steps, then the expected number of steps of the corresponding
ball walk is at most Mt/\.

Proof. Since M (Qo, Q) < M, we have that, for all S C K,
Qo(S) < MQ(S),

and by induction on ¢ we get that

@@:L&@MH@SML&@M@:M%ﬂ

For any point z, the expected number of steps until a proper step is made is
1/0(x). So, given a point from @;, the expected number of steps to obtain a point
from Q;41 is

1 1 1 - M
lémﬂ@@SMAaww@Mﬂxm@A’

where Q is the corresponding distribution for the ball walk with a Metropolis filter
(i.e., with stationary distribution proportional to f(x)). If the speedy walk took ¢
steps, then by linearity of expectation the expected number of steps for the ball walk
is at most Mt/A\. |

6.4. Mapping speedy distribution to target distribution. At the point
when the speedy walk has converged, we obtain a point approximately from the
speedy walk distribution £(z)f(x). We will use a rejection routine to map a random
point from this distribution to the target distribution f(x) while incurring a small
amount of additional sampling error. We adapt the proof of Theorem 4.16 of [19] to
the Gaussian setting.

LEMMA 6.13. Assume that |P — Q| < &, B, C K, ¢ < 1/10, and

< min{o, 1} .
~ 8y/nlog(n/e)

There is an algorithm that will use a constant number of random samples from P, in
expectation, to obtain a distribution R satisfying ||R — Q|| < 10e.

Proof. The rejection routine is as follows: let ¢ =1 —1/(2n). For a point u from
distribution £(x)f(x), let v = (1/c)u. Accept v with probability f(v)/f(u). Repeat
until we accept a v.
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The correctness of the above routine follows from the following two facts: (i) with
constant probability, the rejection sampling will succeed, and (ii) removing a thin
shell around the boundary makes ¢(x) look close to uniform on average.
Recall that Q is the speedy walk distribution and @ is the ball walk distribution.
Consider a level set ur, = {« : f(x) > L}. By logconcavity of f, ur is convex.

Recall that the level sets pj, are balls intersected with K since f is a spherical
Gaussian distribution. From [19], if x, contains the unit ball, then

/ (1 6()) da < evol (jur, N cK).
pwrNeK

If ur, does not contain the unit ball, a standard calculation (using that B,, C K)
shows that the local conductance is at least 1 — ¢ for every point, and thus

/ (1 — £(z)) dz < evol (g, 1 cK).

nrNeK

Using the above, we see that

/CK (1—4(2)) f(z)dx = /0 /#L (1 —=4(x)){z € Llex }dxdL
< I K)dL
_/0 evol(ur NcK)
=c f(z)dx.
cK

Then
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| @i

I
(6.4) Q(cS) < —————
/Ké(x)f(as) dx

Let P’ be the distribution of the first sample from P which satisfies (1/c¢)x € K.
Define

Similarly,

0 otherwise,

oa) = {f(cx) ifee K,

and let Z be the probability distribution corresponding to z. Then

< e — y (6.2), (6.4)
(1-¢) flx)de —e | L(x)f(z)dx / f(z)dz
cK K cK
1+ 3¢
<o ! by (6.3)
<10e

Then accept a point & with probability f(z)/z(z), which is at least a constant
since [|z|| < 40+/n. The overall expected number of rejection steps is a constant since
Q(cK) > 9/20. d

6.5. Proof of sampling theorems. We can now prove Theorems 1.4 and 1.5
for sampling a Gaussian distribution restricted to a convex body.

Proof of Theorem 1.5. By Theorems 6.6 and 6.1, we have that selecting § =
min{c, 1}/(40964/n) implies that the speedy walk starting from a distribution that
is M-warm will be within total variation distance v of the target distribution in
O(max{c?,1}n?log(n/v)log(M/v)) steps.

