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Abstract
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1 Introduction

We consider the unconstrained optimization problem

min
x∈Rn

f (x), (1)

where f : R
n → R is a twice Lipschitz continuously differentiable function that

is nonconvex in general. We further assume that f is bounded below for all x , by
some constant flow. Although the Hessian ∇2 f (x) is well defined for such functions,
we assume that full evaluation of this matrix is undesirable from a computational
viewpoint, though we assume that Hessian-vector products of the form ∇2 f (x)v can
be computed with reasonable efficiency, for arbitrary vectors v, as is often the case
when n is large.

Unconstrained minimization of nonconvex smooth functions of many variables is a
much-studied paradigm in optimization. Approaches such as limited-memory BFGS
and nonlinear conjugate gradient are widely used to tackle (1), particularly in the case
of large dimension n. Another popular approach, known as “Newton-CG,” applies the
(linear) conjugate gradient (CG) method to the second-order Taylor-series approxima-
tion of f around the current iterate xk . Each iteration of CG requires computation of
one Hessian-vector product of the form ∇2 f (xk)v. A trust-region variant of Newton-
CG, due to Steihaug [27], terminates the CG iterations when sufficient accuracy is
achieved in minimizing the quadratic approximation, when a CG step leads outside
the trust region, or when negative curvature is encountered in ∇2 f (xk). A line-search
variant presented in [25] applies CG until some convergence criterion is satisfied, or
until negative curvature is encountered, in which case the search direction reverts to
the negative gradient.

Theoretical guarantees for Newton-CG algorithms have been provided, e.g. in
[12,15–17,25]. Convergence analysis for such methods typically shows that accu-
mulation points are stationary, that is, they satisfy the first-order optimality condition
∇ f (x) = 0. Local linear or superlinear convergence to a point satisfying second-order
sufficient conditions is sometimes also proved forNewton-CGmethods. Although sev-
eral Newton-type methods have been analyzed from a global complexity perspective
[8], particularly in terms of outer iterations and derivative evaluations, bounds that
explicitly account for the use of inexact Newton-CG techniques have received less
attention in the optimization literature. Meanwhile, with the recent upsurge of inter-
est in complexity, several new algorithms have been proposed that have good global
complexity guarantees. We review some such contributions in Sect. 2. In most cases,
these new methods depart significantly from those seen in the traditional optimization
literature, and there are questions surrounding their practical appeal.

Our aim in this paper is to develop a method that hews closely to the Newton-
CG approach, but which comes equipped with certain safeguards and enhancements
that allow worst-case complexity results to be proved. At each iteration, we use CG to
solve a slightly damped version of the Newton equations, monitoring the CG iterations
for evidence of indefiniteness in the Hessian. If the CG process terminates with an
approximation to the Newton step, we perform a backtracking line search along this
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direction. Otherwise, we step along a negative curvature direction for the Hessian,
obtained either from the CG procedure on the Newton equations, or via some auxiliary
computation (possibly anotherCGprocess). In either case,we can show that significant
decrease can be attained in f at each iteration, at reasonable computational cost (in
terms of the number of gradient evaluations or Hessian-vector products), allowing
worst-case complexity results to be proved.

The remainder of the paper is organized as follows.We position our work within the
existing literature in Sect. 2. Our algorithm is described in Sect. 3. Section 4 contains
the complexity analysis, showing both a deterministic upper bound on the computation
required to attain approximate first-order conditions (Sect. 4.2) and a high-probability
upper bound on the computation required to satisfy approximate second-order nec-
essary conditions (Sect. 4.3). Section 5 contains some conclusions and discussion.
Several technical results and proofs related to CG are gathered in the Appendix.

Assumptions, Background, Notation Our algorithm seeks a point that approximately
satisfies second-order necessary conditions for optimality, that is,

‖∇ f (x)‖ ≤ εg, λmin(∇2 f (x)) ≥ −εH , (2)

for specified small positive tolerances εg and εH . (Here and subsequently, ‖·‖ denotes
theEuclidean norm, or its induced normsonmatrices.)Wemake the following standard
assumptions throughout.

Assumption 1 The level set L f (x0) = {x | f (x) ≤ f (x0)} is compact.

Assumption 2 The function f is twice uniformlyLipschitz continuously differentiable
on an open neighborhood of L f (x0) that includes the trial points generated by the
algorithm. We denote by LH the Lipschitz constant for ∇2 f on this neighborhood.

Note that Assumption 2 is made for simplicity of exposition; slightly weaker vari-
ants could be used at the expense of some complication in the analysis.

Under these two assumptions, there exist scalars flow, Ug > 0, and UH > 0 such
that the following are satisfied for x ∈ L f (x0):

f (x) ≥ flow, ‖∇ f (x)‖ ≤ Ug, ‖∇2 f (x)‖ ≤ UH . (3)

We observe that UH is a Lipschitz constant for the gradient.
For any x and d such that Assumption 2 is satisfied at x and x + d, we have

f (x + d) ≤ f (x) + ∇ f (x)�d + 1

2
d�∇2 f (x)d + LH

6
‖d‖3. (4)

Notationally, we use order notationO in the usual sense, whereas Õ(·) representsO
with logarithmic terms omitted. We use such notation in bounding iteration count and
computational effort, and focus on the dependencies of such complexities on εg and
εH . (In one of our final results—Corollary 2—we also show explicitly the dependence
on n and UH .)
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2 Complexity in nonconvex optimization

In recent years, many algorithms have been proposed for finding a point that satisfies
conditions (2), with iteration complexity and computational complexity bounded in
terms of εg and εH .We review several worksmost relevant to this paper here, and relate
their results to our contributions. For purposes of computational complexity, we define
the unit of computation to be one Hessian-vector product or one gradient evaluation,
implicitly using the observation from computational/algorithmic differentiation [18]
that these two operations differ in cost only by a modest factor, independent of the
dimension n.

Classical second-order convergent trust-region schemes [12] can be shown to satisfy
(2) after at most O(max{ε−2

g ε−1
H , ε−3

H }) iterations [10]. For the class of second-order
algorithms (that is, algorithms which rely on second-order derivatives and Newton-
type steps) the best known iteration bound isO(max{ε−3/2

g , ε−3
H }). This boundwas first

established for a form of cubic regularization of Newton’s method [24]. Following this
paper, numerous other algorithms have also been proposed which match this bound,
see for example [3,8,13,14,23].

A recent trend in complexity analysis of thesemethods also accounts for the compu-
tational cost of each iteration, thus yielding a bound on the computational complexity.
Two independent proposals, respectively based on adapting accelerated gradient to the
nonconvex setting [6] and approximately solving the cubic subproblem [1], require
Õ(ε−7/4) operations (with high probability, showing dependency only on ε) to find a
point x that satisfies

‖∇ f (x)‖ ≤ ε and λmin(∇2 f (x)) ≥ −√UH ε. (5)

The difference of a factor of ε−1/4 with the results presented above arises from the
cost of computing a negative curvature direction of∇2 f (xk) and/or the cost of solving
a linear system. The probabilistic nature of the bound is generally due to the intro-
duction of randomness in the curvature estimation process; see [2,28] for two recent
examples. A complexity bound of the same type was also established for a variant
of accelerated gradient free of negative curvature computation, that regularly adds a
random perturbation to the iterate when the gradient norm is small [19].

In an interesting followup to [6], an algorithm based on accelerated gradient with
a nonconvexity monitor was proposed [5]. It requires at most Õ(ε−7/4) iterations to
satisfy (5) with high probability. However, if one is concerned only with satisfying
the gradient condition ‖∇ f (x)‖ ≤ ε, the Õ(ε−7/4) bound holds deterministically.
Note that this bound represents an improvement over the O(ε−2) of steepest descent
and classical Newton’s method [7]. The improvement is due to a modification of the
accelerated gradient paradigm that allows for deterministic detection and exploitation
of negative curvature directions in regions of sufficient nonconvexity.

In a previous work [26], two authors of the current paper proposed a Newton-
based algorithm in a line-search framework which has an iteration complexity of
O(max{ε−3/2

g , ε−3
H }) when the subproblems are solved exactly, and a computational

complexity of Õ (
ε−7/4

)
Hessian-vector products and/or gradient evaluations, when

the subproblems are solved inexactly usingCGand the randomizedLanczos algorithm.
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Compared to the accelerated gradient methods, this approach aligns more closely with
traditional optimization practice, as described in Sect. 1.

Building on [26], the current paper describes a similar line-search framework with
inexact Newton steps, but uses amodified version of CG to solve the system of Newton
equations, without first checking for positive definiteness of the coefficient matrix.
The modification is based in part on a convexity monitoring device introduced in the
accelerated gradient algorithms mentioned above. An implicit cap is imposed on the
number of CG iterations that are used to solve the damped Newton system. We show
that once this cap is reached, either the damped Newton system has been solved to
sufficient accuracy or else a direction of “sufficiently negative curvature” has been
identified for the Hessian. (A single extra CG iteration may be needed to identify
the negative curvature direction, in much the same manner as in [5] for accelerated
gradient.) In contrast to the previous work [26], no estimate of the smallest eigenvalue
of the Hessian is required prior to computing a Newton step. In addition to removing
potentially unnecessary computation, this approach allows a deterministic result for
first-order optimality to be proved, as in [5].

We are deliberate in our use of CG rather than accelerated gradient as the method of
choice for minimizing the quadratic objective that arises in the damped Newton step.
When applied to strongly convex quadratics, both approaches have similar asymptotic
linear convergence rates that depend only on the extreme eigenvalues of the Hes-
sian, and both can be analyzed using the same potential function [20] and viewed as
two instances of an underlying “idealized algorithm” [21]. However, CG has several
advantages: It has a rich convergence theory that depends on the full spectrum of
eigenvalues; it is fully adaptive, requiring no prior estimates of the extreme eigenval-
ues; and its practical performance on convex quadratics is superior. (See, for example,
[25, Chapter 5] for a description of these properties.) Further, as we prove in this
paper (Sect. 3.1), CG can be adapted to detect nonconvexity efficiently in a quadratic
function, without altering its core properties. We show in addition (see Sect. 3.2
and Appendix B) that by applying CG to a linear system with a random right-hand
side, we can find a direction of negative curvature in an indefinite matrix efficiently,
with the same iteration complexity as the randomized Lanczos process of [22] used
elsewhere.

The practical benefits of CG in large-scale optimization have long been appreciated.
We establish here that with suitable enhancements, methods based on CG can also be
equipped with good complexity properties as well.

3 Damped-Newton/Capped-CGmethod with negative curvature
steps

We describe our algorithm in this section, starting with its twomajor components. The
first component, described in Sect. 3.1, is a linear conjugate gradient procedure that is
used to solve a slightly dampedNewton system.This procedure includes enhancements
to detect indefiniteness in the Hessian and to restrict the number of iterations. Because
of this implicit bound on the number of iterations, we refer to it as “Capped CG.”
The second component (see Sect. 3.2) is a “minimum eigenvalue oracle” that seeks a
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direction of negative curvature for a symmetric matrix, along with its corresponding
vector. The main algorithm is described in Sect. 3.3.

