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Abstract

We consider minimization of a smooth nonconvex objective function using an iterative
algorithm based on Newton’s method and the linear conjugate gradient algorithm, with
explicit detection and use of negative curvature directions for the Hessian of the objec-
tive function. The algorithm tracks Newton-conjugate gradient procedures developed
in the 1980s closely, but includes enhancements that allow worst-case complexity
results to be proved for convergence to points that satisfy approximate first-order and
second-order optimality conditions. The complexity results match the best known
results in the literature for second-order methods.
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1 Introduction

We consider the unconstrained optimization problem
min f (x), ey
xeR”

where f : R" — R is a twice Lipschitz continuously differentiable function that
is nonconvex in general. We further assume that f is bounded below for all x, by
some constant fioy. Although the Hessian V2 f (x) is well defined for such functions,
we assume that full evaluation of this matrix is undesirable from a computational
viewpoint, though we assume that Hessian-vector products of the form V2 £ (x)v can
be computed with reasonable efficiency, for arbitrary vectors v, as is often the case
when 7 is large.

Unconstrained minimization of nonconvex smooth functions of many variables is a
much-studied paradigm in optimization. Approaches such as limited-memory BFGS
and nonlinear conjugate gradient are widely used to tackle (1), particularly in the case
of large dimension n. Another popular approach, known as “Newton-CG,” applies the
(linear) conjugate gradient (CG) method to the second-order Taylor-series approxima-
tion of f around the current iterate xi. Each iteration of CG requires computation of
one Hessian-vector product of the form V2 f (xz)v. A trust-region variant of Newton-
CG, due to Steihaug [27], terminates the CG iterations when sufficient accuracy is
achieved in minimizing the quadratic approximation, when a CG step leads outside
the trust region, or when negative curvature is encountered in V2 f (x). A line-search
variant presented in [25] applies CG until some convergence criterion is satisfied, or
until negative curvature is encountered, in which case the search direction reverts to
the negative gradient.

Theoretical guarantees for Newton-CG algorithms have been provided, e.g. in
[12,15-17,25]. Convergence analysis for such methods typically shows that accu-
mulation points are stationary, that is, they satisfy the first-order optimality condition
V f(x) = 0. Local linear or superlinear convergence to a point satisfying second-order
sufficient conditions is sometimes also proved for Newton-CG methods. Although sev-
eral Newton-type methods have been analyzed from a global complexity perspective
[8], particularly in terms of outer iterations and derivative evaluations, bounds that
explicitly account for the use of inexact Newton-CG techniques have received less
attention in the optimization literature. Meanwhile, with the recent upsurge of inter-
est in complexity, several new algorithms have been proposed that have good global
complexity guarantees. We review some such contributions in Sect. 2. In most cases,
these new methods depart significantly from those seen in the traditional optimization
literature, and there are questions surrounding their practical appeal.

Our aim in this paper is to develop a method that hews closely to the Newton-
CG approach, but which comes equipped with certain safeguards and enhancements
that allow worst-case complexity results to be proved. At each iteration, we use CG to
solve a slightly damped version of the Newton equations, monitoring the CG iterations
for evidence of indefiniteness in the Hessian. If the CG process terminates with an
approximation to the Newton step, we perform a backtracking line search along this
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direction. Otherwise, we step along a negative curvature direction for the Hessian,
obtained either from the CG procedure on the Newton equations, or via some auxiliary
computation (possibly another CG process). In either case, we can show that significant
decrease can be attained in f at each iteration, at reasonable computational cost (in
terms of the number of gradient evaluations or Hessian-vector products), allowing
worst-case complexity results to be proved.

The remainder of the paper is organized as follows. We position our work within the
existing literature in Sect. 2. Our algorithm is described in Sect. 3. Section 4 contains
the complexity analysis, showing both a deterministic upper bound on the computation
required to attain approximate first-order conditions (Sect. 4.2) and a high-probability
upper bound on the computation required to satisfy approximate second-order nec-
essary conditions (Sect. 4.3). Section 5 contains some conclusions and discussion.
Several technical results and proofs related to CG are gathered in the Appendix.