By Lemma 6.12, the ball walk will, in expectation, take at most 2M times as
many steps since the average local conductance A is at least 1/2. Therefore, the
total number of expected ball walk steps is O(M max{c?, 1}n?log(n/v)log(M/v)).
We then repeat this walk O(1) times until we obtain a point from the proper target
distribution using Lemma 6.13. ]

Proof of Theorem 1.4. Note that here we are analyzing the sampling phases of
Figure 2 and only the phases when o2 < 1. For these phases, we restrict K to a
ball radius 40+/n, which only ignores an exponentially small fraction of the Gaussian
measure by Corollary 5.2 (note that since K is convex and contains the origin, the
mean of the Gaussian restricted to K is at most 20/n).

By Theorem 1.5, the ball walk will take O(M max{c?,1}n?log(n/v)log(M/v))
steps in expectation. By Lemma 6.7, each phase will always provide a warm start to
the next, i.e., M = O(1). By assigning a sampling error v = (¢/n)'® to each phase,
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we ensure that the overall sampling failure is at most € by a straightforward union
bound. Therefore, each sampling phase takes

o (o (2)

expected steps of the ball walk. Adding up across phases introduces an additional
nlogn factor since we increase o2 by the rate of 1 + 1/n between phases.

If we want to instead run for a fixed number of steps, we can keep a global counter
of the ball walk steps. Say the expected number of ball walk steps is T'. If at any point
the number of ball walk steps goes above 2T, we abandon this run of the algorithm.
The probability of a single run failing is at most 1/2 by Markov’s inequality. If we
want an overall failure probability of at most p, then we can run log(1/p) iterations
of the algorithm and, with probability 1 — p, at least one of them will succeed. ]

Proof of Theorem 1.2. The proof of Theorem 1.2, which extends Gaussian sam-
pling to uniform sampling, follows along the same lines as Theorem 1.4. When 02 < 1,
the total expected ball walk steps is

0] <n3 log(n) log® (g)) .

When o2 > 1, we additionally use Lemma 6.8, which implies that we can acceler-
ate our cooling rate and still maintain a warm start. This accelerated rate allows us to
overcome the increased mixing time of O* (max{o?, 1}n?) once 02 > 1. Now consider a
“chunk” of phases as a set of phases until 2 doubles. There will be O(C?n/o?) phases
in a chunk, where each chunk has expected mixing time O(0?n?log(n/¢)). Since there
are O(logn) chunks (provided C' = poly(n)), the total number of expected ball walk
steps when o2 > 1 is

@) (C2n2 log(n) log (g)) .

Note that this will yield a random sample with respect to a Gaussian with o2 =
C?n restricted to K. We can map this point to a uniform random point using simple
rejection sampling, which will succeed with probability at least 1/e since K C Cy/n.
If it fails, we can restart the algorithm. As with Theorem 1.4, we can repeat log(1/p)
times to transform the expected ball walk steps into a fixed number of steps with
success probability 1 — p. |

7. Analysis of the volume algorithm.

7.1. Accelerated cooling schedule. The goal of this section is to prove Lemma
3.2, which gives a bound on the variance of the random variable we use to estimate the
ratio of Gaussian integrals in the volume algorithm in Figure 2. Here we will actually
prove the inequality to be true for all logconcave functions but only apply it to an
indicator function of a convex body. Let f : R® — R be a logconcave distribution
such that Ex¢(||X|*) = R%

Define

202

ole.0%) = f(a)eso 'm”2> |

and also define

G(o?) = /Rng(x,JQ) dzx.
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Define ; as the probability distribution proportional to g(z,0?). Let X be a ran-
dom sample from p;, and let Y = g(X, aerl)/g(X, 02). From a standard calculation,
we have that

G(o i2+l)
G(o?) ~

K2

E(Y) =

The second moment of Y is given by

g(x70i

_ / a(r, 02 )\" gla,od)
R™ g(x, 012) G(O—?)

_ 1 g(x,af_H)Q

‘G(o%>/ o g@od)

1 / ( 01‘2-1-1‘71'2 >
= glo,z—5———) dz
G0 " 507 o7,

To bound the number of samples X needed to estimate Y within a target relative
error, we will bound E(Y2)/E(Y)?, which is given by

Ey?)  GlGas)G(o?)

2
B 2cri —0ii1

EY)2 Glof)?

Then, letting 02 = 02, and 07 = 62/(1 + a), we can further simplify to

evr) 6 ()6 ()

E(Y)? G(o2)?