Algorithm 1 Capped Conjugate Gradient
Inputs: Symmetric matrix H ∈ R

n×n ; vector g 	= 0; damping parameter ε ∈ (0, 1); desired relative
accuracy ζ ∈ (0, 1);
Optional input: scalar M (set to 0 if not provided);
Outputs: d_type, d;
Secondary outputs: final values of M , κ , ζ̂ , τ , and T ;
Set

H̄ := H + 2ε I , κ := M + 2ε

ε
, ζ̂ := ζ

3κ
, τ :=

√
κ√

κ + 1
, T := 4κ4

(1 − √
τ)2

;

y0 ← 0, r0 ← g, p0 ← −g, j ← 0;
if p�

0 H̄ p0 < ε‖p0‖2 then
Set d = p0 and terminate with d_type=NC;

else if ‖Hp0‖ > M‖p0‖ then
Set M ← ‖Hp0‖/‖p0‖ and update κ, ζ̂ , τ, T accordingly;

end if
while TRUE do

α j ← r�
j r j /p

�
j H̄ p j ; {Begin Standard CG Operations}

y j+1 ← y j + α j p j ;
r j+1 ← r j + α j H̄ p j ;

β j+1 ← (r�
j+1r j+1)/(r

�
j r j );

p j+1 ← −r j+1 + β j+1 p j ; {End Standard CG Operations}
j ← j + 1;
if ‖Hp j‖ > M‖p j‖ then

Set M ← ‖Hp j‖/‖p j‖ and update κ, ζ̂ , τ, T accordingly;
end if
if ‖Hy j‖ > M‖y j‖ then

Set M ← ‖Hy j‖/‖y j‖ and update κ, ζ̂ , τ, T accordingly;
end if
if ‖Hr j‖ > M‖r j‖ then

Set M ← ‖Hr j‖/‖r j‖ and update κ, ζ̂ , τ, T accordingly;
end if
if y�

j H̄ y j < ε‖y j‖2 then
Set d ← y j and terminate with d_type=NC;

else if ‖r j‖ ≤ ζ̂‖r0‖ then
Set d ← y j and terminate with d_type=SOL;

else if p�
j H̄ p j < ε‖p j‖2 then

Set d ← p j and terminate with d_type=NC;

else if ‖r j‖ >
√
T τ j/2‖r0‖ then

Compute α j , y j+1 as in the main loop above;
Find i ∈ {0, . . . , j − 1} such that

(y j+1 − yi )
� H̄(y j+1 − yi )

‖y j+1 − yi‖2
< ε; (6)

Set d ← y j+1 − yi and terminate with d_type=NC;
end if

end while
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3.1 Capped conjugate gradient

Conjugate Gradient (CG) is a widely used technique for solving linear equations with
symmetric positive definite coefficient matrices or, equivalently, minimizing strongly
convex quadratic functions. We devise a modified CG algorithm and apply it to a
system of the form H̄ y = −g, where H̄ = H + 2ε I is a damped version of the
symmetric matrix H , which is our notational proxy for the Hessian ∇2 f (xk).

Algorithm 1 presents our CappedCGprocedure. Themain loop consists of classical
CG iterations.When H̄ � ε I , Algorithm 1will generate the same iterates as a classical
conjugate gradientmethod applied to H̄ y = −g, and terminate at an inexact solution of
this linear system. When H̄ � ε I , the features added to Algorithm 1 cause a direction
d to be identified along which d� H̄d < ε‖d‖2 or, equivalently, d�Hd < −ε‖d‖2—
a direction of “sufficiently negative curvature” for H . Directions d of this type are
encountered most obviously when they arise as iterates y j or search directions p j in
theCG iterations. But evidence of the situation H̄ � ε I can arisemore subtly,when the
residual norms ‖r j‖ decrease more slowly than we would expect if the eigenvalues of
H̄ were bounded below by ε. Accordingly, Algorithm1 checks residual norms for slow
decrease, and if such behavior is detected, it uses a technique based on one used for
accelerated gradient methods in [5] to recover a direction d such that d� H̄d < ε‖d‖2.

Algorithm 1 may be called with an optional input M that is meant to be an upper
bound on ‖H‖. Whether or not this parameter is supplied, it is updated so that at
any point in the execution of the algorithm, M is an upper bound on the maximum
curvature of H revealed to that point. Other parameters that depend on M (namely, κ ,
ζ̂ , τ , and T ) are updated whenever M is updated.

The following lemma justifies our use of the term “capped” in connection with
Algorithm 1. Regardless of whether the condition H̄ � ε I is satisfied, the number
of iterations will not exceed a certain number J (M, ε, ζ ) that we subsequently show
to be Õ(ε−1/2). (We write J for J (M, ε, ζ ) in some of the subsequent discussion, to
avoid clutter.)

Lemma 1 The number of iterations of Algorithm 1 is bounded by

min{n, J (M, ε, ζ )},

where J = J (M, ε, ζ ) is the smallest integer such that
√
T τ J/2 ≤ ζ̂ where M, ζ̂ ,

T , and τ are the values returned by the algorithm. If all iterates yi generated by the
algorithm are stored, the number of matrix-vector multiplications required is bounded
by

min{n, J (M, ε, ζ )} + 1. (7)

If the iterates yi must be regenerated in order to define the direction d returned after
(6), this bound becomes 2min{n, J (M, ε, ζ )} + 1.

Proof If the full n iterations are performed, without any of the termination conditions
being tripped, the standard properties of CG (see Appendix A) ensure that the final
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residual rn is zero, so that the condition ‖rn‖ ≤ ζ̂‖r0‖ is satisfied, and termination
occurs.

Since no more than n iterations are performed, the upper bound M is updated at
most a finite number of times, so the quantity J is well defined.

Supposing that J < n, we note from the definition of J that
√
T τ J/2‖r0‖ ≤ ζ̂‖r0‖.

Thus at least one of the following two conditions must be satisfied at iteration J :
‖rJ‖ ≤ ζ̂‖r0‖ or ‖rJ‖ >

√
T τ J/2‖r0‖. In either case, termination will occur at

iteration J , unless it has occurred already at a previous iteration.
To derive (7), note that the main workload at each iteration j is computation of

a single matrix-vector product Hp j after the increment of j (since matrix-vector
products involving the matrices H and H̄ and the vectors y j and r j can be computed
in terms of this vector, in an additional O(n) operations). (The “+1” in (7) accounts
for the initial matrix-vector multiplication Hp0 performed prior to entering the loop.)

If we do not store additional information, we need to regenerate the information
needed to compute the direction d satisfying (6) by re-running the iterations of CG,
possibly up to the second-to-last iteration. This fact accounts for the additional cost
of min{n, J (M, ε, ζ )} in the no-storage case.1 
�

Note that J (M, ε, ζ ) is an increasing function ofM , since ζ̂ is a decreasing function
of M , while T and τ (and thus

√
T τ j/2) are increasing in M . If UH is known in

advance, we can call Algorithm 1 with M = UH and use J (UH , ε, ζ ) as the bound.
Alternately, we can call Algorithm 1 with M = 0 and let it adjust M as needed during
the computation. Since the final value of M will be at mostUH , and since J (M, ε, ζ )

is an increasing function of M , the quantity J (UH , ε, ζ ) provides the upper bound on
the number of iterations in this case too.

We can estimate J by taking logs in its definition, as follows:

J ≤ 2 ln(ζ̂ /
√
T )

ln(τ )
= ln(ζ̂ 2/T )

ln
( √

κ√
κ+1

) = ln(T /ζ̂ 2)

ln(1 + 1/
√

κ)
≤
(√

κ + 1

2

)
ln

(
T

ζ̂ 2

)
,

wherewe used ln(1+ 1
t ) ≥ 1

t+1/2 to obtain the latest inequality. By replacing T , τ, ζ̂ , κ

by their definitions in Algorithm 1, and using 1
1−√

τ
= 1+√

τ

1−τ
≤ 2

1−τ
, we obtain

J (M, ε, ζ ) ≤ min

{

n,

⌈(√
κ + 1

2

)
ln

(
144

(√
κ + 1

)2
κ6

ζ 2

)⌉}

= min
{
n, Õ(ε−1/2)

}
. (8)

1 Interestingly, as we show in Appendix A, the ratios on the left-hand side of (6) can be calculated without
knowledge of yi for i = 0, 1, . . . , j − 1, provided that we store the scalar quantities αi and ‖ri‖2 for
i = 0, 1, . . . , j − 1.
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3.2 Minimum eigenvalue oracle

A minimum eigenvalue oracle is needed in the main algorithm to either return a
direction of “sufficient negative curvature” in a given symmetricmatrix, or else return a
certificate that thematrix is almost positive definite. This oracle is stated asProcedure 2.

Procedure 2Minimum Eigenvalue Oracle
Inputs: Symmetric matrix H ∈ R

n×n , tolerance ε > 0;
Optional input: Upper bound on Hessian norm M ;
Outputs:An estimate λ of λmin(H) such that λ ≤ −ε/2, and vector v with ‖v‖ = 1 such that v�Hv = λ

OR a certificate that λmin(H) ≥ −ε. In the latter case, when the certificate is output, it is false with
probability δ for some δ ∈ [0, 1).

To implement this oracle, we can use any procedure that finds the smallest eigen-
value of H to an absolute precision of ε/2 with probability at least 1 − δ. This
probabilistic property encompasses both deterministic and randomized instances of
Procedure 2. In Sect. 4.3, we will establish complexity results under this general set-
ting, and analyze the impact of the threshold δ. Several possibilities for implementing
Procedure 2 have been proposed in the literature, with various guarantees. An exact,
deterministic computation of the minimum eigenvalue and eigenvector (through a full
Hessian evaluation and factorization) would be a valid choice for Procedure 2 (with
δ = 0 in that case), but is unsuited to our setting in which Hessian-vector products and
vector operations are the fundamental operations. Strategies that require only gradient
evaluations [2,28] may offer similar guarantees to those discussed below.

We focus on two inexact, randomized approaches for implementing Procedure 2.
The first is the Lanczos method, which finds the smallest eigenvalue of the restriction
of a given symmetric matrix to a Krylov subspace based on some initial vector. When
the starting vector is chosen randomly, the dimension of the Krylov subspace increases
by one at each Lanczos iteration, with high probability (see Appendix B and [22]).
To the best of our knowledge, [6] was the first paper to propose a complexity analysis
based on the use of randomized Lanczos for detecting negative curvature. The key
result is the following.

Lemma 2 Suppose that the Lanczos method is used to estimate the smallest eigenvalue
of H starting with a random vector uniformly generated on the unit sphere, where
‖H‖ ≤ M. For any δ ∈ [0, 1), this approach finds the smallest eigenvalue of H to an
absolute precision of ε/2, together with a corresponding direction v, in at most

min

{

n, 1 +
⌈
1

2
ln(2.75n/δ2)

√
M

ε

⌉}

iterations, (9)

with probability at least 1 − δ.

Proof If ε
4M ≥ 1, we have − ε

4 I ≺ −MI � H � MI ≺ ε
4 I . Therefore, letting b be

the (unit norm) random start of the Lanczos method, we obtain
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b�Hb ≤ M <
ε

4
= −ε

4
+ ε

2
< −M + ε

2
≤ λmin(H) + ε

2
,

thus the desired conclusion holds at the initial point.
We now suppose that ε

4M ∈ (0, 1). By setting ε̄ = ε
4M in Lemma 9, we have

that when k is at least the quantity in (9), the estimate ξmin(H , b, k) of the smallest
eigenvalue after k iterations of Lanczos applied to H starting from vector b satisfies
the following bound, with probability at least 1 − δ:

ξmin(H , b, k) − λmin(H) ≤ ε̄(λmax(H) − λmin(H)) ≤ ε

2

λmax(H) − λmin(H)

2M
≤ ε

2
,

as required. 
�
Procedure 2 can be implemented by outputting the approximate eigenvalue λ for

H , determined by the randomized Lanczos process, along with the corresponding
direction v, provided that λ ≤ −ε/2. When λ > −ε/2, Procedure 2 returns the
certificate that λmin(H) ≥ −ε, which is correct with probability at least 1 − δ.

