HECTor: Homomorphic Encryption Enabled Onion
Routing

I®* Saikrishna Gumudavally
2 Ye Zhu
Department of Electrical
Engineering and Computer Science
Cleveland State University
Cleveland, USA
s.gumudavally @alumni.csuohio.edu
y.zhu61@csuohio.edu

Abstract—Despite increasing popularity of anonymous com-
munications, current anonymity networks are still vulnerable to
traffic analysis attacks. We propose Homomorphic EnCrypTion
enabled Onion Routing (HECTor) to defeat existing traffic analy-
sis attacks. Instead of mixing traffic at the packet level as current
anonymity networks, HECTor mixes traffic at the bit level with
network coding techniques. In HECTor, homomorphic encryption
enables onion-like layered encryption which has been proven
successful in existing anonymity networks. We theoretically
analyze the performance of HECTor. Our extensive experiments
on HECTor show that HECTor can effectively mitigate existing
traffic analysis attacks with high throughput.

I. INTRODUCTION

Anonymity networks are becoming increasingly popular. It
has been reported that Tor [1], the second generation onion
routing, has about 1.2 million users already. Despite popularity
of anonymity networks, existing anonymity networks are still
vulnerable to traffic analysis attacks. Since packets in existing
anonymity networks such as Tor are of the same size, most
of effective traffic analysis attacks [2]-[4] are based on packet
timing. Our goal is to design an architecture for anonymous
communications that can defeat existing traffic analysis at-
tacks.

Our design follows the same philosophy behind the design
of current anonymity networks, which is to mix traffic or hide
in crowds [5]. Current anonymity networks mix traffic at the
packet level with techniques such as batching [6], pooling [6],
and rerouting [1], [7]. We propose to mix traffic at the bit
level and the mixing at the bit level renders current packet-
based traffic analysis attacks largely ineffective. Moreover,
because of the mixing, a packet may contain bits from different
sources. So the anonymity definition for the new anonymous
communication architecture needs to redefined.

In this paper we propose an anonymous communication
architecture called Homomorphic EnCrypTion enabled Onion
Routing (HECTor) to defeat traffic analysis attacks. HECTor
mixes packets at the bit level with network coding, more
specifically random linear coding [8] for the mixing in this
paper. HECTor also adopts onion-based layered encryption [1],
[7] which has been proven successful in anonymity protection:
One anonymity network node in a communication path can

978-1-5386-8088-9/19/$31.00 ©2019 IEEE

3™ Huirong Fu
Department of Computer
Science and Engineering
Oakland University
Rochester, USA
fu@oakland.edu

4™ Yong Guan
Department of Electrical
and Computer Engineering
lowa State University
Ames, USA
yguan(@iastate.edu

only process the outer layer of a packet and the inner layers
are protected by the layered encryption. However bit-level
mixing is not compatible with the layered encryption because
bit-level mixing at the node in the path needs to re-mix packet
received by the node. Homomorphic encryption is used to
make bit-level mixing compatible with layered encryption as
homomorphic encryption enables computation over encrypted
data.

The rest of the paper is organized as follows: Section II
reviews related work. We describe design goals and threat
models in Section III. Section IV introduces essential tech-
niques used in HECTor. The design of HECTor is presented
the Section V. We theoretically analyze HECTor in Section
VI. The performance of HECTor is evaluated in Section VII.
We conclude the paper in Section VIII.

II. RELATED WORKS

Since Chaum’s pioneer idea [9], researchers have applied
the idea to different applications such as message-based
email and flow-based low-latency communication, and they
have developed new defense techniques as more attacks have
been proposed. In low-latency anonymous communication
networks, users connect to a pool of mixes, which provide
anonymous communication, and users select a forwarding path
through this core network to the receiver. Onion routing [7]and
TOR [1] belong to this category.