The above n-dimensional inequality is difficult to analyze directly. We will reduce
it to a simpler one-dimensional inequality via localization. Define an exponential
needle E = (a,b,7) as a segment [a,b] C R™ and v € R corresponding to the weight
function e applied to the segment [a,b]. The integral of an n-dimensional function
h : R™ — R over this one-dimensional needle is

|b—al b —
/ h= / h(a + tu)e dt, where w= iy
E 0 b — al

We use the following theorem from [18].

THEOREM 7.1 (Theorem 2.7 in [18]). Let fi1, f2, f3, f3 be four nonnegative con-
tinuous functions defined on R™, and let o, 3 > 0. Then the following are equivalent:
1. For every logconcave function F' defined on R™ with compact support,

< [ s dt>a ( / F(0)£(0) dt) ’
< ( [ P dt)a ( / F(f() dt)ﬁ.
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2. For every exponential needle E,

(o) (L) < (fn) ()

A crucial aspect of our proof is that we can restrict the support of our target
logconcave function f, which then allows us to consider a restricted family of needles.
Recall that we assumed Exf(||X||?) = R%. Set Ry = 2R -log(1/e). By the following
lemma from [25], if we restrict the support of f to be Ry - By, we only lose an ¢/2
fraction of the mass.

LEMMA 7.2 (Lemma 5.17 in [25]). Let X € R™ be a random point from a log-
concave distribution with E(X?) = R2. Then, for any t > 1, Pr(]| X| > tR) <
exp(—R+1).

We can now reduce the desired inequality to a simpler form of exponential needles,
which are restricted to lie in the interval [— Ry, Ry].

LEMMA 7.3. If, for all intervals [¢,u] C [—R1, R1] and v > 0,

/ exp (vt) exp( (HO‘)) dt - / exp (yt) exp (7752(2%0‘)) dt
¢ ¢ <

< / : exp (vt) exp (— 202) dt>2

then, for all logconcave functions f defined on R™ whose support is a compact subset
Of R1 -B

GGG _
G(0-2>2 -
Proof. Define
fl (:L‘) = exp HxH (1+a) ifre Ran,
fz(]]) = exp HIH 1 a) if c Rl

fa(z) *exp 12 ifx € RiB

20

s
65
Il

and define f;(x) =0 for all z ¢ Ry B, i =1,2,3,4. Applying Theorem 7.1, by setting
F(z) = f(x) and o = 8 = 1 we have that

2 2

GGG

G(02)? =

if, for all exponential needles F C R™,

| n@as| pe
o]

To prove the lemma, we will show that we can reduce the inequality in (7.1) for an
arbitrary exponential needle E C R" to the simpler form. F is defined by an interval
7 in R™ and an arbitrary exponential function exp (y¢) on Z. Note that we may set

(7.1)
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7 =ZIN Ry B,, without altering inequality (7.1). Define z as the closest distance from
the origin to the extension of the Z in both directions. Parameterize the interval Z in
terms of ¢, where ¢ = 0 gives the closest point along the extension of Z to the origin
(note that ¢ = 0 does not necessarily have to be on Z). Also define the minimum
and maximum values of ¢ on 7 as £ and u, respectively, where [¢,u] C [-R1, R;] since
T C R1B,,. We then have that

u t2 2
[Eg(az,z) dx:/z exp (7t) exp ( 2222 ) dt
22 v t?
= exp <%¢2) ~/€ exp (’yt)exp( 5 2) dt.

Note that in the integral ratio the terms with z cancel out since

exp (_(1 +a)z?2 (1-a)z? 2z2) _

202 202 3207

which then proves the lemma. ]

Before bounding the simpler form of the variance inequality obtained by
Lemma 7.3, we first prove the following two helper lemmas.

LEMMA 7.4. Let X be a random variable with E(X?) < oo, and let a < X < b.
Then
E(X*) — E(X?)? < 4max{a?,b*}Var(X).

