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Towards Smartphone Operating System
Identification

Ye Zhu, Nicholas Ruffing, Jonathan Gurary, Yong Guan, and Riccardo Bettati

Abstract—Smartphone reconnaissance, the first step to launch
security attacks to a target smartphone, enables an adversary
to tailor attacks by exploiting the known vulnerabilities of the
target system. In this paper we investigate smartphone OS
identification with encrypted traffic. We propose four algorithms
to do that, which are based on the spectral analysis of the
encrypted traffic. The algorithms are designed for high iden-
tification accuracy by removing noise frequency components
and for high efficiency in terms of computation complexity. We
evaluate the identification algorithms with smartphone traffic
collected over three months. The experiment results show that
the algorithms can identify the smartphone OS accurately. The
identification accuracy can reach 100% with only 30 seconds of
smartphone traffic.

I. INTRODUCTION

This paper studies the identification of operating systems
(OS) of smartphones that communicate using encrypted traf-
fic. Smartphones have become the central communication and
computing devices in our daily life because of (a) their nearly
ubiquitous Internet access through various communication
capabilities such as WiFi or 4G networks, (b) their user-
friendly interfaces supporting touch and gesture based input,
and (c) their numerous applications and games. With the
increasing reliance on smartphones, users are increasingly
using them also to share sensitive data, such as personal
contacts and banking information. Smartphones are also
adopted in business and military environments [14] because
of their portability and constant network access. As a result,
smartphone security is of great importance nowadays.

In order to launch an effective attack on a particular
smartphone, an attacker must be able to tailor the attack to
the target smartphone’s platform. This is turn requires that
the attacker be able to identify the operating system running
on the target smartphone. Once the attacker knows the target
OS, he or she becomes able to exploit known vulnerabilities
both of the smartphone OS and of the applications and ser-
vices running on the OS. Examples include data exfiltration,
such as [7] for Android devices, and [8] for non-compute
devices. Other platform-specific attacks, primarily targeting
108 devices, are described in [9], [10], [11]. The most readily
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obtainable information that enables OS identification is the
wireless traffic generated by the target smartphone.

When the traffic is encrypted, the eavesdropper is naturally
prevented from accessing packet content. In some situations,
such as SSL/TLS encrypted traffic [6], packet header infor-
mation may remain observable, and may continue to provide
useful information to the eavesdropper. In other situations,
such eavesdropping on encrypted IEEE 802.11 links [32]
or on encrypted LTE links [1], the eavesdropper’s ability to
monitor the traffic is limited to the timing of the packets and
— in the absence of packet padding — packet sizes. In this
paper we will focus on packet timing: Observations indicate
that timing side channels can be leveraged effectively, since
different OSes cause the smartphone to generate traffic with
different timings. Such differences in timing footprints are
caused by differences in OS implementations (e.g. CPU
scheduling, TCP/IP protocol stack), and by differences in
resource management (e.g. memory management or power
management). Similarly, differences in applications caused
by the OS differences (e.g. audio/video codecs available for
multimedia communications) become visible in the timing
footprint of sent packets as well.

In this paper we describe how differences in OSes can be
identified by analyzing of the timing traces of the generated
traffic in the frequency domain. Frequency domain analysis is
a classical tool to analyze temporal signals [22] by converting
signals from the time domain to the frequency domain.

The main challenge in OS identification with frequency
analysis comes from the fact that the frequency spectrum
contains many noise frequency components, i.e., frequency
components that are not caused by the OS features, but
rather by application or user behavior. The noise frequency
components can be caused by network dynamics (such as
network congestion and round trip time), and traffic content
(such as periodicities in the video content when streaming
a video clip). In this paper, we call the frequency com-
ponents that are helpful for OS identification, which often
are the frequency components caused by OS features, the
characteristic frequency components. The effectiveness of
any frequency-domain based identification clearly depends
on its ability to filter out noise and keep the characteristic
frequency components.

Once the frequency spectrum of a device has been col-
lected, it must be matched against training data, that is, the
spectrum of interest needs to be matched with the spectrum
generated by a known smartphone OS. Correlation can be
used for this matching. The complexity of the matching
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is O(L) where L denotes the length of the spectra. In
this paper, we propose approaches to significantly reduce
the computational complexity while continuing to accurately
identify smartphone OSes.

Our major contributions are summarized as follows: (1) We
propose four smartphone OS identification algorithms, which
use frequency spectrum analysis to capture the differences in
smartphone OSes. Correlation is used to match the spectrum
of interest to the spectra generated by known smartphone
OSes. (2) We propose OS identifications algorithms that
can remove noise frequency components to improve the
identification accuracy. (3) We evaluated the OS identification
algorithms with extensive empirical experiments. Our exper-
iments show that the OS identification algorithm can identify
smartphone OS with very high accuracy with only small
amounts of smartphone traffic. We also try the identification
algorithm on minor versions of smartphone OSes. We find
the identification performance varies with traffic type. We
observer that the identification of minor versions of smart-
phone OSes is more effective at higher resource consumption
levels. (4) We extend the OS identification algorithms to
identify the applications running on smartphones. We applied
the application identification algorithms to identify popular
applications available on smartphones in different OSes. The
experiment results show that high identification accuracy can
be achieved with as little as 30 seconds of smartphone traffic.

This paper is organized as follows: Section II reviews
related work. The network model and the threat model used
in this paper are presented in Section III. We explain the
rationale behind the proposed identification approach and de-
scribe the details of smartphone OS identification algorithms
in Section IV. In Section V we evaluate the smartphone OS
identification algorithms with real-life traffic data collected
over a period of 3 months. The extension of the OS identi-
fication algorithms for application identification is discussed
in Section VI. We conclude the paper in Section VII with a
discussion of future work.

II. RELATED WORK

We investigated a simple OS identification algorithm, the
so-called spectrum selection algorithm in [27]. In this paper
we present and evaluate a family of identification algorithm,
which allows to trade-off accuracy vs. cost: (1) The sup-
pression algorithm is designed to significantly reduce the
cost of selecting characteristic frequency components in the
spectrum selection identification algorithm. This algorithm
reduces the cost through a heuristic approach. (2) The hybrid
algorithm combines the effectiveness of the original spectrum
selection algorithm with the efficiency of the suppression
algorithm. This algorithm can remove significant frequency
components that are extraneous to OS operation. (3) The
full spectrum algorithm only removes the DC frequency
component and leave the remaining frequency components as
characteristic frequency components. This algorithm serves
as a baseline for comparison. We compare the four identifi-
cation algorithms in terms of computational complexity and
identification performance through extensive experiments.

In the remainder of this section, we review related work
on existing OS fingerprinting approaches, reconnaissance
through traffic analysis, and analysis of smartphone traffic.

