
HECTor: Homomorphic Encryption Enabled Onion

Routing

1st Saikrishna Gumudavally

2nd Ye Zhu
Department of Electrical

Engineering and Computer Science

Cleveland State University

Cleveland, USA

s.gumudavally@alumni.csuohio.edu

y.zhu61@csuohio.edu

3rd Huirong Fu
Department of Computer

Science and Engineering

Oakland University

Rochester, USA

fu@oakland.edu

4th Yong Guan
Department of Electrical

and Computer Engineering

Iowa State University

Ames, USA

yguan@iastate.edu

Abstract—Despite increasing popularity of anonymous com-
munications, current anonymity networks are still vulnerable to
traffic analysis attacks. We propose Homomorphic EnCrypTion
enabled Onion Routing (HECTor) to defeat existing traffic analy-
sis attacks. Instead of mixing traffic at the packet level as current
anonymity networks, HECTor mixes traffic at the bit level with
network coding techniques. In HECTor, homomorphic encryption
enables onion-like layered encryption which has been proven
successful in existing anonymity networks. We theoretically
analyze the performance of HECTor. Our extensive experiments
on HECTor show that HECTor can effectively mitigate existing
traffic analysis attacks with high throughput.

I. INTRODUCTION

Anonymity networks are becoming increasingly popular. It

has been reported that Tor [1], the second generation onion

routing, has about 1.2 million users already. Despite popularity

of anonymity networks, existing anonymity networks are still

vulnerable to traffic analysis attacks. Since packets in existing

anonymity networks such as Tor are of the same size, most

of effective traffic analysis attacks [2]–[4] are based on packet

timing. Our goal is to design an architecture for anonymous

communications that can defeat existing traffic analysis at-

tacks.

Our design follows the same philosophy behind the design

of current anonymity networks, which is to mix traffic or hide

in crowds [5]. Current anonymity networks mix traffic at the

packet level with techniques such as batching [6], pooling [6],

and rerouting [1], [7]. We propose to mix traffic at the bit

level and the mixing at the bit level renders current packet-

based traffic analysis attacks largely ineffective. Moreover,

because of the mixing, a packet may contain bits from different

sources. So the anonymity definition for the new anonymous

communication architecture needs to redefined.

In this paper we propose an anonymous communication

architecture called Homomorphic EnCrypTion enabled Onion

Routing (HECTor) to defeat traffic analysis attacks. HECTor

mixes packets at the bit level with network coding, more

specifically random linear coding [8] for the mixing in this

paper. HECTor also adopts onion-based layered encryption [1],

[7] which has been proven successful in anonymity protection:

One anonymity network node in a communication path can

only process the outer layer of a packet and the inner layers

are protected by the layered encryption. However bit-level

mixing is not compatible with the layered encryption because

bit-level mixing at the node in the path needs to re-mix packet

received by the node. Homomorphic encryption is used to

make bit-level mixing compatible with layered encryption as

homomorphic encryption enables computation over encrypted

data.

The rest of the paper is organized as follows: Section II

reviews related work. We describe design goals and threat

models in Section III. Section IV introduces essential tech-

niques used in HECTor. The design of HECTor is presented

the Section V. We theoretically analyze HECTor in Section

VI. The performance of HECTor is evaluated in Section VII.

We conclude the paper in Section VIII.

II. RELATED WORKS

Since Chaum’s pioneer idea [9], researchers have applied

the idea to different applications such as message-based

email and flow-based low-latency communication, and they

have developed new defense techniques as more attacks have

been proposed. In low-latency anonymous communication

networks, users connect to a pool of mixes, which provide

anonymous communication, and users select a forwarding path

through this core network to the receiver. Onion routing [7]and

TOR [1] belong to this category.