Proof. Let Y be an independent random variable drawn from the same distribu-
tion as X. Then

2Var(X?) = Var(X?) + Var(Y?)
=E(X*) - E(X?)2 +E(Y?) — E(Y?)?
= E(X*) — 2E(X?)E(Y?) + E(Y?)
=E((X*-Y?)?)
=E(X+Y)}(X -Y)?)
< 4max{a® b*}E ((X — Y)Q)
= 4max{a® b’}E (X? — 2XY +Y?)
= 8max{a?, b*}Var(X). O

LEMMA 7.5. Let [¢,u] C [-Ry, R1] and

: :f t2exp('yt)exp( 2> dt

fé exp (7t) exp( )

Then v'(z) > —2R?/x.

Proof. For convenience, define

s(z,t) = exp (1) exp (_iﬁ) .
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We have that

v (x) = <%i2> ) (/:tZS(I’t) dt)z ; /:5(17»75)26175/:1545(17,15) dt.
</es($’t) dt)

Observe that the above quantity is the difference of moments of a truncated Gaussian
distribution. We then have that

1
v'(z) = (22) (E(X?)? —E(X"),  where X ~ N (’Y; z ) ‘é <X<u
o
2 2
> —% - Var(X) by Lemma 7.4
o
2 2 2
> —% 7 by Theorem 5.1
o x
_ 2
T 3

where in the second-to-last step we used the fact that by truncating a Gaussian its
variance can only go down. To see this, let Z ~ N (0,1) and Z;, ~ Z N [a,b] for any
[a,b] € R. Then Theorem 5.1 says that Var(Z,) < Var(Z) by letting o = 2; the case
for general Gaussians is then obtained by rescaling and shifting. |

The following lemma now proves the variance bound.

LEMMA 7.6. Let [¢,u] C [ Ry, R1] and a < 1/2. Then

u u 2
/ exp (yt) exp ( ¢ (Ha)) dt - / exp (yt) exp (7%) dt R2a2
¢ £ 5 < exp <2 . 12 > .
w o
</£ exp (7t) exp (—50) dt)

Proof. Again for convenience, define

t“x

s(z,) = exp (7t) exp (;) .

/s(1+a,t)dt~/ s(1—a,t)dt
J4 J4

(Fwa)

Note that the lemma is equivalent to bounding h(a)). We first prove the following
claim, from which the lemma will easily follow.

CLAIM 7.7. For a <1/2,

Define

hia) =

W (a) < M.

= o2
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Proof. First, observe that

g (0 00) =g ([t (5555 ) )

1, 2(1 + )
= ﬁ (A t exp (’}/t) exp (—%"2 dt y

and similarly

8%(5(1 - a7t)> = % (/Zu t? exp (7t) exp (—ﬁ(;;a)) dt) :

Then taking the derivative of h(«) with respect to a gives

51+a,t)dt-/sl—a,t dt
s o / (1= a)

8704( (a)) = B </:8(1’t) dt)2

/s(1+a,t)dt./ tzs(l—a,t)dt—/ s(l—a,t)dt~/ t2s(1 4+ a,t) dt

— L 4 L L

1
o ([ sna)

We now have that h'(a)/h(«) is equal to

1 [, t*exp (vt) exp (7{2(2%(1)) dt [, t*exp (vt) exp (7%%@) dt

20 [, exp (yt) exp (— tz(;g_f)) dt ) exp (vt) exp (— £ (21;@)) dt

) f; t? exp (yt) exp (— t;:}}) dt
v(z) = )
[, exp () exp (—L2) dt

We then have that

ot =3 (/1)

1 1+a 2R2
< — / I by Lemma 7.5
202 loa T
R? 1+a
o? 1-a«
2 2
<3 (‘fl_aa) using In(1+z) <z
4R«
S
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By Claim 7.7, we then have a bound on h(«a) as follows:

In h(a) =1Inh(0) + /00‘ % (Inh(zx)) dx

o (o) ™

=1In(1) +

and thus

LEMMA 7.8. Suppose a logconcave function f :R™ — R has support contained in
Ry - By,. Let g(z,0%) = f(z)exp (—|z]|*/(20?)). Let X be drawn from a distribution
proportional to g(z,0%), and let Y = g(X,0%(1+ «))/g(X,0?). Then, for a < 1/2,

E(Y?) _  (2R3a?
Ev)e =P\ T2 )

Proof. 1t follows immediately from Lemmas 7.3 and 7.6. ]

The bound in Lemma 3.2 then follows by applying Lemma 7.8 with the indicator
function of a convex body.