In the mean time, the researches on traffic analysis attacks,
which are designed to compromise communication privacy,
are being conducted for various applications and services
[10]-[14]. Danezis [11] proposes an attack on the Continuous
Mix that can delay packets according to some probability
distribution. Since the packet delays are independent, the
departure distribution of the packets of a flow can be accurately
described (if one ignores queuing) by convoluting the packet-
arrival and the delay distribution. This can be used as a
basis for measuring similarities among flows and in turn to
compromise communication privacy. In [13] Murdoch and
Danezis stage an active attack to trace back connections from
a server to the victim client by modulating the traffic to the
victim at the server and by remotely “sensing” the modulation

by probing its interference on cross traffic that is generated by
one or more corrupt Tor nodes. In [4], [12], we propose flow
correlation attacks to detect the communication path taken by
a traffic flow. The adversary detects the communication path
with correlation-based approaches.

The anonymity of physical-layer network coding is investi-
gated in [15]. The author in [15] focuses on message content
dependency between an input link and an output link of a
message relay.

III. DESIGN GOAL AND THREAT MODELS

In this paper, we propose HECTor, a novel architecture
for anonymous communications. The major design goal is
to defeat traffic analysis attacks proven effective to existing
anonymity networks. Existing traffic analysis attacks can be
largely classified into two categories: timing based traffic anal-
ysis attacks and packet size based traffic analysis attacks. In
this paper, we focus on mitigating timing-based traffic analysis
attacks because packets in existing anonymity networks such
as Tor [1] are of the same size and the packet size based traffic
analysis attacks are largely ineffective in compromising com-
munication anonymity in these anonymity networks. However
timing-based traffic analysis attacks are proven effective in
compromising anonymity in existing anonymity networks.

We assume that an adversary would like to compromise
anonymity of Alice’s communications. The capabilities of the
adversary are assumed as follows: (1) For confidentiality, Alice
encrypts her packets. So the adversary has no access to packet
content. Since packets in the proposed anonymity network are
of the same size as in Tor, the information available to the
adversary to launch traffic analysis attacks is packet timing.
(2) The adversary can collect traffic on any link in the proposed
anonymity network for anonymity attacks. (3) We also assume
that the adversary can collect traffic sent by Alice. (4) The
adversary can correlate Alice’s traffic to traffic collected on
links in the proposed anonymity network to detect a path used
by Alice’s traffic.

Same as existing anonymity networks, the proposed
anonymity network is not designed to defeat end-to-end traffic
analysis attacks because these attacks can compromise com-
munication anonymity by correlating traffic flows entering an
anonymity network to traffic flows exiting from the anonymity
network. One way to defeat the end-to-end traffic analysis
attacks is to run anonymous communication services on the
source node and/or the destination node of a traffic flow so
that the adversary will not have access to traffic entering or
leaving the anonymity network.

IV. PRELIMINARIES

Before presenting the details of HECTor, we would like to
briefly introduce the homomorphic encryption and the network
coding, the two essential techniques used in HECTor.

A. Homomorphic Encryption

Although the concept of privacy homomorphism [16] was
first generated in 1978, fully homomorphic encryption is not
possible until the recent breakthrough [17]. In this paper, we

R \/\/ R'=a, R +a,hb +a,P,
P, /} B'=a, P +ayP, +ayP,
P, \ B'=ay R +a, P, +ay P

Fig. 1: Random Linear Network Coding

use the homomorphic encryption scheme proposed by Dijk et

al. [18] due to its simplicity and efficiency.

Homomorphic encryption enables computation over en-
crypted data. The main idea of homomorphic encr)}gltion is
as follows: Suppose encrypting a plaintext message M; with
the key k results in the ciphertext C;, i.e., C; = Ex(M;). An
encryption scheme is homomorphic if, for any function f,

Ek(f(M17M27"' 7MTL)) = f(Ek(M1)7Ek(M2)7"' 7Ek(Mn))
= f(cl7027"' 7CTL) (D

where n denotes the number of plaintext inputs. As shown in

Equation 1, homomorphic encryption schemes allow a third
party to compute the function f on the encrypted data, i.e.,
the ciphertext C;, without knowing the key k. And the output
of the function f(My,Ms,---,M,) can be recovered by
decrypting the ciphertext f(Cy,Cs, - - -, Cy), the computation
results obtained by the third party. In HECTor, homomorphic
encryption enables relay nodes to mix encrypted packets at
the bit level without knowing the keys.