A. OS and Smartphone Fingerprinting

Approaches to traffic-based fingerprinting can be either
passive or active. In the former the observer monitors the
traffic from the target, while in the latter the observer may
stimulate the target by sending requests and so cause the
target to display a richer behavior for the observer to monitor.

Most existing passive methods for computer OS finger-
printing are based on packet headers. The methods discussed
in [20] detect the computer OS by checking the initial
Time to Live (TTL) value in the IP header and the TCP
window size in the first TCP packet. Methods to identify
the computer OS by inspecting the application layer data in
traffic, such as server banners in HTTP, SSH and FTP as
well as HTTP client User-Agent strings, are also discussed
in [20]. Kollmann [17] proposes to fingerprint the OS based
on its implementation of the DHCP protocol, as different
OSes support different combinations of DHCP options. The
network analysis tools siphone and pOf developed as a
part of the Honeynet Project [25] fingerprint the computer
OS by checking four TCP signatures. Two of them are the
TTL and the TCP window size as discussed in [20]. The two
additional signatures are on the Don’t Fragment (DF) bit and
the Type-of-Service (ToS) bits.

Active OS fingerprinting methods to identify the OS of a
remote machine are used by Nmap [21], a software utility
for network discovery and security auditing. Nmap identifies
the remote OS by sending TCP/IP probes and checking how
the remote machine responds to these probe packets. Based
on the response, Nmap uses its large database of heuristics
to identify the OS. Another software package created by
Durumeric et al. [12], called Zmap, allows a single computer
with a gigabit Ethernet connection to scan the entire IPv4
address space in 45 minutes.

Countermeasures have been proposed in order to defeat
OS fingerprinting. Smart et al. [28] developed a TCP/IP
stack fingerprint scrubber to defend against active and passive
OS fingerprinting attacks based on the TCP/IP stack. The
scrubber sanitizes packets from a group of hosts at both
the network and transport layers to block fingerprinting
scans. These sanitized packets are intended to not reveal OS
information.

All of the computer OS fingerprinting methods reviewed
above require access to the packet headers or packet content.
As a result, these methods are largely ineffective when
applied to encrypted traffic.

Stober et al. [29] describe an approach to identify smart-
phones by eavesdropping on 3G/UMTS transmissions, which
are protected by link-level encryption. As a result, the eaves-
dropper has access only to arrival time, size, and direction
(incoming/outgoing) of packets. By analyzing packet inter-
arrival times, packet lengths, and burst lengths, the authors
are able to identify the collection of applications (the appli-
cation mix, including applications that generate background
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traffic) that are active on the phone. This application mix in
turn is shown to be an effective feature for the identification
of the specific smartphone. We note that this work has a
different attacker model from ours: In [29] the eavesdropper
has access to the first-hop 3G/UMTS link, and therefore to
the entirety of the traffic sent and received by the device,
and she can therefore infer the application mix. In our work,
the eavesdropper has only remote access to the device. As a
result, the eavesdropper sees the traffic of a single application
only, or in some cases a very small set of applications. Trying
to remotely infer the application mix is therefore impossible,
and we therefore must focus on features belonging to the
traffic of a single application.

B. Reconnaissance through Packet-Content Agnostic Traffic
Analysis

Various reconnaissance approaches through packet-content
agnostic traffic analysis have been proposed, and some of the
approaches are studied in the context of privacy breaches.

1) Website Fingerprinting: Herrmann et al. [15] devel-
oped a method for website fingerprinting with traffic en-
crypted and anonymized by Tor. The method uses common
text mining approaches on frequency distributions of packet
sizes. The method is reported to be capable of identifying
300,000 real-world traffic traces with 97% accuracy using
a sample of 775 sites. Panchenko et al. [24] showed the
effectiveness of website fingerprinting attacks on anonymity
networks. Their approaches can increase the detection accu-
racy from 3% to 55% with a Tor data set and from 20% to
80% with a JAP data set. Their experiments on a real-world
data set can achieve an accuracy of 73%. Camouflaging as
a countermeasure to hamper the fingerprinting attack was
proposed in [24], and the countermeasure is able to decrease
the accuracy to as low as 3%. A website-detection attack that
can be executed from a remote location was proposed in [13].
The attack first estimates the load inside a victim’s router
queue by measuring the round-trip time of regularly-spaced
probe packets. Based on this estimation of the load, any of the
website fingerprinting methods described above can be used.
Cai et al. [3] attempted to defeat countermeasures proposed
to website fingerprinting, more specifically HTTPOS and
randomized pipelining over Tor. The method used packet-size
vectors from encrypted traffic and the Damerau-Levenshtein
algorithm to detect which web pages the traffic is associated
with. They were able to achieve website fingerprinting accu-
racy as high as 90% against some countermeasures with a
sample set of 100 websites. Early on, Liberatore and Levine
[18] proposed traffic analysis on encrypted HTTP streams
to infer the source of a web page retrieved in encrypted
HTTP streams. A profile of each known website is created
in advance. The traffic analysis identifies the source by
comparing observed traffic with established profiles with
classified algorithms. They used a sample size of 2,000
websites with 400,000 traffic traces.

2) Inferring Users’ Online Activities Through Traffic Anal-
ysis: Zhang et al. [34] use short traces of encrypted traffic
on IEEE 802.11 wireless local area networks (WLAN) to

infer activities of a specific user (e.g. web browsing, file
downloading, or video streaming). Their experiments include
traffic traces from web browsing, online chatting, online
gaming, file downloading, and video conversations. They
were able to infer the users activities with 80% accuracy
using 5 seconds of traffic and 90% accuracy with 1 minute
of traffic. Similarly, Conti et al. [6] describe an approach
to identify user activities by monitoring encrypted traffic of
Android devices. The authors assume SSL/TLS protected
traffic, which gives the eavesdropper access to information in
the packet headers. They leverage this information, together
with packet timing and other patterns, to infer detailed user
activities, such as sending or receiving email, or accessing
a profile on a social network. The authors compare their
approaches to [15], [18]. The authors apply the insights from
this work to the identification of apps in [30]. Relaxing the
need to identify apps rather than user actions allows the
authors to automate the fingerprinting as part of a tool. Wang
et al. [32] are able to identify apps using encrypted IEEE
802.11 traffic. The side channel for this traffic is less rich than
is the case SSL/TLS traffic, as packet headers (and therefore
sender and receiver IP addresses) are encrypted as well.

3) Hidden Services: Hidden services are used in
anonymity networks like Tor to resist censorship and attacks
like a denial of service attack. verlier and Syverson [23]
propose attacks that reveal the location of a hidden server in
the Tor network. Using one corrupt Tor node they were able
to locate a hidden server in minutes. They then proposed
changes to the Tor network in order to resist their attacks
and these changes were implemented. A similar effort in
[2] investigates the flaws in the Tor network and its hidden
services. Three practical cases, including a botnet with hidden
services for command and control channels, a hidden service
used to sell drugs, and the DuckDuckGo search engine
are used for evaluation. Their method involves first gaining
control of the descriptors of a hidden service and then
performing a traffic correlation attack on the hidden service.
Zander and Murdoch [33] aim to improve their clock-skew
measurement technique for revealing hidden services. Their
original method [19] correlates clock-skew changes during
time of high load.