In the mean time, the researches on traffic analysis attacks,

which are designed to compromise communication privacy,

are being conducted for various applications and services

[10]–[14]. Danezis [11] proposes an attack on the Continuous

Mix that can delay packets according to some probability

distribution. Since the packet delays are independent, the

departure distribution of the packets of a flow can be accurately

described (if one ignores queuing) by convoluting the packet-

arrival and the delay distribution. This can be used as a

basis for measuring similarities among flows and in turn to

compromise communication privacy. In [13] Murdoch and

Danezis stage an active attack to trace back connections from

a server to the victim client by modulating the traffic to the

victim at the server and by remotely “sensing” the modulation

978-1-5386-8088-9/19/$31.00 ©2019 IEEE

by probing its interference on cross traffic that is generated by

one or more corrupt Tor nodes. In [4], [12], we propose flow

correlation attacks to detect the communication path taken by

a traffic flow. The adversary detects the communication path

with correlation-based approaches.

The anonymity of physical-layer network coding is investi-

gated in [15]. The author in [15] focuses on message content

dependency between an input link and an output link of a

message relay.

III. DESIGN GOAL AND THREAT MODELS

In this paper, we propose HECTor, a novel architecture

for anonymous communications. The major design goal is

to defeat traffic analysis attacks proven effective to existing

anonymity networks. Existing traffic analysis attacks can be

largely classified into two categories: timing based traffic anal-

ysis attacks and packet size based traffic analysis attacks. In

this paper, we focus on mitigating timing-based traffic analysis

attacks because packets in existing anonymity networks such

as Tor [1] are of the same size and the packet size based traffic

analysis attacks are largely ineffective in compromising com-

munication anonymity in these anonymity networks. However

timing-based traffic analysis attacks are proven effective in

compromising anonymity in existing anonymity networks.

We assume that an adversary would like to compromise

anonymity of Alice’s communications. The capabilities of the

adversary are assumed as follows: (1) For confidentiality, Alice

encrypts her packets. So the adversary has no access to packet

content. Since packets in the proposed anonymity network are

of the same size as in Tor, the information available to the

adversary to launch traffic analysis attacks is packet timing.

(2) The adversary can collect traffic on any link in the proposed

anonymity network for anonymity attacks. (3) We also assume

that the adversary can collect traffic sent by Alice. (4) The

adversary can correlate Alice’s traffic to traffic collected on

links in the proposed anonymity network to detect a path used

by Alice’s traffic.

Same as existing anonymity networks, the proposed

anonymity network is not designed to defeat end-to-end traffic

analysis attacks because these attacks can compromise com-

munication anonymity by correlating traffic flows entering an

anonymity network to traffic flows exiting from the anonymity

network. One way to defeat the end-to-end traffic analysis

attacks is to run anonymous communication services on the

source node and/or the destination node of a traffic flow so

that the adversary will not have access to traffic entering or

leaving the anonymity network.

IV. PRELIMINARIES

Before presenting the details of HECTor, we would like to

briefly introduce the homomorphic encryption and the network

coding, the two essential techniques used in HECTor.

A. Homomorphic Encryption

Although the concept of privacy homomorphism [16] was

first generated in 1978, fully homomorphic encryption is not

possible until the recent breakthrough [17]. In this paper, we

1
P

2
P

3
P

3132121111
’ PaPaPaP ++=

3232221212
’ PaPaPaP ++=

3332321313
’ PaPaPaP ++=

Fig. 1: Random Linear Network Coding

use the homomorphic encryption scheme proposed by Dijk et

al. [18] due to its simplicity and efficiency.
Homomorphic encryption enables computation over en-

crypted data. The main idea of homomorphic encryption is
as follows: Suppose encrypting a plaintext message Mi with
the key k results in the ciphertext Ci, i.e., Ci = Ek(Mi). An
encryption scheme is homomorphic if, for any function f ,

Ek(f(M1,M2, · · · ,Mn)) = f(Ek(M1), Ek(M2), · · · , Ek(Mn))

= f(C1, C2, · · · , Cn) (1)

where n denotes the number of plaintext inputs. As shown in

Equation 1, homomorphic encryption schemes allow a third

party to compute the function f on the encrypted data, i.e.,

the ciphertext Ci, without knowing the key k. And the output

of the function f(M1,M2, · · · ,Mn) can be recovered by

decrypting the ciphertext f(C1, C2, · · · , Cn), the computation

results obtained by the third party. In HECTor, homomorphic

encryption enables relay nodes to mix encrypted packets at

the bit level without knowing the keys.

