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1 Introduction

In this paper we compute the third homology of some of the sporadic simple groups, and of their
central extensions. For many of these groups we are able to name elements (characteristic classes)
that generate H*(G; Z), the Pontryagin dual of H3(G). In the following table we write n.G for
the Schur covering of the sporadic group G — for a sporadic simple group, the covering is always
by a cyclic group n = Ha(G) — and have left empty spaces where G = n.G.

Miyp  Myo Mao Mos Moy
n=HyG)| 1 2 12 1 1
Hy(G)| 8 2x24 1 1 12
Hs(n.G) 8x24 24
HS J2 COl COQ 003 McL Suz
m(G)| 2 2 2 1 1 3 6
Hi(G) | 2x2 30 12 4 6 1 4
Hy(n.G) | 2x8 120 24 1 24
Jl O/N J3 Ru J4 Ly
H(G) | 1 3 3 2 1 1
Hy(G)| 30 8 15 ? 11
Hy(n.G) 8 3x15 7
He HN Th  Fip Fiy Fi), B M
0(G) | 1 1 1 6 1 3 2 1
Hy(G)| 12 7 ? 1 T 7 24 x[<4]
H;(n.G) 3 x [<4] 79

An expression like “a x b” is short for Z/a ® Z/b. Question marks in the table denote groups
for which we do not know the answer, and “[<4]” denotes an unknown, possibly trivial, group
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of order dividing 4. Further partial results for the groups HN, Th, Fisg, and Fi}, are listed in
Section 8.

Only some entries in the table are original. The Schur multiplier row (the first row in the
table) was computed over many years, partly in service of the classification of finite simple
groups, and is available in the ATLAS [6]. With Fa-coefficients, the entire cohomology rings of
many of the smaller sporadic groups are listed in [2], and at large primes the cohomology rings
of many sporadic groups are computed in [37, 38]. The Mathieu entries are reviewed in [14].
Significantly, H3(Ma4) was first computed in that paper using Graham Ellis’s software package
“HAP”, which we have found can also determine H3(G) for G € {HS, 2HS, Jo, 2J9, J1, J3, McL}
using the permutation models given in the ATLAS. For the larger groups G, although HAP
cannot calculate H3(G) on its own, it played an essential role in our calculations, as did the
“Cohomolo” package by Derek Holt.

1.1 Motivation

If G is a compact simple Lie group, or a finite cover of a compact simple Lie group, the
cohomology of its classifying space can be complicated at small primes but one always has
H*(BG;Z) = Z; see [24] for a proof and some discussion of its role in conformal field the-
ory. In unpublished work [23], Jesper Grodal has shown that, with finitely many exceptions,
HY(G;Z) = Z/ (q2 — 1) whenever G is a simple finite group which arises as the F g -points of
a split and simply connected algebraic group over F,. Part of our motivation has been to see
whether we could discern any patterns in H*(G; Z) when G is sporadic.

We have also been inspired by the idea that 3-cocycles G x G x G — U(1) (when G is
finite, these represent classes in H4(G; Z)) can explain and predict some features of moonshine
[4, 16, 17, 18]. Such a cocycle can arise as the gauge anomaly of a G-action on a conformal field
theory. Even in the newer examples of moonshine where no conformal-field-theoretic explanation
is known, there are some numerical hints about this cocycle. For example, Duncan—Mertens—Ono
have used our calculations to explore a cocycle in their “O’Nan moonshine” [13, Section 3].

To some extent these hints can be pursued in an elementary way in pure group theory. If s
and t are a pair of commuting elements in a finite group G, we may define the following infinite

group:

T(s,1) i {<<‘CL Z) ,g> € SIa(Z) x G

It is the fundamental group of one of the components of the moduli stack of pairs (£, T"), where E
is an elliptic curve and T is a G-torsor over E. If there is a natural family of McKay—Thompson
series attached to G, one expects that their modularity properties (and more ambiguously, their
mock modularity properties) can be expressed in terms of a holomorphic line bundle on this
space, or equivalently in terms of a I'(s, t)-equivariant line bundle on the upper-half plane. The
topological types of such line bundles are parametrized by the finite group H*(T'(s, t); Z), which
is the target of a transgression map H*(G; Z) — H?(I'(s,t); Z) [18, Section 2].

gsg~t = s%® and gtg~! = sctd} .

2 Preliminaries

2.1 Notation

We will generally follow the ATLAS naming conventions for finite groups. We will write
both “Z/n” and plain “n” for the cyclic group of order n. When ¢ is a prime power, we will
occasionally use “q” to denote the finite field Fy of that order. Physicists typically denote the
cyclic group of order n by Z,. Following mathematics conventions, we will instead reserve Z,,
where p is prime, for the ring of p-adic integers.
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We will write “N.J” or “NJ” for an extension with normal subgroup N and quotient J.
Extensions that are known to split are written with a colon “N : J”, and extensions which are
known not to split are written with a raised dot “N - J”. The name “p™”, where p is prime,
denotes an elementary abelian group of that order, and if n is even then “p!*™” denotes an
extraspecial group of that order. (There are two such extraspecial groups, called “pg””.)

We diverge from the ATLAS in the names for orthogonal groups. The group called “O,,(q)”
in the ATLAS is not the n x n orthogonal group over F,. Rather, the ATLAS uses “O,,(q)” for
the simple subquotient of the orthogonal group. To avoid confusion, we will follow Dieudonné
and write “Q,(q)” for this simple group. We will care only about the case when n > 5 is odd —
when 7 is even, there are two orthogonal groups, called Q2 (q). When n > 5 and ¢ is odd, €,,(q)
is the commutator subgroup of SO, (F,) = Q,(q) : 2, and is the image of Spin,(F,) = 2.Q,(q)
in SO, (F,), and is the kernel of the “spinor norm” SO, (F,) — F; /{squares} = Z/2.

Conjugacy classes of order n are named na, nb, nc, and so on. For simple groups the
conjugacy classes are ordered by size of the centralizer (from largest to smallest). In all cases
we follow GAP’s character table library, which includes a copy of the ATLAS character tables,
for the names of conjugacy classes. The online version of the ATLAS [42] includes a number of
irreducible modular representations. (We henceforth adopt the standard abbreviation “irrep” for
“irreducible representation”.) These are typically assigned letters “a”, “b”, etc., to distinguish
irreps of the same dimension and characteristic.

If G is a finite group, the names “H.(G)” and “H*(G)” always refer to group (co)homology,
or equivalently the space (co)homology of the classifying space BG of G. When G is a Lie
group, we will explicitly write H,(BG) and H*(BG) to avoid confusion with the (co)homology
of the underlying manifold of G. Cohomology groups of G with (twisted) coefficients in A are
denoted H*(G; A). We sometimes abbreviate H*(G; Z) by just H*(G). All homology groups in
this paper are with Z-coefficients.

2.2 General methods

In this section and the next we review some standard techniques in group cohomology, which
we return to repeatedly in the following sections. These techniques are by no means due to us —
we employed them successfully in [28] to calculate the cohomology of Conway’s largest sporadic
group, and find in this paper that they also apply to most of the other sporadic groups. These
techniques are designed to understand the cohomology groups of a finite group G and not, say,
to compute explicit resolutions of Z over Z|G]|.

The first technique is to compute the p-primary part of H4(G;Z), which we denote by
HY(G; Z) (), one prime at a time. An upper bound for the p-primary part is provided by the
following lemma [3, Section XII.8]:

Lemma 2.1. Let G be a finite group and let S C G be a subgroup that contains a Sylow p-
subgroup for some prime p. The restriction map o — «lg: Hk(G;Z)(p) — HK(S;Z)
injection onto a direct summand.

(p) S an
Lemma 2.1, together with some basic properties (which we review in some detail in Sec-

tion 3.1) of H*(Z/p; Z) and H*(Z/p x Z/p; Z), allows us to dispose of many of the larger primes,
at least for sporadic groups:

Lemma 2.2. Let p be a prime and let G be a finite group with strictly fewer than (p — 1)/2
conjugacy classes of order p. If the p-Sylow subgroup of G is isomorphic to Z/p or to Z/p x Z/p,
then the p-part of H4(G; Z) vanishes.

If p > 5 and G is a sporadic simple group whose p-Sylow has order p or p?, then one
sees by inspecting the tables of conjugacy classes that the criterion applies unless p = 5 and
G € {J,Suz}. We will see in Lemma 6.10 that the 5-part of H*(Suz; Z) vanishes as well.
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Proof. In any group with fewer than (p—1)/2 conjugacy classes of order p, the cyclic subgroups
C C G of that order have the following property: there is a generator h € C' and an element
x € G such that zha~! = h® where a is neither 1 nor —1 mod p. Conjugation by such an z
acts trivially on H®(G;Z) but nontrivially on H*(C;Z) — indeed it scales a nontrivial element
t € H%(H;Z) = Z/p to at and the cup-square of that nontrivial element > € HY(H;Z) = Z/p
to a?t2. Tt follows that the image of the restriction map H*(G;Z) — H*(C; Z) is zero, for every
order p-subgroup C C G.

Let H be a p-Sylow subgroup of G, and consider the subgroup X C H*(H;Z) that vanishes
on every order-p subgroup C' C H. The discussion above shows that the image of the restriction
map H*(G;Z) — H*(H; Z) lies in X, and by Lemma 2.1, this restriction map is an injection on
the p-primary part of H4(G; Z). When p is odd and H is an elementary abelian p-group of rank
at most two, HY(H;Z) = Sym?(H*) (see Lemma 3.1), and so H*(H;Z) is detected on cyclic
subgroups, i.e., X = 0. |

In many cases not covered by Lemma 2.2, there is a maximal subgroup S C G that contains
a p-Sylow, and that has shape S = E.J where F is either an elementary abelian or an extraspecial
p-group. (See [44] for a survey of maximal subgroups of finite groups.) Sometimes we know
H*(J;Z), either by induction or by computer. The Lyndon-Hochschild-Serre (LHS) spectral
sequence (detailed for example in [41, Section 6.8])

EY =H' (J;H/(E;Z)) = HY(S;Z)

gives an upper bound for H*(S;Z), and therefore for H*(G; Z) (), in terms of H*(.J;Z), which
we assume is known by earlier computations, together with the cohomology groups with twisted
coefficients

H® (J;HY(EB; Z)), H' (J;H%(E;Z)), H? (J;H*(B;Z)).

The contribution from H? (J; HY(E; Z)) is zero, since HY(E;Z) = 0 for every finite E. We
describe the groups H’(E; Z) for j = 2, 3,4 as Aut(F)-modules in Section 3. We used extensively
Derek Holt’s software package “Cohomolo” to determine the groups H!(.J; —) and H2(.J; —), but
sometimes the following vanishing criterion can be employed instead:

Lemma 2.3. Suppose that the center Z(J) has order prime to p and acts on H/(E; Z) through
a nontrivial character Z(J) — F). Then H' (J;H (E;Z)) = 0 for all i.

Proof. The statement is vacuous when p = 2, and so we assume p is odd for the remainder of
the proof. Let Z,[.J] denote the group ring of J with coefficients in the p-adic integers Z,. For
j >0, H/(E;Z) is a finite p-group, so H' (J;H/(E; Z)) = Extizp[ 7 (Zy, HY(E,Z)) when Z, is
given the trivial J-action.

Let x be the composite of the character Z(J) — F, with the Teichmuller isomorphism
F) = Z;[tor], where Z[tor] C Z) denotes the torsion subgroup, and let

1 _
“= ) 2 X

z€Z(J)

be the corresponding central idempotent in Zy[J], so that Z,[J] = eZy[J] x (1 — e)Z,[J] as
rings. Since x is nontrivial there is a projective resolution Py — Z,, of the trivial J-module with
P, = (1 —e)P,, for every m. It follows that ExtiZP[J](Zp,M) = 0, for all 4, whenever M is
a Zp[J]-module with M = eM. [ |
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The LHS spectral sequence allows us a comparison between the cohomology of a group and
of its Schur cover. Let G be a finite group with n C Ha(G) such that H'(G;Z/n) = 0. Then the
corresponding central extension nG is unique up to isomorphism. Consider the LHS spectral
sequence for this extension. Since the extension is central, G acts trivially on n and so on
H/ (n;Z), and so we have an isomorphism of bigraded rings

By = H(GyH (n; Z)) = H(G; Z[y) / (ny)),

where y has bidegree (7, j) = (0,2); see, e.g., [33, Section IL.8] and [25, Section II.5]. Using that
HY(G;Z/n) = 0, in total degree < 5 the Fy page reads:

0
(Z/n)y* 0
0 0 0
(Z/n)y 0 H*(G;Z/n) H*(G;Z/n)
0 0 0 0 0
Z 0 H*G;Z) HG;Z) HYG;Z) H(G;Z)

It follows that the pullback H*(G; Z) — H*(nG; Z) is an injection. (Such pullbacks are examples
of edge maps, described for example in [41, Section 6.8.2].)
Let us focus on the case when n is a power of a prime p, and restrict to p-parts. Then

Hi(G) gy = H%(G; Z) ) = 0. If furthermore Ha(G)(p) is cyclic, then H?(G;Z/n) = Z/n, and we
have the Fs page
0
(Z/n)y* 0
0 0 0
(Z/n)y 0 Z/n H3G;Z/n)
0 0 O 0 0
Z 0 0 Gy H(G)y H(G)y

The universal coefficient theorem describes H*(G;Z/n) as an extension
H3(G;Z/n) = [H3(G)(p) ® (Z/n)y]. hom(Hs(G), Z/n).
The do differential vanishes for degree reasons, and so Eéj = E;j .

The extension nG — G splits when pulled back along itself, which implies that pullback
HS(G)(p) — H3(nG)(p) has kernel of order n, forcing the differential ds: (Z/n)y — Hg(G)(p) to
be an inclusion. The Leibniz rule then determines d3(y?). If for instance Ha(G)y,
of order N, then so is H3(G)(p); calling its generator “r”, we have dzy = (N/n)x and d3y? =
(2N/n)axy, where zy is the generator of the submodule Z/n = H*(G)(,) @ (Z/n)y C H*(G;Z/n).

All together we learn:

is cyclic

Lemma 2.4. Let G be a finite group.

If p is an odd prime such that Hi(G)y) = 0 and Ha(G)p
HY(G;Z) — HY(pG;Z) is an injection with cokernel of order dividing p, and all classes in
H*(pG; Z) restrict trivially to the central p C pG.