Assumptions, Background, Notation Our algorithm seeks a point that approximately
satisfies second-order necessary conditions for optimality, that is,

IVF)N < € Amin(VZf(x)) > —en, )

for specified small positive tolerances €, and €y . (Here and subsequently, || - || denotes
the Euclidean norm, or its induced norms on matrices.) We make the following standard
assumptions throughout.

Assumption 1 The level set L7 (xo) = {x|f(x) < f(xo)} is compact.

Assumption 2 The function f is twice uniformly Lipschitz continuously differentiable
on an open neighborhood of L7 (xp) that includes the trial points generated by the
algorithm. We denote by L the Lipschitz constant for V2 f on this neighborhood.

Note that Assumption 2 is made for simplicity of exposition; slightly weaker vari-
ants could be used at the expense of some complication in the analysis.

Under these two assumptions, there exist scalars fiow, Uy > 0, and Uy > 0 such
that the following are satisfied for x € L s (xo):

F) > fiows VL) < U, IVEF(0)I < Up. 3)

We observe that Ug is a Lipschitz constant for the gradient.
For any x and d such that Assumption 2 is satisfied at x and x 4 d, we have

Fotd) = f0+ V@ d 4 3V fd + %H 1. @)

Notationally, we use order notation O in the usual sense, whereas o) represents O
with logarithmic terms omitted. We use such notation in bounding iteration count and
computational effort, and focus on the dependencies of such complexities on €, and
€. (In one of our final results—Corollary 2—we also show explicitly the dependence
onnand Ug.)
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2 Complexity in nonconvex optimization

In recent years, many algorithms have been proposed for finding a point that satisfies
conditions (2), with iteration complexity and computational complexity bounded in
terms of €, and € 7. We review several works most relevant to this paper here, and relate
their results to our contributions. For purposes of computational complexity, we define
the unit of computation to be one Hessian-vector product or one gradient evaluation,
implicitly using the observation from computational/algorithmic differentiation [18]
that these two operations differ in cost only by a modest factor, independent of the
dimension n.

Classical second-order convergent trust-region schemes [ 12] can be shown to satisfy
(2) after at most (’)(max{eg’ 26;11, 6;13}) iterations [10]. For the class of second-order
algorithms (that is, algorithms which rely on second-order derivatives and Newton-
type steps) the best known iteration bound is O (max{e, 3 2, 61_13 ). This bound was first
established for a form of cubic regularization of Newton’s method [24]. Following this
paper, numerous other algorithms have also been proposed which match this bound,
see for example [3,8,13,14,23].

A recent trend in complexity analysis of these methods also accounts for the compu-
tational cost of each iteration, thus yielding a bound on the computational complexity.
Two independent proposals, respectively based on adapting accelerated gradient to the
nonconvex setting [6] and approximately solving the cubic subproblem [1], require
O % operations (with high probability, showing dependency only on €) to find a
point x that satisfies

IVf )l < € and Amin(V?f () = =/ Une. ©)
The difference of a factor of € ~!/# with the results presented above arises from the
cost of computing a negative curvature direction of V? f (x;) and/or the cost of solving
a linear system. The probabilistic nature of the bound is generally due to the intro-
duction of randomness in the curvature estimation process; see [2,28] for two recent
examples. A complexity bound of the same type was also established for a variant
of accelerated gradient free of negative curvature computation, that regularly adds a
random perturbation to the iterate when the gradient norm is small [19].

In an interesting followup to [6], an algorithm based on accelerated gradient with
a nonconvexity monitor was proposed [5]. It requires at most (’j(e =7/4y jterations to
satisfy (5) with high probability. However, if one is concerned only with satisfying
the gradient condition |V f(x)|| < e, the O(e~7/*) bound holds deterministically.
Note that this bound represents an improvement over the O (e ~2) of steepest descent
and classical Newton’s method [7]. The improvement is due to a modification of the
accelerated gradient paradigm that allows for deterministic detection and exploitation
of negative curvature directions in regions of sufficient nonconvexity.