B. Network Coding

Network coding was proposed primarily for improving the

network throughput [19]. In the traditional networks, a node

relays packets by simply forwarding the received packets. In

network coding, a node mixes multiple received packets with

coding and then forwards the combined packets. A coding

vector will be used in mixing to determine how the received

packets are combined. The destination nodes recover the

original packets from the senders by decoding the combined

packets.

In this paper, we use random liner network coding [20].

Random linear coding allows a node to generate random

coding vectors locally and then mix received packets with

the random coding vectors. As shown in Figure 1, the node

generates a random vector [a11, a12, a13] from a Galois field

and then combines the incoming packets P1, P2, and P3

according to the random vector to form the combined packet

P ′

1 = a11P1 + a12P2 + a13P3. In the matrix notation, the

combined packets can be written as follows:

P
′ = AP , (2)

where A =





a11 a12 a13
a21 a22 a23
a31 a32 a33



, P1 =





P1

P2

P3



, and

P
′

1 =





P ′

1

P ′

2

P ′

3



 . The combined packets P ′

1, P ′

2, and P ′

3 will

be sent out with their coding vectors in the practical network

coding [8]. The coding process continues on the next relay

node and the coding vectors sent along with the combined

packets are updated to include the locally-generated random

Cir- ID CMD DATA

512 bytes

2 1byte

Fig. 2: Control Cell Format

coding vectors. After receiving the combined packets along

with the coding vectors, the destination nodes can recover

the original packets by solving a linear system similar as in

Equation 2 where P
′ contains the received packets and A

contains the overall coding vectors updated by each relay node

with locally-generated coding vectors.

V. DESIGN

A. Overview

The main idea of the HECTor is to mix packets at the

bit level instead of the packet level. The mixing at the bit

level renders the traffic pattern at the packet level largely

invisible and thus HECTor is immune to the existing packet-

level traffic analysis attacks that are proven detrimental to

current anonymity networks.

Network coding enables the mixing at the bit/symbol level.

In HECTor, the random linear network coding [19] is used

because it allows a node to generate random vectors locally.

In comparison with the deterministic network coding which

requires each node to use a pre-determined coding vector

or a pre-determined encoding function, the random linear

network coding eliminates the need of coordination among

nodes. So the random linear network coding is more suitable

for anonymous communications and it is used in HECTor.

As explained in Section III, we adopt the concept of onion

routing [1], more specifically the layered encryption for its

proven success in both previous anonymity researches and

practice. But the layered encryption is not compatible with

the bit-level mixing by default because: (a) The intermediate

relay nodes can only decrypt one layer according to the onion

routing [1], i.e., peel off the outer layer of the “onion”.

(b) Mixing layer-encrypted packets requires access to the

plaintext, i.e., access to the core of the “onion” messages if

traditional ciphers are in use. The incompatibility problem can

be solved with the homomorphic encryption which enables a

relay node to mix layer-encrypted packets without requiring

the access to the core of an “onion”, i.e., the plaintext message.

B. Cells

In HECTor, messages are sent in fixed-size cells to prevent

traffic analysis attacks based on the packet size [21], [22]. The

messages are TLS encrypted. In this paper, we set the cell size

as 512 bytes. There are two types of cells: control cells and

relay cells.

C. Control Cells

When a node receives a control cell it will act according

to the command in the cell. The cell format is as show in the

Figure 2. The Circuit identifier (Cir-ID) is a local value to

identify a circuit between two neighboring nodes. The CMD

field indicates the command carried in the cell. The value

2 1 1 2 6 2 3-20 Bytes

Cir- ID RELAY CMD LEN CRC GSQ VEC DATA

512 Bytes

Fig. 3: Relay Cell Format

11
n

12
n

32
n

13
n

31
n

21
n

22
n

23
n

33
n

41
n

42
n

43
n

n
01

Fig. 4: Cascade Topology (Cell relay on solid links are

described in Section V-F.)

of the CMD field indicates whether it is a control cell or a

relay cell. The commands in a control cell can be create,

created, combine, combined ,and destroy. Most of the control

commands are used for cascade construction as described

below.