The second approach to implementing Procedure 2 is to apply the classical CG
algorithm to solve a linear system in which the coefficient matrix is a shifted version of
thematrix H and the right-hand side is random.This procedure has essentially identical
performance to Lanczos in terms of the number of iterations required to detect the
required direction of sufficiently negative curvature, as the following theorem shows.

Theorem 1 Suppose that Procedure 2 consists in applying the standard CG algorithm
(see Appendix A) to the linear system

(
H + 1

2ε I
)
d = b,

where b is chosen randomly from a uniform distribution over the unit sphere. Let M
satisfying ‖H‖ ≤ M and δ ∈ (0, 1) be given. If λmin(H) < −ε, then with probability
at least 1− δ, CG will yield a direction v satisfying the conditions of Procedure 2 in a
number of iterations bounded above by (9). Conversely, if CG runs for this number of
iterations without encountering a direction of negative curvature for H + 1

2ε I , then
λmin(H) ≥ −ε with probability at least 1 − δ.

We prove this result, and give some additional details of the CG implementation, in
Appendices A and B. We also present in Appendix B.3 a variant of the randomized-
Lanczos implementation of Procedure 2 that does not require prior knowledge of the
boundM such that ‖H‖ ≤ M . In this variant,M itself is also estimated via randomized
Lanczos, and the number of iterations required does not different significantly from
(9). It follows from this result, together with our observation above that M can also be
obtained adaptively inside Algorithm 1, that knowledge of the bound on ‖∇2 f (x)‖ is
not needed at all in implementing our method.

3.3 Damped Newton-CG

Algorithm 3 presents our method for finding a point that satisfies (2). It uses two kinds
of search directions. Negative curvature directions (that are also first-order descent
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steps) are used when they are either encountered in the course of applying the Capped
CG method (Algorithm 1) to the damped Newton equations, or found explicitly by
application of Procedure 2. The second type of step is an inexact damped Newton
step, which is the other possible outcome of Algorithm 1. For both types of steps,
a backtracking line search is used to identify a new iterate that satisfies a sufficient
decrease condition, that depends on the cubic norm of the step. Such a criterion is
instrumental in establishing optimal complexity guarantees in second-order methods
[3,13,14,26].

Algorithm 3 Damped Newton-CG
Inputs: Tolerances εg > 0, εH > 0; backtracking parameter θ ∈ (0, 1); starting point x0; accuracy
parameter ζ ∈ (0, 1); sufficient decrease parameter η > 0;
Optional input: Upper bound M > 0 on Hessian norm;
for k = 0, 1, 2, . . . do

if ‖∇ f (xk )‖ > εg then
Call Algorithm 1 with H = ∇2 f (xk ), ε = εH , g = ∇ f (xk ), accuracy parameter ζ and M if
provided, to obtain outputs d, d_type;
if d_type=NC then

dk ← −sgn(d�g) |d�∇2 f (xk )d|
‖d‖2

d
‖d‖ ;

else {d_type=SOL}
dk ← d;

end if
Go to Line Search;

else
Call Procedure 2 with H = ∇2 f (xk ), ε = εH and M if provided;
if Procedure 2 certifies that λmin(∇2 f (xk )) ≥ −εH then

Terminate;
else {direction of sufficient negative curvature found}

dk ← −sgn(v�g) |v�∇2 f (xk )v|
‖v‖2 v (where v is the output from Procedure 2) and go to Line

Search;
end if

end if
Line Search: Compute a step length αk = θ jk , where jk is the smallest nonnegative integer such that

f (xk + αkdk ) < f (xk ) − η

6
α3k ‖dk‖3; (10)

xk+1 ← xk + αkdk ;
end for

In its deployment of two types of search directions, our method is similar to Stei-
haug’s trust-region Newton-CG method [27], which applies CG (starting from a zero
initial guess) to solve the Newton equations but, if it encounters a negative curvature
direction during CG, steps along that direction to the trust-region boundary. It differs
from the line-searchNewton-CGmethod described in [25, Section 7.1] in that it makes
use of negative curvature directions when they are encountered, rather than discard-
ing them in favor of a steepest-descent direction. Algorithm 3 improves over both
approaches in having a global complexity theory for convergence to both approximate
first-order points, and points satisfying the approximate second-order conditions (2).
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In Sect. 4, we will analyze the global complexity properties of our algorithm. Local
convergence could also be of interest, in particular, it is probably possible to prove
rapid convergence of Algorithm 3 once it reaches the neighborhood of a strict local
minimum. We believe that such results would be complicated and less enlightening
than the complexity guarantees, so we restrict our study to the latter.

4 Complexity analysis

In this section, we present a global worst-case complexity analysis of Algorithm 3.
Elements of the analysis follow those in the earlier paper [26]. The most technical
part appears in Sect. 4.1 below, where we show that the Capped CG procedure returns
(deterministically) either an inexact Newton step or a negative curvature direction,
both of which can be used as the basis of a successful backtracking line search.
These properties are used in Sect. 4.2 to prove complexity results for convergence to
a point satisfying the approximate first-order condition ‖∇ f (x)‖ ≤ εg . Section 4.3
proves complexity results for finding approximate second-order points (2), leveraging
properties of the minimum eigenvalue oracle, Procedure 2.

4.1 Properties of Capped CG

We now explore the properties of the directions d that are output by our Capped CG
procedure, Algorithm 1. The main result deals with the case in which Algorithm 1
terminates due to insufficiently rapid decrease in ‖r j‖, showing that the strategy for
identifying a direction of sufficient negative curvature for H is effective.

Theorem 2 Suppose that the main loop of Algorithm 1 terminates with j = Ĵ , where

Ĵ ∈ {1, . . . ,min{n, J (M, ε, ζ )}},

(where J (M, ε, ζ ) is defined in Lemma 1 and (8)) because the fourth termination test
is satisfied and the three earlier conditions do not hold, that is, y�

Ĵ
H̄ yĴ ≥ ε‖yĴ‖2,

p�
Ĵ
H̄ pĴ ≥ ε‖pĴ‖2, and

‖r Ĵ‖ > max
{
ζ̂ ,

√
T τ Ĵ/2

}
‖r0‖. (11)

where M, T , ζ̂ , and τ are the values returned by Algorithm 1. Then yĴ+1 is computed
by Algorithm 1, and we have

(yĴ+1 − yi )� H̄(yĴ+1 − yi )

‖yĴ+1 − yi‖2 < ε, for some i ∈ {0, . . . , Ĵ − 1}. (12)

The proof of Theorem 2 is quite technical, and can be found in Appendix C. It relies
on an argument previously used to analyze a strategy based on accelerated gradient [5,
Appendix A.1], itself inspired by a result of Bubeck [4], but it needs some additional
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steps that relate specifically to CG. The part of our proof that corresponds to [5,
Appendix A.1] is simplified in some respects, thanks to the use of CG and the fact that
a quadratic (rather than a nonlinear) function is being minimized in the subproblem.

Having shown that Algorithm 1 is well-defined, we summarize the properties of its
outputs.

Lemma 3 Let Assumptions 1 and 2 hold, and suppose that Algorithm 1 is invoked at an
iterate xk of Algorithm 3 (so that ‖∇ f (xk)‖ > εg > 0). Let dk be the vector obtained
in Algorithm 3 from the output d of Algorithm 1. Then, one of the two following
statements holds:

1. d_type =SOL, and the direction dk satisfies

d�
k (∇2 f (xk) + 2εH I )dk ≥ εH‖dk‖2, (13a)

‖dk‖ ≤ 1.1ε−1
H ‖∇ f (xk)‖, (13b)

‖r̂k‖ ≤ 1

2
εH ζ‖dk‖, (13c)

where

r̂k := (∇2 f (xk) + 2εH I )dk + ∇ f (xk); (14)

2. d_type=NC, and the direction dk satisfies d�
k ∇ f (xk) ≤ 0 as well as

d�
k ∇2 f (xk)dk

‖dk‖2 = −‖dk‖ ≤ −εH . (15)

Proof For simplicity of notation, we use H = ∇2 f (xk) and g = ∇ f (xk) in the proof.
Suppose first that d_type=SOL. In that case, we have from the termination conditions
in Algorithm 1 and (14) that

d�
k (H + 2εH I )dk ≥ εH‖dk‖2, (16a)

‖r̂k‖ ≤ ζ̂‖g‖, (16b)

where ζ̂ was returned by the algorithm. We immediately recognize (13a) in (16a). We
now prove (13b). Observe first that (16a) yields

εH‖dk‖2 ≤ d�
k (H + 2εH I )dk ≤ ‖dk‖‖(H + 2εH I )dk‖,

so from (14) we have

‖dk‖ ≤ ε−1
H ‖(H + 2εH I )dk‖ = ε−1

H ‖ − g + r̂k‖
= ε−1

H

√
‖g‖2 + ‖r̂k‖2 ≤ ε−1

H

√
1 + ζ̂ 2‖g‖,
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wherewe used (16b) to obtain the final bound, togetherwith the equality ‖−g+r̂k‖2 =
‖g‖2+‖r̂k‖2, which follows from g�r̂k = r�

0 r̂k = 0, by orthogonality of the residuals
in CG (see Lemma 7, Property 2). Since ζ̂ ≤ ζ/(3κ) ≤ 1/6 by construction, we have
‖dk‖ ≤ √

37/36ε−1
H ‖g‖ ≤ 1.1ε−1

H ‖g‖, proving (13b).
The bound (13c) follows from (16b) and the logic below:

‖r̂k‖ ≤ ζ̂‖g‖ ≤ ζ̂
(‖(H + 2εH I )dk‖ + ‖r̂k‖

) ≤ ζ̂
(
(M + 2εH )‖dk‖ + ‖r̂k‖

)

⇒ ‖r̂k‖ ≤ ζ̂

1 − ζ̂
(M + 2εH )‖dk‖,

where M is the value returned by the algorithm. We finally use ζ̂ < 1/6 to arrive at

ζ̂

1 − ζ̂
(M + 2εH ) ≤ 6

5
ζ̂ (M + 2εH ) = 6

5

ζ εH

3
<

1

2
ζ εH ,

yielding (13c).
In the case of d_type=NC, we recall that Algorithm 3 defines

dk = −sgn(d�g) |d
�Hd|
‖d‖2

d

‖d‖ (17)

where d denotes the direction obtained by Algorithm 1. It follows immediately that
d�
k g ≤ 0. Since dk and d are collinear, we also have that

d�
k (H + 2εH I )dk

‖dk‖2 = d�(H + 2εH I )d

‖d‖2 ≤ εH ⇒ d�
k Hdk
‖dk‖2 ≤ −εH .

By using this bound together with (17), we obtain

‖dk‖ = |d�Hd|
‖d‖2 = |d�

k Hdk |
‖dk‖2 = −d�

k Hdk
‖dk‖2 ≥ εH ,

proving (15). 
�

4.2 First-order complexity analysis

We now find a bound on the number of iterations and the amount of computation
required to identify an iterate xk for which ‖∇ f (xk)‖ ≤ εg . We consider in turn
the two types of steps (approximate damped Newton and negative curvature), finding
a lower bound on the descent in f achieved on the current iteration in each case.
We then prove an upper bound on the number of iterations required to satisfy these
approximate first-order conditions (Theorem 3) and an upper bound on the number of
gradient evaluations and Hessian-vector multiplications required (Theorem 4).