If Hi(G)2) = 0 and H2(G)(9) is (nontrivial and) cyclic, then the pullback HY(G;Z) —
H4(2G’; Z) is an injection with cokernel of order dividing 4, and if the cokernel has order 4
then there are classes in H*(2G; Z) with nontrivial restriction to the central 2 C 2G.

If Hi(G)(2) = 0 and Ha(G)(2) = 4, then the pullback HY(G;Z) — H*(4G; Z) is an injection
with cokernel of order dividing 8; again equality forces there to exist a class in H4(4G; Z) with
nontrivial restriction to the central 4 C 4G, and all classes in H*(4G; Z) vanish when restricted
to the central 2 C 4 C 4G.

= p, then the pullback map
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Lemma 2.5. Let p be an odd prime such that Hi(G),) = 0 and Ha(G)(,) = p. Let pG denote
a nonsplit central extension of G by the group Z/p. Suppose that a p-Sylow S C G also has
HY(S;Z/p) = 0, and that the central extension pG, when restricted to S, is nonsplit. Then the
pullback map H(pG;Z) — H*(pS; Z) induces an injection

coker (H4(G; Z) — H(pG; Z)) < coker (H4(S; Z) — H*(pS; Z)).
This injection is an isomorphism if S contains the p-Sylow of G.

Proof. By Lemma 2.4, coker (H*(G;Z) — H*(pG; Z)) and coker (H*(S;2) — H(pS; Z)) are
each either trivial or of order p. We need only to show that if coker (H4(G; Z) — HY(pG; Z)) =
Z/p, then coker (H*(S;Z) — H*(pS; Z)) = Z/p.

Consider spectral sequence for the extension pG — G discussed before Lemma 2.4: we see
that coker (H*(G;Z) — H*(pG;Z)) = p if and only if the d3: E3* — E3° vanishes. Let o €
H?(G;Z/p) = E?? denote the generator classifying the extension pG. Then d3: o + Bock (aQ),
where Bock: H*(G;Z/p) — H(G; Z) denotes the integral Bockstein. This can be confirmed by
comparing the spectral sequence for H*(pG; Z) with the one for H*(pG;Z/p).

But then Bock ((a|s)?) = Bock (a?)|s also vanishes, and so coker (H*(S;Z) — H*(pS; Z))
= p by the spectral sequence for the extension pS. Conversely, assuming S contains the p-Sylow
in G, if Bock (a2)|s =0, then Bock (a2) = 0 by Lemma 2.1. |

As we have mentioned, each page of the LHS spectral sequence provides an upper bound
for H4(G)(p). We can improve this upper bound whenever we can show that the images of the
two maps

HY(J;Z) — HY(S;Z) « HYG; Z)

have trivial intersection. We can often prove this by restricting generators of H4(J ;Z) and
H*(G;Z) to cyclic subgroups and showing that no class in H*(S;Z) can simultaneously enjoy
the restrictions mandated by both H*(.J;Z) and H*(G;Z). For these calculations, we rely on
GAP’s character table library, which includes a copy of the ATLAS and, provided it contains
the subgroup S, knows how conjugacy classes fuse along the maps S — G and S — J.

2.3 Characteristic classes

With the improved upper bound in hand, the last step is to give a lower bound for H4(G; Z). In
almost all cases these come from the characteristic class of a representation V: G — K, where K
is a Lie group. Usually we can take K = SU(N) or Spin(/N), for which the characteristic classes
are called, respectively, the second Chern class ¢o and the first fractional Pontryagin class %. In
two cases these “classical” characteristic classes co and &+ are not strong enough, and we appeal
to the Lie groups K = Eg and Eg. For some of the Monster sections, it is not possible for Lie-
group-valued representations to give a strong enough lower bound, and we instead appeal to the
construction of [27] to provide a “monstrous characteristic class” of a representation of G in M.

We now review the story of c and &-. See also [36] for a detailed treatment of characteristic
classes of finite groups. Suppose N > 2. Then H*(BU(N);Z) = Z?, with standard genera-
tors the square of the first Chern class ¢ and the second Chern class co. The first of these
restricts trivially along SU(N) C U(N), and so vanishes when restricted to any finite simple
group G; but if V: G — U(N) is an N-dimensional representation, then cy(V) € HY(G;Z) is
a potentially-interesting class. Similarly, provided N > 5, the generators of H*(BSO(N);Z) = Z
and H*(BSpin(N); Z) = Z are called the first Pontryagin class p; and the first fractional Pon-
tryagin class 2. Like the symbol 2 suggests, the pullback H*(BSO(N); Z) — H*(BSpin(N); Z)
along the double cover sends p; to 2 x BL. There are also maps between SU(N) and SO(N) and
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Spin(2N) which either complexify a real representation or produce the underlying real repre-
sentation of a complex representation. The characteristic classes restrict along these maps as

SU(N) — Spin(2N),  SO(N) — SU(N),

—c2 + B, —p1 < C2.

These classes are stable in the sense that they are preserved along the standard inclusions
SU(N) C SU(N +1) and Spin(N) C Spin(N +1). When N = 4, H*(BSpin(4); Z) is not genera-
ted by £, but that class is still defined by restricting along the standard inclusion into Spin(N)
for N large.

To show that the Chern class c2(V') of an N-dimensional representation V': G — U(N) has
large order, it often suffices to restrict it to a cyclic subgroup (¢g) C G. If g has order n, then
H'((g); Z) = Z[t]/(nt), where the degree-2 generator ¢ is defined as the first Chern class ¢;(C;) of
the one-dimensional representation C¢: g — ¢ = exp(27i/n) € U(1). The other 1-dimensional
representations of (g) are its tensor powers Cem = C?m: g +— (", and ¢;(C¢em) = mt and
c2(C¢em) = 0. A higher-degree representation splits over (g) as a sum of 1-dimensional repre-
sentations. The Whitney sum formula says that for any group G and representations V', W, we
have

a(Vaew)=c((V)+ca(W) e G, Z),
c(VaW)=cy(V)+ca(W)+ca(V)e(W) e H(G; Z).

In particular, if V| = @ C?’“, then

ca(V)lig) = Z mempt® € H4(<g>; Z).
k<k’

The Chern classes are traditionally organized into a total Chern class of mixed degree ¢(V') =

14 > ¢i(V) € H*(G; Z). The full Whitney sum formula then says that ¢(V & W) = ¢(V)c(W);
i>1

for the one-dimensional representations of a cyclic group, ¢(C¢m) = 1 + mt; and the above

formula is the coefficient on 2 of (V)5 = [T, (1 4 myt).

A representation V': G — SU(N) is called real if it factors, up to SU(N)-conjugacy, through
SO(N), i.e., if the representation preserves a nondegenerate symmetric bilinear form. For irreps,
this occurs if and only if the Frobenius—Schur indicator of V' is +1. (A representation with
indicator —1 is called quaternionic and factors through a symplectic group.) Frobenius—Schur
indicators are quick to compute from a character table for GG; they are listed in the ATLAS and
easily accessed in GAP. A real representation V: G — SO(N) is Spin if it factors (aka lifts)
through Spin(/V); a choice of factorization is also called a spin structure. This occurs if and only
if the second Stiefel - Whitney class wy(V) € H%(G;Z/2) vanishes. This happens automatically
if G is a Schur cover of a simple group, as then H?(G;Z/2) = 0.

Given a real representation V: G — SO(N) with complexification V ® C: G — SU(N),
the classes p1(V) and c2(V ® C) agree up to sign, and so the calculation can proceed as above.
Calculating 2 (V) for V': G — Spin(NN) can be harder. If V factored through W: G — SU(N/2),
then the calculation would be easy, as then B (V) = —ca(W). In the cases of interest, this does
not occur for the whole representation V' but does occur for its restriction V|, to a cyclic
subgroup.

The spin structure for a real representation V: G — SO(N), if it exists, typically is not
unique. Rather, the choices form a torsor for HY(G;Z/2) = hom(G;Z/2) (so in particular
the lift is unique for quasisimple groups). Even though the lift is typically not unique, the
class EL(V), if it exists, depends only on the complex representation V: G — SU(N) (since the

2
factorization through SO(N) is unique):
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Lemma 2.6. Suppose V1, Vy: G — Spin(N) are two spin structures on the same real represen-
tation V: G — SO(N). Then B (V1) = B (V») € HY(G; Z).

See [28, Section 1.4] for an explanation of Lemma 2.6 in terms of the “string obstruction”.

Proof. The reason that spin structures form a torsor for H!(G;Z/2) is the following. Let
¢ € Spin(NV) denote the nontrivial element in ker(Spin(N) — SO(XNN)). There is a group homo-
morphism

a: Z/2 x Spin(N) — Spin(N), (i,9) — c'g,

covering the standard projection Z/2 x SO(N) — SO(N). Given V; and Vs as above, there is a
unique map ¢: G — Z/2 such that

Vo =ao (¢, V).

Let 7: Z/2 x Spin(N) — Spin(/N) denote the standard projection. Then Vi = wo (¢, V7). In
particular, it suffices to show that the pullbacks of & along the two maps o, 7: Z/2 x Spin(N) —
Spin(N) agree. But H*(B(Z/2 x Spin(N))) = H*(Z/2) & H*(BSpin(XN)) by the Kiinneth
formula, and

™ = (0,2) € HY(Z/2) & H(BSpin(N)),
a*B = (B, B) € HY(Z/2) ® H'(BSpin(N)),

so it suffices to show that £ has trivial restriction to Z/2 = (c) = ker(Spin(N) — SO(N)).

Suppose that K is a compact connected Lie group with maximal torus T" C K, and write
L = hom(T,U(1)) = H*(BT) for its weight lattice. Then the restriction map H*(BK) —
H*(BT) = Sym?(L) is an injection. When K = SO(N), there is a natural identification L = ZV.
Writing eq, ..., ey for the standard basis, we have p; = ie?. The weight lattice L’ of Spin(NV)
is the extension of L through the element s = % >, ei. Working in Sym? L', we have

PL 92 _ .o
5 = 28 E e;ie;.
1<J

But e; and 2s are in L and so restrict trivially to (c), and so & also restricts trivially. [

3 Elementary abelian and extraspecial p-groups

3.1 Elementary abelian groups

Lemma 3.1. Let E = p™ be an elementary abelian p-group and let E* := Hom(E, ), where pu,
denotes the group of pth roots of unity in C*.

1. If p =2, we have isomorphisms of GL(E)-modules
H*(E;Z) = E*, H3(E;Z) = Alt*(E™), HY(E;Z) = E*. Alt>(E*). Alt3(E*),

where the last group on the right denotes a filtered GL(E)-module whose subquotients
are E*, At*(E*), and Alt*>(E*). The submodule E*. At*>(E*) is GL(E)-isomorphic to
Sym?(E*).

2. If p is odd, we have isomorphisms of GL(E)-modules

H?(E;Z) = E*,  H}E;Z)=Alt>(E*),  HYE;Z)=Sym?(E*) @ Alt3(E*).
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Proof. See [30, Proposition 2.2] or [28, Lemma 4.4]. [

If V is an elementary abelian p-group, we regard it as an Fj-vector space in the obvious
way. We may identify E* with the usual dual Fj-vector space to E by fixing at the outset an
isomorphism p, = Z/p. We use Sym" (V') and Alt"(V) for the symmetric and exterior powers
of V; recall in positive characteristic these are defined as quotients of V®" in the following way:

e Sym™(V) :=Hjy (S’n; V®”) are the coinvariants of V®" by the symmetric group action
e Alt"(V) is the quotient of V®" by the subspace spanned by tensors with a repeated

tensorand (tensors v ® - - - ® v, with v; = v; for some 7 # j).

Though Sym"(E*) and Sym"(FE)* are not isomorphic as GL(E)-modules if p < n (instead the
dual of Sym"(E™*) is the space of divided powers of F), let us record:

Lemma 3.2. If p is a prime and E is an Fy-vector space, there is an isomorphism
Al"(E*) = Alt"(E)*
of GL(E)-modules.

Proof. The pairing V" ® (V*)¥" — Z/p given by

(V1@ DUp, w1 @ @wy) = Y (=1)7 (01, Wo(1)) * * (Vs Wo(n))
O’GSn

where (—1)? denotes the sign of the permutation o, is GL(V')-equivariant and descends to
a perfect pairing between Alt" (V') and Alt"(V*). [

3.2 Extraspecial p-groups for p odd

If p is prime, E = p" is an elementary abelian p-group and w is a function E x E — Z/p, we
define a multiplication on the set of formal monomials of the form z't" (where i € Z/p and
u € E) by the formula

(Zitu) (thv) — Zi—&—j—l—w(u,v)tu—i-v'

If w is bilinear, this multiplication is associative, 20t is a two-sided unit, and z ¥« (W =u ig the
two-sided inverse to z't": we defined a group that we denote by (p.E),. The groups associated
to (p.F)w and (p.F), are isomorphic if w —w’ can be written as j(u+v) — j(u) — j(v) for some
function j: F — Z/p — in particular if p is odd then w(u,v) and

Hw(u,v) —w(v,u) = wu,v) — $(wu +v,u+v) — w(u,u) —w(v,v))

determine isomorphic groups, so when p is odd we may as well assume that w € Ath(E*) is
skew-symmetric. The center contains z, and if p is odd it is generated by z if and only if w
is nondegenerate; in that case n = 2m and (p.E), = p'*?™ is a copy of the extraspecial p-
group of exponent p. (The extraspecial group of exponent p? comes from a non-bilinear cocycle
w: E x E — F,. The extraspecial groups of order 272" will be treated in Section 3.3; the
group (p.E), that we have defined is always elementary abelian when p = 2).

The automorphism group of p'*?™ is E : GSp(E,w), where E acts by inner automorphisms
PRI Zi+2w(v,u)tu and

GSpy, (E,w) ={(g,a) |g: E — E, a € GL1(F,), w(gu, gv) = aw(u,v)}

acts by (g, a)(z't*) = 2%9". The scalar a = a(g) is determined by g.
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Let L, C Alt?(E*) denote the line spanned by w. It is a one-dimensional GSp-submodule by
construction, and we write L" for its nth tensor power. Note L' = L. If w is nondegenerate
then £ ® L, = E* as GSp-modules, via the map which sends u ® w to the functional w(u, —).
Provided p is odd, we have a splitting

AIt3(E*) = L, @ Alt’(E*),,

where Alt?(E*), is the kernel of the projection Alt?(E*) = Alt*(E @ L,,) = Alt*(E*)* ® L2 —
L' ® L2 dual to the inclusion L, — Alt?(E*).
If m > 2 we also have an inclusion F* ® L, — Alt*(E*) sending f € E* to f A w.