D. Relay Cells

Relay cells are used to transfer data between senders and

receivers. As shown in Figure 3, relay cells have additional

header fields when compared to control cells. First relay cells

are differentiated from control cells by the third byte. The

following CMD byte after the relay byte is used to indicate

relay commands designed for circuit construction. The next

byte is used to indicate the length of payload data. GSQ

denotes the generation sequence number to which the cell

belongs. VEC denotes the coding vector used to form the relay

cell. Both GSQ and VEC are used to random linear network

coding for combining cells in the same generation.

E. Cascade Construction

A cascade topology as in AN.ON/JonDo [23] will be formed

after cascade construction. A sample cascade topogy is shown

in Figure 4. The number of nodes in the same stage of the

cascade topology should be at least no less than the generation

size gs, defined as the number of cells in the same generation

sent from source nodes so that the exit nodes can have enough

linearly independent cells to recover the original messages.

The other goal of cascade construction is to establish keys

between source nodes and HECTor nodes. The HECTor proxy

running on Alice’s computer, denoted as Node n01 in Figure

4, will share the key ki with the nodes in the ith stage of the

cascade. Due to the space limit, we leave the procedure of

cascade construction to [24].

F. Relay Operation

We use the example network in Figure 4 to describe relay

operation in HECTor: The HECTor proxy running on Alice’s

computer, denoted as Node n01, first encrypts Alice’s original

message into message M1 with the public key of an exit node

(assuming Node n41 in this example without loss of general-

ity), and then converts Alice’s message M1 into the layer-

encrypted “onion” O01→11 = Ek1
(Ek2

(Ek3
(Ek4

(M1))))
where Ox→y denotes a layer-encrypted packet on the link from

Node x to Node y1, E denotes the homomorphic encryption,

and ki denotes the key shared between the HECTor proxy

running on Alice’s computer and the nodes in the ith stage of

the cascade topology. Without loss of generality, we assume

O0j→11 = Ek1
(Ek2

(Ek3
(Ek4

(Mj)))) for j = 1, 2, 3 where

Mj denotes the message from the jth user, i.e., the jth HECTor

proxy2. HECTor proxies will also send the same packets to

Node n12 and Node n13. In other words, O0j→11 = O0j→12 =
O0j→13, for j = 1, 2, 3. Please note that the links from

HECTor proxies are TLS encrypted as well.

Alice’s cell O01→11 enters the HECTor network through

Node n11. With the key k1 shared between HECTor proxies

and nodes in the first layer, Node n11 is able to decrypt the

“Onion” O01→11 as follows:

Dk1
(O01→11) = Dk1

(Ek1
(Ek2

(Ek3
(Ek4

(M1))))) =
Ek2

(Ek3
(Ek4

(M1)))
where Dk1

denotes decryption with the key k1. Similarly

O02→11 and O03→11 are decrypted into Ek2
(Ek3

(Ek4
(M2)))

and Ek2
(Ek3

(Ek4
(M3))) respectively. After the decryption,

Node n11 generates a local random coding vector

A11 = [a11, a12, a13] and combines the decrypted packets

into one packet with the random coding vector as follows:

O11→21

= a11Ek2
(Ek3

(Ek4
(M1))) + a12Ek2

(Ek3
(Ek4

(M2)))

+a13Ek2
(Ek3

(Ek4
(M3))) (3)

= Ek2
(a11Ek3

(Ek4
(M1)) + a12Ek3

(Ek4
(M2))

+a13Ek3
(Ek4

(M3))) (4)

= Ek2
(Ek3

(a11EK4
(M1) + a12EK4

(M2)

+a13EK4
(M3))) (5)

= Ek2
(Ek3

(Ek4
(a11M1 + a12M2 + a13M3))) (6)

= Ek2
(Ek3

(Ek4
(A11M

ᵀ))) (7)

= Ek2
(Ek3

(Ek4
(A11→21

g M
ᵀ))) (8)

where M = [M1,M2,M3] and []ᵀ denotes transposition.

The derivation from (3) to (6) is based on the definition of

homomorphic encryption in (1). From (7) to (8), we replace the

local random coding vector A11 with A
11→21
g for consistency

with the following derivation, where A
x→y
g denotes the global

coding vector carried in a cell between Node x and Node y.