We start with a lemma concerning the approximate damped Newton steps.
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Lemma 4 Suppose that Assumptions 1 and 2 hold. Suppose that at iteration k of
Algorithm 3, we have ‖∇ f (xk)‖ > εg, so that Algorithm 1 is called.When Algorithm 1
outputs a direction dk with d_type=SOL, then the backtracking line search requires
at most jk ≤ jsol + 1 iterations, where

jsol =
[
1

2
logθ

(
3(1 − ζ )

LH + η

ε2H

1.1Ug

)]

+
, (18)

and the resulting step xk+1 = xk + αkdk satisfies

f (xk) − f (xk+1) ≥ csol min
(
‖∇ f (xk+1)‖3ε−3

H , ε3H

)
, (19)

where

csol = η

6
min

⎧
⎨

⎩

[
4

√
(4 + ζ )2 + 8LH + 4 + ζ

]3
,

[
3θ2(1 − ζ )

LH + η

]3
⎫
⎬

⎭
.

Proof The proof tracks closely that of [26, Lemma 13]. The only significant difference
is that equation (65) of [26], which is instrumental to the proof and requires a proba-
bilistic assumption on λmin(∇2 f (xk)), is now ensured deterministically by (13a) from
Lemma 3. As a result, both the proof and the result are deterministic. 
�

When ‖∇ f (xk+1)‖ ≤ εg , the estimate (19) may not guarantee a “significant”
decrease in f at this iteration. However, in this case, the approximate first-order con-
dition ‖∇ f (x)‖ ≤ εg holds at the next iteration, so that Algorithm 3 will invoke
Procedure 2 at iteration k + 1, leading either to termination with satisfaction of the
conditions (2) or to a step that reduces f by a multiple of ε3H , as we show in Theorem 4
below.

Wenowaddress the case inwhichAlgorithm1 returns a negative curvature direction
to Algorithm 3 at iteration k. The backtracking line search guarantees that a sufficient
decrease will be achieved at such an iteration. Although the Lipschitz constant LH

appears in our result, our algorithm (in contrast to [5]) does not require this constant
to be known or estimated.

Lemma 5 Suppose that Assumptions 1 and 2 hold. Suppose that at iteration k of Algo-
rithm 3, we have ‖∇ f (xk)‖ > εg, so that Algorithm 1 is called. When Algorithm 1
outputs d_type=NC, the direction dk (computed from d in Algorithm 3) has the fol-
lowing properties: The backtracking line search terminates with step length αk = θ jk

with jk ≤ jnc + 1, where

jnc :=
[
logθ

(
3

LH + η

)]

+
, (20)

and the resulting step xk+1 = xk + αkdk satisfies

f (xk) − f (xk + αk dk) ≥ cncε
3
H , (21)
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with

cnc := η

6
min

{
1,

27θ3

(LH + η)3

}
.

Proof By Lemma 3, we have from (15) that

d�
k ∇2 f (xk)dk = −‖dk‖3 ≤ −εH‖dk‖2 (22)

The result can thus be obtained exactly as in [26, Lemma 1]. 
�
We are ready to state our main result for first-order complexity.

Theorem 3 Let Assumptions 1 and 2 hold. Then, defining

K̄1 :=
⌈

f (x0) − flow
min{csol , cnc} max

{
ε−3
g ε3H , ε−3

H

}⌉
,

some iterate xk , k = 0, 1, . . . , K̄1 + 1 generated by Algorithm 3 will satisfy

‖∇ f (xk)‖ ≤ εg. (23)

Proof Suppose for contradiction that ‖∇ f (xk)‖ > εg for all k = 0, 1, . . . , K̄1 + 1, so
that

‖∇ f (xl+1)‖ > εg, l = 0, 1, . . . , K̄1. (24)

Algorithm 1 will be invoked at each of the first K̄1 + 1 iterates of Algorithm 3. For
each iteration l = 0, 1, . . . , K̄1 for which Algorithm 1 returns d_type=SOL, we have
from Lemma 4 and (24) that

f (xl) − f (xl+1) ≥ csol min
{
‖∇ f (xl+1)‖3ε−3

H , ε3H

}
≥ csol min

{
ε3gε

−3
H , ε3H

}
.

(25)

For each iteration l = 0, 1, . . . , K̄1 for which Algorithm 1 returns d_type=NC, we
have by Lemma 5 that

f (xl) − f (xl+1) ≥ cncε
3
H . (26)

By combining these results, we obtain

f (x0) − f (xK̄1+1) ≥
K̄1∑

l=0

( f (xl) − f (xl+1))

≥
K̄1∑

l=0

min{csol , cnc}min
{
ε3gε

−3
H , ε3H

}
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= (K̄1 + 1)min{csol , cnc}min
{
ε3gε

−3
H , ε3H

}

> f (x0) − flow.

where we used the definition of K̄1 for the final inequality. This inequality contradicts
the definition of flow in (3), so our claim is proved. 
�

If we choose εH in the range [ε1/3g , ε
2/3
g ], this bound improves over the classi-

cal O(ε−2
g ) rate of gradient-based methods. The choice εH = ε

1/2
g yields the rate

O(ε
−3/2
g ), which is known to be optimal among second-order methods [9].

Recalling that the workload of Algorithm 1 in terms of Hessian-vector products
depends on the index J defined by (8), we obtain the following corollary. (Note the
mild assumption on the quantities of M used at each instance of Algorithm 1, which
is satisfied provided that this algorithm is always invoked with an initial estimate of
M in the range [0,UH ].)
Corollary 1 Suppose that the assumptions of Theorem 3 are satisfied, and let K̄1 be
as defined in that theorem and J (M, εH , ζ ) be as defined in (8). Suppose that the
values of M used or calculated at each instance of Algorithm 1 satisfy M ≤ UH.
Then the number of Hessian-vector products and/or gradient evaluations required by
Algorithm 3 to output an iterate satisfying (23) is at most

(2min {n, J (UH , εH , ζ )} + 2) (K̄1 + 1).

For n sufficiently large, this bound is Õ
(
max

{
ε−3
g ε

5/2
H , ε

−7/2
H

})
, while if

J (UH , εH , ζ ) ≥ n, the bound is Õ
(
n max

{
ε−3
g ε3H , ε−3

H

})
.

Proof From Lemma 1, the number of Hessian-vector multiplications in the main
loop of Algorithm 1 is bounded by min {n, J (UH , εH , ζ ) + 1}. An additional
min {n, J (UH , εH , ζ )} Hessian-vector products may be needed to return a direction
satisfying (6), if Algorithm 1 does not store its iterates y j . Each iteration also requires a
single evaluation of the gradient∇ f , giving a bound of (2min {n, J (UH , εH , ζ )}+2)
on the workload per iteration of Algorithm 3.Wemultiply this quantity by the iteration
bound from Theorem 3 to obtain the result. 
�

By setting εH = ε
1/2
g , we obtain from this corollary a computational bound of

Õ(ε
−7/4
g ) (for n sufficiently large), which matches the deterministic first-order guar-

antee obtained in [5], and also improves over the O(ε−2
g ) computational complexity

of gradient-based methods.

4.3 Second-order complexity results

We now find bounds on iteration and computational complexity of finding a point that
satisfies (2). In this section, as well as using results from Sects. 4.1 and 4.2, we also
need to use the properties of the minimum eigenvalue oracle, Procedure 2. To this end,
we make the following generic assumption.
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Assumption 3 For every iteration k at which Algorithm 3 calls Procedure 2, and for
a specified failure probability δ with 0 ≤ δ � 1, Procedure 2 either certifies that
∇2 f (xk) � −εH I or finds a vector of curvature smaller than −εH/2 in at most

Nmeo := min
{
n, 1 +

⌈
Cmeoε

−1/2
H

⌉}
(27)

Hessian-vector products, with probability 1− δ, where Cmeo depends at most logarith-
mically on δ and εH .

Assumption 3 encompasses the strategies we mentioned in Sect. 3.2. Assuming the
bound UH on ‖H‖ is available, for both the Lanczos method with a random starting
vector and the conjugate gradient algorithm with a random right-hand side, (27) holds
with Cmeo = ln(2.75n/δ2)

√
UH/2.When a bound on ‖H‖ is not available in advance,

it can be estimated efficiently with minimal effect on the overall complexity of the
method, as shown in Appendix B.3.

The next lemma guarantees termination of the backtracking line search for a neg-
ative curvature direction, regardless of whether it is produced by Algorithm 1 or
Procedure 2. As in Lemma 4, the result is deterministic.

Lemma 6 Suppose that Assumptions 1 and 2 hold. Suppose that at iteration k of
Algorithm 3, the search direction dk is of negative curvature type, obtained either
directly from Procedure 2 or as the output of Algorithm 1 and d_type=NC. Then the
backtracking line search terminates with step length αk = θ jk with jk ≤ jnc + 1,
where jnc is defined as in Lemma 5, and the decrease in the function value resulting
from the chosen step length satisfies

f (xk) − f (xk + αk dk) ≥ cnc
8

ε3H , (28)

with cnc is defined in Lemma 5.

Proof Lemma 5 shows that the claim holds (with a factor of 8 to spare) when the
direction of negative curvature is obtained from Algorithm 1. When the direction is
obtained from Procedure 2, we have by the scaling of dk applied in Algorithm 3 that

d�
k ∇2 f (xk)dk = −‖dk‖3 ≤ −1

2
εH‖dk‖2 < 0, (29)

from which it follows that ‖dk‖ ≥ 1
2εH . The result can now be obtained by following

the proof of Lemma 5, with 1
2εH replacing εH . 
�

We are now ready to state our iteration complexity result for Algorithm 3.

Theorem 4 Suppose that Assumptions 1, 2, and 3 hold, and define

K̄2 :=
⌈
3( f (x0) − flow)

min{csol , cnc/8} max{ε−3
g ε3H , ε−3

H }
⌉

+ 2, (30)
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where constants csol and cnc are defined in Lemmas 4 and 5, respectively. Then with
probability at least (1 − δ)K̄2 , Algorithm 3 terminates at a point satisfying (2) in at
most K̄2 iterations. (With probability at most 1 − (1 − δ)K̄2 , it terminates incorrectly
within K̄2 iterations at a point for which ‖∇ f (xk)‖ ≤ εg but λmin(∇2 f (x)) < −εH .)

Proof Algorithm 3 terminates incorrectly with probability δ at any iteration at which
Procedure 2 is called, when Procedure 2 certifies erroneously that λmin(∇2 f (x)) ≥
−εH . Since an erroneous certificate can only lead to termination, an erroneous certifi-
cate at iteration k means that Procedure 2 did not produce an erroneous certificate at
iterations 0 to k−1. By a disjunction argument, we have that the overall probability of
terminating with an erroneous certificate during the first K̄2 iterations is bounded by
1− (1− δ)K̄2 . Therefore, with probability at least (1− δ)K̄2 , no incorrect termination
occurs in the first K̄2 iterations.

Suppose now for contradiction that Algorithm 3 runs for K̄2 iterations without
terminating. That is, for all l = 0, 1, . . . , K̄2, we have either ‖∇ f (xl)‖ > εg or
λmin(∇2 f (xl)) < −εH . We perform the following partition of the set of iteration
indices:

K1 ∪ K2 ∪ K3 = {0, 1, . . . , K̄2 − 1}, (31)

where K1, K2, and K3 are defined as follows.