Lemma 3.3. Let p be an odd prime, let E = p*™ be an elementary p-group and let w € Ath(E*)
be a nondegenerate symplectic form. Then if m > 2,

H2 (p1—|—2m;z) ~ [, 3 (p1+2m; Z) = Al2(E*).,
as GSpy,,,-modules. If m > 3,
H* (p'™2™; Z) = Sym?(E*) @ Alt*(E*)/(E* ® L),
while if m = 2,
H* (p'™ Z) = Sym?(E*).(Alt*(E*), ® L),
a possibly nontrivial extension of Alt>(E*),, by Sym?(E*).
Proof. We consider the action of GSp on the LHS spectral sequence
(B H' (p)) = H (p.E).

We have H2(p) = L, and H*(p) = L2 in the left s = 0 column. The bottom ¢ = 0 row is
computed in Lemma 3.1. To compute the ¢t = 2 row, recall that, provided p is odd, H*(E;F,)
is the graded-commutative F,-algebra generated by a copy of E* in degree 1 and a second copy
of E* in degree 2; in particular:

H'(E;F,) = E*, H*E;F,) = Alt>(E*) © E,

H(E;F,) = Alt*(E*) @ (E* ® E*) = Alt*(E*) © Alt?(E*) © Sym?(E*).

All together, we have on the Fs-page:

L2

0 0 0
L, E*®L, AW} (E)©OE)®L, AW (E)®L,®---

0 0 0 0 0

Z 0 E Alt?(E*) Sym?(E*) @ Alt3(E*)

The dy differential vanishes and the ds differentials L, — Alt?(E*), E* ® L, — Alt3(E*),
and LZ, — Ath(E*) ® L, are the injections discussed above. Indeed, the LHS spectral sequence
is constructed so that dz sends the generator w € L, to the extension class w € Alt?(E*), and
s0 it sends w? € L2 to 2w dsw. The claim for E* ® L, — Alt3(E*) follows from comparing with
the F,-cohomology.

It remains to understand ds: (Alt?(E*) @ E*) ® L, — H?(E). We claim that this map is an
injection when m > 3, and that when m = 2 its kernel is Alt?(E*), ® L,, C Alt>(E*). Note also
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that when m = 2, the map E* ® L, — Alt3(E*) is an isomorphism. In this range of degrees,
the sequence stabilizes after page 4, and so on the E, page we see

0

0 0 0

0 0 Alt*(E*), ® L,

0 0 0 0 0

Z 0 Er Alt?(E*),, Sym?(E*)
if m =2 and

0

00 0

00 0

00 0 0 0

Z 0 E* AW*(E*), Sym?(E*)® Alt3(E*)/(E*® L)
if m > 3. [ |

3.3 Extraspecial 2-groups

If F is an elementary abelian 2-group then any central extension 2.F is determined up to
isomorphism by the function

Q: E — Fy,

1 if the lifts of v in 2.F have order 4,
Qv) = .
0 otherwise,

which is a quadratic form. It is not usually possible to write the multiplication explicitly in
terms of @) — indeed if ) is nondegenerate and E has rank 6 or more the orthogonal group of Q
(which we denote by O(Q)) does not act on 2.F [21]. But O(Q) still acts on the cohomology
of 2.F.

The LHS spectral sequence begins:

2
0 0 0

2 E* Sym?(E*)

0 0 0 0 0

Z 0 Er AIt?(E*)  E*. Alt’(E*). Alt*(E*)

We first wish to describe the d3 differential. To do so, recall first that H*(E) injects into
H*(E;F2) = Sym®(E*) as the subalgebra in the kernel of the derivation Sq': Sym®(E*) —
Sym**(E*). Identifying H®(E) with its image in H*(FE;Fs), the d3 differential sends f €
B2 =~ Sym'(E*) to Sq'(fQ) € Sym‘™3(E*). In particular, it sends the generator of the 2 in
degree (0,2) to Sq!(Q) € Sym3(E*). The image of Sq': Sym?(E*) to Sym?(E*) is isomorphic to
Alt?(E*), and under this isomorphism Sq! takes @ to its underlying alternating form Bg(z,y) =
Qz +y) — Qx) — Qy).

Let us suppose that @Q is nondegenerate and E = 2?". Then in particular Bg # 0, so that
d3: 2 — Alt?(E*) is an injection. Let f € E* in degree (1,2) and consider d3(f) = Sq'(fQ) =
2Q + £Sq(Q). Since Sym®(E*) has no zero-divisors, if f # 0 but d3(f) = 0, then we must
have Sq'(Q) = fQ. This cannot happen when m > 2, and so d3: E* — E*. Alt?(E*). Alt3(E*)
is an injection in this case. (When m = 1, it is an injection when @ has Arf invariant —1 and
is not an injection when @ has Art invariant +1.) Thus, provided m > 2, we find

H'(2.E) = E*,  H?%2.E) = Alt*(E*)/By.
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The d3 differential emitted by the Sym?(E*) in degree (2,2) always has kernel — Q itself —
and nothing more provided m > 2. Finally, if m > 3, then ds: Eg4 — Eg’o is nonzero, and
the F page looks like

Q
0 0

E* AW*E*)/Bg X

Noo oo

with
X = (B*. Alt*(E*). Alt*(E¥)) /E*.

This can be simplified slightly. The inclusion E* — E*. Alt?(E*). Alt3(E*), sending f +
Sq'(fQ), does not land within the E*. Alt?(E*) = Sym?(E*) submodule, and so the composition
E* — E*. Alt?(E*). Alt3(E*) — Alt*(E*) is nonzero. But E* is simple as an O(Q)-module, and
so this map E* — Alt3(E*) is an injection. (It sends f + f A Bg.) Thus we can write

X = B Al*(E¥).(Alt*(E%)/E*).
All together, provided m > 3,
H*(2.E) = (B*. Alt*(E*). Alt*(E*) /E*) 2.

The group X is elementary abelian, although the extensions written above do not split O(Q)-
equivariantly. The group H*(2.E) is not elementary abelian; it is isomorphic to (Z/2)™ x (Z/4)
for n = dim(X) — 1= (}) + () — 1 when m > 3.

Finally, when m = 2, whether d5: Eg4 — Ego vanishes or not depends on the Arf invariant
of (). Indeed,

H* (21 = x4=22x8,  H'(2IM) =x222"x4

(Both cases are extensions of X = E*. Alt?(E*). Alt3(E*)/E* = 210))

4 Dempwolff groups, Chevalley groups
and their exotic Schur covers
4.1 Dempwolff and Alperin groups

In [10], Dempwolff determined that there were no nontrivial extensions of GL,, (F2) by its defining
representation on 2", unless n < 5. Conversely, nontrivial extensions exist for n = 3,4, 5; up to
isomorphism there is a unique group which can serve as the extension, which we will call

23.CQL3(F2), 2% GL4(Fy),  2° GLj5(Fa).

The largest of these is studied in [9], though not proved to exist until [34, 39]. A similar group
is the nonsplit Alperin-type group

43 . GL3(Fy).
Lemma 4.1. Ifn =3,4,5, then H3(GL,,(F2)) = Z/12. Furthermore,
1) Hy (2% - GL3(F3)) 2 Z/2® Z/8® Z/3;
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2) H3 (2% GL4(F2)) 2 Z/20 Z/4A® Z/3;

3) Hs (2° GL5(F2)) 2 Z/8 & Z/3;

4) Hy (43 - GL3(F2)) = (Z/2)* @ Z/8 Z/3.
Proof. HAP can handle all of these groups except the largest 2° - GL5(F2). (In Derek Holt’s
library of perfect groups, available in GAP, 23-GL3(F3) is PerfectGroup(1344,2), 24- GLy(F2) is
PerfectGroup (322560, 5), and 43 - GL3(F5) is PerfectGroup(10752,4). One may call these groups
by number, have GAP find faithful permutation representations for them, and then feed those
permutation groups to HAP — no further human involvement is needed.)

We will obtain Hj (2°- GL5(F3)) & H* (2°- GL5(F2)) from the LHS spectral sequence. Using
the description from Lemma 3.1 of the GL5(F2)-module structure on HS%(2°), together with
Cohomolo, we find the Fy page of that spectral sequence is

0
00 0

0 0 Z/2
00 0 0 0
Z 0 0 0 Z/12

The E3? entry here is the Dempwolff-Thompson—Smith computation H? (GL5; (25)*) =1Z/2,
and confirmed by Cohomolo.

To complete the proof of (3), it suffices to give an element of H* (25 . GL5(2)) whose order
is divisible by 8. There is a famous embedding, due to [22], of 2° - GL5(2) into the compact
Lie group Eg. Let us write e for the generator of H*(BEg). We will prove that the restriction
el25.qLs(2) 18 such an element.

For the remainder of the proof, let V denote the 248-dimensional adjoint representation
of Eg. The dual Coxeter number of Eg is hY = 30. For any simple simply connected Lie
group G, the dual Coxeter number measures the ratio of the fractional Pontryagin class of the
adjoint representation of G with the generator of H*(BG):

Bl(adj) = h¥ € Z = H*(BQG).

In particular, ca(V) = —60e. Since 60 is divisible by 4, to show that the order of e|ys.ar;(2) 18
divisible by 8, it suffices to show that the order ca(V)|gs.q1,(2) is divisible by 2.

We will do so by finding a binary dihedral group 2Dg C 2° - GL5(2) such that ca(V)|2ps
is nonzero. To find such a group, we look inside the normalizer of an order-8 element. There
are three conjugacy classes of elements of order 8 in 2° - GL5(2). The normalizer of class Sc
is SmallGroup(64,151) in the GAP library. It can be built directly in GAP: the ATLASRep
package includes a copy of 2°-GLs5(2) as a permutation group on 7440 points; GAP can compute
orders of centralizers and normalizers, and so in particular can identify class 8c; then GAP can
build the normalizer of an element of conjugacy class 8c as a subgroup of 2% - GL5(2). There
are four conjugacy classes of order-8 elements in SmallGroup(64, 151), and GAP checks that all
four merge in 2° - GL5(2) to conjugacy class Sc.

Finally, SmallGroup(64, 151) contains a copy of the binary dihedral group 2Dg of order 16.
Since 2Dg is a finite subgroup of SU(2), its cohomology is easy to compute: in particular,
H*(2Dg) is cyclic of order |2Dg| = 16 and is generated by cz of the “defining” two-dimensional
representation. As in [28, Section 6], let us index the irreducible representations:

Vo Va

AN /

Vo —Vi— Vs

/ AN

Vi Vs
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In particular, Vj is the trivial representation, Vg is the “defining” two-dimensional irrep, V5 is
the other faithful irrep, V4 is the two-dimensional real irrep of Dg, and Vi, Vo, and V3 are the
nontrivial one-dimensional irreps.

Character table constraints provide a unique fusion map 2Dg — 2° - GL5(2) sending the
elements of order 8 to conjugacy class 8c. Along this map, the 248-dimensional irrep V of
25 . GL5(2) decomposes as

Vlapg = 15Vh @ 15V @ 15Va @ 15V @ 30V, @ 32V5 @ 32V5.

Lemma 6.1 of [28] gives a formula for the second Chern class of any representation of 2Dg in
which the representations V5 and V3 appear with the same coefficient. That formula is

Co (@ anZ> =4n4 +9ns + ng  (mod 16), if ny = no,

where we have identified H*(2Dg) = Z/16 by identifying 1 € Z/16 with co(Vs). Applying this
formula to the 248-dimensional representation V' gives

c2(V)]aps =8 (mod 16).

In particular, c3(V) is nonzero in H*(2Dg). As explained above, this implies that H* (2°-GL5(2))
contains an element of order divisible by 8 (namely, the restriction of the generator of H*(BEg)),
and so must be isomorphic to Z/24. |

4.2 A few exotic Chevalley groups

For the most part, any central extension of a finite Chevalley group G(F) is the group of F,-
points of a central extension of the algebraic group G. In particular if G is of simply connected
type then the multiplier Ha(G(F,)) is usually zero. The finitely many exceptions were classified
by Steinberg and Griess. Many of these exotic central extensions occur as centralizers in the
sporadic groups.

Lemma 4.2. H3(Sps(F2)) = Z/2® Z/A® Z/3 and Hs(2 - Spe(Fa)) = Z/2 @ Z/8 & Z/3.

Proof. We computed these using HAP. The computation of H3(Spg(F2)) is fast, but computing
H3(2-Spg(F2)) took many hours. Two of the faithful permutation representations of 2 - Spg(F2)
have degrees 240 and 276 (the latter coming from the embedding 2-Spg(F2) C Cos). Our laptop
computer ran out of memory running HAP on the degree 240 model, and gave the above output
after six hours for the degree 276 model. |

Lemma 4.3. We have
H3(G2(2) =Z/20Z/8Z/3, H3(G2(3)) =Z/8d Z/3, H3(G2(5)) =Z/8 Z/3.

Jesper Grodal has shown that H*(Ga(F,)) is cyclic of order ¢> — 1 if ¢ = p” with either p or r
sufficiently large [23]. The computations in the lemma show that this holds also for ¢ = 5, but
not g =3 or g =2.

Proof. We computed G2(2) and Gz (3) with HAP. The order of Go(5) is 26.33.55.7.31. The proof
of Lemma 2.2 applies to this group — for p = 7 and 31, there are strictly fewer than (p —1)/2
conjugacy classes of order p — and so we must compute H4(G2(5))(p) for p =2, 3, and 5.

The 2-Sylow in Ga(5) is contained in the nonsplit extension 23 - GL3(2) whose cohomology,
per Lemma 4.1(1), is H* (23 - GL3(2))(2) = 2 x 8. According to [31], for ¢ =1 (mod 4),

H'(Ga(q); F2) = H?(G2(q); F2) 20, H*(G2(q); F2) = HY(G2(q); F2) = Fy,
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Sq' =0: H?(Ga(q); F2) — H*(Ga(q); Fa).

It follows that H*(G (9))(2) is cyclic of order at least 4. Setting ¢ = 5 and recalling Lemma 2.1,
we therefore find that H4(G2(5))(2) is a cyclic direct summand of H* (23 - GL3(2))(2) =2 x 8 of

order at least 4, and so H4(G2(5))(2) = 8.