B. Network Coding

Network coding was proposed primarily for improving the
network throughput [19]. In the traditional networks, a node
relays packets by simply forwarding the received packets. In
network coding, a node mixes multiple received packets with
coding and then forwards the combined packets. A coding
vector will be used in mixing to determine how the received
packets are combined. The destination nodes recover the
original packets from the senders by decoding the combined
packets.

In this paper, we use random liner network coding [20].
Random linear coding allows a node to generate random
coding vectors locally and then mix received packets with
the random coding vectors. As shown in Figure 1, the node
generates a random vector [a11, a12,a13] from a Galois field
and then combines the incoming packets P;, P», and Ps
according to the random vector to form the combined packet
P| = a11P1 + a12P> + a13P5. In the matrix notation, the
combined packets can be written as follows:

P' = AP , 2)
ai1 a2 a3 Py
where A = az1 QAa22 Q23 R P1 = P2 R and
as1 asz 433 Ps
Py
1= Pé . The combined packets P;, P;, and Pj will
Ps

be sent out with their coding vectors in the practical network
coding [8]. The coding process continues on the next relay
node and the coding vectors sent along with the combined
packets are updated to include the locally-generated random

2 lbyte

Cir- 1D cMD DATA

512 bytes

Fig. 2: Control Cell Format

coding vectors. After receiving the combined packets along
with the coding vectors, the destination nodes can recover
the original packets by solving a linear system similar as in
Equation 2 where P’ contains the received packets and A
contains the overall coding vectors updated by each relay node
with locally-generated coding vectors.

V. DESIGN
A. Overview

The main idea of the HECTor is to mix packets at the
bit level instead of the packet level. The mixing at the bit
level renders the traffic pattern at the packet level largely
invisible and thus HECTor is immune to the existing packet-
level traffic analysis attacks that are proven detrimental to
current anonymity networks.

Network coding enables the mixing at the bit/symbol level.
In HECTor, the random linear network coding [19] is used
because it allows a node to generate random vectors locally.
In comparison with the deterministic network coding which
requires each node to use a pre-determined coding vector
or a pre-determined encoding function, the random linear
network coding eliminates the need of coordination among
nodes. So the random linear network coding is more suitable
for anonymous communications and it is used in HECTor.

As explained in Section III, we adopt the concept of onion
routing [1], more specifically the layered encryption for its
proven success in both previous anonymity researches and
practice. But the layered encryption is not compatible with
the bit-level mixing by default because: (a) The intermediate
relay nodes can only decrypt one layer according to the onion
routing [1], i.e., peel off the outer layer of the “onion”.
(b) Mixing layer-encrypted packets requires access to the
plaintext, i.e., access to the core of the “onion” messages if
traditional ciphers are in use. The incompatibility problem can
be solved with the homomorphic encryption which enables a
relay node to mix layer-encrypted packets without requiring
the access to the core of an “onion”, i.e., the plaintext message.

B. Cells

In HECTor, messages are sent in fixed-size cells to prevent
traffic analysis attacks based on the packet size [21], [22]. The
messages are TLS encrypted. In this paper, we set the cell size
as 512 bytes. There are two types of cells: control cells and
relay cells.

C. Control Cells

When a node receives a control cell it will act according
to the command in the cell. The cell format is as show in the
Figure 2. The Circuit identifier (Cir-ID) is a local value to
identify a circuit between two neighboring nodes. The CMD
field indicates the command carried in the cell. The value

2 1 1 2 (=3 2 3-20 Bytes

RELAY| CMD [LEN | CRC| GsQ | VEC DATA

512 Bytes

Fig. 3: Relay Cell Format

Fig. 4: Cascade Topology (Cell relay on solid links are
described in Section V-F.)

of the CMD field indicates whether it is a control cell or a
relay cell. The commands in a control cell can be create,
created, combine, combined ,and destroy. Most of the control
commands are used for cascade construction as described
below.