Case 1 K1 := {l = 0, 1, . . . , K̄2 − 1 : ‖∇ f (xl)‖ ≤ εg}. At each iteration l ∈ K1,
Algorithm 3 calls Procedure 2, which does not certify that λmin(∇2 f (xl)) ≥ −εH
(since the algorithm continues to iterate) but rather returns a direction of sufficient
negative curvature. By Lemma 6, the step along this direction leads to an improvement
in f that is bounded as follows:

f (xl) − f (xl+1) ≥ cnc
8

ε3H . (32)

Case 2 K2 := {l = 0, 1, . . . , K̄2 − 1 : ‖∇ f (xl)‖ > εg and ‖∇ f (xl+1)‖ > εg}.
Algorithm 3 calls Algorithm1 at each iteration l ∈ K2, returning either an approximate
damped Newton or a negative curvature direction. By combining Lemmas 4 and 5,
we obtain a decrease in f satisfying

f (xl) − f (xl+1) ≥ min{csol , cnc}min
{
‖∇ f (xl+1)‖3ε−3

H , ε3H

}

≥ min{csol , cnc/8}min
{
ε3gε

−3
H , ε3H

}
. (33)

Case 3 K3 := {l = 0, 1, . . . , K̄2 − 1 : ‖∇ f (xl)‖ > εg ≥ ‖∇ f (xl+1)‖}. Because
‖∇ f (xl+1)‖may be small in this case, we can no longer bound the decrease in f by an
expression such as (33). We can however guarantee at least that f (xl)− f (xl+1) ≥ 0.
Moreover, provided that l < K̄2 − 1, we have from ‖∇ f (xl+1)‖ ≤ εg that the next
iterate l + 1 is in K1. Thus, a significant decrease in f will be attained at the next
iteration, and we have
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|K3| ≤ |K1| + 1. (34)

We now consider the total decrease in f over the span of K̄2 iterations, which is
bounded by f (x0) − flow as follows:

f (x0) − flow ≥
K̄2−1∑

l=0

( f (xl) − f (xl+1))

≥
∑

l∈K1

( f (xl) − f (xl+1)) +
∑

l∈K2

( f (xl) − f (xl+1)) (35)

where both sums in the final expression are nonnegative. Using first the bound (32)
for the sum over K1, we obtain

f (x0) − flow ≥ |K1|cnc
8

ε3H ⇔ |K1| ≤ f (x0) − flow
cnc/8

ε−3
H . (36)

Applying (33) to the sum over K2 leads to

|K2| ≤ f (x0) − flow
min{csol , cnc/8} max{ε−3

g ε3H , ε−3
H }. (37)

Using these bounds together with (34), we have

K̄2 = |K1| + |K2| + |K3|
≤ 2|K1| + |K2| + 1

≤ 3max{|K1|, |K2|} + 1

≤ 3( f (x0) − flow)

min{csol , cnc/8} max{ε−3
g ε3H , ε−3

H } + 1

≤ K̄2 − 1,

giving the required contradiction. 
�
Wenote thatwhen δ < 1/K̄2 in Theorem4, a technical result shows that (1−δ)K̄2 ≥

1− δ K̄2. In this case, the qualifier “with probability at least (1− δ)K̄2” in the theorem
can be replaced by “with probability at least 1 − δ K̄2” while remaining informative.

Finally, we provide an operation complexity result: a bound on the number of
Hessian-vector products and gradient evaluations necessary for Algorithm 3 to find a
point that satisfies (2).

Corollary 2 Suppose that assumptions of Theorem 4 hold, and let K̄2 be defined as in
(30). Suppose that the values of M used or calculated at each instance of Algorithm 1
satisfy M ≤ UH. Then with probability at least (1 − δ)K̄2 , Algorithm 3 terminates at
a point satisfying (2) after at most

(max {2min{n, J (UH , εH , ζ )} + 2, Nmeo}) K̄2
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Hessian-vector products and/or gradient evaluations. (With probability atmost1−(1−
δ)K̄2 , it terminates incorrectly with this complexity at a point forwhich ‖∇ f (xk)‖ ≤ εg
but λmin(∇2 f (x)) < −εH .)

For n sufficiently large, and assuming that δ < 1/K̄2, the bound is Õ(
max

{
ε−3
g ε

5/2
H , ε

−7/2
H

})
, with probability at most 1 − K̄2δ.

Proof The proof follows by combining Theorem 4 (which bounds the number of
iterations) with Lemma 1 and Assumption 3 (which bound the workload per iteration).


�
By setting εH = ε

1/2
g and assuming that n is sufficiently large,we recover (with high

probability) the familiar complexity bound of order Õ(ε
−7/4
g ), matching the bound of

accelerated gradient-type methods such as [1,6,19].

5 Discussion

We have presented a Newton-CG approach for smooth nonconvex unconstrained
minimization that is close to traditional variants of this method, but incorporates
additional checks and safeguards that enable convergence to a point satisfying approx-
imate second-order conditions (2) with guaranteed complexity. This was achieved by
exploiting the properties of Lanczos-based methods in two ways. First, we used CG
to compute Newton-type steps when possible, while monitoring convexity during the
CG iterations to detect negative curvature directions when those exist. Second, by
exploiting the close relationship between the Lanczos and CG algorithms, we show
that bothmethods can be used to detect negative curvature of a given symmetric matrix
with high probability. Both techniques are endowed with complexity guarantees, and
can be combined within a Newton-CG framework to match the best known bounds
for second-order algorithms on nonconvex optimization [11].

Nonconvexity detection can be introduced into CG in ways other than those used in
Algorithm 1. For instance, we can drop the implicit cap on the number of CG iterations
that is due to monitoring of the condition ‖r j‖ >

√
T τ j/2‖r0‖ and use of the negative

curvature direction generation procedure (6) from Algorithm 1, and instead impose an
explicit cap (smaller by a factor of approximately 4 than J (M, ε, ζ )) on the number
of CG iterations. In this version, if the explicit cap is reached without detection of a
direction of sufficient negative curvature for H̄ , then Procedure 2 is invoked to find one.
This strategy comes equipped with essentially the same high-probability complexity
results as Theorem 4 and Corollary 2, but it lacks the deterministic approximate-first-
order complexity guarantee of Theorem 3. On the other hand, it is more elementary,
both in the specification of the Capped CG procedure and the analysis.

A common feature to the Capped CG procedures described in Algorithm 1 and in
the above paragraph, which also emerges in most Newton-type methods with good
complexity guarantees [11], is the need for high accuracy in the step computation. That
is, only a small residual is allowed in the damped Newton system at the approximate
solution. Looser restrictions are typically used in practical algorithms, but our tighter
bounds appear to be necessary for the complexity analysis. Further investigation of the
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differences between our procedure in this paper and practical Newton-CG procedures
is a subject of ongoing research.
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A Linear conjugate gradient: relevant properties

In this appendix, we provide useful results for the classical CG algorithm, that also
apply to the “standard CG” operations within Algorithm 1. To this end, and for the
sake of discussion in Appendix B, we sketch the standard CG method in Algorithm 4,
reusing the notation of Algorithm 1.

Algorithm 4 Conjugate Gradient
Inputs: Symmetric matrix H̄ , vector g;
r0 ← g, p0 ← −r0, y0 ← 0, j ← 0;
while p�

j H̄ p j > 0 and r j 	= 0 do

α j ← r�
j r j /p

�
j H̄ p j ;

y j+1 ← y j + α j p j ;
r j+1 ← r j + α j H̄ p j ;

β j+1 ← (r�
j+1r j+1)/(r

�
j r j );

p j+1 ← −r j+1 + β j+1 p j ;
j ← j + 1;

end while

Here and below, we refer often to the following quadratic function:

q(y) := 1

2
y� H̄ y + g�y, (38)

where H̄ and g are the matrix and vector parameters of Algorithms 1 or 4. When H̄ is
positive definite, the minimizer of q is identical to the unique solution of H̄ y = −g.
CG can be viewed either as an algorithm to solve H̄ y = −g or as an algorithm to
minimize q.

The next lemma details several properties of the conjugate gradient method to be
used in the upcoming proofs.

Lemma 7 Suppose that j iterations of the CG loop are performed in Algorithm 1 or 4.
Then, we have

p�
i H̄ pi
‖pi‖2 > 0 for all i = 0, 1, . . . , j − 1. (39)
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Moreover, the following properties hold.

1. yi ∈ span {p0, . . . , pi−1}, i = 1, 2, . . . , j .
2. ri ∈ span {p0, . . . , pi } for all i = 1, 2, . . . , j , and

r�
i v = 0, for all v ∈ span {p0, . . . , pi−1} and all i = 1, 2, . . . , j .

(In particular, r�
i rl = 0 if 0 ≤ l < i ≤ j . If j = n, then rn = 0.)

3. ‖ri‖ ≤ ‖pi‖, i = 0, 1, . . . , j .
4. r�

i pi = −‖ri‖2, i = 0, 1, . . . , j .
5. p�

i H̄ pk = 0 for all i, k = 0, 1, . . . , j with k 	= i .

6. pi = −∑i
k=0(‖ri‖2/‖rk‖2)rk , i = 0, 1, . . . , j .

7. q(yi+1) = q(yi ) − ‖ri‖4
2p�

i H̄ pi
, i = 0, 1, . . . , j − 1.

8. r�
i H̄ri ≥ p�

i H̄ pi , i = 0, 1, . . . , j .

Proof SinceCGhasnot terminatedprior to iteration j , (39) clearly holds.All properties
then follow from the definition of the CG process, and most are proved in standard
texts (see, for example, [25, Chapter 5]). Property 8 is less commonly used, so we
provide a proof here.

The case i = 0 is immediate since r0 = −p0 and there is equality. When i ≥ 1,
we have:

pi = −ri + ‖ri‖2
‖ri−1‖2 pi−1 ⇔ ri = −pi + ‖ri‖2

‖ri−1‖2 pi−1.

(Note that if iteration i is reached, we cannot have ‖ri−1‖ = 0.) It follows that

r�
i H̄ri = p�

i H̄ pi − 2
‖ri‖2

‖ri−1‖2 p
�
i H̄ pi−1 + ‖ri‖4

‖ri−1‖4 p
�
i−1 H̄ pi−1

= p�
i H̄ pi + ‖ri‖4

‖ri−1‖4 p
�
i−1 H̄ pi−1,

as p�
i H̄ pi−1 = 0 by Property 5 above. Since iteration i has been reached, pi−1 is a

direction of positive curvature, and we obtain r�
i H̄ri ≥ p�

i H̄ pi , as required. 
�
We next address an important technical point about Algorithm 1: the test (6) to

identify a direction of negative curvature for H after an insufficiently rapid rate of
reduction in the residual norm ‖r j‖ has been observed. As written, the formula (6)
suggests both that previous iterations yi , i = 1, 2, . . . , j − 1 must be stored (or
regenerated) and that additional matrix-vector multiplications (specifically, H̄(y j+1−
yi ), i = 0, 1, . . . ) must be performed. We show here that in fact (6) can be evaluated
at essentially no cost, provided we store two extra scalars at each iteration of CG: the
quantities αk and ‖rk‖2, for k = 0, 1, . . . , j .
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Lemma 8 Suppose that Algorithm 1 computes iterates up to iteration j + 1. Then, for
any i ∈ {0, . . . , j}, we can compute (6) as

(y j+1 − yi )� H̄(y j+1 − yi )

‖y j+1 − yi‖2 =
∑ j

k=i αk‖rk‖2
∑ j


=0

[∑ j
k=max{
,i} αk‖rk‖2

]2
/‖r
‖2

.