The 3-Sylow in Gy(5) is contained in a maximal subgroup of shape Us3(3) : 2. HAP computes
H3(U3(3) : 2) = 2 x 8 x 3. Conjugacy class 3b € Ga(5) acts on the 124-dimensional irrep with
trace 1, and so ca(124-dim rep)|sp,) # 0. It follows that H4(G2(5))(3) =3.

The 5-Sylow in G2 (5) is contained in a maximal subgroup of shape 5'+* : GLy(5). The central
4 C GLy(5) acts on all of 5% with the same faithful central character. It therefore acts with
nontrivial central characters on H(5'*4) for j € {1,2,3,4}, and so H’ (GL2(5), H/ (51+4)) =0
for these j by Lemma 2.3. Since H*(GLy(5)) = 4 x 8 x 3 has no five part, we find that
H* (5144 GL2(5))(5), and hence also H4(G2(5))(5), vanishes. [

Recall from Section 2.1 that Q,(¢q) denotes the simple subquotient of the orthogonal group
On(Fy), and that when n > 5 and ¢ is odd, ©,(q) is of index 2 in SO, (F,;). We will use the
names Spin, (¢) and 2.9, (¢q) interchangeably.

Lemma 4.4. H3(Q7(3)) = Z/4 and H3(2.Q27(3)) = Z/8.

Proof. The criterion in Lemma 2.2 applies for the primes p > 5. The 2-Sylow is contained in
Spe(F2), giving an upper bound of H4(Sp6(F2))(2) = 2 x 4 for H3(Q7(3)), and an upper bound
of H4(28p6(F2))(2) = 2 x 8 for H3(Spin;(3)), both from Lemma 4.2.

Let V' denote the 105-dimensional representation of Q7(3). It is a real representation. (In-
deed, all representations of 27(3) are real except for the two dual complex representations of
degree 1560.) Conjugacy class 4a € Q7(3) acts on V with trace —5. Its square, conjugacy
class 2b, acts with trace 5. It follows that 4a acts with spectrum (4+1)%(—1)3°(4)25(—4)?5, and
so the total Chern class of V4, is

cCVay = 1420014+ )1 )P =1 -4+ .

In particular, c2(V')|(4y has order 4, giving a lower bound of 4 to the order of c2(V') € HA(Q7(3))
and a lower bound of 8 to the order of 21 (V) € H*(2.7(3)).

To show that H3(Spiny(3))) is exactly Z/8 (which implies in turn that H3(Q27(3))) is
exactly Z/4) it suffices to give a class in H4(2.Sp6(F2))(2) not in the image of restriction
H3(Sping(3))2) — H4(2.Sp6(F2))(2). We claim that the fractional Pontryagin class of the 15-
dimensional irrep of Spg(F2) is such a class. (This representation is not Spin over Spg(Fa),
but is Spin over 2Spg(F2). We will henceforth call its fractional Pontryagin class £(15) €
H*(2Spg(F2)).) To prove this, we consider the conjugacy classes 2b and 2d in Spg(F2). They
act on the 15-dimensional irrep with traces 7 and —1 respectively; equivalently, 2b acts with
spectrum 1''(—1)* whereas 2d acts with spectrum 17(—1)%. These two classes lift with order
2 to 2Spg(2). The fractional Pontryagin classes are therefore 2L (15)|o, = 1 € H*((2b)) = Z/2
and 5-(15)[]2¢ = 0. But 2b and 2d both fuse to class 2c € Q7(3). It follows that £-(15) €
H*(2.Spg(F2)) is not the restriction of any class in H*(Spin-(3)).

It remains to handle the prime p = 3. In general, the p-Sylow in a characteristic-p group of Lie
type is the nilpotent subgroup, and so is contained in any parabolic. We will use two maximal
parabolics of the algebraic group SOv, corresponding to the Dynkin subdiagrams By C Bs and
A1 x Ay C Bs. These lead to two maximal subgroups of €7(3) that contain the 3-Sylow:

3°:805(F3),  3170: (244 x Ag).2.
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There is one more maximal subgroup of 7(3) containing the 3-Sylow, corresponding to the
Dynkin diagram inclusion A, C Bs, which we will not use in the present proof, but will use in
the proof of Corollary 4.5.

The spectral sequence for 3° : SO5(F3) has Ey page:

O O O w

0 0
2 22x4x3

o O w o
O O O W

Z

The bottom line was computed in HAP, and the middle entries in Cohomolo. The entry ES* = 3
corresponds to the symmetric pairing on 3°.

We claim that the maps H4(Q7(3))(3) — H* (3% SO5(F3))(3) and H4(SO5(F3))(3) — H* (3%
SO5(F3)) have trivial intersection. To see this, first note that SO5(F3) = Weyl(Eg) has a 6-
dimensional irrep, on which the conjugacy class 3c acts with trace 3. It follows that

co(6-dim irrep)|s3cy # 0.

But 3c € SO5(F3) has among its preimages in 3% : SO5(F3) one which fuses to class 3b € Q7(3),
and 3b also meets 3° C 3% : SO5(F3). It follows that c(6-dim irrep) € H*(SOs5(F3)), when
pulled back along 3° : SO5(F3) — SO5(F3), distinguishes conjugate-in-Q7(3) elements, and so
is not the restriction of a class in H*(Q7(3)).

Since H*(Q7(3 Ny € H* (3% : SOs5(F3)) and the latter is an extension of a quotient of
H*(SO5(F3)) and a subspace of H? (SO5(F3); H* (3%)), and since H*(Q27(3 ))(3) does not meet
H*(SO5(F3)), the restriction map H*(Q7(3 ) — HO (SO5(F3); H* (3°)) must be an injection.
The order-3 conjugacy classes in Q7(3) that meet 35 C 3% : SO5(F3) are classes 3a, 3b, and 3c.
Specifically, the intersection of conjugacy class 3a and 3° = F3 consists of the nonzero vectors
of norm 0, and the intersections of 3b and 3c with 3% are the vectors of norm +1. (These are
the three nontrivial SO5(F3)-orbits in F§.) The nonzero classes in H° (SO5(F3); H* (35)) ~7/3
corresponds to the symmetric pairing and its negation, and so restrict trivially to (3a) but
nontrivially to (3b) and (3c). In particular the restriction map H4(Q7(3))(3) — H*((3b)) is an
injection.

The other maximal subgroup we consider is the one of shape 31Jr6 (244 x Ay).2. Tt is the
normalizer of conjugacy class 3a. GAP can work with Q7(3) by using its faithful degree-351
permutation representation, and find this subgroup. In particular, GAP finds that the action of
(244 x A4).2 on 35 is generated by the following three matrices

T . .2 2 o202 01 2 .21 . 2
2 . 2 1 1 2 11 2 2 2
11 .1 2 2 2 .2 1

2 2 ’ 1 .1 2 1|’ 2 1 .
. 11 . 2 2 2 . .12 11
2 21 2 2 2 1 . .2 1

Recall from Lemma 3.3 that H* (31+6) =~ Sym? (36) &) (Alt3 (36) /36). The group (244 X
Ay).2 contains the matrix —1, and which acts by —1 on (Alt3 (39)/3%). Furthermore, the
representation 3% is not symmetrically self-dual. (In fact it is not self-dual: its antisymmetric
pairing changes by a sign under the odd elements of (24,4 x A4).2.) It follows that H° ((2A4 X
Ay).2;H* (3146)) = 0.

But this means in particular that the restriction map H*(Q7(3)) — H* (31+6) vanishes. Con-
jugacy class 3b € Q7(3) meets 36, Tt follows that the restriction H*(Q7(3)) — H*((3b))
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is the zero map. But we showed above that H4(Q7(3))(3) — H*((3b)) is an injection. So
H*(Q7(3))(3) = 0. u

The Chevalley group Q7(3) has an exceptional cover: its multiplier is 6, whereas the multiplier
of Q7(q) is generically 2 = m;(SO(7, C)).

Corollary 4.5. H3<3Q7(3>) = Z/12 and H3(6Q7<3)) = Z/24

Proof. We must calculate H4(3.Q7(3))(3) = H4(6.Q7(3))(3). It either vanishes or is Z/3 by
Lemmas 2.4 and 4.4.

We used two of the three maximal parabolics of €7(3) in the proof of Lemma 4.4; for this
calculation we will use the third one, of shape 3373 : SL(3,3). For the remainder of the proof we
will call this subgroup S. Since S contains the 3-Sylow, the extension 3.Q7(3) restricts to a non-
trivial central extension 3.S. One can show, for instance by running a LHS spectral sequence,
that H'(S;3) = 0 and H2(S;3) = 3. In particular, there is a unique nonsplit extension 3.5 up
to isomorphism. (The two nonzero classes in H?(S;3) are related by the outer automorphism
of Z/3.)

By Lemma 4.4, H4(Q7(3))(3) =0, and so H4(3.Q7(3))(3) = coker (H*(927(3)) — H*(3.Q27(3))).
This is in turn isomorphic to coker (H*(S) — H*(3.9)) by Lemma 2.5.

The smallest complex representations of 27(3) and 3.027(3) have dimensions 78 and 27 re-
spectively, equal to the smallest representations of the simple Lie group Egdj(C) and its sim-
ply connected cover Eg = 3.Egdj. However, 7(3) does not preserve the Lie bracket on the
78-dimensional representation. It does preserve a lattice, and preserves the Lie bracket “mod-
ulo 27: in fact, Q7(3) embeds into the twisted Chevalley group 2Eg(2) C E3Y(F,). The finite
subgroups of the Lie group Egdj(C) not already contained in a smaller Lie group were classified
in [5]. In particular, Egdj(C) contains a subgroup isomorphic to S, lifting to the nonsplit exten-
sion 3.5 C E(C). (Presumably S is precisely the intersection of Egdj(C) and Q7(3) in their
common 78-dimensional representation.)

Both H! (BE;"Y) and H! (BEY) are infinite cyclic, but the restriction map H! (BE3Y) —
H* (BE%C) is not an isomorphism: its cokernel has order 3. By Lemma 2.5, this forces the
inclusion H*(S) — H*(3.5) to have cokernel of order 3. [ |

The Chevalley group Ga(3) has an exceptional multiplier of order 3.
Corollary 4.6. H3(3.G2(3)) has order 72.

Proof. The 7-dimensional representation of Gy provides an inclusion Go(3) C Q7(3), and the
exceptional triple cover of Q7(3) restricts to the exceptional triple cover of G2(3). Lemmas 2.4
and 2.5 then force the inclusion H*(G2(3)) — H*(3.G2(3)) to have cokernel of order 3. [ |

5 Mathieu groups

The low-degree homology groups of all Mathieu groups can be computed in HAP, and are listed
in [14], where details of HAP’s implementation are discussed. That paper was the first to
compute H3(May), and was able to compute up to Hy exactly for all Mathieu groups, and Hs
exactly for all Mathieu groups except May, for which the 2-part was left ambiguous. In [16] it
is shown that the restriction map H*(Myy) — H*((12b)) is an isomorphism, and that H*(Ma)
is generated by the “gauge anomaly” of “Mgs moonshine”. In [28, Theorems 5.1 and 5.2] we
gave direct proofs of the results H*(Ma3) = 0 and H*(May) = 12 following the method outlined
in Section 2.2, and we also recognized that the generator of H*(May) from [16] is more simply
described as the fractional Pontryagin class of the defining degree-24 permutation representation.
We remark that the same holds for Mj:



18 T. Johnson-Freyd and D. Treumann

Proposition 5.1. H*(My;) 2 Z/8 is generated by the fractional Pontryagin class of the defining
degree-11 permutation representation.

Proof. Let Perm denote the permutation representation of My;. The two conjugacy classes of
order 8 in M; have the same spectrum on Perm: they act by diag (1, 1,1,¢,4,¢3,—1,—1,¢ 73, —i,
¢71), where ¢ = exp(27i/8). Let t € H*(Z/8) denote a generator of H*(Z/8) = Z[t]/(8t). The
total Chern class of Perm, restricted to a cyclic group of order 8, is therefore

c(Perm)| gy = 13(1 —¢)(1 — 2¢)(1 = 3t)(1 — 4t)*(1 +3t) (1 + 2t) (1 + ) = L+ 27 4 - .

In particular, ca(Perm) has order divisible by 4. But Perm is a real and (since Hy(M;;) vanishes)
therefore Spin representation, and so & (Perm) has order divisible by 8. |

The Schur cover of My is studied in [4]; they compute H*(2Mjs) = 82 x 3 with HAP,

and show that the map H*(2My5) — [] H*((g)) has kernel of order 2. To fully describe
g€2Mi12

H*(2M;3) requires moving slightly beyond cyclic groups, and also requires some notation. Let
Perm denote (a choice of either) degree-12 permutation representation of M2, and write V15 for
the unique 12-dimensional faithful irrep of 2M15. Then V9 is real, and hence spin, as a 2Mja-
module (since 2M75 has no central extensions). Perm ® R is not Spin as an Mjs-module, but
is automatically Spin as a 2Mis-module, since H*(2My9; Z/2) = 0. Write 2 (Perm) and 2L (Vi)
for their fractional Pontryagin classes. The group 2M;5 has two conjugacy classes of elements of
order 3: class 3b acts on Perm with cycle structure 3%. There are also four conjugacy classes of
elements of order 8. Classes 8a and 8b differ by the central element and act on Perm with cycle
structure 122!8!; classes 8c and 8d differ by the central element and act with cycle structure 4'8'.
Finally, there is a unique conjugacy class of quaternion subgroups Qs € 2M;j, in which the center
of Qg maps to the center of 2Mjo.

Proposition 5.2. H*(2Ms) is spanned by the classes B-(Perm) and B-(Vi2). The restriction
map

HA(2M15) — HY(Qg) x HY((8a)) x H*((8¢c)) x H*((3b)) =2 8% x 3
18 an injection.

We remark that the outer automorphism of 2Ms switches the two degree-12 permutation
representations and also switches 8ab with 8cd.

Proof. We choose the following generators of H*(Qg) and H*((8a)) = H*((8c)) = H*(Cy)
and H*((3b)) = H*(C3): the generator of H*(Qg) is the fractional Pontryagin class of the 4-
dimensional real representation (equal to the negative second Chern class of the 2-dimensional
complex irrep); if n divides 24, we take the unique generator of H*(C,,) which is a cup square
(it is unique by what Conway and Norton call “the defining property of 24” [7]).

It is straightforward to compute the images of Z-(Perm) and 2 (V12) to H*(Qs) x H*((8a)) x
H4((8c)) x H*((3b)). They are

3

L (Perm) — (3,1,1,—1),
1(V12) — (4,—1,1,—1).