D. Relay Cells

Relay cells are used to transfer data between senders and
receivers. As shown in Figure 3, relay cells have additional
header fields when compared to control cells. First relay cells
are differentiated from control cells by the third byte. The
following CMD byte after the relay byte is used to indicate
relay commands designed for circuit construction. The next
byte is used to indicate the length of payload data. GSQ
denotes the generation sequence number to which the cell
belongs. VEC denotes the coding vector used to form the relay
cell. Both GSQ and VEC are used to random linear network
coding for combining cells in the same generation.

E. Cascade Construction

A cascade topology as in AN.ON/JonDo [23] will be formed
after cascade construction. A sample cascade topogy is shown
in Figure 4. The number of nodes in the same stage of the
cascade topology should be at least no less than the generation
size gs, defined as the number of cells in the same generation
sent from source nodes so that the exit nodes can have enough
linearly independent cells to recover the original messages.
The other goal of cascade construction is to establish keys
between source nodes and HECTor nodes. The HECTor proxy
running on Alice’s computer, denoted as Node ng; in Figure
4, will share the key k; with the nodes in the th stage of the
cascade. Due to the space limit, we leave the procedure of
cascade construction to [24].

F. Relay Operation

We use the example network in Figure 4 to describe relay
operation in HECTor: The HECTor proxy running on Alice’s
computer, denoted as Node ng1, first encrypts Alice’s original
message into message M; with the public key of an exit node
(assuming Node ny4; in this example without loss of general-
ity), and then converts Alice’s message M; into the layer-
encrypted “onion” OY'711 = Ey (Ey, (B, (Ek, (M))))
where O* Y denotes a layer-encrypted packet on the link from

Node z to Node y', E denotes the homomorphic encryption,
and k; denotes the key shared between the HECTor proxy
running on Alice’s computer and the nodes in the ith stage of
the cascade topology. Without loss of generality, we assume
0%~ = By (Ey, (Eks(Ex, (M;)))) for j = 1,2,3 where
M denotes the message from the jth user, i.e., the jth HECTor
proxy>. HECTor proxies will also send the same packets to
Node n;2 and Node n13. In other words, Q%=1 = Q0i—12 —
O%=13 for j = 1,2,3. Please note that the links from
HECTor proxies are TLS encrypted as well.

Alice’s cell 011! enters the HECTor network through
Node n;;. With the key k; shared between HECTor proxies
and nodes in the first layer, Node ny; is able to decrypt the
“Onion” 0% 711 as follows:

Dy, (OOlHll) = Dy, (Ekl (Ek2 (Ek'a (Ek4 (Ml))))) =
Ekz (Ek3 (Ek4 (Ml)))

where Dy, denotes decryption with the key k;. Similarly
02711 and 0%~ are decrypted into Ek, (Ey, (Ex, (Ms)))
and Ey,(Fy, (Fr,(Ms))) respectively. After the decryption,
Node mnj; generates a local random coding vector
Ai11 = [a11,a12,a13] and combines the decrypted packets
into one packet with the random coding vector as follows:

Oll*}Ql
= a1 Ek, (Ery (Er, (M1))) + a12E%, (Ex, (Er, (Ma)))
+a13E, (Ex,y (Ex, (M3))))
= Eg,(a11Egy (Er, (M1)) + a12Egy (Er, (M2))
+a13Ey, (Er, (Ms))) “4)
= Eg,(Er, (a1 Ex, (M) + a12Ex, (Mo)
+a13Ek, (Ms))) ®)
= B, (Ery (B, (a11 M1 + a12 Mo + a13M3))) (6)
= Ek,(Eks (Er, (A11MT))) (7
Ep, (Eyy (Br, (A 721MT))) ®)