C. Analysis of Smartphone Traffic

Smartphone traffic has been analyzed for various purposes.
In [31] Tzagkarakis et al. proposed to use the Singular
Spectrum Analysis to characterize network load in a large
WLAN. Their findings can help design large-scale WLAN’s
that can be used by smartphones in large public areas. Chen
et al. [5] studied the network performance of smartphones
in a university-wide WLAN. They analyzed 2.9 TB of data
collected over three days and were able to to gather interest-
ing insights on TCP and application behavior of smartphones
and their effect on performance. Huang et al. [16] proposed
a methodology for comparing application performance based
on 3G communications. Their study shows how YouTube
buffering techniques vary across smartphone OSes.
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Throughout these experiments, the observer has access to
header and payload data. In comparison, our work is focusing
on the analysis of encrypted traffic.

D. Spectrum Analysis for Traffic Analysis

Frequency analysis has been used in various ways in
traffic analysis. Rocha et al., for example, use scalograms
in [26] to generate users’ web application use profiles using
time and frequency components of collected traffic. Zhu et
al. use frequency-domain correlation techniques in [36] to
match ingress and egress traffic in anonymous communi-
cation networks. Similarly, Zhu and Bettati use frequency
spectrum matching in [35] to generate end-to-end paths from
blind-source separated components of traffic in anonymous
networks. The frequency spectrum has been used in previous
research for various purposes. However, in this paper, we
find out that a frequency spectrum consists of frequency
components generated by various factors such as OS dif-
ferences, network dynamics, application content, and user
behavior. According to our knowledge, this is the first attempt
to extract frequency components that can be used for OS
identification with genetic algorithms. The success of the OS
identification algorithms opens a new paradigm to extract
frequency components for identifying specific factors such as
application content. The success of the component extraction
enables traffic analysis to shift from the original flow-level
analysis to component-level analysis. One more difference
is that previous research is based on frequency spectrum of
packet-count time series and the spectrum generated by this
paper is based on byte-count time series.

III. NETWORK AND THREAT MODEL
A. Network Model

In this paper, our goal is to identify the operating system
of a target smartphone that communicates over a wireless
link, be it WiFi or 4G/LTE. In both cases, we assume that
the communication is encrypted at link layer.

The rationale for OS identification is as follows: (1) On one
hand, to launch an attack, the attacker needs to determine first
the OS and then the applications running on the target smart-
phone. Given the OS and application information, attacks
can exploit known vulnerabilities to tailor attacks specific to
the OS and the applications. On the other hand, to defend
against the reconnaissance from the attackers, smartphone
defense designers and smartphone owners need to know how
accurate the identification can be. (2) The OS identification
can enable content providers, including websites, to tailor
the content for different applications running on smartphones
in different OSes. (3) The OS identification allows mobile
network operators to predict the bandwidth requirements
from any particular smartphone so that the network operators
can better allocate resources with the knowledge of expected
bandwidth requirements.

We are particularly interested in the identification based on
WiFi traffic for three reasons: First, although current smart-
phones have various communication capabilities, such as

WiFi, 3G/UMTS, or even 4G/LTE, nearly every smartphone
on the market is capable of WiFi communication. Next, the
majority of traffic from smartphones is sent through WiFi [4]
partly because of its low cost and relatively high bandwidth.
Finally, WiFi based passive attacks are easy to stage, for
example as drive-by or walk-by attacks.

In this paper we focus on the case of WiFi traffic that
has been encrypted as link level, for example through WAP
or similar mechanisms. Since link-level encryption for WiFi
traffic encrypts the entire exchanged frame, the attacker has
no access to packet-header information, and has to rely on
timing and packet-size information only.

B. Threat Model

In this paper we assume a passive adversary who is able to
capture wireless packets exchanged by the target smartphone.
The smartphone, in turn, communicates over an encrypted
wireless link.

We assume that the adversary has the following capabili-
ties: (1) The adversary is able to eavesdrop on WiFi commu-
nications from the target smartphones and collect encrypted
traffic for the identification. (2) The WiFi communications
are encrypted at link level, for example through the use
of WAP. The adversary has therefore no access to packet-
header information. (3) The adversary is able to collect traffic
from known smartphone OSes and analyze the traffic for
future identification. (4) We assume a passive adversary. That
is, the adversary is not allowed to add, delete, delay, or
modify existing traffic for OS identification. (5) The traffic
traces, including the traffic traces collected for training on
known smartphone OSes and the traffic traces of interest for
identification by the adversary, are collected independently.
In other words, the traffic traces are collected in different
network sessions and possibly on different WiFi networks.

Other attack scenarios can be very easily imagined. For
example one where the observer does not have access to the
wireless link, but rather collects data on the wired part of the
path downstream. In this paper we focus on data collection
on the wireless link.

IV. IDENTIFYING SMARTPHONE OPERATING SYSTEMS

OS identification through encrypted traffic is possible
because of implementation differences and differing resource
management policies among smartphone OSes. These differ-
ences include:

Differences in OS Implementations: Different smartphone
OSes may have different kernels, different CPU scheduling
policies, and different implementations of the TCP/IP pro-
tocol stack. These differences in the OS implementations in
turn can cause the timing behavior of traffic to differ from
one smartphone OS to another.

Differences in Resource Control: Smartphones are resource-
constrained devices. Largely due to their small form factor,
smartphones have limited CPU processing capability, mem-
ory, and battery lifetime. To better utilize these resources,
smartphone OSes adopt a number of policies for resource
control, including power-management policies.
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Differences in Applications: Because of the differences across
OSes, the same application for different smartphone OSes
may be implemented differently. For example, different OSes
support different combinations of audio and video codecs
used for multimedia communications. Obviously, different
codecs will very likely generate network traffic differently.
Another example is YouTube: In [16], iPhone is reported
to first download a portion of video at a high rate, pause
for a while, and then continue downloading. The authors
conjecture that this pattern is caused by the memory manage-
ment and power saving policy in Apple’s iOS. The Android
phone reported in [16] periodically downloads small chunks
of YouTube video every 10 seconds. The authors conjecture
is that the download pattern is due to hedging against the
user not wanting to watch the entire video.