7.2. Proof of the main theorem. In this section, we prove Theorem 1.1 by
analyzing the runtime of the algorithm in Figure 2 and also showing that the volume
estimate it computes is accurate.

The following two lemmas say that the beginning and ending o2 for the algorithm
are sufficient.

LEMMA 7.9. If 02 <1/(n+ /8nln(1/¢)) and B,, C K, then

— | — ||
/Kexp(%‘2 dx > (1 —¢) exp | —— 5 dx.

Proof. We will use the following concentration bound on a spherical Gaussian in
R™ with mean p and variance o2, which is valid for ¢ > 1 (see, e.g., [6]):

Pr(X — pll? — 0% > to> ) < eSS
Selecting 1 = 0, t = \/81n(1/¢), and 02 = 1/(n + t\/n) gives
Pr(|X|* > 1) <e,

and therefore all but an e-fraction of the Gaussian is contained inside B,, (and there-

fore K). d
LEMMA 7.10. Let K C C\/nB,, fi(z) = exp(—%), o > C%n, and o2, = 0.
Then, for X drawn from a distribution proportional to fNK andY = fir1(X)/ fi(X),
EY?) _
<
E(Y)? ~°
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Proof. Observe that f;(X) > 1/e since || X||? < C?n, and thus Y < e. Also note
that Y > 1. Therefore, E(Y?)/E(Y)? < €. d

We now bound the variance when o2 is small. First, we will need the following
lemma that is proved in [24].

LEMMA 7.11 (Lemma 3.2 in [24]). Let K C R"™ be a convez body and f: K — R
be a logconcave function. For any a > 0, define

Z(a) = /K f(az)dz.

Then a™Z(a) is a logconcave function of a.

LEMMA 7.12. Assume n > 3. Let X be a random point in K with density pro-
portional to f;(x) = exp (—”2‘2”;), ol =014+ a), and Y = fi(X)/fi(X). If
a=1/n, then

E(Y? 2
e

Proof. For convenience, let 0 = 0;41. Then

_lzl*P(1-a) _ =z’ (+a)
E(Y2)/K6Xp( 5o7 )dm/KeXp( 5o2 )dac

E(Y)? (/K exp G@) d:z:)z

By Lemma 7.11, the function z(a) = a"™! [} exp (—al|z||?/2) dz is logconcave,
and thus )
l-«a 1+« < 1
z z 2= .
o? o2 )~ " \o?

/K exp (_||z22(01_2 a)> dx/K exp <—”x”22(01_2+ a)) dz
n+1 2112 2
() (e () )

Setting aw = 1/n, we have that

EQ™) 1 R I n+1< L O
EY)? = \1-1/n2 - n2 —1 =S\ T = Ty

We now show that the volume estimate computed in Algorithm 2 is accurate.
Define R; as the ith integral ratio, i.e.,

F(ofy) _ Jxexp (<lel?/(202,)) da
F(o?) S exp (=ll=[?/(207)) dz
and let W, denote the estimate of the algorithm for R;.

For two random variables X,Y, we will measure their independence by the fol-
lowing:

Therefore,

Ri =

wX,Y)=sup|P(X € AY € B)— P(X € A)P(Y € B)|,
A,B
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where A, B range over measurable subsets of the ranges of X, Y.
We will give an argument similar to that in [24] and use the following lemmas
that were proved there.

LEMMA 7.13 (Lemma 3.5 in [24]). If f and g are two measurable functions, then

p(f(X),9(Y)) < (X, Y).

LEMMA 7.14 (Lemma 3.6 in [24]). Let X,Y be random variables such that 0 <
X<aand0<Y <b. Then

E(XY) — E(X)E(Y)| < abu(X, Y).

LEMMA 7.15 (Lemma 3.9 in [24]). Let X > 0 be a random variable, let a > 0,
and let X' = min(X,a). Then

E(X?)
E(X") > E(X) - .
(x) > B(x) - X
LEMMA 7.16. With probability at least 4/5,
(1—&)Ri...Roy <Wi...Wyy < (1+&)R1...Rpn.