where M = [M;, M2, M5] and []7 denotes transposition.
The derivation from (3) to (6) is based on the definition of
homomorphic encryption in (1). From (7) to (8), we replace the
local random coding vector A3 with AL'~2! for consistency
with the following derivation, where AZ™Y denotes the global
coding vector carried in a cell between Node = and Node y.
For O''721 AI'72! — A4, because Node n;; combines
the “onions” from the HECTor proxies for the first time.
Node ng; processes the incoming packets in the same way
as Node n11: When Node no; receives O 721 Node ng;
decrypts O''72! into Ey, (Ex, (ALY 72'MT)) as Node 12
shares the key ko with HECTor proxies. Similarly Node ng;
decrypts O'272! and O'72! into Ej,(Ey,(Ag272'MT))
and E, (B, (AL3>721MT)) respectively, where AL?721 and
A 23721 denote the global coding vectors used to the form the
corresponding cells respectively. Node no; will also generate

'In this paper, we use O;Hy to denote a layer-encrypted packet on the
link from Node x to Node y and p denotes the generation number in network
coding. In this subsection, we skip the subscript for simplicity as the packets
are from the same generation.

2The users of the same HECTor network share the same key with nodes in
each layer for the layer encryption after cascade construction.

a local random coding vector denoted as Aoy, and combine
decrypted packets with the random coding vector to form

0321731 35 follows:
Ep, (B, (AL721MT))
021_)31 Aay Eks(Ek4(A§2_)21MT))
By (Br, (Ag>721MT))
A11~>21
— BB (An | AR | M))
Ag3—>21
= B, (B, (AZ73M) (10)

where A21731 denotes the global coding vector used to form
0?'731 from M and A2'73! is a global coding vector
resulting from local random coding vectors generated by the
nodes in the previous stages.

Node n3; will process incoming “onions” in the same way
as Node no;. To save space, we skip the description of the
processing by Node n3;.

Node n41, as the last HECTor node in the path, receives
031%41 — Ek4 (Ang‘uMT), 032%41 — Ek4 (Ag2ﬂ41MT),
and 03374 = F; (A33741MT). Then Node n4; decrypts
them into A3 741 MT, A3274IMT, and A3 741 MT respec-
tively. Given the global coding vectors AZ'741, A32741
and A33741 sent with the packets and the decrypted packets
AS17AIMT, A3274IMT, and A3374IMT, Node n4; can
recover the messages M = [M;, My, M3 if the global coding
vectors are linearly independent. In general, to recover the
messages M, Node n4; needs at least gs linearly independent
cells, i.e., cells carrying at least gs linearly independent global
coding vectors, where gs is the generation size, i.e., the
number of cells sent in one generation from source nodes.

Node n4; will then try to decrypt each recovered message
with its own private key. If the decryption is successful, then
the decrypted message will be forwarded to the destination. In
this example, Node n4; will be able to decrypt message M,
which is encrypted with Node n4;’s public key and then the
decrypted message will be forwarded to its destination.

>

VI. THEORETICAL ANALYSIS

In this section, we theoretically analyze the decoding prob-
ability. As described in the previous section, an exit HECTor
node needs to receive at least gs linearly independent cells
of one generation to recover messages from HECTor proxies.
The decoding probability is defined as the probability that
messages can be recovered by an exit HECTor node. In other
words, the decoding probability is the probability of receiving
at least gs linearly independent cells by exit nodes. Without
loss of generality, we assume the coefficients of random coding
vectors generated by each HECTor node are randomly chosen
from GF(2) field in this paper.

Theorem 1: With [nodes in each stage of the cascade
topology, if the generation size is ¢gs and random coding
vectors are generated from GF(2) field, the decoding prob-

ability at an exit HECTor node can be derived as follows:
1 gs—1 P
-2,

pdzzl

=0
Due to the space limit, we leave the proof in [24].

VII. PERFORMANCE EVALUATION

We conducted extensive experiments to validate HECTor
in ns-2 [25]. We vary the number of stages in the cascade
topology shown in Figure 4 and the number of nodes in each
stage for different experiments. All the links in the network
are of 10Mbps and the delay on each link is 10 ms unless
otherwise specified. All the links between the intermediate
HECTor nodes have on/off cross traffic with burst rate SMbps,
average burst length 500ms, and average idle time 500ms.