The differences described above obviously give rise to dif-
ferent timing behaviors for the traffic generated by different
smartphone OSes. These differences can be easily captured
in the frequency domain. A typical spectrum of YouTube
video streaming on Android OS is shown in Figure 1: We
observe that the YouTube traffic flow has many significant
frequency components. While some of these components
are coincidental, others are associated with the YouTube
buffering strategy on the Android OS. Others again may be
associated with specific OS implementation approaches. To
show the correspondence, we draw the time domain signal
of the YouTube traffic flow in Figure 2(a). The periodic
nature of the buffering now becomes evident. By checking
the data, we confirm that the periodic buffering happens every
250 seconds. For verification, we zoom in the corresponding
frequency range of Figure 1 and the zoomed-in portion is
shown in Figure 2(b). We observe the peak at the frequency
of 0.004Hz, which corresponds to the buffering period of 250
seconds. Obviously the frequency component corresponding
to the buffering is helpful in OS identification. We call such
frequency components characteristic frequency components.
In Figure 1, we observe a large number of noise frequency
components as well, which in turn are caused by network
dynamics such as round trip time and the video content.
These noise frequency components are not caused by OS
features, and they are therefore not helpful for OS identifi-
cation. Obviously, removing the noise frequency components
will very likely improve the identification performance.

A. Identification Framework

We propose four identification algorithms for OS identi-
fication. The four algorithms are designed under the same
framework. So before introducing the details of each algo-
rithms, we present the framework first.

The identification can be divided into two phases : training
phase and identification phase. The training phase in turn
consists of two steps: spectrum generation and feature ex-
traction. The identification phase consists of two steps as
well, namely the spectrum generation and OS identification.
We describe the details of each step below.

1) Spectrum Generation: The spectrum generation step
converts traffic traces into frequency spectra. The input of this
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Fig. 1. A Sample Frequency Spectrum of YouTube Streaming Traffic on
Android OS (To generate the spectrum, 50 minutes of streaming traffic with
an 8 ms sample interval is used.)
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Fig. 2. Correspondence between Periodicities in a Time Domain Signal and
Characteristic Frequency Components

step is a vector S = [s1, 82, -+, Sn|, where N is the number
of samples. The element s; in the vector is the number of
bytes received during the ith sample interval divided by the
length T' of the sample intervals.

The output of this step is the corresponding frequency
spectrum F° = [f{, f&, -+, f3;], where M denotes the
length of the spectrum. The spectrum F* is calculated in two
steps. First we apply the Discrete Fourier Transform (DFT)
to the vector S as follows:

N
ykzzsjw%_l)(k_l)ak: [13253M] ) (1)
j=1

2mi |

where y; denotes the transform coefficients, wy = e™ "~ ',
and N denotes the number of samples. The spectrum F* is
calculated as below:

'We use i to denote the imaginary unit.
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fl;g:'yk"k:[l?Qv"'aM] )

where the operator | - | denotes the absolute value. Because
of the symmetry of the spectrum [22], we only use the
single-sided spectrum, ie., F¥ = [, f5, -+, f7] where
L=%]+1.

The spectrum generated in this step is fed to the feature
extraction step in the training phase or fed to the OS
identification step in the identification phase.

2) Feature Extraction: The feature extraction step is de-
signed to extract features in the frequency spectra generated
in the previous step for OS identification. The inputs to the
step are the frequency spectra of labeled traces that we use
for training. The outputs are the features that are selected for
the identification step.

3) OS Identification: The identification step identifies the
OS based on two inputs: (1) F'*, the spectrum generated from
the trace of interest, denoted as Trace x, and (2) the feature
selection from the feature extraction step in the training
phase. The output will be the identification result. The pseudo
code of the OS identification step for each identification
algorithm can be found in the remainder of this section.

In all the four algorithms, the OS identification step
will first apply the feature selection decided in the feature
extraction step to F'*, the spectrum generated from the trace
of interest. We denote the feature extracted spectrum as
F'*. The selected spectral features of the test trace will be
compared with the spectral features in the labeled traces of
each smartphone OS by correlation. In the following, we
denote the pth labeled trace of smartphone OS A as A,, its
spectrum as F'4», and its feature-extracted spectrum as /47,
The correlation between the two feature-extracted spectra F'*
and F'“» can be calculated as follows:

L . JA N
Y (i = F) (S — F')

corr(F'®, FAr) = k=1 ,
L - L 1A TA
Z ( ]If _ F/gc)2 Z (fk P _F/Ap)2
k=1 k=1

. . 3)
> > 5
where F/# = ¥=1— and F'4» = =1

The identification decision is made by comparing the
average of the correlation between F'?, the feature-extracted
spectrum of the test trace, and all the feature-extracted spectra
of labeled traces generated by the same smartphone OS. We
denote the average of the correlation between the trace z
and the labeled traces generated by smartphone OS A as
corr 4. If the average correlation corr 4 is the largest among
the average correlations between the trace z and the labeled
traces generated by any smartphone OS, the identification
step declares the Trace x to match smartphone OS A.

In the following we describe and compare four identi-
fication algorithms, which we call full spectrum, spectrum
selection, suppression, and hybrid. The framework described
above is used in designing all four identification algorithms

proposed in this paper: The spectrum generation step is the
same in all four algorithms. The major differences among
the four identification algorithms are in how features are
extracted during training and how the extracted features are
in turn used for identification.

B. Full Spectrum

The full spectrum identification algorithm includes all
frequency components except for the DC component as
feature frequency components. The DC component (also
called “zero-frequency component”) is the first frequency
in the Fourier Transform of a signal, and it represents the
average signal value, which in our case is the average traffic
rate. We remove the DC component because the average
traffic rate largely depends on the content of the traffic (and
therefore on the application) rather than on the smartphone
OS.

The spectrum generation step of the full spectrum identifi-
cation algorithm is the same as the step described in Section
IV-A. The pseudo code of the feature extraction step and
the OS identification step can be found in Function 1 and
Function 2, respectively.

Function 1: Feature Extraction (Full Spectrum)

Input: F'P:9 : The gth spectrum generated by the pth smartphone
0S,1<p<P,1<q<Q, where P and Q denote the
number of different smartphone OSes and the number of
traces available for each smartphone OS respectively

Output: F'P+9 : The gth feature-extracted spectrum of the pth

smartphone OS, 1 <p< P, 1<q¢<@Q

for p < 1 to P do

for ¢ < 1 to Q do

for k< 1to L —1 do
D4 _ P
k k+1°
// just remove the DC component from
the spectrum, L: Length of the

spectra

end

end
end

Function 2: OS Identification (Full Spectrum)

Input: F'P:9: Feature extracted spectrum of each labeled trace,
F®: spectrum of the test trace

Output: OStype: Smartphone OS Type

// remove the DC component from the spectrum

FI
for k< 1to L —1do
‘ &4 :fx .
k k41’
end

OStype = Decision(F'P>4, F'%);

C. Spectrum Selection

The spectrum selection identification algorithm is designed
to improve the identification performance by removing noise
frequency components, which are not helpful for OS iden-
tification, from the spectrum. As shown in Figure 1 and
Figure 2, a traffic flow may have many frequency compo-
nents. These include characteristic frequency components,
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Function 3: Decision