In a previous work [26], two authors of the current paper proposed a Newton-
based algorithm in a line-search framework which has an iteration complexity of
O(max{e, 3/ 2, 6;13}) when the subproblems are solved exactly, and a computational
complexity of 19 (6’7/ 4) Hessian-vector products and/or gradient evaluations, when
the subproblems are solved inexactly using CG and the randomized Lanczos algorithm.
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Compared to the accelerated gradient methods, this approach aligns more closely with
traditional optimization practice, as described in Sect. 1.

Building on [26], the current paper describes a similar line-search framework with
inexact Newton steps, but uses a modified version of CG to solve the system of Newton
equations, without first checking for positive definiteness of the coefficient matrix.
The modification is based in part on a convexity monitoring device introduced in the
accelerated gradient algorithms mentioned above. An implicit cap is imposed on the
number of CG iterations that are used to solve the damped Newton system. We show
that once this cap is reached, either the damped Newton system has been solved to
sufficient accuracy or else a direction of “sufficiently negative curvature” has been
identified for the Hessian. (A single extra CG iteration may be needed to identify
the negative curvature direction, in much the same manner as in [5] for accelerated
gradient.) In contrast to the previous work [26], no estimate of the smallest eigenvalue
of the Hessian is required prior to computing a Newton step. In addition to removing
potentially unnecessary computation, this approach allows a deterministic result for
first-order optimality to be proved, as in [5].

We are deliberate in our use of CG rather than accelerated gradient as the method of
choice for minimizing the quadratic objective that arises in the damped Newton step.
When applied to strongly convex quadratics, both approaches have similar asymptotic
linear convergence rates that depend only on the extreme eigenvalues of the Hes-
sian, and both can be analyzed using the same potential function [20] and viewed as
two instances of an underlying “idealized algorithm” [21]. However, CG has several
advantages: It has a rich convergence theory that depends on the full spectrum of
eigenvalues; it is fully adaptive, requiring no prior estimates of the extreme eigenval-
ues; and its practical performance on convex quadratics is superior. (See, for example,
[25, Chapter 5] for a description of these properties.) Further, as we prove in this
paper (Sect. 3.1), CG can be adapted to detect nonconvexity efficiently in a quadratic
function, without altering its core properties. We show in addition (see Sect. 3.2
and Appendix B) that by applying CG to a linear system with a random right-hand
side, we can find a direction of negative curvature in an indefinite matrix efficiently,
with the same iteration complexity as the randomized Lanczos process of [22] used
elsewhere.

The practical benefits of CG in large-scale optimization have long been appreciated.
We establish here that with suitable enhancements, methods based on CG can also be
equipped with good complexity properties as well.

3 Damped-Newton/Capped-CG method with negative curvature
steps

We describe our algorithm in this section, starting with its two major components. The
first component, described in Sect. 3.1, is a linear conjugate gradient procedure that is
used to solve a slightly damped Newton system. This procedure includes enhancements
to detect indefiniteness in the Hessian and to restrict the number of iterations. Because
of this implicit bound on the number of iterations, we refer to it as “Capped CG.”
The second component (see Sect. 3.2) is a “minimum eigenvalue oracle” that seeks a
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direction of negative curvature for a symmetric matrix, along with its corresponding
vector. The main algorithm is described in Sect. 3.3.

Algorithm 1 Capped Conjugate Gradient

Inputs: Symmetric matrix H € R"*"; vector g # 0; damping parameter € € (0, 1); desired relative
accuracy ¢ € (0, 1);

Optional input: scalar M (set to 0 if not provided);

Outputs: d_type, d;

Secondary outputs: final values of M, k, 2, t,and T;