A. Performance Metrics

We evaluate anonymity and usability of HECTor networks

with the size of anonymity set based on the information
theoretical metrics proposed in [26], [27] and throughput
respectively. The intermediate performance metric used in
performance evaluation is decoding probability, measuring
how easy to send a message through HECTor networks.
Size of Anonymity Set: One of the major design goals
of HECTor is to protect communication anonymity, i.e., to
counter traffic analysis attacks that are proven effective in
compromising anonymity networks. Since HECTor cells are
of the same size, we focus on HECTor’s resistance to timing-
based traffic analysis attacks. As most effective timing-based
traffic analysis attacks [2]-[4] are correlating traffic flows to
compromise anonymous communications, we evaluate HEC-
Tor’s resistance to traffic analysis attacks by correlating traffic
from Alice and traffic received by HECTor exit nodes. The
correlation can be based on cross-correlation [2], [3] or mutual
information [4].

For correlation, we first generate the cell count vector
X = [x1,29, -+ ,x,] from Alice’s traffic, where x; is the
number of cells in the jth sample interval and v is the length
of the vector. We set the length of the sample interval to be
10 ms as in [4] and similar results are obtained with different
length of sample intervals. In the same way, we generate the
cell counter vector according to the traffic received by an
exitnode Y = [y1,y2, - , Yo)- The cross correlation between
Alice’s traffic and traffic received by a HECTor exit node can

3 (@) (v -T)

be calculated as follows: p = where

= (@2 X w7
7 and y denote the sample means of X and Y respectively.
The mutual information between Alice’s traffic and traffic
received by the HECTor exit node can be calculated as follows:
I(X;Y) = X 3 pla,y)log(F54) where p(x) and p(y)
s . p(x)p(y)
are marginal probability distribution functions of X and Y

respectively and p(z,y) is the joint probability distribution
function of X and Y. If the correlation, calculated as cross-
correlation or mutual information, between Alice’s traffic and
the traffic received by the actual exit HECTor node is higher
than any other possible exit HECTor nodes, then the attack
is successful. Without loss of generality, we assume the first
actual HECTor exit node is the actual exit node for Alice’s
traffic and we denote the probability of a successful attack as
p1. The probability p; is calculated as the ratio between the
number of successful attacks and the total number of attacks.

=3

et GRS S A T

===
K.\K'

2
g

m
!
[
1

/

1#1=10, Theorefical
1+I=10, Experimental
1=15, Theorefical
i7l=15, Experimental
1+1=20, Theorefical
=20, Experimental

=
o
8

~

=

-
=3
w©
13

.
Decoding Probability
~
~

,' “Theoretical
, I=Experimental
15 20 25
Number of Nodes per Stage (1)

Decoding Probability
=
= <

=
©
=

=
~
=3

6 7 8 9 10
Generafion Size (gs)

o

(b) Number of Nodes per Stage
(g5=5)
Fig. 5: Decoding Probability

The probability of an unsuccessful attack that detects the ¢th
HECTor exit node as the actual exit node is denoted as p;

(a) Generation Size

l
where i # 1. Obviously > p; = 1 where [denotes the number

i=1
of nodes in each stage. The size of anonymity set, denoted
as A, is defined based on the information theoretical metrics

1
proposed in [26], [27] as follows: A = — > p;log,(p;:)-

Decoding Probability: Since the coding Vé:ztlors are randomly
generated, it is possible that the cells received by a HECTor
exit node are linear dependent and then the original message
may not be recovered. The decoding probability measures
the possibility of recovering original messages at an exit
HECTor node. We compare the experiment results on decoding
probability with the theoretical results derived in the previous
section.

B. Decoding Probability

In this set of experiments, we focus on decoding probability
with different HECTor configurations.

Figure 5 shows decoding probability with the different
generation sizes and different numbers of nodes in each stage
of the cascade topology. In this set of experiments, there are
four stages in the cascade topology.