Proof. Let (X§, X1, X3, ..., X.) be the sequence of sample points for the ith vol-
ume phase. The distribution of each X; is approximately the correct distribution
but slightly off based on the error parameter v in each phase that bounds the total
variation distance. We will define new random variables Y; that have the correct
distribution for each phase.

Note that X]Q would be sampled from the exact distribution and then rejected

if outside of K. Therefore, Pr(X;.) = Yg) = 1. Suppose that the total number of

sample points throughout the algorithm is ¢. Using induction and the definition of
total variation distance, we see that

(7.2) Pr(X! = X7Vi,j) > 1— tv.
Let )
g .
i 2‘7'2+1 5574 1 i
exp (_ 267 ) j=1

Note that, for a fixed i, all of the in have the same expectation since they are from
the exact distribution, and it is equal to E(W;). Suppose that we have E((Y})?) <
¢iE(Y})?. Then

k
W = 1 | SEOD) + k- DR

(7.3) < (1 + 4 - 1) CE(W,)2.

When o2 < 1 and we use a fixed cooling rate, then ¢; < 1+ 2/n by Lemma 7.12,
and (7.3) gives that

—2 2 — 9
(7.4 e < (14 2 )BT
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The following claim bounds the variance of our ratio estimator under a faster
cooling rate, which we use to bound the variance when 1 < 02 < C?n. It follows from
Lemma 3.2.

CLAIM 7.17. Suppose that K C C\/nB,, and let o = 02 /(2C?n). Then
E ((Yz)Q) 0_2
E(Y#)2 C?n’

Suppose that we had independence between samples, and consider bounding the
cumulative error for all phases of the algorithm. When o2 < 1, we can bound the
number of phases for the first part as m; < 2nlog4n. When o2 > 1, we will analyze
the phases in chunks, where a chunk is the set of phases until o2 doubles. Note that
the number of phases in a chunk starting with variance o2 is at most 2C%n/02. Also
there are at most log(C?n) chunks. Observe that for a single chunk with starting
variance o2, where 4, j are the starting and ending phases of the chunk, we have

E(W2 =2

T W) 202 2C2n/0'2 5
— <14+ = <|(1+4+-+].

R —( *k(;%) —( +k)
Then there is one final phase when we switch to the uniform distribution, which has

variance at most 1+e? by Lemma 7.9. Note that this, together with (7.4), (7.5), gives
the following bound for all 1 < i < m:

(7.5)

2

(7.6) E(W?) < (1 + ek) E(W,)2.

Let m denote the total number of phases. Note that, from above, we have that
m < 4C%nlog(C?n). Consider bounding the product of the E(Wf) terms:

—=2 =2 my log C?*n 2

EW,...W. ) 2 5 e

201wl o 2 1+ 2 1+ =

R?...RZ2, — +kn +k +k
2m;  5log(C?n)  e?
< -
= eXp( L

(7.7) < exp (;Z) .

If we had independence between samples, then we could use Lemma 7.12 and
Claim 7.17 with Chebyshev’s inequality to bound the probability of failure:
Pr |W1WmfR1Rm| >§ <4Var(W1Wm)
Ry...R, —2) 7~  e2R?...RZ

4 g2

< — — ) - .

<3 (exp<50) 1) by (7.7)
4 g2

< ) -

<5 ((+%))

_ 1

10
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However, subsequent samples are dependent, and we must carefully bound the
dependence. The analysis is somewhat involved, but will follow essentially the same
template as in [24, 9], which utilizes the following lemma to bound dependence between
subsequent samples, where v is the target total variation distance for each sample
point. For convenience, denote the entire sequence of ¢ samples points used in the
algorithm as (ZQ7 Zl, ceay Zt—l)-

LEMMA 7.18 (Lemma 4.3 in [24]).

(a) For 0 < i < t, the random variables Z; and Z; 11 are v-independent, and the
random variables Z; and 7i+1 are (3v)-independent.

(b) For 0 < i < t, the random variables (Zy,...,Z;) and Ziy1 are (3v)-
independent.