Input: F'P:9: Feature extracted spectrum of each labeled trace,
F'®: Feature extracted spectrum of the test trace

Output: OStype: Smartphone OS Type

// correlate the feature-extracted spectrum of
the test trace with the feature-extracted
spectra of the labeled traces

for p< 1to P do

for ¢ < 1 to @ do

| Calculate corrp 4 the correlation between £ and FP-4;
end

Mo

corrp q

_a=1 .
corrp= o) ;

// average correlation between F?¥ and the
feature-extracted spectra of 0OS type p

end
Find the maximum corry from the vector
[corry, corra, - -+, corrpl;

// without loss of generality, we assume the
maximum is corrp in the vector

OStype = k;

such as the frequency components caused by the OS’s power
management, as well as noise frequency components, such
as the frequency components caused by network round-
trip time, network congestion, and other effects caused by
network dynamics. Obviously, removing the noise frequency
components can improve identification performance. Note
that there may be frequency components that are caused
by OS activities that are very similar across different OSes.
Since these frequency components are not helpful for OS
identification, one can just as well treat them as noise compo-
nents without affecting the performance of the identification.
We will do just that in this paper.

Ideally, each frequency component should be evaluated
to decide whether it is helpful for OS identification. But
the computational cost is prohibitive because of the large
number of the possible combinations. To make this approach
practical, we apply a genetic algorithm to decide which
frequency component should be kept for OS identification.

Whether a frequency component is helpful for OS iden-
tification is decided during the training phase, based on the
labeled traces. The feature extraction step will first divide
the labeled traces into two sets: Set4 and Setp. Instead of
exhaustively searching over all the possible combinations of
selected frequency components, the step searches for the best
combination of the selected frequency components by formu-
lating the search as an optimization problem. The objective
function to be optimized is the identification rate obtained
by identifying the labeled traces in Setp. The variables of
the optimization problem are binary numbers, each of which
indicating whether the corresponding frequency component
is selected. We represent the binary variables as a vector
Bgeiectea = [b1,b2,--+,br] where the binary variable b;
indicates whether the ¢th frequency component is selected.
We use a genetic algorithm to solve the optimization problem.
In comparison with the exhaustive search, this approach is
more efficient at the cost of possibly finding a local maximum
and so leading to a less effective identification.

The pseudo code for the feature extraction step in the
spectrum selection algorithm is shown in Function 4 and that
for the OS identification step is shown in Function 6. The
fitness function used in Function 4 is shown in Function 5.

Function 4: Feature Extraction (Spectrum Selection)

Input: FP>9: The gth spectrum generated by the pth smartphone
0S,1<p<P,1<q<Q, where P and @ denote the
number of different smartphone OSes, the number of traces
available for each smartphone OS, and L: number of
frequency components

Output: F'P+9 : The gth feature-extracted spectrum of the pth

smartphone OS, 1 <p < P, 1<q¢<Q,
Bgseiectea=Ib1,b2, - -,br]: spectrum selection vector
where the binary bit b; indicate whether the ith frequency
component is selected

Bgeiectea = ga(fitfun, Setq, Sety);

// We use ga to represent any genetic
algorithm and ga accepts the definition of
the fitness function fitfun and outputs
values of the variables (in our case the
vector Bgelected) resulting the maximum of
the fitness function. The fitness function
fitfun is defined in Function 5

foreach spectrum in the input do

for i < 1toL do
if B;==1 then

include the ith frequency component in FP>4 to the
feature-extracted spectrum F’P9;
end
// without loss of generality, we
assume the spectrum FP9 is being
processed
end

end

Function 5: Fitness Function (fitfun) (Spectrum Se-
lection)

Input: Bgcjected = [b1, b2, - - -,br]: spectrum selection vector,
Set 4: one set of labeled traces, Setp: one set of the
remaining labeled traces

Output: Ratergentification: ldentification Rate

foreach spectrum in Set s do

for i < 1toL do

if B;==1 then
include the ith frequency component in F'P>4 to the
feature-extracted spectrum F’P9;
end
// without loss of generality, we
assume the spectrum FP? is being
processed

end
end
foreach spectrum in Set 4 do
include the corresponding feature-extracted spectrum into
F/SEt,,, :
end
success=0;
foreach spectrum F*V in Setp do
OStype = OS IdentificationspectrumsSetection F'S¢44,
Fev, Bselected);
if OStype == u then
\ success = success + 1;
end
end

_ success
Rateldentification =

number of traces in Setp’
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Function 6: OS Identification (Spectrum Selection)

Input: F’P:9: Feature-extracted spectrum of each labeled trace,
F?: spectrum of the test trace,
Bselected = b1, b2, -+, Br]: spectrum selection vector
Output: OStype: Smartphone OS Type
for i < 1 to L do
if b; = 1 then
Include the ith frequency component in F'* to the
feature-extracted spectrum F’%;
end
end
OStype = Decision(F'P:4, F'%),
// The function is defined in Function 3

Count

0 10 20 30 40 50 60 70 80 9 100
Magritude of Frequency Components

Fig. 3. Magnitude Distribution of the Frequency Spectrum in Figure 1

D. Suppression

The cost of selecting the characteristic frequency compo-
nents in the selection algorithm is very high, and so we
must find more efficient means for feature extraction. The
suppression identification algorithm is designed to remove
noise frequency components based on two observations that
can be made from the typical spectrum shown in Figure 1: (1)
Most frequency components in a spectrum are insignificant
(i.e. small in magnitude). (2) Most insignificant frequency
components are noise frequency components. Based on the
two observations, we design an algorithm (which we call sup-
pression algorithm) that suppresses insignificant frequency
components and leaves only significant frequency compo-
nents for OS identification.

A key consideration in designing such an algorithm must
be about the number of most significant frequency compo-
nents to keep for OS identification. To determine this number,
we analyze the distributions of the magnitude of all the
frequency components in a spectrum. A typical distribution
is shown in Figure 3. We observe that (1) the majority
of the frequency components are insignificant and (2) the
insignificant components’ magnitude can be modeled as a
Gaussian distribution.

Based on the observations described above, the number of
significant frequency components to keep, denoted by K, is
determined by the distribution of the magnitude of frequency
components. For any given spectrum F* we first calculate
the mean p; and standard deviation o; of the distribution
on the magnitude. We then set a threshold corresponding
to T; = u; + 60; making the probability of the magnitude
being larger than the threshold 7T; to be about 2E-9 according
to the property of Gaussian distributions. In other words,

the threshold T; can filter out over 99% of insignificant
frequency components. With the threshold calculated for each
trace, we find the number of frequency components with
magnitude larger than the threshold in each trace. We set
K, the number of significant frequency components to keep,
to be the average number of the frequency components with
the magnitude larger than the threshold in each trace.