In Figure 5a, we can observe that when the generation
size increases, the decoding probability decreases. The ob-
servation is consistent with intuition: When the generation
size increases, more linearly independent cells are needed
for successful decoding and in turn the decoding probability
decreases. We can also observe that the decoding probability
is close to 100%.

In the next set of experiments, we fix the generation size to
five. In Figure 5b, we can observe that the decoding probability
increases when [, the number of the nodes per stage, increases.
It is also consistent with intuition: When [increases, an exit
HECTor node will receive more cells. So the HECTor node
will more likely have enough linearly independent cells for
successful decoding.

In both Figure 5a and 5b, we can observe that the curves
from experiment results are very close to the curves from our
theoretical results.

C. Resistance to Traffic Analysis Attacks

Figure 6 shows the effect of the number of nodes per stage
on resistance to traffic analysis attacks. Figure 6a and Figure
6b shows the effect when traffic correlation is through mutual

4.8 4.8
346 3 46
3 K
S S44
042 242
£4 €4
§ 5
538 £38
5 36 *s=4, 9s=5 CE) 5 *s=4, 9s=5
[As=12, gs=5 [=12, ¢s=5
034 4 5=20, gs=5 034 P5=20, gs=5
3 ¥ Random Guess| 3 h #Random Guess|
0 25 10 25

15 2 15 20
Number of Nodes Per Stage Number of Nodes per Stage

(a) Mutual Information (b) Cross Correlation

Fig. 6: Effect of the Number of Nodes per Stage on Resistance
to Traffic Analysis Attacks

information and cross correlation respectively. In both Figure
6a and Figure 6b, the random guess curves are generated by
assuming the HECTor exit nodes to have the same probability
to be the actual exit node of Alice’s traffic. In other words,
pi = % where p; denotes the probability that the sth exit node
is determined as the exit node for Alice’s traffic and [denotes
the number of nodes per layer. Then the size of anonymity

l
- ;pi logy(pi) =

set can be derived as follows: A =

l

- Z %IOgQ(%) = log(1).

lﬁr%)m both figures, we can observe that the curves of
experiments results are very close to the corresponding curves
of random guess. It indicates that HECTor is highly effective
in anonymity protection. We also observe that the size of
anonymity set increases with the number of nodes per stage.
It is consistent to our intuition as the number of the candidate
exit nodes increases with the size of the anonymity set.

VIII. CONCLUSION

In this paper we propose Homomorphic EnCrypTion en-
abled Onion Routing (HECTor) for anonymous communica-
tion. HECTor mixes traffic at the bit level. Homomorphic
encryption enables layered encryption in HECTor. We theo-
retically analyze the performance of HECTor. Our extensive
experiments on HECTor show that HECTor can effectively
mitigate existing traffic analysis attacks with high throughput.

REFERENCES

[11 R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proc. of the 13th USENIX Security Sym-
posium, San Diego, CA, August 2004, pp. 303-320.

[2] S.J. Murdoch and G. Danezis, “Low-cost traffic analysis of tor,” in SP
'05: Proceedings of the 2005 IEEE Symposium on Security and Privacy.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 183-195.

[3] L. Molgedey and H. G. Schuster, “Separation of a mixture of indepen-
dent signals using time delayed correlations,” Physical Review Letters,
vol. 72, no. 23, pp. 3634-3637, June 1994.

[4] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao, “Correlation-based
traffic analysis attacks on anonymity networks,” IEEE Trans. Parallel
Distrib. Syst., vol. 21, no. 7, pp. 954-967, Jul. 2010.

[5] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transac-

tions,” ACM Trans. Inf. Syst. Secur., vol. 1, no. 1, pp. 66-92, 1998.

C. Diaz and A. Serjantov, “Generalising mixes,” in Privacy Enhancing

Technologies, R. Dingledine, Ed. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2003, pp. 18-31.