For O11→21, A11→21
g = A11 because Node n11 combines

the “onions” from the HECTor proxies for the first time.

Node n21 processes the incoming packets in the same way

as Node n11: When Node n21 receives O11→21, Node n21

decrypts O11→21 into Ek3
(Ek4

(A11→21
g M

ᵀ)) as Node n21

shares the key k2 with HECTor proxies. Similarly Node n21

decrypts O12→21 and O13→21 into Ek3
(Ek4

(A12→21
g M

ᵀ))
and Ek3

(Ek4
(A13→21

g M
ᵀ)) respectively, where A

12→21
g and

A
13→21
g denote the global coding vectors used to the form the

corresponding cells respectively. Node n21 will also generate

1In this paper, we use O
x→y
p to denote a layer-encrypted packet on the

link from Node x to Node y and p denotes the generation number in network
coding. In this subsection, we skip the subscript for simplicity as the packets
are from the same generation.

2The users of the same HECTor network share the same key with nodes in
each layer for the layer encryption after cascade construction.

a local random coding vector denoted as A21, and combine

decrypted packets with the random coding vector to form

O21→31 as follows:

O21→31 = A21





Ek3
(Ek4

(A11→21
g M

ᵀ))
Ek3

(Ek4
(A12→21

g M
ᵀ))

Ek3
(Ek4

(A13→21
g M

ᵀ))





= Ek3
(Ek4

(A21





A
11→21
g

A
12→21
g

A
13→21
g



M
ᵀ))) (9)

= Ek3
(Ek4

(A21→31
g M

ᵀ) (10)

where A
21→31
g denotes the global coding vector used to form

O21→31 from M and A
21→31
g is a global coding vector

resulting from local random coding vectors generated by the

nodes in the previous stages.

Node n31 will process incoming “onions” in the same way

as Node n21. To save space, we skip the description of the

processing by Node n31.

Node n41, as the last HECTor node in the path, receives

O31→41 = Ek4
(A31→41

g M
ᵀ), O32→41 = Ek4

(A32→41
g M

ᵀ),
and O33→41 = Ek4

(A33→41
g M

ᵀ). Then Node n41 decrypts

them into A
31→41
g M

ᵀ, A32→41
g M

ᵀ, and A
33→41
g M

ᵀ respec-

tively. Given the global coding vectors A
31→41
g , A

32→41
g ,

and A
33→41
g sent with the packets and the decrypted packets

A
31→41
g M

ᵀ, A32→41
g M

ᵀ, and A
33→41
g M

ᵀ, Node n41 can

recover the messages M = [M1,M2,M3] if the global coding

vectors are linearly independent. In general, to recover the

messages M, Node n41 needs at least gs linearly independent

cells, i.e., cells carrying at least gs linearly independent global

coding vectors, where gs is the generation size, i.e., the

number of cells sent in one generation from source nodes.

Node n41 will then try to decrypt each recovered message

with its own private key. If the decryption is successful, then

the decrypted message will be forwarded to the destination. In

this example, Node n41 will be able to decrypt message M1,

which is encrypted with Node n41’s public key and then the

decrypted message will be forwarded to its destination.

VI. THEORETICAL ANALYSIS

In this section, we theoretically analyze the decoding prob-

ability. As described in the previous section, an exit HECTor

node needs to receive at least gs linearly independent cells

of one generation to recover messages from HECTor proxies.

The decoding probability is defined as the probability that

messages can be recovered by an exit HECTor node. In other

words, the decoding probability is the probability of receiving

at least gs linearly independent cells by exit nodes. Without

loss of generality, we assume the coefficients of random coding

vectors generated by each HECTor node are randomly chosen

from GF(2) field in this paper.

Theorem 1: With l nodes in each stage of the cascade

topology, if the generation size is gs and random coding

vectors are generated from GF(2) field, the decoding prob-

ability at an exit HECTor node can be derived as follows:

pd =
(l

gs)
2l−gs

gs−1
∏

i=0

(1− 2i

2gs).

Due to the space limit, we leave the proof in [24].