The feature-extracted spectrum is formed by: (1) keeping
the top K frequency components and (2) suppressing the
magnitude of the rest frequency components to zero. The
pseudo code of the feature selection step in the suppression
algorithm in shown in Function 7 and the corresponding OS
identification step is shown in Function 8.

Function 7: Feature Selection (Suppression)

Input: F'P:9 : The gth spectrum generated by the pth smartphone
0S,1<p<P,1<q<Q, where P and @ denote the
number of different smartphone OSes and the number of
traces available for each smartphone OS

Output: F'P+9 :The gth feature-extracted spectrum of the pth

smartphone OS, 1 <p < P, 1 < ¢q < @, K: the number
of top K frequency components to keep in
feature-extracted spectra

foreach spectrum in the input do

Calculate mean p; and standard deviation o; of the magnitude
of frequency components;
// without loss of generality, we assume
the ith trace is being processed;
Ti=p; + 60;

Set k; to be the number of frequency components with
magnitude larger than T7;
end

PQ

D ki

K= i PIQ ;

// PQ: the number of labeled traces

foreach spectrum FP-4 in the input do

The corresponding feature-extracted spectrum F'P+9 is formed

by keeping the top K significant frequency component and
suppressing the magnitude of the rest frequency components
to zero;

end

Function 8: OS Identification (Suppression)

Input: F'P:9: Feature extracted spectrum of each labeled trace,
F'*: spectrum of the test trace, K: the number of top K
frequency components to keep in feature-extracted spectra

Output: OStype: Smartphone OS Type

Form the feature-extracted spectrum F’* by keeping the top K

significant frequency components in F'* and suppressing the
magnitude of the rest frequency components to zero;

OStype = Decision(F'P:4, F'%);

// The function is defined in Function 3

E. Hybrid Algorithm

Finally, we describe an algorithm (which we call hybrid
algorithm) that combines the effectiveness of the spectrum
selection algorithm with the efficiency of the suppression
algorithm described earlier. We observe that the suppres-
sion algorithm keeps the significant frequency components
(i.e. large components) for OS identification. Some of the
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significant frequency components (such as the frequency
components caused by round-trip time) are extraneous to the
OS operation and are therefore not useful for smartphone OS
identification. The hybrid algorithm removes those significant
frequency components from the spectrum before proceeding
to select the characteristic frequency components.

The feature extraction step in the hybrid identification
algorithm works as follows: First, as in the suppression
algorithm, only the top K significant frequency components
in the spectrum FP-9 are kept in the intermediate spectrum
F""P4, Then the algorithm searches for the best combination
of the remaining frequency components with a genetic algo-
rithm. The final feature-extracted spectrum F'P¢ is formed
by applying the best selection on the intermediate spectrum
F""P4.The pseudo code of the feature extraction step and the
corresponding OS identification step are shown in Function
9 and Function 10 respectively.

F. Comparison of the OS Identification Algorithms

As discussed above, the spectrum of any smartphone
traffic contains both characteristic frequency components and
noise frequency components. To improve the identification
performance, we need to remove the noise frequency compo-
nents as much as possible. Among the proposed algorithms
it is to be expected that the spectrum selection algorithm
performs best since it largely relies on a search algorithm
to identify the most characteristic frequency components.
The suppression algorithm filters out the noise frequency
components following the heuristic that most insignificant
frequency components tend to be noise frequency compo-
nents. The hybrid algorithm aims to improve the performance
of the suppression algorithm by removing the noise frequency
components that are significant. The full spectrum algorithm
simply removes the DC frequency component so most noise
frequency components are left in the spectrum.

The identification performance advantages of the selection
algorithm a come at the cost of a significant increase in
computational complexity, and the suppression and hybrid
algorithm both aim at reducing this cost. The four identifi-
cation algorithms differ in the feature extraction step and the
OS identification step, while the other two steps do not vary.
In the following comparison we focus on the computational
complexity of these two steps.

A qualitative comparison of the complexity of the fea-
ture extraction step during the training phase of the four
algorithms is shown in Table I. The feature extraction in
both the spectrum selection and the hybrid algorithm is most
time-consuming since it needs to use an optimization scheme
(genetic algorithm in our case) to find the best combination of
frequency components for the identification. The complexity
of feature extraction in the full spectrum algorithm and the
suppression algorithm is much lower: In the full spectrum
algorithm it only needs to remove the DC component from
each spectrum, and the suppression only needs to suppress
insignificant frequency components in each spectrum.

The cost of feature extraction is only incurred during the
training phase and therefore will not affect the cost during

Function 9: Feature Extraction (Hybrid)

Input: F'P:9 : The gth spectrum generated by the pth smartphone
OS respectively, 1 <p < P, 1 < ¢q < @, where P and Q
denote the number of different smartphone OSes and the
number of traces available for each smartphone OS
respectively

Output: F'P-9 : The gth feature-extracted spectrum of the pth

smartphone OS, 1 <p < P,1<¢<Q,

Bselectea=lb1, b2, -+, br]: band selection vector where
the binary bit b; indicates whether the ith frequency
component is selected, K: the number of top K frequency
components to keep in feature-extracted spectra

foreach spectrum in the input do

Calculate mean p; and standard deviation o; of the magnitude
of frequency components;
// without loss of generality, we assume
the ith trace is being processed
Ti=p; + 60;;
Set k; to be the number of frequency components with
magnitude larger than T5;
end

PQ
> ki
=1
K=—F% o
// PQ: the number of labeled traces
foreach spectrum FP9 in the input do
The corresponding intermediate spectrum F//P+9 is formed by
keeping the top K significant frequency components and
suppressing the magnitude of the rest frequency components
to zero;

end

Divide the intermediate spectra F//P>9 of each smartphone OS into

two sets Set 4 and Setp;

Bgelecteq=ga(fitfun, Set,, Sety);

// We use ga to represent any genetic
algorithm and ga accepts the definition of
the fitness function fitfun and outputs
values of the variables (in our case the
vector Bgelected) resulting the maximum of
the fitness function. The fitness function
fitfun is defined in Function 5

foreach spectrum in the input do

for i< 1to L do
if b;==1 then

include the ith frequency component in FP>9 to the
feature-extracted spectrum F’P9;
end
// without loss of generality, we
assume the spectrum FP'9 is being
processed
end

end

Function 10: OS Identification (Hybrid)

Input: F'P:9: Feature extracted spectrum of each labeled trace,
F'*: spectrum of the test trace, K: the number of top K
frequency components to keep in feature-extracted spectra,
Bselected = [b1, b2, -, br]: spectrum selection vector

Output: OStype: Smartphone OS Type

Form the intermediate spectrum F/ by keeping the top K

significant frequency component in F'* and suppressing the
magnitude of the rest frequency components to zero;

for ¢ < 1 to L do

if b;=1 then
Include the ith frequency component of spectrum F//®
into F'%;
end

end

OStype = Decision(F'P:4, F'%);