Set

_ M42 - dict
H:=H+2l, «k:= + E, {:=3i, T = VK T: e
€ K

Y0 < 0,10 < g po < —8,J <0
if pg Hpo < €llpol* then
Set d = pg and terminate with d_type=NC;
else if || Hpgll > M| poll then
Set M < ||Hpgll/|l poll and update «, 2 7, T accordingly;
end if
while TRUE do
aj < r;rrj /p;.r['}pj; {Begin Standard CG Operations }
Yi+1 < Vit apj
Tjgl < 1) +OlepJ';
Bj+1 < (r_,»T+1V_/+1)/(rJTrj);
Pj+1 < —rjy1+ Bjr1pj; {End Standard CG Operations}
J<i+1
if | Hp;ll > Mip;]| then
Set M < ||[Hp;|l/llp;ll and update «, 2, 7, T accordingly;
end if
if |Hy;ll > Mlly;ll then
Set M < ||[Hy;ll/lly;ll and update «, f, 7, T accordingly;
end if
if |[Hr;|l > M|l then
Set M < |[Hrjl|/|lr; |l and update «, g:, 7, T accordingly;
end if
if ijHyj < elly;|I? then
Setd < y; and terminate with d_type=NC;
elseiif [r;]| < ¢[lro then
Setd <y J and terminate with d_type=SOL;
else if p;.r['}pj <e€lpj Hz then
Setd < p; and terminate with d_type=NC;
else if ||| > v/Tt//2|ro|| then
Compute o, ;41 as in the main loop above;
Findi € {0, ..., j — 1} such that

Th
(yj+l i) (YJJEI i) - e (6)
lyj+1 —vill
Setd < yj4+1 — y; and terminate with d_type=NC;

end if
end while
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3.1 Capped conjugate gradient

Conjugate Gradient (CG) is a widely used technique for solving linear equations with
symmetric positive definite coefficient matrices or, equivalently, minimizing strongly
convex quadratic functions. We devise a modified CG algorithm and apply it to a
system of the form Hy = —g, where H = H + 2¢l is a damped version of the
symmetric matrix H, which is our notational proxy for the Hessian V2 f (xy).

Algorithm 1 presents our Capped CG procedure. The main loop consists of classical
CG iterations. When H > €1, Algorithm 1 will generate the same iterates as a classical
conjugate gradient method appliedto Hy = —g, and terminate at an inexact solution of
this linear system. When H # €1, the features added to Algorithm 1 cause a direction
d to be identified along which d " Hd < €||d||? or, equivalently, d ' Hd < —e||d||*—
a direction of “sufficiently negative curvature” for H. Directions d of this type are
encountered most obviously when they arise as iterates y; or search directions p; in
the CG iterations. But evidence of the situation H % €I canarise more subtly, when the
residual norms |7 || decrease more slowly than we would expect if the eigenvalues of
H were bounded below by €. Accordingly, Algorithm 1 checks residual norms for slow
decrease, and if such behavior is detected, it uses a technique based on one used for
accelerated gradient methods in [5] to recover a direction d such that d THd < €|d|>

Algorithm 1 may be called with an optional input M that is meant to be an upper
bound on ||H||. Whether or not this parameter is supplied, it is updated so that at
any point in the execution of the algorithm, M is an upper bound on the maximum
curvature of H revealed to that point. Other parameters that depend on M (namely, «,
g:, 7, and T') are updated whenever M is updated.

The following lemma justifies our use of the term “capped” in connection with
Algorithm 1. Regardless of whether the condition H > el is satisfied, the number
of iterations will not exceed a certain number J (M, €, {) that we subsequently show
to be @(6_1/2). (We write J for J(M, €, ¢) in some of the subsequent discussion, to
avoid clutter.)

Lemma 1 The number of iterations of Algorithm 1 is bounded by
min{n, J(M, €, {)},
where J = J(M, €, {) is the smallest integer such that JT!? < E where M, E
T, and t are the values returned by the algorithm. If all iterates y; generated by the
algorithm are stored, the number of matrix-vector multiplications required is bounded
by
min{n, J(M, €, )} + 1. @)

If the iterates y; must be regenerated in order to define the direction d returned after
(6), this bound becomes 2 min{n, J (M, €, )} + 1.

Proof If the full n iterations are performed, without any of the termination conditions
being tripped, the standard properties of CG (see Appendix A) ensure that the final
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residual r, is zero, so that the condition ||r,| < E||r0|| is satisfied, and termination
occurs.

Since no more than n iterations are performed, the upper bound M is updated at
most a finite number of times, so the quantity J is well defined.

Supposing that J < n, we note from the definition of J that VT2 |ro|l < 2 lroll-
Thus at least one of the following two conditions must be satisfied at iteration J:
lrsll < Zliroll or lIrsll > ~Tt?/2|ro|l. In either case, termination will occur at
iteration J, unless it has occurred already at a previous iteration.