Proof By definition, y j+1 − yi = ∑ j
k=i αk pk . By conjugacy of the pk vectors, we

have

(y j+1 − yi )
� H̄(y j+1 − yi ) =

j∑

k=i

α2
k p

�
k H̄ pk =

j∑

k=i

αk‖rk‖2, (40)

wherewe used the definition ofαk to obtain the last equality. Nowwe turn our attention
to the denominator. Using Property 6 of Lemma 7, we have that

y j+1 − yi =
j∑

k=i

αk pk =
j∑

k=i

αk

(

−
k∑


=0

‖rk‖2
‖r
‖2 r


)

,

By rearranging the terms in the sum, we obtain

y j+1 − yi = −
j∑

k=i

k∑


=0

αk‖rk‖2 r

‖r
‖2 = −

j∑


=0

⎡

⎣
j∑

k=max{
,i}
αk‖rk‖2

⎤

⎦ r

‖r
‖2 .

Using the fact that the residuals {r
}
=0,1,..., j form an orthogonal set (by Property 2
of Lemma 7), we have that

‖y j+1 − yi‖2 =
j∑


=0

1

‖r
‖2

⎡

⎣
j∑

k=max{
,i}
αk‖rk‖2

⎤

⎦

2

.

Combining this with (40) gives the desired result. 
�

B Implementing Procedure 2 via Lanczos and conjugate gradient

In the first part of this appendix (Appendix B.1) we outline the randomized Lanc-
zos approach and describe some salient convergence properties. The second part
(Appendix B.2) analyzes the CG method (Algorithm 4) applied to a (possibly non-
convex) quadratic function with a random linear term. We show that the number of
iterations required by CG to detect nonpositive curvature in an indefinite matrix is the
same as the number required by Lanczos, when the two approaches are initialized in
a consistent way, thereby proving Theorem 1. As a result, both techniques are imple-
mentations of Procedure 2 that satisfy Assumption 3, provided than an upper bound
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M on ‖H‖ is known. In the third part (Appendix B.3), we deal with the case in which
a bound on ‖H‖ is not known a priori, and describe a version of the randomized Lanc-
zos scheme which obtains an overestimate of this quantity (to high probability) during
its first phase of execution. The complexity of this version differs by only a modest
multiple from the complexity of the original method, and still satisfies Assumption 3.

B.1 Randomized Lanczos

Consider first the Lanczos algorithm applied to a symmetric, n-by-n matrix H̄ and a
starting vector b ∈ R

n with ‖b‖ = 1. After t +1 iterations, Lanczos constructs a basis
of the t-th Krylov subspace defined by

Kt (b, H̄) = span{b, H̄b, . . . , H̄ t b}. (41)

The Lanczos method can compute estimates of the minimum and maximum eigenval-
ues of H̄ . For t = 0, 1, . . . , those values are given by

ξmin(H̄ , b, t) = min
z

z� H̄ z subject to ‖z‖2 = 1, z ∈ Kt (b, H̄), (42a)

ξmax(H̄ , b, t) = max
z

z� H̄ z subject to ‖z‖2 = 1, z ∈ Kt (b, H̄). (42b)

The Krylov subspaces satisfy a shift invariance property, that is, for any Ĥ = a1 I +
a2H with (a1, a2) ∈ R

2, we have that

Kt (b, Ĥ) = Kt (b, H) for t = 0, 1, . . . (43)

Properties of the randomizedLanczos procedure are explored in [22]. The following
key result is a direct consequence of Theorem 4.2(a) from the cited paper, along with
the shift invariance property mentioned above.

Lemma 9 Let H̄ be an n × n symmetric matrix, let b be chosen from a uniform
distribution over the sphere ‖b‖ = 1, and suppose that ε̄ ∈ [0, 1) and δ ∈ (0, 1) are
given. Suppose that ξmin(H̄ , b, k) and ξmax(H̄ , b, k) are defined as in (42). Then after
k iterations of randomized Lanczos, the following convergence condition holds:

λmax(H̄) − ξmax(H̄ , b, k) ≤ ε̄(λmax(H̄) − λmin(H̄))

with probability at least 1 − δ, (44)

provided k satisfies

k = n or 1.648
√
n exp

(
−√

ε̄(2k − 1)
)

≤ δ. (45)
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A sufficient condition for (44) thus is

k ≥ min

{
n, 1 +

⌈
1

4
√

ε̄
ln(2.75n/δ2)

⌉}
. (46)

Similarly, we have that

ξmin(H̄ , b, k) − λmin(H̄) ≤ ε̄(λmax(H̄) − λmin(H̄))

with probability at least 1 − δ (47)

for k satisfying the same conditions (45) or (46).

B.2 Lanczos and conjugate gradient as minimum eigenvalue oracles

Lemma2 implies that using theLanczos algorithm togenerate theminimumeigenvalue
of H̄ from (42a) represents an instance of Procedure 2 satisfying Assumption 3. The
sequence of iterates {zt } given by z0 = b and

zt+1 ∈ argmin
z

1

2
z� H̄ z subject to ‖z‖2 = 1, z ∈ Kt (b, H̄), for t = 0, 1, . . . (48)

eventually yields a direction of sufficient negative curvature, when such a direction
exists.

Consider now Algorithm 4 applied to H̄ , and g = −b. By Property 2 of Lemma 7,
we can see that if Algorithm 4 does not terminate with j ≤ t , for some given index t ,
then yt+1, rt+1, and pt+1 are computed, and we have

span{p0, . . . , pi } = span{r0, . . . , ri } = Ki (b, H̄), for i = 0, 1, . . . , t, (49)

because {r
}i
=0 is a set of i + 1 orthogonal vectors in Ki (b, H̄). Thus {p0, . . . , pi },
{r0, . . . , ri }, and {b, H̄b, . . . , H̄ i b} are all bases for Ki (b, H̄), i = 0, 1, . . . , t . As
long as they are computed, the iterates of Algorithm 4 satisfy

yt+1 := argmin
y

1

2
y� H̄ y − b�y subject to y ∈ Kt (b, H̄), for t = 0, 1, . . . . (50)

The sequences defined by (48) (for Lanczos) and (50) (for CG) are related via the
Krylov subspaces.We have the following result about the number of iterations required
by CG to detect non-positive-definiteness.

Theorem 5 Consider applying Algorithm 4 to the quadratic function (38), with g =
−b for some b with ‖b‖ = 1. Let J be the smallest value of t ≥ 0 such that Kt (b, H̄)

contains a direction of nonpositive curvature, so that J is also the smallest index
t ≥ 0 such that z�t+1 H̄ zt+1 ≤ 0, where {z j } are the Lanczos iterates from (48). Then
Algorithm 4 terminates with j = J , with p�

J H̄ pJ ≤ 0.
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Proof We consider first the case of J = 0. Then z1 = b/‖b‖ and b� H̄b ≤ 0, so since
p0 = −r0 = b, we have p�

0 H̄ p0 ≤ 0, so the result holds in this case. We assume that
J ≥ 1 for the remainder of the proof.

Suppose first that Algorithm 4 terminates with j = t , for some t satisfying 1 ≤
t ≤ J , because of a zero residual — rt = 0—without having encountered nonpositive
curvature. In that case, we can show that H̄ t b ∈ span{b, . . . , H̄ t−1b}.

We can invoke (49) with t replaced by t − 1 since Algorithm 4 has not terminated
at iteration t − 1. By the recursive definition of rt−1 within Algorithm 4, there exist
coefficients τi and σi such that

rt−1 = −b +
t−1∑

i=1

τi H̄
i b, pt−1 =

t−1∑

i=0

σi H̄
i b.

Since rt = 0, we have again from Algorithm 4 that

0 = rt−1 + αt−1 H̄ pt−1 = −b +
t−1∑

i=1

(τi + αt−1σi−1)H̄
i b + αt−1σt−1 H̄

t b. (51)

The coefficient αt−1σt−1 must be nonzero, because otherwise this expression would
represent a nontrivial linear combination of the basis elements {b, H̄b, . . . , H̄ t−1b}
of Kt−1(b, H̄) that is equal to zero. It follows from this observation and (51) that
H̄ t b ∈ span{b, H̄b, . . . , H̄ t−1b} = Kt−1(b, H̄), as required.

Consequently,

Kt (b, H̄) = span{b, H̄b, . . . , H̄ t b} = span{b, . . . , H̄ t−1b} = Kt−1(b, H̄).

By using a recursive argument on the definition of Ki (b, H̄) for i = t, . . . , J , we
arrive at Kt−1(b, H̄) = KJ (b, H̄). Thus there is a value of t smaller than J such that
Kt (b, H̄) contains a direction of nonpositive curvature, contradicting our definition of
J . Thus we cannot have termination of Algorithm 4 with j ≤ J unless p�

j H̄ p j ≤ 0.
Suppose next that CG terminates with j = t for some t > J . It follows that

p�
j H̄ p j > 0 for all j = 0, 1, . . . , J . By definition of J , there is a nonzero vec-

tor z ∈ KJ (b, H̄) such that z� H̄ z ≤ 0. On the other hand, we have KJ (b, H̄) =
span{p0, p1, . . . , pJ } by (49), thus we can write z = ∑J

j=0 γ j p j , for some scalars
γ j , j = 0, 1, . . . , J . By Property 5 of Lemma 7, we then have

0 ≥ z� H̄ z =
J∑

j=0

γ 2
j p

�
j H̄ p j .

Since p�
j H̄ p j > 0 for every j = 0, 1, . . . , J , and not all γ j can be zero (because

z 	= 0), the final summation is strictly positive, a contradiction.
Suppose now that CG terminates at some j < J . Then p�

j H̄ p j ≤ 0, and since

p j ∈ K j (b, H̄), it follows thatK j (b, H̄) contains a direction of nonpositive curvature,
contradicting the definition of J .
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We conclude that Algorithm 4 must terminate with j = J and p�
J H̄ pJ ≤ 0, as

claimed. 
�
Theorem 5 is a generic result that does not require b to be chosen randomly. It does

not guarantee that Lanczos will detect nonpositive curvature in H̄ whenever present,
because b could be orthogonal to the subspace corresponding to the nonpositive curva-
ture, so the Lanczos subspace never intersects with the subspace of negative curvature.
When b is chosen randomly from a uniform distribution over the unit ball, however,
we can certify the performance of Lanczos, as we have shown in Lemma 2 based on
Lemma 9 above. We can exploit Theorem 5 to obtain the same performance for CG,
as stated in Theorem 1. We restate this result as a corollary, and prove it now.

Corollary 3 Let b be distributed uniformly on the unit ball and H be a symmetric
n-by-n matrix, with ‖H‖ ≤ M. Given δ ∈ [0, 1), define

J̄ := min

{

n, 1 +
⌈
ln(2.75n/δ2)

2

√
M

ε

⌉}

. (52)

Consider applying Algorithm 4 with H̄ := H + 1
2ε I and g = −b. Then, the following

properties hold:

(a) If λmin(H) < −ε, then with probability at least 1 − δ, there is some index j ≤
J̄ such that Algorithm 4 terminates with a direction p j such that p�

j Hp j ≤
−(ε/2)‖p j‖2.

(b) if Algorithm 4 runs for J̄ iterations without terminating, then with probability at
least 1 − δ, we have that λmin(H) ≥ −ε.