// The function is defined in Function 3
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TABLE I
COMPLEXITY OF THE FEATURE EXTRACTION AND CORRELATION IN THE IDENTIFICATION ALGORITHMS (P: NUMBER OF DIFFERENT SMARTPHONE
OSES, @Q: NUMBER OF LABELED TRACES AVAILABLE FOR EACH SMARTPHONE OS, K: NUMBER OF MOST SIGNIFICANT FREQUENCY COMPONENTS
TO KEEP, L: LENGTH OF SPECTRA)

Full Spectrum Spectrum Selection Suppression Hybrid
Feature Extraction O(PQ) Complexity of Genetic Algorithms OoPQ) Complexity of Genetic Algorithms
Correlation O(L) Dependent on Selection Results O(K) O(K)
operation. The most time-consuming part of the OS identifi- TABLE I
cation step is the correlation. The complexity of correlating SPECIFICATIONS OF SMARTPHONES USED
two spectra is O(L) where L denotes the length of the spec- l Phone [ oS [ CPU [ RAM |
tra. Thus, the complexity of the correlation in the suppression HTC Desire HD | Android v2.3 1 GHz Scorpion 768 MB
: : : Galaxy S4 Android v4.4 1.6 GHz 4-core Cortex-A15 2 GB
algorithm is much lower, since a sqppressed spectr}lm can be e o e TR
represented by a sparse vector leading to a correlation cost of iPhone 55 05 8 T3 GHz 2-core Cyclone IGB
O(K) when we keep the K most significant components. The Nokia Lumia N8 Symbian 3 680 MHz ARM 11 256 MB
Nokia Lumia 900 | Win Phone 7.5 1.4 GHz Scorpion 512 MB

correlation in the hybrid algorithm is of the same complexity
because of the suppression in the hybrid algorithm. For the
full spectrum algorithm, the complexity of the correlation is
O(L) since only DC component is removed. The complexity
of the correlation in the spectrum selection algorithm depends
on the selection result and it is usually higher than the
suppression and the hybrid algorithms.

V. EMPIRICAL EVALUATION

In this section, we evaluate the identification performance
of the proposed identification algorithms. The evaluation is
based on 489GB of smartphone traffic collected over more
than three months on different smartphone OSes.

A. Experiment Setup

The data collection experiment consists of a number of
smartphones, running different OSes, and a data-collection
point.

The smartphones with different OSes are used to watch
YouTube streaming video, download files with the HTTP
protocol, and make video calls with Skype. These three
applications are selected for our experiments because of
their popularity and their availability on different smartphone
OSes: (1) The three applications are among the most popular
applications according to the number of downloads shown in
application stores. (2) We want to avoid the applications that
are only available on one specific smartphone OS. (We note
that if we were to choose OS-specific applications, then OS
identification would equivalent to application identification.)
The three applications are available on all the smartphone
OSes studied in the project. If multitasking is supported in
a smartphone OS, we also use the smartphone for video
streaming, file downloading, and Skype video calls at the
same time.

The data collection is through a Linksys Compact Wireless
USB adapter (WUSB54GC) installed on a computer, which
in turn collects packets using t cpdump. The wireless access
points used in the experiments include both the wireless

router in our research lab and various wireless access points
managed by the university. >

The smartphone OSes included in our experiments are
Apple’s 10S, Google’s Android OS, Windows Phone OS,
and Nokia Symbian OS. For each possible combination of
the smartphone OS and the application, at least 30 traffic
traces of 50 minutes each are collected.

B. Performance Metrics

The identification performance is measured with the fol-
lowing three performance metrics: (1) identification rate
defined as the ratio of successful identifications to the number
of attempts, (2) false negative rate defined as the proportion
of traces generated by smartphone OS, say Y, identified as
traces generated by other smartphone OSes, and (3) false
positive rate defined as the proportion of the traces generated
by other smartphone OSes identified as traces generated by
smartphone OS Y.

False positive rate and false negative rate can provide
more detailed performance information than the identification
rate since the false positive rate and false negative rate are
specific to each type of smartphone OS. On the other hand the
identification rate, averaged across all the smartphone OSes,
can show us the overall identification performance.

C. Length of Traffic Traces

Our first set of experiments focus on the length of the
traffic traces used for the OS identification. The traffic used
in the OS identification includes YouTube video streaming
traffic, file downloading traffic, Skype traffic, and combined
traffic. The combined traffic is collected by running YouTube
video streaming, file downloading, and Skype video calls
simultaneously on the OSes supporting multitasking. For
brevity, we call the four type of traffic as YouTube Traf-
fic, Download Traffic, Skype Traffic, and Combined Traffic
respectively in the rest of the paper.

%In a different scenario, the data-collecting machine may be monitoring
the traffic on the wired portion of the traffic path. The scenario chosen for
our experiments is representative of a drive-by or walk-by attack.
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Fig. 4. Identification Performance with Traces of Different Lengths

TABLE III
APPLICATION RESOURCE CONSUMPTION (THE CONSUMPTION DATA IS
OBTAINED BY RUNNING EACH APPLICATION ALONE FOR 50 MINUTES ON
THE DEVICES. SINCE THE SYMBIAN OS AND THE WINDOWS PHONE DO
NOT HAVE BUILT-IN MONITORING TOOLS, WE DO NOT COLLECT THE
DATA FOR THE TWO OSES.)

Application (OS) Battery Consumption | CPU Usage
YouTube (i0S) 10% 35%
Skype (10S) 25% 40%
Download (10S) 10% 15%
YouTube (Android) 19% 20%
Skype (Android) 50% 74%
Download (Android) 57% 36%

The sample interval used in this set of experiments is of
length 8ms. For each type of traffic and each smartphone OS,
we collected 30 traces. In this set of experiments, we use 20
of the 30 traces as labeled traces and the rest 10 traces as
test traces. Since the number of possible combinations of
choosing 20 traces out of 30 traces as labeled traces is huge,
we randomly pick 1000 combinations. The experimental
results for the four proposed identification algorithms are
obtained with these 1000 random combinations and are
shown in Figure 4.