[6

—

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

D. Goldschlag, M. Reed, and P. Syverson, “Onion routing for
anonymous and private internet connections,” Communications of the
ACM (USA), vol. 42, no. 2, pp. 39-41, 1999. [Online]. Available:
citeseer.ist.psu.edu/goldschlag99onion.html

P. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proceedings
of the Annual Allerton Conference on Communication Control and
Computing, vol. 41, no. 1, 2003, pp. 40—49.

D. L. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Commun. ACM, vol. 24, no. 2, pp. 84-90, 1981.

P. Syverson, G. Tsudik, M. Reed, and C. Landwehr, “Towards an
analysis of onion routing security,” in Proceedings of Designing Privacy
Enhancing Technologies: Workshop on Design Issues in Anonymity and
Unobservability, Springer-Verlag, LNCS 2009. Springer-Verlag, LNCS
2009, July 2000, p. 96-114.

G. Danezis, “The traffic analysis of continuous-time mixes,” in Proc.
of Privacy Enhancing Technologies Workshop (PET 2004), ser. LNCS,
vol. 3424, Toronto, Canada, May 2004, pp. 35-50.

Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao, “On flow correla-
tion attacks and countermeasures in mix networks,” in Proceedings of
Privacy Enhancing Technologies workshop (PET 2004), ser. LNCS, vol.
3424, May 2004.

S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of Tor,” in
Proceedings of the 2005 IEEE Symposium on Security and Privacy.
IEEE CS, May 2005.

Y. Zhu and R. Bettati, “Unmixing mix traffic,” in Proceedings of Privacy
Enhancing Technologies workshop (PET 2005), Springer Berlin / Hei-
delberg. Springer Berlin / Heidelberg, May 2005, p. 110-127. [Online].
Available: http://www.springerlink.com/content/15110366246k5003/

O. Trushina, “On the anonymity of physical-layer network coding
against wiretapping,” in 2016 XV International Symposium Problems
of Redundancy in Information and Control Systems (REDUNDANCY),
Sept 2016, pp. 158-161.

R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks
and privacy homomorphisms,” Foundations of Secure Computation,
Academia Press, pp. 169-179, 1978.

C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford University, 2009, crypto.stanford.edu/craig.

M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in Proceedings of the
29th Annual International Conference on Theory and Applications of
Cryptographic Techniques, ser. EUROCRYPT’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 24-43.

R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information
flow,” Information Theory, IEEE Transactions on, vol. 46, no. 4, pp.
1204 —1216, jul 2000.

T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The benefits
of coding over routing in a randomized setting,” in Information Theory,
2003. Proceedings. IEEE International Symposium on, june-4 july 2003,
p. 442.

Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan, and
L. Qiu, “Statistical identification of encrypted web browsing traffic,” in
Proc. of the 2002 IEEE Symposium on Security and Privacy. Oakland,
CA, USA: IEEE Computer Society, 2002, pp. 19-30.

C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Masson,
“Spot me if you can: Uncovering spoken phrases in encrypted voip
conversations,” in SP ’08: Proceedings of the 2008 IEEE Symposium on
Security and Privacy. Washington, DC, USA: IEEE Computer Society,
2008, pp. 35-49.

O. Berthold, H. Federrath, and S. Kopsell, Web MIXes: A System for
Anonymous and Unobservable Internet Access. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 115-129.

S. Gumudavally, “A coding enabled anonymity network,” Master’s
thesis, Cleveland State University.

S. McCanne and S. Floyd, “‘The network simulator - ns-2’,” Available:
http://www.isi.edu/nsnam/ns/.

A. Serjantov and G. Danezis, “Towards an information theoretic metric
for anonymity,” in Proc. of Privacy Enhancing Technologies Workshop
(PET 2002), R. Dingledine and P. Syverson, Eds. San Francisco, CA:
Springer-Verlag, LNCS 2482, April 2002, pp. 41-53.

C. Diaz, S. Seys, J. Claessens, and B. Preneel, “Towards measuring
anonymity,” in Proc. of Privacy Enhancing Technologies Workshop (PET
2002), San Francisco, CA, April 2002, pp. 54-68.