NISEN

But (3,1,1,—1) and (4, —1, 1, —1) together generate a subgroup isomorphic to 82 x 3 = H*(2M;5)
inside 8% x 3. n

The covers of May are not directly computable by HAP, since they do not have sufficiently
small permutation representations.
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Proposition 5.3. The covers of Moo have the following third homology groups:
H3(2M22) = 4, H3(3M22) = 3, H3(4M22) = 8,
H3(6Mgg) = 12, H3(12Mgg) = 24.

Proof. Given Lemma 2.4 together with the computer computation Hz(Mag) = 0, it suffices
to give lower bounds H*(2May) > 4, H*(4Mgs) > 8, and H*(3My,) > 3. The first two can
be handled simultaneously as follows. 2Mys has a unique faithful 210-dimensional irrep V.
Conjugacy class 4c € 2May acts on V with spectrum 1°0(—1)504%5(—3)%. Let t € H?({4c))
denote a generator. Then

ca(V)|(ae) = 1% € H' ({4c))

has order 4. This gives the lower bound for H*(2Mas). The representation V' is real, but it is not
Spin as a 2Mag-module (since, indeed, c2(V') is not divisible by 2). It is, however, Spin as a 4Mao-
module. Since H*(2My) — H*(4Mag) is an injection, ca(V)|sr,, has order divisible by 4, so
BL(V) € H*(4My) has order divisible by 8. This provides the lower bound for H3(4Ms;). Finally,
for 3Ma9, we may use either 21-dimensional faithful representation W. Element 3c € 3Mas acts
on W with trace 0, and so ca2(W)| ey = —22 40 € H*((3c)). Thus cz(W) has order divisible
by 3 in H*(3Ma2). u

6 Leech lattice groups

6.1 Higman—Sims group

The smallest faithful permutation representations of the Higman—Sims group HS and its double
cover 2HS have degrees 100 and 704 respectively. Using these representations, we find that HAP
can compute H3(HS) and H3(2HS) without further human assistance:

H3(HS) = (Z/2)?,  H3(2HS) 2 Z/2 x Z/8.

Since H*(G) C H(2G) has index 4, the latter must contain elements with nontrivial restric-
tion to the central 2 C 2G by Lemma 2.4. It is not hard to check that all complex representa-
tions V' of 2HS have c3(V)|2 = 0, and all real representations have &-(V)|2 = 0. In particular,
we do not know generators for H*(2HS) = Z/2 x Z/8.

6.2 Janko group 2

The smallest permutation representations of Janko’s second group Js (also called the Hall-Janko
group HJ) and of its double cover 2J5 have degrees 100 and 200 respectively, and HAP computes:

Hs(Jo) = Z/30,  Hs(2Jy) = Z/120.

We record some finer information in this section: in particular we show that H*(2Js;Z)
is generated by the Chern class of either six-dimension irreducible representation of 2Js, and
the outer automorphism of 2Jo acts by multiplication by 49. For this, we will compute the
Chern classes of the irreducible representations of SL(2,5), which is a subgroup of 2J, in two
non-conjugate ways.

Let 7 be a two-dimensional irreducible representation of C' = SL(2,5). Then 7 is faithful and
has trivial determinant, and we can use the McKay correspondence to parametrize the other
irreps of GG, by nodes in the extended Dynkin diagram of type Eg. That parametrization is

S2%(7°)
|
° — 711 — S(n) — SHr) — S3(7) — S*(m) — 7 — 1,
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where we have written S™(—) as short for the nth symmetric power of a representations, and 7°
for the image of m under a nontrivial outer automorphism of G.

Lemma 6.1. H*(SL(2,5); Z) = Z/120. If 7 is an irreducible representation of dimension 2 then
c:= cy(m) generates HY(G;Z), and the Chern classes of the remaining irreducibles are

76¢

49¢ — 100¢ — 35¢ — 20¢ — 10¢c — 4¢ — ¢ — 0.

Proof. The integer cohomology ring of BSU(2) is isomorphic to Z|c|, where ¢ in degree 4 is ¢y
of the tautological representation V' of SU(2), and the integer cohomology ring of BU(1) is
isomorphic to Z[b] where b in degree 2 denotes the first Chern class of the tautological one-
dimensional representation. The restriction of the nth symmetric power of V' to a maximal
torus U(1) C SU(2) splits as a sum of 1-dimensional representations of weights

n,(n—2),(n—4),...,(—n+2),(—n).
Thus, the total Chern class of S™(V') can be written as

ct(S"(V)) == (1 + co(S" (V) + ca(S™)t + -+ ) = (L+nbt) (1 + (n — 2)bt) - - - (1 — nbt).
In particular

(V) == (V) =-4?  «(SPV)) =-100%
e (SHV)) = —200%,  ea(SP(V)) = —35b%.

This explains six of the nine Chern classes reported in the Lemma. It remains to compute ca(7°),
c2(S%(m°)) and cz(m @ 7). We will need a concrete description of the outer automorphism
of SL(2,5).

Let o: SL(2,5) — SL(2,5) denote the conjugation by the diagonal matrix

<2 1> € GL(2,5).

Then 7° is the composite of ©# with 0. We claim that o acts as multiplication by 49 on
H*(SL(2,5),Z). To see this, make the following observations:

1. There are six subgroups of order 5 in SL(2,5). All of them are conjugate to each other
and two of them are preserved by o. Writing Hjy for either one of these two o-fixed cyclic
subgroups, the action of o on H2(H5; Z) =~ 7/5 is multiplication by a primitive 4th root
of 1 (in F5) — the action on H*(Hs; Z) = H%(Hs; Z)®? is therefore by —1.

2. There are five subgroups of order 24 in SL(2,5), all of them conjugate to each other.
Exactly one of them — call it Hoyq — is preserved by o. The action of 0 on Hy4 coincides
with the conjugation action of an element x € SU(2), in particular o acts as the identity
on HY(Hyy; Z) = Z/24.

The restriction maps H*(SL(2,5); Z) — H*(Hj; Z) © H*(Ha4; Z) is an isomorphism. The num-
ber 49 arises as the unique solution to 49 = —1 (mod 5) and 49 = 1 (mod 24). It follows that
c2(m°) = 49¢ and c(S?(7°)) = 49 - 4¢c = T6c. To compute co(m ® 7°), we note that ™ @ 7°
is isomorphic to its conjugate by o, so its restriction to H*(Hj; Z) vanishes, while 7 ® 7° and

1 + Sym?(n) have the same restriction to Hay; the number 100 arises as the unique solution to
100 =0 (mod 5) and 100 =4 (mod 24). [
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Proposition 6.2. H*(2Jy; Z) = Z/120 is generated by co(V), where V is either 6-dimensional
irrep of 2J. For one (but not the other) of the two conjugacy classes of SL(2,5)-subgroups of 2Ja,
the restriction map H*(2J9; Z) — HY(SL(2,5); Z) is an isomorphism. The outer automorphism
of 2o acts by multiplication by 49 on HY(2J9; Z).

Proof. Let V and V' denote the two 6-dimensional irreps of 2J5. They are exchanged by the
outer automorphism of 2Jo. Let us write SL(2,5), C 2J9 and SL(2,5), C 2J for representatives
of the two conjugacy classes of SL(2,5)-subgroups. The representations V' and V' restrict as

V’SL(2,5)G = @27, V,‘SL(Z,E;)a >~ 7° @ 2m,
VisLes), 7@ S%(r),  Vispes), = ® S (7).

It follows that the outer automorphism of 2Jy restricts along either embedding SL(2,5) C 2J
to the outer automorphism of SL(2,5). Moreover, co(m @ 27°) = ca(m) + 2¢2(7°) = 99¢, which
has order 40 in Z/120, but co(m & S*(7)) = co(m) + c2(S*(7w)) = 1lc has order 120. Thus
H*(2J2; Z) — HY(SL(2,5),; Z) = Z/120 is surjective, and hence an isomorphism given the HAP
computation. Since the outer automorphism acts by multiplication by 49 on H*(SL(2,5),; Z), it
must also act by multiplication by 49 on H*(2J; Z). |

6.3 Conway groups
In [28, Theorems 0.1 and 5.3] we showed that

H%(Coy) =2 Z/12,  H*2.Coy) = Z/24,

and that these groups are generated by the fractional Pontryagin classes of the 276- and 24-
dimensional representations, respectively. Let us denote the 24-dimensional real representation
of 2.Co; by the name Leech. The second and third Conway groups Cos and Cojs are sub-
groups of 2.Coj, and so Leech restricts to representations of each (where it splits as a trivial
representation plus a 23-dimensional irrep).

Theorem 6.3. H*(Coy) = Z/4 is generated by the restriction of B-(Leech).

Proof. In [28, Theorem 7.1] we gave a formula for £t (Leech)]|, for all elements g € 2.Co; in
terms of the Frame shape of g in the Leech representation. (Introduced by Frame in [15] to study
the Eg Weyl group, Frame shapes encode the characteristic polynomials of lattice-preserving
orthogonal matrices.) The conjugacy class 4g € Cop has Frame shape 4%, and so Bl (Leech)
restricts with order 4 to this conjugacy class. This gives the lower bound H*(Cos) > 4.

For the upper bound, Lemma 2.2 handles the primes > 7. For the primes 3 and 5, we note
that Cog contains a subgroup isomorphic to McL, which in turn contains the 3- and 5-Sylows.
Since HY(McL) = 0 (see Section 6.4), we learn that H4(COQ)(p) = 0 for p odd.

It remains to give an upper bound for the 2-part of H*(Cos). The 2-Sylow in Cos is contained
in a subgroup isomorphic to 210 : (Mas : 2), where E = 2! is an irreducible (Mas : 2)-module
over Fo. The subgroup E contains elements with Frame shape 2'2. By [28, Theorem 7.1],
BL(Leech) restricts nontrivially to such an element, and so 2 (Leech)|p € H® (Mo : 2; HY(E))
is nonzero. There are two irreducible 10-dimensional (Msgsg : 2)-modules over Fy, which we will
call V, and V}, where the letters “a” and “b” match the notation in [42]. They enjoy

HO(Mas : 2;V,) = H® (Moo : 2; Alt*(V,)) = H? (Mao : 2; AlE%(V,)) =0,
HY (Moo : 2;V3) = H? (Moo : 2, Alt%(V,)) =0,  H? (Mo : 2; Alt3 (1)) 2 Z/2.

Since HY(E) = E*. Alt?>(E*). Alt>(E*) by Lemma 3.1, the only way for H*(E) to have a nontrivial
(Mag : 2)-fixed point is if E* =V},
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With this isomorphism in hand, we can compute the Ey page of the LHS spectral sequence
for E': (Ma2 : 2):

The bottom row is computed by HAP, and the middle rows by Cohomolo. The dashed line
reminds that the extension E: (Mag : 2) splits, and so HY(May : 2) is a direct summand of
HY(E: (M, : 2)).

To complete the proof, it suffices to show that H(Cog) — HY(E : My : 2) and H*(My, :
2) — H*(E : My, : 2) have trivial intersection. There are three conjugacy classes of order 2 in
Mas : 2, with cycle structures 1628, 1827, and 2'! in the degree-22 permutation representation.
Together, these three classes detect H*(Mag : 2): if a € H*(Myy : 2) is nonzero, then there is an
element g € My : 2 of order 2 such that o, # 0. (Indeed, the images of H4(2) — HY(Mas : 2)
and H*(May) — H*(Mayy : 2) are transverse, and one can quickly compute the restrictions of
their images to the three elements of order 2.)

Given o # 0 € H*(Mas : 2), choose g € Mas : 2 of order 2 such that al(g # 0. Choose also
an order-2 lift § of g in E : Moy : 2, and let & € H4(E : Mag : 2) denote the pullback of o. Then
alg) = aligy # 0. But Cog has only three conjugacy classes of order 2, distinguished by their
traces on Leech, and all three classes meet E. Since &|g = 0, we find that & takes different
values on conjugate-in-Coy elements, and so cannot be the restriction of a class in H*(Coy). This
completes the proof that H*(Coy) = Z /4. [

Theorem 6.4. H*(Co3) = Z/6 is generated by the restriction of B-(Leech).

Proof. The conjugacy class 6e € Coz has Frame shape 6% in the Leech representation. It
follows from [28, Theorem 7.1] that & (Leech)| sy has order 6, giving the claimed lower bound
H4(C03) > 6. Lemma 2.2 handles the primes > 7, and Cos contains a copy of McL, which
contains the 5-Sylow.

The 3-Sylow in Cos is contained in a subgroup of shape 3'! : (2 x My;). There are two
irreducible 11-dimensional representations of Mi; over F3, dual to each other. They lead to
LHS spectral sequences with Fo pages

0 0

0 00 0 3 3

0 00 and 0 00

0 00 0 O 0 000 O
Z 0 2 0 2x8 Z 0 2 0 2x8

Only the latter of these is consistent with the lower bound H*(Cos) > 3, and provides the desired
upper bound on H4(003)(3).

To complete the proof we must verify that H4(003)(2) < 2. The 2-Sylow in Cog is contained
in three maximal subgroups: one the form 2* - GL4(F3), one of the form 2 - Sps(F2), and one of
order 2!0.33. Lemma 4.1(2) and Lemma 4.2 give

H* (2* - GL4(F2);Z) = Z/2® Z/4A® Z/3,
H(2-Spg(Fo); Z) = Z/20 Z/8 & Z/3.

By Lemma 2.1, H4(003)(2) is a direct summand of both Z/2 @ Z/4 and of Z/2 & Z/8, which
forces H4((303)(2) cZ)2. [
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6.4 McLaughlin group
HAP is able to directly compute

Hj(McL) = 0

by using the permutation representation of degree 275. HAP is unable to directly compute
H3(3McL) because the smallest faithful permutation representation of 3McL has degree 66825.
Lemma 2.4 only provides the upper bound H3(3McL) < 3. Nevertheless, with some human
involvement, we do have:

Theorem 6.5. H3(3McL) = 0.

Proof. The computer calculation of Hz(McL) leaves only the 3-part of H3(3McL) to be com-
puted. But we can also dispense with the other parts directly. The 2-Sylow in McL is contained
in a maximal subgroup of shape Mo, and Hs (Mgg)(g) = 0 by computer calculation (see Proposi-
tion 5.3). The 5-Sylow is contained in a group of shape 52 : 3 : 8, and HAP quickly computes

H* (5'7%:3:8) ., =0.