VII. PERFORMANCE EVALUATION

We conducted extensive experiments to validate HECTor

in ns-2 [25]. We vary the number of stages in the cascade

topology shown in Figure 4 and the number of nodes in each

stage for different experiments. All the links in the network

are of 10Mbps and the delay on each link is 10 ms unless

otherwise specified. All the links between the intermediate

HECTor nodes have on/off cross traffic with burst rate 5Mbps,

average burst length 500ms, and average idle time 500ms.

A. Performance Metrics

We evaluate anonymity and usability of HECTor networks

with the size of anonymity set based on the information

theoretical metrics proposed in [26], [27] and throughput

respectively. The intermediate performance metric used in

performance evaluation is decoding probability, measuring

how easy to send a message through HECTor networks.

Size of Anonymity Set: One of the major design goals

of HECTor is to protect communication anonymity, i.e., to

counter traffic analysis attacks that are proven effective in

compromising anonymity networks. Since HECTor cells are

of the same size, we focus on HECTor’s resistance to timing-

based traffic analysis attacks. As most effective timing-based

traffic analysis attacks [2]–[4] are correlating traffic flows to

compromise anonymous communications, we evaluate HEC-

Tor’s resistance to traffic analysis attacks by correlating traffic

from Alice and traffic received by HECTor exit nodes. The

correlation can be based on cross-correlation [2], [3] or mutual

information [4].

For correlation, we first generate the cell count vector

X = [x1, x2, · · · , xv] from Alice’s traffic, where xj is the

number of cells in the jth sample interval and v is the length

of the vector. We set the length of the sample interval to be

10 ms as in [4] and similar results are obtained with different

length of sample intervals. In the same way, we generate the

cell counter vector according to the traffic received by an

exit node Y = [y1, y2, · · · , yv]. The cross correlation between

Alice’s traffic and traffic received by a HECTor exit node can

be calculated as follows: ρ =

v
∑

i=1

(xi−x)(yi−y)

√

v
∑

i=1

(xi−x)2
v
∑

i=1

(yi−y)2
where

x and y denote the sample means of X and Y respectively.

The mutual information between Alice’s traffic and traffic

received by the HECTor exit node can be calculated as follows:

I(X ;Y) =
∑

y∈Y

∑

x∈X

p(x, y) log(p(x,y)
p(x)p(y)) where p(x) and p(y)

are marginal probability distribution functions of X and Y

respectively and p(x, y) is the joint probability distribution

function of X and Y . If the correlation, calculated as cross-

correlation or mutual information, between Alice’s traffic and

the traffic received by the actual exit HECTor node is higher

than any other possible exit HECTor nodes, then the attack

is successful. Without loss of generality, we assume the first

actual HECTor exit node is the actual exit node for Alice’s

traffic and we denote the probability of a successful attack as

p1. The probability p1 is calculated as the ratio between the

number of successful attacks and the total number of attacks.

5 6 7 8 9 10

Generation Size (gs)

0.2

0.4

0.6

0.8

1.0

D
e
c
o
d
in

g

P

r
o
b
a
b
il
it
y

l=10, Theoretical

l=10, Experimental

l=15, Theoretical

l=15, Experimental

l=20, Theoretical

l=20, Experimental

(a) Generation Size

10 15 20 25

Number of Nodes per Stage (l)

0.97

0.98

0.99

1.00

D
e
c
o
d
in

g
 P

r
o
b
a
b
il
it
y

Theoretical

Experimental

(b) Number of Nodes per Stage
(gs=5)

Fig. 5: Decoding Probability

The probability of an unsuccessful attack that detects the ith

HECTor exit node as the actual exit node is denoted as pi

where i 6= 1. Obviously
l
∑

i=1

pi = 1 where l denotes the number

of nodes in each stage. The size of anonymity set, denoted

as A, is defined based on the information theoretical metrics

proposed in [26], [27] as follows: A = −
l
∑

i=1

pi log2(pi).

Decoding Probability: Since the coding vectors are randomly

generated, it is possible that the cells received by a HECTor

exit node are linear dependent and then the original message

may not be recovered. The decoding probability measures

the possibility of recovering original messages at an exit

HECTor node. We compare the experiment results on decoding

probability with the theoretical results derived in the previous

section.