Proof We will again exploit the invariance of the Krylov subspaces to linear shifts
given by (43). This allows us to make inferences about the behavior of Algorithm 4
applied to H̄ from the behavior of the Lanczos method applied to H , which has been
described in Lemma 2.

Suppose first that λmin(H) < −ε. By Lemma 2, we know that with probability
at least 1 − δ, the Lanczos procedure returns a vector v such that ‖v‖ = 1 and
v�Hv ≤ −(ε/2) after at most J̄ iterations. Thus, for some j ≤ J̄ , we have v ∈
K j (b, H) = K j (b, H̄), and moreover v� H̄v ≤ 0 by definition of H̄ , so the Krylov
subspace K j (b, H̄) contains directions of nonpositive curvature, for some j ≤ J̄ . It
then follows from Theorem 5 that p�

j H̄ p j ≤ 0 for some j ≤ J̄ . To summarize: If

λmin(H) < −ε, then with probability 1 − δ, Algorithm 4 applied to H̄ and g = −b
will terminate with some p j such that p�

j H̄ p j ≤ 0 for some j with j ≤ J̄ . The proof
of (a) is complete.

Suppose now that Algorithm 4 applied to H̄ and g = −b runs for J̄ iterations
without terminating, that is p�

j H̄ p j > 0 for j = 0, 1, . . . , J̄ . It follows from the logic

of Theorem 5 that K J̄ (b, H̄) contains no directions of nonpositive curvature for H̄ .
Equivalently, there is no direction of curvature less than −ε/2 for H inK J̄ (b, H). By
Lemma 2, this certifies with probability at least 1−δ that λmin(H) ≥ −ε, establishing
(b). 
�
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B.3 Randomized Lanczos with internal estimation of a bound on ‖H‖

The methods discussed in Sect. B.2 assume knowledge of an upper bound on the
considered matrix, denoted by M . When no such bound is known, we show here
that it is possible to estimate it within the Lanczos procedure. Algorithm 5 details
the method; we show that it can be used as an instance of Procedure 2 satisfying
Assumption 3 when the optional parameter M is not provided.

Algorithm 5 consists in applying the Lanczos method on H starting with a random
vector b. We first run Lanczos for jM iterations, where jM does not depend on any
estimate on the minimum or maximum eigenvalue and instead targets a fixed accu-
racy. After this initial phase of jM iterations, we have approximations of the extreme
eigenvalues ξmax(H , b, jM ) and ξmin(H , b, jM ) from (42). An estimate M of ‖H‖ is
then given by:

M = 2max {|ξmax(H , b, jM )|, |ξmin(H , b, jM )|} . (53)

We show below that ‖H‖ ≤ M ≤ 2‖H‖, with high probability. This value can then
be used together with a tolerance ε to define a new iteration limit for the Lanczos
method. After this new iteration limit is reached, we can either produce a direction of
curvature at most −ε/2, or certify with high probability that λmin(H) � −ε I—the
desired outcomes for Procedure 2.

Algorithm 5 Lanczos Method with Upper Bound Estimation
Inputs: Symmetric matrix H ∈ R

n×n , tolerance ε > 0.
Internal parameters: probability δ ∈ [0, 1), vector b uniformly distributed on the unit sphere.
Outputs: Estimate λ of λmin(H) such that λ ≤ −ε/2, and vector v with ‖v‖ = 1 such that v�Hv = λ

OR certificate that λmin(H) ≥ −ε. If the certificate is output, it is false with probability δ.

Set jM = min
{
n, 1 +

⌈
1
2 ln(25n/δ2)

⌉}
.

Perform jM iterations of Lanczos starting from b.
Compute ξmin(H , b, jM ) and ξmax(H , b, jM ), and set M according to (53).

Set jtotal = min

{
jM , 1 +

⌈
1
2 ln(25n/δ2)

√
M
ε

⌉}
.

Perform max{0, jtotal − jM } additional iterations of Lanczos.
Compute ξmin(H , b, jtotal).
if ξmin(H , b, jtotal) ≤ −ε/2 then

Output λ = ξmin(H , b, jtotal) and a unit vector v such that v�Hv = λ.
else

Output λ = ξmin(H , b, jtotal) as a certificate that λmin(H) ≥ −ε. This certificate is false with
probability δ.

end if

Algorithm 5 could be terminated earlier, in fewer than jtotal iterations, when a
direction of sufficient negative is encountered. For simplicity, we do not consider this
feature, but observe that it would not affect the guarantees of the method, described
in Lemma 10 below.
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Lemma 10 Consider Algorithm 5with input parameters H and ε, and internal param-
eters δ and b. The method outputs a value λ such that

λ ≤ λmin(H) + ε

2
(54)

in at most

min

{

n, 1 + max

{⌈
1

2
ln(25n/δ2)

⌉
,

⌈
1

2
ln(25n/δ2)

√
2‖H‖

ε

⌉}}

(55)

matrix-vector multiplications by H, with probability at least 1 − δ.

Proof We begin by showing that the first phase of Algorithm 5 yields an accurate
estimate of ‖H‖ with high probability. We assume that ‖H‖ > 0 as the result is
trivially true otherwise. By setting δ ← δ/3 and ε̄ = 1

4 in Lemma 9, we obtain that
the following inequalities hold, each with probability at least 1 − δ/3:

ξmax(H , b, jM ) ≥ λmax(H) − 1
4 (λmax(H) − λmin(H)), (56a)

ξmin(H , b, jM ) ≤ λmin(H) + 1
4 (λmax(H) − λmin(H)). (56b)

We consider the various possibilities for λmin(H) and λmax(H) separately, showing
in each case that M defined by (53) has ‖H‖ ≤ M ≤ 2‖H‖.
– When λmax(H) ≥ λmin(H) ≥ 0, we have ξmax(H , b, jM ) ≥ 3

4λmin(H) and
0 ≤ ξmin(H , b, jM ) ≤ ξmax(H , b, jM ), so that

M = 2ξmax(H , b, jM ) ≥ 3

2
λmax(H) = 3

2
‖H‖,

M = 2ξmax(H , b, jM ) ≤ 2λmax(H) = 2‖H‖,
as required.

– When λmin(H) ≤ λmax(H) ≤ 0, we have ξmin(H , b, jM ) ≤ 3
4λmin(H) ≤ 0 and

ξmin(H , b, jM ) ≤ ξmax(H , b, jM ) ≤ 0, so that

M = 2|ξmin(H , b, jM )| ≥ 3

2
|λmin(H)| = 3

2
‖H‖,

M = 2|ξmin(H , b, jM )| ≤ 2|λmin(H)| = 2‖H‖,
as required.

– When λmin(H) ≤ 0 ≤ λmax(H) and −λmin(H) ≤ λmax(H), we have
λmax(H)−λmin(H) ≤ 2λmax(H), so from (56a), it follows that ξmax(H , b, jM ) ≥
1
2λmax(H) = 1

2‖H‖, and so

M ≥ 2ξmax(H , b, jM ) ≥ ‖H‖,
M = 2max {|ξmax(H , b, jM )|, |ξmin(H , b, jM )|}

≤ 2max {|λmax(H)|, |λmin(H)|} = 2‖H‖,
as required.
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– When λmin(H) ≤ 0 ≤ λmax(H) and −λmin(H) ≥ λmax(H), we have λmax(H) −
λmin(H) ≤ −2λmin(H), so from (56b), it follows that ξmin(H , b, jM ) ≤
1
2λmin(H) ≤ 0, and so

M ≥ 2|ξmin(H , b, jM )| ≥ |λmin(H)| = ‖H‖,
M = 2max {|ξmax(H , b, jM )|, |ξmin(H , b, jM )|}

≤ 2max {|λmax(H)|, |λmin(H)|} = 2‖H‖,

as required.

Since each of the bounds in (56) holds with probability at least 1 − δ/3, both hold
with probability at least 1 − 2δ/3, by a union bound argument.

We finally consider the complete run of Algorithm 5, which requires jtotal iterations
of Lanczos. If our estimateM is accurate,we have by setting δ ← δ/3 andM ← 2‖H‖
in Lemma 2 that λ = ξmin(H , b, jtotal) satisfies (54) with probability 1 − δ/3. By
using a union bound to combine this probability with the probabilities of estimating
M appropriately, we obtain the probability of at least 1 − δ.

In conclusion, Algorithm 5 runs jtotal iterations of Lanczos (each requiring one
matrix-vector multiplication by H ) and terminates correctly with probability at least
1 − δ. 
�

The lemma above shows that Algorithm 5 is an instance of Procedure 2 that does
not require an a priori bound on ‖H‖. Assuming ‖H‖ ≤ UH , we further observe that

Algorithm 5 satisfies the conditions of Assumption 3 with Cmeo = ln(25n/δ2)√
2

√
UH ,

which is within amodest constant multiple of the one obtained for the Lanczos method
with knowledge of ‖H‖ or UH .

C Proof of Theorem 2

Proof The proof proceeds by contradiction: If we assume that all conditions specified
in the statement of the theorem hold, and in addition that

(yĴ+1 − yi )� H̄(yĴ+1 − yi )

‖yĴ+1 − yi‖2 ≥ ε, for all i = 0, 1, . . . , Ĵ − 1, (57)

then we must have

‖r Ĵ‖ ≤ √
T τ Ĵ/2‖r0‖, (58)

contradicting (11). Note that

(yĴ+1 − yĴ )
� H̄(yĴ+1 − yĴ )

‖yĴ+1 − yĴ‖2
=

α Ĵ p
�
Ĵ
H̄(α Ĵ pĴ )

‖α Ĵ pĴ‖2
=

p�
Ĵ
H̄ pĴ

‖pĴ‖2
≥ ε (59)
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by assumption, therefore we can consider (57) to hold for i = 0, 1, . . . , Ĵ . Moreover,
recalling the definition (38) of the quadratic functionq,we have for any i = 0, 1, . . . , Ĵ
that

q(yĴ+1) = q(yi ) + ∇q(yi )
�(yĴ+1 − yi ) + 1

2
(yĴ+1 − yi )

� H̄(yĴ+1 − yi ).

Thus, (57) can be reformulated as

q(yĴ+1) ≥ q(yi ) + r�
i (yĴ+1 − yi ) + ε

2
‖yĴ+1 − yi‖2, for all i = 0, 1, . . . , Ĵ ,

(60)

where we used ∇q(yi ) = ri and the definitions (57), (59) of strong convexity along
the directions yĴ+1 − yi . In the remainder of the proof, and similarly to [5, Proof of
Proposition 1], we will show that (60) leads to the contradiction (58), thus proving
that (12) holds.

We define the sequence of functions Φ j , j = 0, 1, . . . Ĵ as follows:

Φ0(z) := q(y0) + ε

2
‖z − y0‖2,

and for j = 0, . . . , Ĵ − 1:

Φ j+1(z) := τΦ j (z) + (1 − τ)
(
q(y j ) + r�

j (z − y j ) + ε

2
‖z − y j‖2

)
. (61)

Since each Φ j is a quadratic function with Hessian ε I , it can be written as follows:

Φ j (z) = Φ∗
j + ε

2
‖z − v j‖2, (62)

where v j is the unique minimizer of Φ j , and Φ∗
j = Φ j (v j ) is the minimum value of

Φ j . (Note that v0 = y0 = 0 and Φ∗
0 = q(y0) = 0.)