()

(The ATLAS contains generators for most maximal subgroups of sporadic groups.) Lemma 2.2
handles the primes p > 7.

Only the prime 3 is left. The 3-Sylow in 3McL is contained in two maximal subgroups,
one of shape 3°.Mg and the other of shape 32t : 255. The latter is more useful, and for the
remainder of the proof we will call it S. The quotient 255 is the one listed in the ATLAS under
the names “2S51” and “Isoclinic(2.A45.2)”; it is the group of shape 2S5 that contains elements
of order 12. This 2S5 has a faithful 4-dimensional representation over F3. The quotient of S
in McL has shape 3'7% : 2S5, and the “central” 3 is not central, but rather transforms by the
sign representation of 2S5. In terms of the 4-dimensional module, it corresponds to a symplectic
form on 3% which is 245- but not 255-fixed. There is also a symplectic form which is 2S55-fixed,
and the 32t* subgroup of S extends 3* by both symplectic forms simultaneously.

After a multi-hour computation, HAP reports

Hi(S;F3) = Ho(S;F3) =0,  H3(S;F3) =3,
from which we learn that

H1(5)(3) = Ha(5)@3) =0, H3(S)(3) is cyclic.
On the other hand,

H3(2S5)3) = 3,

and since the extension S = 34 : 255 splits, H3(S)(3) contains H3(255)(3) as a direct summand.
Passing to cohomology, we learn that the pullback map

H%(255) — HA(S)

is an isomorphism.

There is a unique conjugacy class of order 3 in 2S5, and the restriction map H4(2S5)(3) —
H*((3a)) is an isomorphism. Take any element g € 2S5 of order 3 and lift it to an order-3
element g € S. Then the composition H4(2S5)(3) = H4(S)(3) — H%((g)) is an isomorphism. On
the other hand, all conjugacy classes of order-3 elements in 3McL meet the normal subgroup
32+4 C S, and the composition H4(255)(3) 5 H4(S)(3) — H* (3%14) is zero.

Thus the image of H4(255)(3) = H4(S)(3) has trivial intersection with the restriction map
H*(3McL) (3, < H*(S) 3), and so H*(3McL)3) = 0. u
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6.5 Suzuki group

The Schur cover of the Suzuki group is the beginning of a famous sequence of subgroups of 2Co;
centralizing actions of binary alternating groups on the Leech lattice; 6Suz centralizes an action
of 2A3 = Z/6, which corresponds to a “complex structure” on the Leech lattice. In particular,
6Suz has a conjugate pair of 12-dimensional irreducible complex representations, (either one
of) which we will call V' throughout this section. The underlying real representation of V' is
(Leech ® R)|gguz-

The maximal subgroups of Suz are listed in [43]. The 2-Sylow subgroup of Suz is contained
in the centralizer of 2a, a subgroup of shape

2146 . SWeyl(Eg) C Suz,

where SWeyl(Eg) is the index-2 subgroup of the Weyl group that acts with trivial determinant
of the reflection representation. The ATLAS calls this group SWeyl(Eg) = Uy(2). We write
it as a Weyl group to make the action on 2 transparent: it is the mod-2 reduction of the
action of Weyl(Eg) on the Eg-lattice. In particular, the quadratic form on 26 associated with
the extraspecial group 2'*% has Arf invariant —1.

Lemma 6.6. Let Egdj denote the compact Lie group of adjoint type Eg. There is a homomor-
phism

2146 . SWeyl(Eg) — EY,

whose kernel is the central Z/2 and which maps 2+ onto the 2-torsion subgroup of a mazimal
torus in Egdj.

Proof. Let T.W be the normalizer of a maximal torus in a compact Lie group, and T'[2] for
the 2-torsion of T. A subgroup T[2].W C T.W is studied in [40] and proved to be nonsplit
for groups of type Eg in [8]. The quotient of 2'76 . SWeyl(Eg) C Suz by the central Z/2 is
also a nonsplit extension 2° - SWeyl(Eg), as can be quickly confirmed in GAP. (Indeed, GAP
can easily look up the maximal subgroup 2't6.SWeyl(Eg) of Suz in the ATLAS, compute its
quotient 26.SWeyl(Eg), and work out that there are no nontrivial homomorphisms into it from
SWeyl(Eg).) We use Cohomolo to compute

H? (SWeyl(Eg), 2°) = Z/2,
so the two non-split extensions of SWeyl(Eg) by 26 must be isomorphic. |

Remark 6.7. There is similar relationship between a centralizer in Co; and the group 2% -
Weyl(Eg) in the Eg Lie group, which has some conformal-field theoretic significance. The Eg Lie
group acts on the Eg-lattice VOA, and the simple group Co; acts on Duncan’s “supermoonshine”
SVOA of [11, 12]. In [12], the latter is constructed out of the former in such a way as to give
a natural identification between subquotients of Eg and Co; of shape 2% - PSWeyl(Eg). (Here
PSWeyl denotes the quotient of SWeyl by the center, which is nontrivial for Weyl group of Eg.)
The homomorphism from Lemma 6.6 can be constructed by starting with this identification
and analyzing Z/3-centralizers (in Eg and in Cop). It would be interesting to find a direct
“moonshine” construction of Suz from the Eg lattice making this homomorphism transparent.

Our goal in this section is to prove:

Theorem 6.8. The Suzuki group and its Schur covers have the following fourth cohomology
groups:

H*(Suz) = Z/4, H*(2Suz) = Z/8, H*(3Suz) = Z/12, H*(6Suz) = Z/24.

H*(6Suz) is generated by co(V), where V' denotes either 12-dimensional complex irrep.
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We will split the proof into a series of lemmas.
Lemma 6.9. c3(V) has order 24 in H*(6Suz).

Proof. Since the underlying real representation of V' is Leech ® R, we have
co(V) = =5 (Leech)|gsus-

Then [28, Theorem 0.1] gives an upper bound of 24 on the order of ca(V).

The action of 6Suz on the Leech lattice includes elements with Frame shape 3%; according
to [28, Theorem 7.1], & (Leech) has nontrivial restriction to such elements. This gives a lower
bound of 3 on the order of ca(V).

6Suz contains a maximal subgroup of shape 6A7. As observed in [28, Lemma 4.1], there is
a unique conjugacy class of subgroups Dg C Ag, where Dg denotes the dihedral group of order 8.
Along the standard inclusion Ag C A7, the 6-fold cover pulls back to the cover 3 x 2Dg of Dg,
where 2Dg denotes the binary dihedral group of order 16. This group 2Dsg is the one used in
[28, Lemma 4.1], where it is shown that £} (Leech)|ap, has order 8. This gives a lower bound
of 8 on the order of ca(V). [

Lemma 6.10. The 3- and 5-primary parts of H4(Suz)(5) vanish.

Proof. The 5-Sylow in Suz is contained in a maximal subgroup of shape Js:2. By Proposi-
tion 6.2, the outer automorphism of Jo acts by multiplication by —1 on H4(J2)(5) =5, and so
H*(Suz)5) € H*(J5:2)5) = 0.

The 3-Sylow in Suz is contained in a maximal subgroup of shape 3°:M;j;. There are two
nontrivial 5-dimensional Mj;-modules over F3. They lead to LHS spectral sequences with Fs
pages:

or

Noooo
O O O W
O O O W
o O w o
o O O O

0 0 0 0
0 8 0 8

s Noo oo

The former is incompatible with 3(Suz)(3) = 3, and the latter immediate gives H4(Suz)(3)

=0.
Lemma 6.11. H? (SWeyl(E¢); H* (2!%)) is either Z/2 or Z/4.

We were unable to determine the exact value of H (SWeyl(Eq); H* (2!76)). We remark that
the order-2 class therein has many descriptions. It arises as ¢y of the unique 23-dimensional
complex irrep of 2!76. It also arises as follows. By Lemma 6.6, the nonsplit extension 26 -
SWeyl(Eg) is naturally a subgroup of the compact Lie group of type Eg (adjoint form); in this
realization, 26 is the group of 2-torsion points in the maximal torus. The generator of H4(BE6)
restricts to 26 to the Eg quadratic form living in Sym? (26) c H* (26), and this form pulls back
to 2176 to the SWeyl(Eg)-fixed order-2 class.

Proof. Let us write J for SWeyl(Eg) and E for the 6-dimensional SWeyl(Eg)-module over Fs.
In Section 3.3 we identified H*(2.F) as

(E*. Alt>(E™). Alt*(E*)/E*).2.

This group has a unique nonzero element which is divisible by 2; it lives in the subgroup
X = E*. Alt?>(E*). Alt3(E*)/E*, and so H(J; X) > Z/2. On the other hand,

H(J; E*) = HY (J; A (E*)/E*) =0,  HO(J;Alt*(E*)) = Z/2.



26 T. Johnson-Freyd and D. Treumann

Indeed, E* and Alt3(E*)/E* are simple J-modules of dimensions 6 and 14 respectively, and
the unique J-fixed point in Alt>(E*) is the underlying alternating form of the quadratic form
defining the extension 2. E. From the long exact sequence H*(J; A) — H*(J; A.B) — H*(J; B) —
H*TY(J; A) — - -+ we find

HO(J; X) < Z/2
and
H(J; X.2) < (Z/2).(Z/2) = Z /4. u

We may now compute the FEo page of the LHS spectral sequence for the extension
2146 SWeyl(Eg) using HAP and Cohomolo:

2or4
0

O O O N
S O N O

0

0 00

Z 2 4

From the vanishing of E93, E12, and E2!, we learn that the restriction map
H?(Suz; Z) — H3(SWeyl(Esg); Z)

is an isomorphism on 2-primary parts. It follows that the preimage of SWeyl(Eg) in 2Suz is the
Spin double cover of SWeyl(Eg) C SO(6), which we denote by 2SWeyl(Eg).

The preimage of 276 . (SWeyl(Eg)) C Suz in 2Suz is of shape 2!*6 . (2SWeyl(E)). Using
HAP and Cohomolo, we compute that its LHS spectral sequence has Fy page:

2o0r4

Nooog
oo ow
cowwo

0 0
0 8

Lemma 6.12. There is a quaternion group Q' = Qg C 2'76.2SWeyl(Eg) such that the central
element of Q' maps to an element of SWeyl(Eg) of conjugacy class 2a.

There are two conjugacy classes of elements of order 2 in SWeyl(Eg). They can be dis-
tinguished by the orders of their preimages in 2SWeyl(Eg): elements in class 2a lift with or-
der 2 (and both lifts are conjugate in 2SWeyl(Eg)), whereas elements in class 2b lift with
order 4. So the content of the Lemma is the existence of such a @’ such that the composition
Q' — 2176.2SWeyl(Eg) — SWeyl(Es) is injective.

Proof. We will find this @’ by finding a larger group: we will hunt for a binary tetrahedral group
24, C 2116 2SWeyl(Eg), and then take @' to be its 2-Sylow. Let us say that copy of 24, inside
some extension of SWeyl(Eg) is “appropriate” if the central element of that 244 maps to class
2a € SWeyl(Eg). Then for our search, it suffices to find an appropriate 24, C 26.SWeyl(Es).
Indeed, Hy(244) = 3 and Hy(244) = 0, and so any 24, C 26.SWeyl(Eg) will lift to a 24, C
2146 2SWeyl(Eg).

To find an appropriate 24, C 2°.SWeyl(Eg), we recognize that

26 SWeyl(Eg) C 2% Weyl(Eg) C (maximal torus).Weyl(Eg) C Lie group Eg,
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where the group 2% is nothing but the 2-torsion points in the maximal torus. Consider the
standard Lie group embedding Fy C Eg. This leads to an embedding

24 SWeyl(F4) C 25.SWeyl(Es).

covering an embedding SWeyl(F,) C SWeyl(E¢). Because the Lie group F4 has no outer auto-
morphisms, the Weyl group of F4 contains all automorphisms of the F4 root lattice (isomorphic
to the Dy lattice). There is a standard identification between the Fj4 lattice and the Hurwitz
quaternions {a+bi+cj+dk € H|a,b,c,d € Z} L {a+bi+cj+dk: € H|a,bc,d e Z+ %}
The group of units in the Hurwitz numbers is a copy of 2A44. This provides a subgroup
2A, C SWeyl(F4) € SWeyl(Eg), which is easily seen to be appropriate: central 2 C 24,
acts by —1 on the Fy lattice, and so with trace —2 on the Eg lattice, and so fuses to class
2a € SWeyl(Eg).

Finally, we claim that the extension 2%.2A4, splits. Indeed, the action of 244 on 2% is the
mod-2 reduction of the action on the Fy lattice, and for this action, H? (2A4; 24) = 0. Thus we
have found an appropriate 24, C 2*.SWeyl(F;) C 26.SWeyl(Eg). |

Lemma 6.13. The pullbacks

H*(2Suz)9) — H* (2!76.2SWeyl(Eg)) +—— H* (2SWeyl(Es)) @

have trivial intersection.

Proof. Let Q' C 2!76.2SWeyl(Eg) denote the quaternion group found in Lemma 6.12, and let
@ C 2SWeyl(Eg) denote it image. Then @ = Qg is another quaternion group since the center
of @' is not in the kernel of the map Q' — Q.

We claim that H*(2SWeyl(Eg)) — H*(Q) is an isomorphism. Indeed, consider either 4-
dimensional faithful complex representations of 2SWeyl(Eg). Class 2a acts on this representation
with trace 0. It follows that this representation decomposes over @) as one copy of the 2-
dimensional irrep plus two copies of the same 1-dimensional irrep, and so ca(4-dim rep)|g has
order 8. We furthermore learn that cy(4-dim rep) generates H*(2SWeyl(Eg)).

We henceforth write o € H*(2SWeyl(Eg)) = Z/8 for this generator. Let & denote its pullback
to 2146.2SWeyl(Eg). To prove the proposition, it suffices to show that 4@ is not in the image of
H*(2Suz).

The central element of @' is an order-2 lift of class 2a € SWeyl(Eg). Any such lift fuses
to class 2a € Suz. But 2!76.SWeyl(Eg) is the centralizer of an element of class 2a € Suz. It
follows that Q' is conjugate in 2Suz to some other quaternion group Q" C 2!76.2SWeyl(Eq)
whose central element covers the center of 2SWeyl(Eg).