(c) For 0 < i < m, the random variables Wy...W; and Wiy, are (3kmv)-
independent.

The variables @ are not bounded, but we will introduce a new set of random
variables based on W; that are bounded so we can later apply Lemma 7.14. Let

c1/2
O S
where et log® C%n
u—3km1/—®(nls>.
Note that « is much larger than one. Define
(7.8) V; = min{W;, aE(W))}.

It is clear that E(V;) < E(W;), and we also have

—2
E(V;) > E(W;) — E( L) by Lemma 7.15
4aE(W;)
>(1- L 1+é E(W)) by (7.6)
- 4o k ! v
1
. > (1- — ;
(7.9) > (1 2a> E(W;)
Let Uy = 1, and define recursively
We will now show that
,— 1
(7.11) (1 . - ) E(VA)...E(Vi) < E(U3) < (14 2ua?) E(V1)...E(V).

We first show the upper bound in (7.11). To see the independence of U;_;
and V;, observe that U;_1 = f(Wy,...,W;_1) for some function f. Note that
aE(V1)...E(V;_1) is a fixed constant. Similarly, V; = g(W;) for some function g.
Thus, by Lemmas 7.13 and 7.18, the random variables U;_; and V; are p-independent.

Then
[E(Ui—1Vi) — E(Ui-1)E(Vi)| < paE(Vh) ... E(Vi1)aE(W;) by Lemma 7.14
(7.12) < 2ucE(V1) ... E(V;) by (7.9) since o > 1.
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We can now get the upper bound on E(U;) by induction:

E(U;) < E(Ui-1Vi) from (7.10)
< E(Ui1)E(Vi) + 200°E(V1) ... E(V}) by (7.12)
(7.13) < (14 2ua?)E(VL) ... E(VQ) using an inductive hypothesis.

To obtain a lower bound in (7.11), we first upper bound the second moment
by a similar sequence of steps. Observe that E(U2 ;) and E(V;?) are p-independent.
Therefore,

[E(UZ1 V) — E(UL)E(VA) < pa®E(V1)? .. E(Vi1)?a®E(W;)?
< 2uc®E(V3) .. E(V?).
And using induction we see that

(7.14) E(U?)

(7.15) (1+2ua*)E(VY) .. E(V?).

Now for the lower bound in (7.11) we have that

E(U2,V2)
1aE(V1) ... E(V})
E(V)...E(V2)

E(U;) > E(Ui—1V;) —

by Lemma 7.15

(7.16) > E(Ui1Vi) — (14 2ua’i) T ARRECH) by (7.15).
For a > 3k, we have that
E(V?)...E(V2) <E(W,)...E(W)) by (7.8)
< exp <§)> E(W?)...E(W:) by (7.7)
< exp (;Z) WE(VQQ . E(Vp)? by (7.9)
< exp <;(2) + W) E(V1)2...E(V;)? (i <4C?*nlogC?n)
(7.17) < exp <52 L E(Vi)%

=~
o
=~ N—
m
—
=
~
(V)

Combining (7.16) and (7.17),

2

E(U;) > E(U;—1V;) — ! (14 2pati) exp (40) E(V1)...E(V;)

4o
1+ 2pa™
> E(U; 1V;) — zic‘jE(vl) LE(Vi)
14 3ua’s
> E(Ui—)E(V;) — TE(Vl) ..E(V3) by (7.12)
1
> E(U;—1)E(V;) — aE(Vl) ...E(V}) since 3puati < 1.
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Then, by induction on 4,

(7.18) E(U;) > E(Vh)...E(V;) — =1

E(V1)...E(V).

Putting (7.13) and (7.18) together, we now have a proof of (7.11). Thus

E(Un) < (1+2ua®m) E(V1)...E(V;n) by (7.11)
< (1 + Z) E(V1)...E(Vn) by the definition of a
< (1 + 2) E(W1)...E(W,).
We also have that
E(U,) > (1 - mT_l E(VL).. E(Vin) by (7.11)
> <1 - m; ! (1 - 21a>m E(W1)...E(W,n) by (7.9)
> (1 _ 2) E(W1)...E(Won) since o > dm/e.