B. Decoding Probability

In this set of experiments, we focus on decoding probability

with different HECTor configurations.

Figure 5 shows decoding probability with the different

generation sizes and different numbers of nodes in each stage

of the cascade topology. In this set of experiments, there are

four stages in the cascade topology.

In Figure 5a, we can observe that when the generation

size increases, the decoding probability decreases. The ob-

servation is consistent with intuition: When the generation

size increases, more linearly independent cells are needed

for successful decoding and in turn the decoding probability

decreases. We can also observe that the decoding probability

is close to 100%.

In the next set of experiments, we fix the generation size to

five. In Figure 5b, we can observe that the decoding probability

increases when l, the number of the nodes per stage, increases.

It is also consistent with intuition: When l increases, an exit

HECTor node will receive more cells. So the HECTor node

will more likely have enough linearly independent cells for

successful decoding.

In both Figure 5a and 5b, we can observe that the curves

from experiment results are very close to the curves from our

theoretical results.

C. Resistance to Traffic Analysis Attacks

Figure 6 shows the effect of the number of nodes per stage

on resistance to traffic analysis attacks. Figure 6a and Figure

6b shows the effect when traffic correlation is through mutual

10 15 20 25
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Number of Nodes Per Stage

S
iz

e
 o

f
A

n
o

n
y
m

it
y
 S

e
t

(b
it
s
)

s=4, gs=5
s=12, gs=5
s=20, gs=5
Random Guess

(a) Mutual Information

10 15 20 25
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Number of Nodes per Stage

S
iz

e
 o

f
A

n
o

n
y
m

it
y
 S

e
t

(b
it
s
)

s=4, gs=5
s=12, gs=5
s=20, gs=5
Random Guess

(b) Cross Correlation

Fig. 6: Effect of the Number of Nodes per Stage on Resistance

to Traffic Analysis Attacks

information and cross correlation respectively. In both Figure

6a and Figure 6b, the random guess curves are generated by

assuming the HECTor exit nodes to have the same probability

to be the actual exit node of Alice’s traffic. In other words,

pi =
1
l

where pi denotes the probability that the ith exit node

is determined as the exit node for Alice’s traffic and l denotes

the number of nodes per layer. Then the size of anonymity

set can be derived as follows: A = −
l
∑

i=1

pi log2(pi) =

−
l
∑

i=1

1
l
log2(

1
l
) = log2(l).

From both figures, we can observe that the curves of

experiments results are very close to the corresponding curves

of random guess. It indicates that HECTor is highly effective

in anonymity protection. We also observe that the size of

anonymity set increases with the number of nodes per stage.

It is consistent to our intuition as the number of the candidate

exit nodes increases with the size of the anonymity set.

VIII. CONCLUSION

In this paper we propose Homomorphic EnCrypTion en-

abled Onion Routing (HECTor) for anonymous communica-

tion. HECTor mixes traffic at the bit level. Homomorphic

encryption enables layered encryption in HECTor. We theo-

retically analyze the performance of HECTor. Our extensive

experiments on HECTor show that HECTor can effectively

mitigate existing traffic analysis attacks with high throughput.

REFERENCES

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proc. of the 13th USENIX Security Sym-
posium, San Diego, CA, August 2004, pp. 303–320.

[2] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of tor,” in SP
’05: Proceedings of the 2005 IEEE Symposium on Security and Privacy.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 183–195.

[3] L. Molgedey and H. G. Schuster, “Separation of a mixture of indepen-
dent signals using time delayed correlations,” Physical Review Letters,
vol. 72, no. 23, pp. 3634–3637, June 1994.

[4] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao, “Correlation-based
traffic analysis attacks on anonymity networks,” IEEE Trans. Parallel
Distrib. Syst., vol. 21, no. 7, pp. 954–967, Jul. 2010.

[5] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transac-
tions,” ACM Trans. Inf. Syst. Secur., vol. 1, no. 1, pp. 66–92, 1998.

[6] C. Dı́az and A. Serjantov, “Generalising mixes,” in Privacy Enhancing
Technologies, R. Dingledine, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 18–31.