Since @' is a lift of Q, we find that @|¢g is a generator of H*(Q'), and so 4d|g # 0. On
the other hand, since the center of " maps to something central in 2SWeyl, the 4-dimensional
representation of 2SWeyl breaks up over the image of Q” as either four 1-dimensional repre-
sentations or two copies of the 2-dimensional representation, and in either case we find that
&|gr = ca2(4-dim rep)|g» has order at most 4, so that 4&|g» = 0. Since @' and Q" are conjugate
in 2Suz, the class 4& cannot be the restriction of a class in H*(2Suz). [

Proof of Theorem 6.8. H4(Suz)(p) vanishes for p > 7 by Lemma 2.2, and for p = 5 by
Lemma 6.10. Lemma 6.10 gave H4(Suz)(3) = H4(ZSuz)(3) = 0, and so Lemma 2.4 provides
the upper bound H4(3Suz)(3) < 3. But Lemma 6.9 provides the lower bound H4(3Suz)(3) > 3,
and so

H4(3Suz)(3) = H4(68uz)(3) >~ 7/3,

generated by the 3-part of co(V).
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We now argue that H*(2Suz) = 8. Lemma 6.9 implies that H*(2Suz) contains an element
of order 8, namely the 2-part of co(V'), where V' denotes the 12-dimensional irrep of 6Suz.
Lemma 6.13 implies that H*(2Suz) has order at most 16. Furthermore, since the 2-part of co(V)
has order 8, its restriction to 2'7% must be nonzero. On the other hand, for every represen-
tation W of 2176, (W) € HY (21+6) has order dividing 2. (Indeed, for the one-dimensional
irreps of 2116 this is automatic, and for the unique irrep of dimension 22 it is a straightforward
computation.) Thus cp(V) restricts to the unique class in H*(2!%6) which is divisible by 2. From
this we learn that the only way for H*(2Suz) to have order 16 is if co(V') is divisible by 2.

Suppose that there were a class “3co(V)”. Since co(V) restricts to 2Dg with order 8, this class
2¢o(V)) would have to have order 16 when restricted to 2Dg. The order-16 classes in H*(2Ds)
are the ones that have nontrivial restriction to the center of 2Dg, which by construction is the
center of 2Suz. But all classes in H*(2!76.2SWeyl(Eg)), hence all classes in H*(2Suz), restrict
trivially to the center. This proves

H*(2Suz) = Z/8,
generated by the 2-part of ca(V).
Finally, we argue that H4(Suz)(2) x~ H4(38uz)(2) >~ Z/4 by repeating the logic from [28,

Theorem 5.3]. Namely, we have a commutative diagram

2D8 «— 6Suz —— 2001

Lo |

Dg ——— 3Suz —— COl7
which, upon applying H4(—)(2), gives the diagram

7/16 - Z,/8 - 7,/8

I { [

Z/4 x (Z/2)* +—— H'(3Suz)() +— Z/4.

The north-then-west compositions are injective, and so both southern arrows must be injective.
It follows that

H*(Suz) = H4(3Suz)(2) =7Z/4. [ |

7 Pariahs

7.1 Janko groups 1 and 3

Using the permutation representations listed in the ATLAS, HAP is able to compute
Hs(J1) = Z/30, H3(J3) = Z/15.
HAP is unable to compute H3(3J3) directly.

Theorem 7.1. H3(3J3) = (Z/3)? x Z/5. Both H*(J3) and H*(3J3) consist entirely of Chern
classes, and are detected on cyclic subgroups.

Proof. Let V393 denote a choice of complex irrep of J3 of dimension 323. (The two choices
are the characters x4 and x5 when listed by increasing dimension; both are real, and are ex-
changed by the outer automorphism of J3.) Then cp(Va23) restricts nontrivially to all cyclic
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subgroups of order 5 in J3. For the 3-parts of H4(J3), we focus on the conjugacy classes 3a and
9a, and any choice of 1920-dimensional irrep Vigyo (there are three such irreps, all real, with
characters x14, x15, and X16). Then c2(Vig20) restricts nontrivially to both (3a) and (9a).

Choose any lift of 3a € J3 to 3J3, for example 3¢ € 3J3. (The classes 3a,3b € 3J3 are central.)
The class 9a € J3 lifts to a single conjugacy class in 3Js, also called 9a. With these new names,
we still have that co(Vig2o)|sc and c2(Vigao)|9a are nontrivial. Finally, consider the smallest
faithful representation Vig of 3J3, with dimension 18 and character x22. Then c2(Vig)|sc = 0,
but ca(Vig) restricts with order 3 to (9a).

It follows that the image of the map H4(3J3)(3) — H*((3c)) x H*((9a)) is not cyclic. On the
other hand, the HAP computation of H3(J3)(3) together with Lemma 2.4 imply that the domain
has order at most 9. So H4(3J3)(3) >~ (Z/3)% [

7.2 O’Nan group
Theorem 7.2. H3(O'N) = H3(30'N) = Z/8.

Proof. The p-parts of H*(O’N) vanish for p = 5 and p > 11 by Lemma 2.2. The 7-Sylow is
contained in a subgroup isomorphic to PSL3(7), and a HAP computation gives H*(PSL3(7)) =
7/16.

The 3-Sylow in 30’N is an extraspecial group of shape 3'74, and its normalizer N is a maximal
subgroup of shape N = 3'*4: 2144 D,q. HAP computes

Hs(N) = Z/4 x Z/8 x Z/5.

It follows that H*(30'N) 3, and hence also H*(O'N) 3, vanishes.
The 2-Sylow in O’N is contained inside the nonsplit extension 43 - GL3(2). According to
Lemma 4.1(4),

H* (43 GL3(2)) ) = (Z/2)? x Z/8.

The Fa-cohomology ring of O’N, including the action of Steenrod squares, was computed by [1].
They find that

HY(O'N;Fy) = H*(O'N; F3) = 0, H?(O'N; Fy) = HY(O'N; Fy) = Fy,
but
Sq' = 0: H3(O'N;Fy) — HY(O'N; Fy).
It follows that H*(O’ N)(2) is cyclic of order strictly greater than 2. Since H*(O' N)(2) is a direct

summand of H* (43 - GL3(2)) (2) the only option is HY(O'N)(9) = Z/8. u

7.3 Janko group 4 and Lyons group

The two largest Pariahs are Janko’s fourth group J4 and Lyons’ group Ly. Both have trivial
Schur multiplier [20], and so their cohomologies vanish in degrees < 3. We find that in fact
their cohomologies vanish in degrees < 4. Only one other sporadic group has this property: the
cohomology of Mgz vanishes in degrees < 5 [32].

Theorem 7.3. H*(Jy) is trivial.

The full cohomology ring of J4 is computed away from the prime 2 in [19].
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Proof. The only primes not covered by Lemma 2.2 are 2, 3, and 11. The 11-Sylow in Jy is
contained in a maximal subgroup of shape 112 : (5 x 25;). It is easy to check that H* (111Jr2 :
(5 x 2S4))(11) = 0; for example by observing that the central 10 C 5 x 25, acts on 112 through
the isomorphism 10 = (Z/11)* and applying Lemma 2.3.

The 3-Sylow is contained in a maximal subgroup of shape 2! : M. There are two conjugacy
classes of elements of order 3 in Myy; the restriction map H4<M24)(3) >~ 7,/3 — H*((3a)) is zero,
whereas H4(M24)(3) >~ 7/3 — H*((3b)) is an isomorphism [16]. But J4 has only one conjugacy
class of order 3. It follows that Hy(J4)3) = 0.

The 2-Sylow is contained in 2'! : My, and also in a maximal subgroup of shape 21722 .3M5.2
centralizing conjugacy class 2a € J4. This latter subgroup turns out to be more useful. Using
Cohomolo and Proposition 5.3, we find that the Fo page for the LHS spectral sequence reads

<4

2
0

00 0
2 4 22x3

Nooo
o O o o

The entry “<4” in bidegree (0,4) comes from the LES for the extension
H* (21112) = 212 Alt? (2'2). (AlE® (2%) /2"%).2
from Section 3.3 and the calculations

H (3Ma2.2;2'2) = H' (3Ma2.2;2'%) = HO (3My2.2; Alt? (2!2)) = 0,
HY (3Map.2; Alt? (2'2)) = 2.

We showed during the proof of Theorem 6.3 that H*(Mas : 2)2) = 22 is detected by restricting
to the three conjugacy classes of order 2 in Moy : 2. All three of these classes have order-2
preimages in 2'722.3Mg,.2. But both conjugacy classes of order 2 in J; meet 2'722. It follows
that the images of H'(Maz : 2)(5) — H* (2'7%2.3M22.2) ) and H'(J4) () — H* (217%2.3M22.2)
have trivial intersection.

In particular, if H*(J4) # 0, then it contains an order-2 class a whose restriction to 21412 is
the unique element ¢ € H* (21+12) which is twice some other element. That unique element is
pulled back from H*(2'2), where it corresponds to the quadratic form ¢ € Sym?(2'2) defining
the extension 21712, Choose any pair of vectors vy, vy € 2!2 such that g(vi) = q(vs) # 0. Their
lifts generate a quaternion group Qg = 2'+2 C 212 and ¢ € H*(2'+12) restricts nontrivially
to that quaternion group. (These lifts of v, vy have order 4 in 2!712 and so are in conjugacy
class 4a in 21+12.3M,.2.)

Choose § € 2'112.3M9,.2 in conjugacy class 4b. The character table libraries confirm that
this § has the following properties: §2 is the nontrivial central element in 21712 C 21412 3M,.2:
the image ¢ in 3Ma2.2 of § is in conjugacy class 2a. In particular, g acts on 2'? fixing 8
dimensions. Regardless of the Arf invariant of ¢, one can find a basis such that ¢ vanishes on at
most one basis vector; thus we can find a vector v; € 212 with ¢(v) # 0 and vg # v. (Following
GAP’s conventions, we write the action of 3M5.2 on 2'2 from the right.) Set vy = vg; then
q(v2) # 0, and so the lifts of vy, vy generate a Qg as in the previous paragraph.

Furthermore, we have arranged for the lifts of vy, v together with § to generate a binary
dihedral group 2Dg C 2'12.3My.2 extending this Qg. Suppose that H*(J4) # 0, and let a
denote its order-2 class. Then alap, has order 2, and so is divisible by 8. But then «a|g, = 0.
This contradicts the fact that Qg detected ¢, and so H*(J4) must vanish. [

Theorem 7.4. H*(Ly) is trivial.
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Proof. For p > 5, the Sylow p-subgroup of Ly is cyclic, so Lemma 2.2 applies.

G2(5) and 3McL : 2 are subgroups (in fact, maximal subgroups) of the Ly [29, Propositions 2.5
and 5.4]. The 5-Sylow is contained in Ga(5), so the H4(Ly)(5) vanishes by Lemma 4.3.

The 2- and 3-Sylows are contained in 3McL : 2. By Theorem 6.5, the only cohomology
of the latter is pulled back from the quotient Z/2, and so is detected on a conjugacy class of
order 2 (specifically, class 2b € 3McL : 2). But Ly has only one conjugacy class of order 2, and
it meets 3McL C 3McL : 2 (since 3McL has a class of order 2). It follows that the pullback
H%(2) = H*(3McL : 2) and the restriction H4(Ly)(2) — H*(3McL : 2) have nonintersecting
images. |

8 Monster sections

8.1 Held group
The Held group is small enough to be accessible by the methods of Sections 2.2-2.3.

Theorem 8.1. H4(He) >~ 7/12. It is spanned by fractional Pontryagin classes.

Proof. The primes not covered by Lemma 2.2 are p = 2, 3, and 7.

The normalizer of a 7-Sylow in He has shape 7'%2 : (3 x S3). There are no 7s in its low
cohomology: H* (7112 (3 x S3)) = H*(3 x S3) = 2 x 32

The 3-Sylow in He is inside a maximal subgroup of shape 3S7, with H4(3S7) = 22 x 4 x 32.
We claim that the inclusions H4(He)(3) — H4(3S7)(3) and H4(S7)(3) =3 = H4(3S7)(3) have
nonintersecting images, giving an upper bound H4(He)(3) < 3. To show this, we first observe
that if Cs is a cyclic group of order 3 then the two nonzero classes in H*(C3) 2 Z /3 are canonically
distinguished: one, which we will call t> € H4(C3), is the cup-square of both nonzero classes in
H?(C3) = Z/3, and the other is not a cup-square. Now consider the class ca(Perm) € H*(S7),
where Perm denotes the defining permutation representation. There are three conjugacy classes
of order 3 in 3S7: the “central” one (not actually central — it is inverted by the odd elements
of S7), and two that act on Perm with cycle structures 1#3' and 1'32, respectively. It follows
that ¢y (Perm)| 431y = —t? whereas cp(Perm)| 1132y = +t*, meaning that cy(Perm) takes different
values on these two classes. However, these two classes merge to the same class in He, and so
co(Perm) cannot be the restriction of a cohomology class on He.

To establish the lower bound H4(He)(3) > 3, we observe that the smallest irrep of He has
dimension 51, and conjugacy class 3b € He acts with trace 0, and so co of this irrep, when
restricted to (3b), does not vanish.

For the prime p = 2, we use the 2-Sylow-containing maximal subgroup of shape 25 : 3Ss.
The E» page (localized at p = 2) of the LHS spectral sequence for this extension reads

E*

0 2 22

0 0 0

0 0 0 O 0
Z 0 2 2 22x4

with
Byt =H (38 V. Al (V). A3 (V)), V= (2)".
Since

HY(3S6; V) = HY (3S6; Alt*(V)) =0,  HY(3S6; Alt*(V)) = Z/2,
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we find that
E < 2.

We claim that the inclusions H4(S6)(2) = H4(35’6)(2) — H* (26 : 356) and H4(He)(2) —
a4 (26 : 356) have trivial intersection. To establish this claim, we first study H4(5’6)(2). There
are four 5-dimensional complex irreps of Sg, corresponding to the characters xs, x4, X5, and Xg.
Their second Chern classes, when restricted to the conjugacy classes 2b, 4a, and 4b in Sg, are

2b 4a 4b
C2 (Xg) 0 —t2 +t2
ca(xa) | O R —
C2 (X5) 1 —t2 —tz
ca(xe) | 1 —t2 442

Our notation is the following. The two classes in H*((2b)) = Z/2 are “0” and “1”. If Cy is
a cyclic group of order 4, the two generators of H2(Cy) have the same cup-square in H*(Cy),
which we call “4+t2”; the generator of H*(Cy4) which is not a cup-square is called “—t2”.