We also have an upper bound on the second moment of U,,:

E(Uz) < (1+2ua*m) E(VY) .. E(V,}) by (7.15)
< (14 2pa’*m) exp (io) EV1)2. .. E(V;n)? by (7.17)
< (14 2pa’*m) exp (i()) i (ml— 1)/a)? E(Un)? by (7.11)
(7.19) < (1 - gi) E(U.)%

Using Chebyshev’s inequality, we see that

€ s — 4Var(U,,)
Pr(|Upn —E(Up)| < EW1)...E(W,,)) >1— — —
(] (Un)| < SE(W1). . E(W o)) T AT T
4E(U,, )?
>1-— AEUm)] by (7.19)
G64E(W1)2.. . E(W,,)?
>0.9 by (7.11).
Then, applying Markov’s inequality,
Pr(Uis1 # UiVig1) = Pr (UiVigr > aE(V1) .. E(Viga))
2
<= by (7.13).
@

Similarly,
PI‘(V, 7& Wz) =Pr (Wz > OLE(WfL))

<

o=
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Applying a union bound, we see that with probability at least 1 — 3k/« we have
Up = Wi...W,,. Also, from (7.2), we have that W,...W,, = W;...W,, with
probability at least 1 — 2kmv. Recall that E(Wy)...E(W,,) = Ry ... R,,. Therefore,
with probability at least 4/5,

|W1...Wm—R1...Rm\g%Rl...Rm,

which proves the lemma. 0
We can now prove the main theorem.

Proof of Theorem 1.1. We assume that € > 27", which only ignores cases which
would take exponential time. Then, by Lemma 7.9, selecting 02 = 1/(4n) implies
that all but a negligible amount of volume of the starting Gaussian is contained in K.

Recall that our algorithm only has a bound on the expected number of steps. To
account for this, we will run the algorithm O(1) times to obtain a run which takes
at most a constant factor of ball walk steps to proper steps, say with probability
1/20. By Lemma 7.16, the answer returned by the algorithm will be within the target
relative error with probability at least 4/5. Thus the overall probability of failure is
3/4. Note that we can boost this probability of failure to 1 — p by the standard trick
of repeating the algorithm log 1/p times and returning the median.

We now analyze the runtime of the algorithm in Figure 2. Set C' = Rlog(1/e)//n.
Assume that C' > 1 (otherwise, arbitrarily increase C'). When o2 < 1, using the value
of k, the mixing time assigned to each phase, and the fact that there are O(nlogn)
phases, O(n*°klognlog®(n/e)) = O(n®log®nlog®(n/e)/e?) = O*(n?) is the total
number of ball walk steps taken. When 2 > 1, the analysis is very similar if we note
that the faster cooling rate and fewer number of samples cancel out the slower mixing
time of O*(0?n?). Thus it follows that the total number of ball walk steps taken is

C*n3log® nlog? 2 22 1
O( n ogzn og ¢ :O<R;”L -10g2nlog2loan):O*(RQTLQ). 0
€ € 5 15

8. Conclusion. We make a few concluding remarks:

1. In our algorithm, the complexity of volume computation for well-rounded
bodies is essentially the same as the amortized complexity of generating a single
uniform random sample—both are O*(n?). This is in contrast to all previous volume
algorithms where the amortized complexity of sampling is lower by at least a factor
of n compared to the complexity of volume computation.

2. It would be interesting to extend our algorithm to integrating any well-rounded
logconcave function; we expect this should be possible with essentially the same com-
plexity. The variance of the ratio of integrals computed in each phase, as well as
the isoperimetric inequality, are already proven in full generality for all logconcave
functions.

3. The accelerated cooling schedule used in our algorithm can be seen as a worst-
case analysis of the cooling schedule used in a practical algorithm for volume compu-
tation [8, 10]; in the latter, we used an adaptive schedule by empirically estimating
the maximum tolerable change in the variance of the Gaussian that keeps the variance
of the ratio estimator bounded by a constant.

4. An important open task is to find an O*(n?®) rounding algorithm for arbitrary
convex bodies. The current best rounding complexity is O*(n*) [24].
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