[7] D. Goldschlag, M. Reed, and P. Syverson, “Onion routing for
anonymous and private internet connections,” Communications of the
ACM (USA), vol. 42, no. 2, pp. 39–41, 1999. [Online]. Available:
citeseer.ist.psu.edu/goldschlag99onion.html

[8] P. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proceedings
of the Annual Allerton Conference on Communication Control and
Computing, vol. 41, no. 1, 2003, pp. 40–49.

[9] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Commun. ACM, vol. 24, no. 2, pp. 84–90, 1981.

[10] P. Syverson, G. Tsudik, M. Reed, and C. Landwehr, “Towards an
analysis of onion routing security,” in Proceedings of Designing Privacy
Enhancing Technologies: Workshop on Design Issues in Anonymity and
Unobservability, Springer-Verlag, LNCS 2009. Springer-Verlag, LNCS
2009, July 2000, p. 96–114.

[11] G. Danezis, “The traffic analysis of continuous-time mixes,” in Proc.
of Privacy Enhancing Technologies Workshop (PET 2004), ser. LNCS,
vol. 3424, Toronto, Canada, May 2004, pp. 35–50.

[12] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao, “On flow correla-
tion attacks and countermeasures in mix networks,” in Proceedings of
Privacy Enhancing Technologies workshop (PET 2004), ser. LNCS, vol.
3424, May 2004.

[13] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of Tor,” in
Proceedings of the 2005 IEEE Symposium on Security and Privacy.
IEEE CS, May 2005.

[14] Y. Zhu and R. Bettati, “Unmixing mix traffic,” in Proceedings of Privacy
Enhancing Technologies workshop (PET 2005), Springer Berlin / Hei-
delberg. Springer Berlin / Heidelberg, May 2005, p. 110–127. [Online].
Available: http://www.springerlink.com/content/l5110366246k5003/

[15] O. Trushina, “On the anonymity of physical-layer network coding
against wiretapping,” in 2016 XV International Symposium Problems
of Redundancy in Information and Control Systems (REDUNDANCY),
Sept 2016, pp. 158–161.

[16] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks
and privacy homomorphisms,” Foundations of Secure Computation,
Academia Press, pp. 169–179, 1978.

[17] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford University, 2009, crypto.stanford.edu/craig.

[18] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in Proceedings of the
29th Annual International Conference on Theory and Applications of
Cryptographic Techniques, ser. EUROCRYPT’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 24–43.

[19] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information
flow,” Information Theory, IEEE Transactions on, vol. 46, no. 4, pp.
1204 –1216, jul 2000.

[20] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The benefits
of coding over routing in a randomized setting,” in Information Theory,
2003. Proceedings. IEEE International Symposium on, june-4 july 2003,
p. 442.

[21] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan, and
L. Qiu, “Statistical identification of encrypted web browsing traffic,” in
Proc. of the 2002 IEEE Symposium on Security and Privacy. Oakland,
CA, USA: IEEE Computer Society, 2002, pp. 19–30.

[22] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Masson,
“Spot me if you can: Uncovering spoken phrases in encrypted voip
conversations,” in SP ’08: Proceedings of the 2008 IEEE Symposium on
Security and Privacy. Washington, DC, USA: IEEE Computer Society,
2008, pp. 35–49.

[23] O. Berthold, H. Federrath, and S. Köpsell, Web MIXes: A System for
Anonymous and Unobservable Internet Access. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 115–129.

[24] S. Gumudavally, “A coding enabled anonymity network,” Master’s
thesis, Cleveland State University.

[25] S. McCanne and S. Floyd, “‘The network simulator - ns-2’,” Available:
http://www.isi.edu/nsnam/ns/.

[26] A. Serjantov and G. Danezis, “Towards an information theoretic metric
for anonymity,” in Proc. of Privacy Enhancing Technologies Workshop
(PET 2002), R. Dingledine and P. Syverson, Eds. San Francisco, CA:
Springer-Verlag, LNCS 2482, April 2002, pp. 41–53.

[27] C. Dı́az, S. Seys, J. Claessens, and B. Preneel, “Towards measuring
anonymity,” in Proc. of Privacy Enhancing Technologies Workshop (PET
2002), San Francisco, CA, April 2002, pp. 54–68.