Defining

ψ(y) := q(y0) − q(y) + ε

2
‖y − y0‖2 = Φ0(y) − q(y), (63)

we give a short inductive argument to establish that

Φ j (yĴ+1) ≤ q(yĴ+1) + τ jψ(yĴ+1), j = 0, 1, . . . , Ĵ . (64)

For j = 0, (64) holds because Φ0(y) = q(y) + ψ(y) by definition. Assuming that
(64) holds for some index j ≥ 0, we find by first applying (61) (with z = yĴ+1) and
then (60) (with i = j) that

Φ j+1(yĴ+1) = τΦ j (yĴ+1) + (1 − τ)
(
q(y j ) + r�

j (yĴ+1 − y j ) + ε

2
‖yĴ+1 − y j‖2

)

≤ τΦ j (yĴ+1) + (1 − τ)q(yĴ+1).
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Thus, we have

Φ j+1(yĴ+1) ≤ τΦ j (yĴ+1) + (1 − τ)q(yĴ+1)

≤ τq(yĴ+1) + τ j+1ψ(yĴ+1) + (1 − τ)q(yĴ+1) from (64)

= q(yĴ+1) + τ j+1ψ(yĴ+1),

which proves (64) for j + 1, and thus completes the inductive argument.
We next prove another technical fact about the relationship between q(y j ) and Φ∗

j ,
namely,

q(y j ) ≤ Φ∗
j , j = 0, 1, . . . , Ĵ . (65)

We establish this result by an inductive argument that is quite lengthy and technical;
we note the termination of this phase of the proof clearly below.

This result trivially holds (with equality) at j = 0. Supposing that it holds for some
j = 0, 1, . . . , Ĵ − 1, we will prove that it also holds for j + 1.
By using Properties 7 and 8 of Lemma 7, and also ‖H̄r j‖ ≤ (M + 2ε)‖r j‖, we

have

q(y j+1) = q(y j ) − ‖r j‖4
2 p�

j H̄ p j
≤ q(y j ) − ‖r j‖4

2 r�
j H̄r j

≤ q(y j ) − ‖r j‖2
2(M + 2ε)

.

It follows from induction hypothesis q(y j ) ≤ Φ∗
j that

q(y j+1) ≤ q(y j ) − ‖r j‖2
2(M + 2ε)

= τq(y j ) + (1 − τ)q(y j ) − ‖r j‖2
2(M + 2ε)

≤ τΦ∗
j + (1 − τ)q(y j ) − ‖r j‖2

2(M + 2ε)
. (66)

By taking the derivative in (61), and using (62), we obtain

∇Φ j+1(z) = τ∇Φ j (z) + (1 − τ)
[
r j + ε(z − y j )

]

⇒ ε(z − v j+1) = ετ(z − v j ) + (1 − τ)
(
r j + ε(z − y j )

)
.

By rearranging the above relation (and noting that the z terms cancel out), we obtain:

v j+1 = τv j − 1 − τ

ε
r j + (1 − τ)y j . (67)

It follows from this expression together with Properties 1 and 2 of Lemma 7 that

v j ∈ span
{
p0, p1, . . . , p j−1

}
, j = 1, 2, . . . , Ĵ . (68)

(The result holds for j = 1, from (67) we have v1 ∈ span{v0, r0, y0} = span{r0} =
span{p0}, and an induction based on (67) can be used to establish (68) for the other
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values of j .) By combining the expressions (62) for Φ j , Φ j+1 with the recurrence
formula (61) for Φ j+1, we obtain

Φ∗
j+1 + ε

2
‖y j − v j+1‖2 = Φ j+1(y j )

= τΦ j (y j ) + (1 − τ)q(y j )

= τ
(
Φ∗

j + ε

2
‖y j − v j‖2

)
+ (1 − τ)q(y j )

and therefore

Φ∗
j+1 = τ

(
Φ∗

j + ε

2
‖y j − v j‖2

)
+ (1 − τ)q(y j ) − ε

2
‖y j − v j+1‖2. (69)

On the other hand, we have by (67) that

‖y j − v j+1‖2 =
∥∥∥∥τ(y j − v j ) + 1 − τ

ε
r j

∥∥∥∥

2

= (τ 2‖y j − v j‖2 + (1 − τ)2

ε2
‖r j‖2 + 2

ε
(1 − τ)τr�

j (y j − v j )

= τ 2‖y j − v j‖2 + (1 − τ)2

ε2
‖r j‖2, (70)

where the last relation comes from r j ⊥ span{p0, . . . , p j−1} (Property 2 of Lemma 7)
and (68) in the case j ≥ 1, and immediately in the case j = 0, since y0 = v0 = 0.
By combining (69) and (70), we arrive at:

Φ∗
j+1 = τ

(
Φ∗

j + ε

2
‖y j − v j‖2

)
+ (1 − τ)q(y j ) − ε

2
‖y j − v j+1‖2

= τ
(
Φ∗

j + ε

2
‖y j − v j‖2

)
+ (1 − τ)q(y j )

− ε

2
τ 2‖y j − v j‖2 − (1 − τ)2

2ε
‖r j‖2

= τΦ∗
j + ε

2

[
τ − τ 2

]
‖y j − v j‖2 + (1 − τ)q(y j ) − (1 − τ)2

2ε
‖r j‖2

= τΦ∗
j + ε

2
(1 − τ)τ‖y j − v j‖2 + (1 − τ)q(y j ) − (1 − τ)2

2ε
‖r j‖2

≥ τΦ∗
j + (1 − τ)q(y j ) − (1 − τ)2

2ε
‖r j‖2

≥ q(y j+1) + 1

2(M + 2ε)
‖r j‖2 − (1 − τ)2

2ε
‖r j‖2. (71)

where the last inequality comes from (66). By using the definitions of τ and κ in
Algorithm 1, we have
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(1 − τ)2

2ε
= 1

2ε(
√

κ + 1)2
≤ 1

2εκ
= 1

2(M + 2ε)
.

It therefore follows from (71) that q(y j+1) ≤ Φ∗
j+1. At this point, we have shown

that when q(y j ) ≤ Φ∗
j for j = 0, 1, . . . , Ĵ − 1, it follows that q(y j+1) ≤ Φ∗

j+1,
establishing the inductive step. As a result, our proof of (65) is complete.

By substituting j = Ĵ into (65), we obtain q(yĴ ) ≤ Φ∗
Ĵ
, which in combination

with (64) with j = Ĵ , and the definition (62), yields

q(yĴ ) − q(yĴ+1) ≤ Φ∗
Ĵ

− q(yĴ+1) ≤ Φ Ĵ (yĴ+1) − q(yĴ+1) ≤ τ Ĵψ(yĴ+1). (72)

By substitution from (63), we obtain

q(yĴ ) − q(yĴ+1) ≤ τ Ĵ
(
q(y0) − q(yĴ+1) + ε

2
‖y0 − yĴ+1‖2

)
. (73)

We now depart from the analysis of [5], and complete the proof of this result by
expressing (73) in terms of residual norms. On the left-hand side, we have

q(yĴ ) − q(yĴ+1) = r�
Ĵ+1

(yĴ − yĴ+1) + 1

2
(yĴ − yĴ+1)

� H̄(yĴ − yĴ+1)

= 1

2
(yĴ − yĴ+1)

� H̄(yĴ − yĴ+1)

because r�
Ĵ+1

(yĴ − yĴ+1) = r�
Ĵ+1

(α Ĵ pĴ ) = 0 by Lemma 7, Property 2. We thus have
from (59) that

q(yĴ ) − q(yĴ+1) ≥ ε

2
‖yĴ − yĴ+1‖2

= ε

2
‖α Ĵ pĴ‖2

≥ ε

2(M + 2ε)2
‖H̄(α Ĵ pĴ )‖2 (since ‖H̄ pĴ‖ ≤ (M + 2ε)‖pĴ‖)

= ε

2(M + 2ε)2
‖H̄(yĴ − yĴ+1)‖2

= ε

2(M + 2ε)2
‖r Ĵ − r Ĵ+1‖2 (since r j = g + H̄ y j )

= ε

2(M + 2ε)2
(‖r Ĵ‖2 + ‖r Ĵ+1‖2) (by Lemma 7, Property 2)

≥ ε

2(M + 2ε)2
‖r Ĵ‖2, (74)

On the right-hand side of (73), because of the strong convexity condition (60) at
i = 0, we have

q(y0) − q(yĴ+1) + ε

2
‖y0 − yĴ+1‖2 ≤ −∇q(y0)

�(yĴ+1 − y0)

= −r�
0 (yĴ+1 − y0) ≤ ‖r0‖‖yĴ+1 − y0‖.
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Moreover, we have

‖yĴ+1 − y0‖ =
∥∥∥∥∥∥

Ĵ∑

i=0

αi pi

∥∥∥∥∥∥
≤

Ĵ∑

i=0

αi‖pi‖ =
Ĵ∑

i=0

‖ri‖2
p�
i H̄ pi

‖pi‖,

where the last relation follows from the definition of αi . By combining these last two
bounds, and using Property 3 of Lemma 7, we obtain

q(y0) − q(yĴ+1) + ε

2
‖y0 − yĴ+1‖2 ≤ ‖r0‖

Ĵ∑

i=0

‖ri‖ ‖pi‖2
p�
i H̄ pi

≤ ‖r0‖1
ε

Ĵ∑

i=0

‖ri‖,

(75)

because p�
j H̄ p j ≥ ε‖p j‖2 for j = 0, 1, . . . , Ĵ by assumption.

To bound the sum in (75), we recall that since Algorithm 1 did not terminate
until iteration Ĵ , the residual norms ‖ri‖ at all iterations i = 0, 1, . . . , Ĵ − 1 must
have decreased at the expected convergence rate. In particularly, we have ‖ri‖ ≤√
T τ i/2‖r0‖ for the possibly smaller versions of

√
T and τ that prevailed at iteration

i , so certainly ‖ri‖ ≤ √
T τ i/2‖r0‖ for the final values of these parameters. Thus for

i = 0, 1, . . . , Ĵ − 1, we have

‖ri‖ ≤ √
T τ i/2‖r0‖ ≤ τ (i− Ĵ )/2‖r Ĵ‖,

where we used ‖r Ĵ‖ ≥ √
T τ Ĵ/2‖r0‖ (from (11)) for the last inequality. Observing

that this bound also holds (trivially) for i = Ĵ , we obtain by substituting in (75) that

q(y0) − q(yĴ+1) + ε

2
‖y0 − yĴ+1‖2 ≤ ‖r0‖1

ε

Ĵ∑

i=0

τ (i− Ĵ )/2‖r Ĵ‖

≤ ‖r0‖τ− Ĵ/2

ε
‖r Ĵ‖

Ĵ∑

i=0

(
√

τ)i

≤ ‖r0‖τ− Ĵ/2

ε
‖r Ĵ‖

1

1 − √
τ

. (76)

Applying successively (74), (73) and (76) finally yields:

ε

2(M + 2ε)2
‖r Ĵ‖2 ≤ q(yĴ ) − q(yĴ+1)

≤ τ Ĵ
(
q(y0) − q(yĴ+1) + ε

2
‖y0 − yĴ+1‖2

)

≤ τ Ĵ‖r0‖‖r Ĵ‖
τ− Ĵ/2

ε

1

1 − √
τ

.
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After rearranging this inequality and dividing by ‖r Ĵ‖ > 0, we obtain

‖r Ĵ‖ ≤ 2(M + 2ε)2

ε2

τ Ĵ/2

1 − √
τ

‖r0‖ = √
T τ Ĵ/2‖r0‖. (77)

We have thus established (58) which, as we noted earlier, contradicts (11). Thus (57)
cannot be true, so we have established (12), as required. 
�
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