The images of {3 (x3), c2(x4), c2(xs), c2(xe)} in HY((2b)) x HA((4a)) xHI({4b)) = Z/2 (Z,/4)?
together span a group isomorphic to (Z/2)? x Z/4. Tt follows that these four classes span
H4(56)(2) >~ (Z/2)? x Z/4 and that the restriction map H4(S6)(2) — H*((2b)) x H*((4a)) x
H*((4b)) is an injection.

On the other hand, the subgroup 26 C 26 : 355 C He meets both conjugacy classes of order 2,
and the order-4 preimages in 26 C 20 : 355 of the classes 4a,4b € Sg are He-conjugate to
preimages of order-2 elements in Sg. It follows that the image of H4(56)(2) = H4(3SG)(2) —
H* (26 : 3S55) does not intersect H*(He).

We have so far established the following upper bound on H4(He)(2): it is a group of order at
most 4. The last ingredient needed is a cohomology class of order divisible by 4. Let V' denote
the irreducible He-module with character xi19: it is real and of dimension 7650. Consider the
conjugacy class 4a € He. It squares to 2a, and

X19(4a) = 6, X19(2a) = 90.

Therefore 4a acts with spectrum 11938§1890(—1)1932(_;)1890 " and 50 the total Chern class of V,
when restricted to (4a), is

(V) =181 — )01 —20)"2(1 4+ )% =1 -2+ (mod 4t).

In particular, ca(V')|(4a) # 0. But V is a real representation, and therefore Spin (since He has
trivial Schur multiplier). So it has a fractional Pontryagin class, twice of which is co(V'). It
follows that £ (V') has order divisible by 4, and so H4(He)(2) >~ 7/4. [

8.2 Harada—Norton and Thompson groups

We were able to obtain partial results about the Harada—Norton and Thompson groups HN
and Th.

Theorem 8.2. H* (HN;Z[3]) = Z/3. At the prime 2, H4(HN)(2) has order at most 16 and
exponent at most 8.

Proof. Lemma 2.2 handles the primes p > 7. The 5-Sylow in HN is contained in a maximal
subgroup of shape 5114.2174.5 4: the LHS spectral sequence gives H* (51+4.21+4.5.4) 5) = 0.
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The 3-Sylow is inside a maximal subgroup of shape 3!*4 : 445, where by “4A45” we mean the

“diagonal” central extension 2.(As x 2). HAP can directly compute
HY (31 445) o) =32

We claim that the generator of H4(4A5)(3) = 3, when pulled back to 3% : 445, is not the
restriction of a class on HN. Indeed, that generator has nontrivial restriction to the elements of
order 3 in 445, and so its pullback has nonzero restriction to some elements of order 3. But both
conjugacy classes of order 3 in HN meet 3'+4 C 31+ : 445, Finally, we claim that H4(HN)(3) #0.
There is a unique conjugacy class of order 9 in HN, and its traces on either 133-dimensional
representation, which characters xo and xs, are x2(9a) = 1 and xo (9a3) = x2(3b) = —2. From
this one can compute that ca(x2)|9a) # 0

The 2-Sylow in HN is contained in the centralizer of conjugacy class 2b, which has shape
21++8.(A5 12). The E, page of the corresponding LHS spectral sequence provides an upper bound
of |H*(HN) ()| < 26. Let £ =28 = (25)" and J = (A512); then

HY(J; E) =H'(J; E) = H° (J; Alt*(E)) =0,  H*(J;E) 2 Z/2,
while
HO (J;AR*(E)) = Z/2,  HO(J;Al%(E)/2) 2 Z/2;  H' (J;Alt*(E)/2) = (Z/2)%

Therefore the Fo page of the LHS spectral sequence, after localizing at 2, reads

2
2 22
0 0 2

0 0 00 O
Z 0 2 2 22

As usual, the image of H*(A5? 2)2) — H* (2_1[*'8.(145 2 2))(2) does not intersect H*(HN): the

former is detected on elements of order 2, but both conjugacy classes of order 2 in HN meet
248 C 2178 (451 2). |

Theorem 8.3. H* (Th; Z[1]) = Z/3.
Proof. Lemma 2.2 handles the primes p > 7. The 5-Sylow is inside 515 : 45, and Lemma 2.3

implies H* (5“’5 : 454) 5) = 0. The 3-Sylow does not live in any nice maximal subgroups, and
so we cannot compute H4(Th)(3).

The 2-Sylow in Th is contained in the Dempwolff group of shape 2° - GL5(2). According to
Lemma 4.1(3), H* (25 - GL5(2)) (2) = 8, and the proof of that lemma established that co(V') # 0,
where V denotes the 248-dimensional irrep of 2° - GL5(2). This irrep V extends to the defining
248-dimensional irrep of Th, and so the restriction map H4(Th)(2) — H*(2°- GL5(2))(2) is
nonzero. Since the image of that restriction map is a direct summand, we must have H4(Th)(2) s
H* (25 GL5(2)) ) = Z/8. u

8.3 Fischer groups

The Fischer groups Figg, Fiog, and Figy are a “third generation” version of the Mathieu groups
Moo, Mas, and Mayy. Specifically, the 2-Sylow in Fiy, for N € {22,23,24}, lives in a sub-
group of shape 2/%/21=1 My, making the calculation of H4(FiN)(2) systematic. The extension
2IN/21=1 My splits for N = 22 and does not split for N = 23 and 24.

The 3-Sylows in all cases are contained in orthogonal groups over F3. We were able to handle
the 3-parts of H4(G) for G = Fiso and 3Fiss, but not for the larger Fischer groups.
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Theorem 8.4. The Fischer groups have the following cohomologies away from the prime 3:

1) H* (Fisg; Z[3]) = 0;

)
2) H (2F122; Z[%]) has order 2 or 4;
3) H' (Fiys; Z[3]) = Z/2;
4) H* (Fiyy; Z[£]) has order 2 or 4.

Proof. Lemma 2.2 handles all primes p > 5 except for H* (Fi’24)(7). But the 7-Sylow in Fij, is
inside a copy of Held’s group He, and H4(He)(7) = 0 by Theorem 8.1.

We now inspect the LHS spectral sequences for the extensions 2/%/21=1 My C Fiy. The
three cases are:

0 0 0

0 0 2 0 2 2 0 2

0 2 0 0 0 O 0 0 O

0O 00 0 O 0O 00 0O 0O 00 0 O
Z 0 0 12 0 Z 0 0 00 Z 0 0 0 12
210 Myy C Figo 211 My3 C Fias 211 My C Figg

The first proves claim (1) and provides the upper bound for claim (2). The second provides the
upper bound for claim (3).

Let a € H4(M24)(2) & Z/4 denote a generator, and let & denote its pullback to 2!'1.May.
Consider the conjugacy classes 4b and 4c in May4. The formula given in [16, Section 3.3] provides
alupy = 0 whereas (4 has order 4 in H*((4c)). These classes admit preimages in 2'' My,
living in conjugacy classes 8e and 8a respectively, and so a&|gse = 0 whereas als, has order 2.
(The pullback map H*(Cy) — H*(Cg) along a surjection of cyclic groups Cy — Cy has image
of order 2.) Both 8 and 8a fuse in Fiy, to class 8a, and so & cannot be the restriction of
a cohomology class on Fiy,. Together with the above spectral sequence, we find the upper
bound in claim (4).

All that remain are the lower bounds. Let w? denote the “gauge anomaly” of the Monster
CFT, studied in [27]; cf. Section 8.4. The McKay-Thompson series for class 4b in the Monster
group M has a nontrivial multiplier (of order 2), and so w”\<4b> is nonzero. But 4b meets
2Fige C Figg C 3Fiby,, and so w restricts with order at least 2 to all of these groups. |

Theorem 8.5. H4(Fig) = {0} and H*(3Fiy) = Z/3.
Combined with Theorem 8.4(2), we find that H*(6Fisz) has order either 6 or 12.

Proof. Given Theorem 8.4(1), we must only compute H4(F122)(3) and H4(3F122)(3). But the
3-Sylow in Figs is contained in a maximal subgroup isomorphic to Q7(3), and H4(Q7(3))(3) =0
by Lemma 4.4. By Lemma 2.5, the inclusions H4(Q7(3))(3) — H4(3Q7(3))(3) and H4(F122)(3) —
H4(3Figg)(3) have the same cokernel; this cokernel is Z/3 by Corollary 4.5. |

8.4 Monster

The main result of [27] is that H4(M) contains a class w9, arising as the gauge anomaly of the
Moonshine CFT, of exact order 24. It is reasonable to conjecture that w® generates H*(M). The
calculations in this paper allow us to come close to proving that conjecture:

Theorem 8.6. H*(M) = Z/24 @ X, where the Z /24 summand is generated by W' and where the
order of X divides 4.
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Proof. The primes p = 11 and p > 17 are covered by Lemma 2.2. To calculate H*(M), we
must study the p-Sylows for p = 2,3,5,7,13. For these p, the p-Sylow is contained in the
normalizer N (pb) of an element of conjugacy class pb. These normalizers are all of shape

N(pb) = pHm.J,

where m =24/(p — 1) and J C Co;. Specifically

P J
T COl

3 | 25uz.2

) 2J9.4

7 13X 257

13| 3 x 454

The extension p!'*™.J splits for p > 5. When p = 3, 3712.2.Suz.2 does not split, but the
quotient 3'2 : 2Suz.2 does split. When p = 2, the quotient 224 - Co; does not split.

The center of the group J in all cases has order p — 1, and acts by a faithful central character
on p™. Applying Lemma 2.3, we find that H’ (J; H/ (p1+m)) =0 for 0 < 5 < p. Combined
with the HAP calculation of H%(2J) from Section 6.2, the known value H*(3 x 257)n = 0
(which follows by the methods of Lemma 2.2), and the trivial result H*(3 x 454)(13), we find
that H* (M; Z[§]) = 0.

At the prime 3, central character considerations imply that the only potentially nonzero
entries of total degree 4 on the LHS spectral sequence for 3'+12.2Suz.2 are, in the notation of
Lemma 3.3:

H° (28uz.2; Sym? (312)), H! (28uz.2; Alt? (312)w), H4(2Suz.2; Z)3).

The first vanishes because 3'? is antisymmetrically but not symmetrically self-dual as a 2.Suz
module. Actually, as a 2Suz.2 module, 3'2 is not self-dual at all: the symplectic pairing changes
by a sign via the surjection 2Suz.2 — 2. The last vanishes by Theorem 6.8.

Therefore H! (28uz.2;Alt2 (312)w) gives an upper bound for H4(M)(3). The group 2Suz.2
is too large for Cohomolo to handle directly, but its 3-Sylow-containing maximal subgroup of
shape 3° : (Mj; x 2) is not, and Cohomolo computes

H' (3% : (Myy x 2); Alt* (3'%) ) = 3.
This provides an upper bound for H! (2Suz.2; Alt? (312)w), and so
HY (M) 3 < 3.

On the other hand, [27, Lemma 3.2.4] shows that H4(M)(3) > 3.

The p = 2 part of H*(M) is more subtle.

We first claim that the Z/8 C H4(M)(2) generated by w! is a direct summand. Equivalently,
we claim that w? is not divisible by 2. Consider the subgroup N(3b) = 3+12.2.5uz.2 C M. Since
its quotient 3! : 2Suz.2 splits, we can find a copy of 6Suz C 6Suz.2 C M. The central 3 C 6Suz
is generated by class 3b by construction, and the central 2 C 6Suz C M is of class 2b. It follows
that this 6Suz is (conjugate to) a subgroup of the normalizer N(2b) = 21+12. Coy, where it
lives over a copy of 3Suz C Coj. As observed in the proof of Theorem 6.8, the corresponding
6Suz C 2Co; contains the group 2Dg used in [28]; thus the 6Suz C M contains a 2Dg such that
the central element is of class 2b € M. This is the 2Dg C M used in [27, Section 3.3] to show
that the order of w? is divisible by 8. It follows in particular that the order of wu|65uz is divisible
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by 8. But H4(68uz)(2) = 8 by Theorem 6.8, and so w'|gsy, is not divisible by 2, proving the
claim.
The last step of the proof is to study the LHS spectral sequence for the extension 2'%24. Coy:
H (Col; H* (21+24))
HO (Cop H® (2124)) 1! (Coys B3 (21424))
HO (Cop H? (21424)) HI (CoyiH? (21424)) B (Cops H2 (21424)
0 0 0 00
Z 0 0 2 4
The 2 in the bottom row is H*(Coy), and the 4 in the bottom row is H4(C01)(2); the latter result
is due to [28].
From Section 3.3, we know

H2 (21+24) o~ 2247 H3 (21+24) o~ A1t2 (224) /2 o~ 22757
while
HY (21724) = 224 Ale? (2*1).(Alt® (2°1)/2%%).2 = 223002

has exponent 4.
Without much difficulty, GAP can compute

HY (Coy;2°") = H? (Coy; Alt? (221) /2) = HO (Coy; Alt® (221)) = 0.
and

HO (Coy; Alt? (224)) = Z/2.

The groups H’ (Col; 224) for i = 1,2 were calculated by Derek Holt and reported in [26,

Lemma 1.8.8]. They are

H' (Cop;2*) =0,  H?(Coy;2*%) ¢ Z/2.
A presentation for Co; is given in [35]. Using it, [27, Section 3.5] calculates

H' (Coy; Alt? (224)/2) = Z/2.

These calculations almost fill in the Ey page. The remaining missing ingredient is EY* =
H° (Col; H* (21+24)). Using the above calculations together with the long exact sequence for
cohomology with values in an extension, one finds:

HO (Coy; 224, Ale? (224, (Al® (224) /22)) = HO (Cop; 2290 = 7,/2.

It follows that H® (Coy; H* (2172%)) is isomorphic to either Z/2 or Z/4. We suspect the former,
but were unable to compute it.

Although we do not know whether ES* = 2 or 4, we claim that Efj;* = 2. To prove this we
quote two facts. First, according to [27, Section 3.5], wh\21+z4 has exact order 2, and so provides
an element of order 2 in E%*. Second, we showed above that w? is not divisible by 2 in H*(M).
Since the map H(M) — H* (21+24.Col) is an inclusion onto a direct summand, it follows that
wh 91424 (1o, s not divisible by 2. But H4 (21+24.Col) surjects onto F%4 and sends w? to a nonzero
value. So the image of w? in £% cannot be divisible by 2, proving that E% # 4.

All together, we find an E,, page of the following form

2

0 <2

0 0 <2

0 0 0 00
Z 0 0 2 4

It follows that H4(M)(2) has order at most 32, completing the proof. |
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