Full Spectrum Identification Algorithm: From Figure 4(a),
we can make the following observations: (1) The highest
identification rates with YouTube Traffic, Download Traffic,
Skype Traffic, and Combined Traffic are 0.88, 0.98, 0.81,
and 0.99 respectively. (2) Even with only 30 second traffic
traces, the identification rates are 0.61, 0.53, 0.70, and 0.76
for YouTube traffic, download traffic, Skype traffic, and
combined traffic respectively. (3) In general, the identification
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(d) Hybrid

rates increase with the length of traces. (4) We can observe
that the identification rates on combined traffic are close to
or slightly better than the identification rate on Skype traffic.
The identification rates of combined traffic are higher than
the rates of YouTube traffic and download traffic. The reasons
are as follows: (a) Combined traffic has more characteristic
frequency components for OS identification in comparison
with single type of traffic since combined traffic contains
other types of traffic. (b) When a smartphone is more heavily
loaded because it is running multiple applications, the OS
features such as power saving mechanisms are more fre-
quently used. (5) The identification rates for Skype traffic are
higher than the rates for the Download and YouTube traffic.
The differences are mainly because of the higher resource
consumption, in terms of both power consumption and CPU
usage, by Skype as shown in Table III. A higher resource
consumption leads to a higher chance that power saving
features are triggered by the OS, which in turn generates
additional characteristic frequency components.

Suppression Identification Algorithm: The parameter K
used in the identification step of the suppression algorithm
is determined based on the mean and the standard deviation
of the magnitude of frequency components as described in
Function 7. If not specified, the parameter K will be chosen
in the same way in the rest of the paper.

Figure 4(b) shows the experiment results with the sup-
pression algorithm. From Figure 4(b), we can make the
following observations: (1) The highest identification rates
with YouTube Traffic, Download Traffic, Skype Traffic, and
Combined Traffic are 0.81, 0.94, 0.69, and 0.81 respectively.
(2) Even with only 30 second traffic traces, the identification
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rates are 0.51, 0.46, 0.42, and 0.5 for YouTube traffic, down-
load traffic, Skype traffic, and combined traffic respectively.
(3) In general, the identification rates increase with the length
of traces. (4) We can also have similar observations as in
Figure 4(a) that the identification rates of the Skype traffic
are higher than the rates of the download and YouTube traffic.
Spectrum Selection Identification Algorithm: Figure 4(c)
shows the identification performance of the spectrum se-
lection algorithm. We can observe that the algorithm sig-
nificantly improves the identification performance: (1) With
30 seconds of traffic traces, the identification can reach
.68, .67, .77, and 1 for YouTube traffic, download traffic,
Skype traffic, and combined traffic respectively. (2) When
comparing with the full spectrum algorithm, the algorithm
improves the identification performance by 7%, 0%, 12%,
and 1% for YouTube traffic, download traffic, Skype traffic,
and combined traffic respectively. When comparing with the
suppression algorithm, the improvements are 14%, 2%, 23%,
and 19% for YouTube traffic, download traffic, Skype traffic,
and combined traffic respectively.

Hybrid Identification Algorithm: The experiment results of
the hybrid algorithm are shown in Figure 4(d). In comparison
with the suppression algorithm, the hybrid algorithm can
achieve higher identification rates. The improvement is due
mainly to fact that the hybrid algorithm filters out noise fre-
quency components by genetic algorithms. When compared
with the spectrum selection algorithm, the identification rates
of the hybrid algorithm are lower, however. The performance
differences are because of the assumption made in both the
hybrid algorithm and the suppression algorithm: most of the
insignificant frequency components are noise frequency com-
ponents. Removing all the insignificant frequency compo-
nents means that some characteristic frequency components
that are insignificant may be removed as well.

D. False Alarm Rates

To investigate the identification performance on each OS,
we use false alarm rates as the performance metrics. Figure
5 shows the false alarm rates of the OS identification with
the spectrum selection algorithm. Similar observations can
be made for the other identification algorithms.

We also observe that the false alarm rates decrease with
the length of traces. When the trace length approaches 15
minutes, the false alarm rates fall below 20%.

E. Identification of Versions of Smartphone OSes

In this set of experiments, we investigate the possibility
of identifying smartphone OS versions running on the same
smartphones. We collect traffic from iPhone 5s running iOS
8.0 and i0OS 11.4 and iPhone 6s Plus running iOS 11.03 and
i0S 11.4. The identification results of both phones are shown
in Figure 6.

In Figure 6(a), we can observe that the identification rate
can reach 100% for Skype, YouTube, and download traffic.
For the combined traffic, the identification rate can reach
83% with 15-minute-long traces. The results show that the
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identification algorithm can successfully identify the OSes
running on iPhone 5s.

In Figure 6(b), we can observe the identification rate can
achieve 100% for 15-minute-long Skype traffic. But for the
other three types of traffic, the identification rates fluctuate
around 50%, the random guess rate. When comparing with
the results in Figure 6(a) on iPhone 5s, we can observe that
the identification performance on iPhone 6s Plus is worse.
We believe the reason is that the OS difference between i0S
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Fig. 7. Application Identification Performance by the Spectrum Selection
Algorithm (The applications to be detected are YouTube, Skype, and
Downloading. The applications are equally distributed making the random
guess rate 33%.)

11.03 and iOS 11.4 is less than the OS difference between
i0S 8.0 and iOS 11.4. But the OS difference between i0OS
11.03 and iOS 11.4 can still be detected with Skype traffic.

VI. DISCUSSION
A. Beyond OS Identification

The algorithms proposed in this paper are not limited to
identification of OSes only. Instead, they can be used to
identify other aspects of traffic, for example the application
that generates the traffic. The algorithm itself does not need
to be fundamentally modified.

A simple example of this is illustrated in Figure 7, where
we use the Spectrum Selection Algorithm to identify appli-
cations.

We apply the Spectrum Selection Algorithm to identify
applications using the same traffic traces described in Sec-
tion V without distinguishing traffic from different operating
systems during training. The applications to be detected
are YouTube, Skype, and Downloading. Figure 7 shows the
performance of the application identification along with the
false-positive and false-negative identification rates for each
application included in the experiment. We note that the
detection rate can reach 85% with 15 minutes of traffic
traces. We infer that the Spectrum Selection Algorithm can
successfully extract application-specific frequency compo-
nents, which can be used for simple cases of application
identification.

B. Running Time

Table IV shows the empirical running time for training and
identification for all four algorithms. First it can be observed
that each identification for all algorithms takes less than 0.3
seconds. It means the attack is very efficient and feasible
once the training is finished. We can also observe that the
time required for training varies due to the complexity of
the algorithm. The spectrum selection and hybrid algorithms
take more time for training because of the genetic algorithm
used in the two algorithms. The full spectrum algorithm
only removes the DC component and uses the rest frequency
components as the characteristic frequency components. So
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there is no need for the full spectrum algorithm to pick out
characteristic frequency components from a spectrum with
training required for the spectrum selection algorithm. In
other words, the training time for full spectrum algorithm
is essentially zero.

VII. CONCLUSION

In this paper we present, evaluate, and compare a number
of frequency-domain analysis based algorithms in order to
illustrate how susceptible smartphones are against passive
attacks that aim at inferring configuration parameters of a
target smartphone despite the phone using encrypted com-
munication. Specifically, we show how it is possible, based
on relatively short measurements, to infer the OS of the phone
or the particular application that is running.
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