To derive (7), note that the main workload at each iteration j is computation of
a single matrix-vector product Hp; after the increment of j (since matrix-vector
products involving the matrices H and H and the vectors y; and r; can be computed
in terms of this vector, in an additional O (n) operations). (The “+1” in (7) accounts
for the initial matrix-vector multiplication H pg performed prior to entering the loop.)

If we do not store additional information, we need to regenerate the information
needed to compute the direction d satisfying (6) by re-running the iterations of CG,
possibly up to the second-to-last iteration. This fact accounts for the additional cost
of min{n, J(M, €, £)} in the no-storage case. m]

Note that J (M, €, ¢) is an increasing function of M, since g: is a decreasing function
of M, while T and 7 (and thus ~/7t//?) are increasing in M. If Uy is known in
advance, we can call Algorithm 1 with M = Upg and use J(Upy, €, ¢) as the bound.
Alternately, we can call Algorithm 1 with M = 0 and let it adjust M as needed during
the computation. Since the final value of M will be at most Up, and since J (M, €, ¢)
is an increasing function of M, the quantity J(Uy, €, {) provides the upper bound on
the number of iterations in this case too.

We can estimate J by taking logs in its definition, as follows:

<

In(r) m(%) CIn(1+1/yk)

~

c2

~ ) 22
_2n@/VT) _ n@*/T) _ In(T/5?) <ﬁ+%> 1n<T>,

where we used In(1+ %) > ﬁ to obtain the latest inequality. By replacing 7', 7, .k

by their definitions in Algorithm 1, and using 1—1\5 = 1:{5 < ﬁ, we obtain

K 2/(6
J(M,e,;)smin[n, {<ﬁ+%>ln<144(\/;2+1) )"H

= min {n @(6_1/2)} . (8)

1 Interestingly, as we show in Appendix A, the ratios on the left-hand side of (6) can be calculated without
knowledge of y; fori = 0,1,..., j — 1, provided that we store the scalar quantities «; and ||r; 1% for
i=0,1,....,j—1
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3.2 Minimum eigenvalue oracle

A minimum eigenvalue oracle is needed in the main algorithm to either return a
direction of “sufficient negative curvature” in a given symmetric matrix, or else return a
certificate that the matrix is almost positive definite. This oracle is stated as Procedure 2.

Procedure 2 Minimum Eigenvalue Oracle

Inputs: Symmetric matrix H € R"*" tolerance € > 0;

Optional input: Upper bound on Hessian norm M

QOutputs: An estimate A of Ay (H) such that L < —e/2, and vector v with ||v|| = 1 such that v Hv =2
OR a certificate that Apjn (H) > —e. In the latter case, when the certificate is output, it is false with
probability § for some § € [0, 1).

To implement this oracle, we can use any procedure that finds the smallest eigen-
value of H to an absolute precision of €/2 with probability at least 1 — §. This
probabilistic property encompasses both deterministic and randomized instances of
Procedure 2. In Sect. 4.3, we will establish complexity results under this general set-
ting, and analyze the impact of the threshold §. Several possibilities for implementing
Procedure 2 have been proposed in the literature, with various guarantees. An exact,
deterministic computation of the minimum eigenvalue and eigenvector (through a full
Hessian evaluation and factorization) would be a valid choice for Procedure 2 (with
8 = Oin that case), but is unsuited to our setting in which Hessian-vector products and
vector operations are the fundamental operations. Strategies that require only gradient
evaluations [2,28] may offer similar guarantees to those discussed below.

We focus on two inexact, randomized approaches for implementing Procedure 2.
The first is the Lanczos method, which finds the smallest eigenvalue of the restriction
of a given symmetric matrix to a Krylov subspace based on some initial vector. When
the starting vector is chosen randomly, the dimension of the Krylov subspace increases
by one at each Lanczos iteration, with high probability (see Appendix B and [22]).
To the best of our knowledge, [6] was the first paper to propose a complexity analysis
based on the use of randomized Lanczos for detecting negative curvature. The key
result is the following.

Lemma 2 Suppose that the Lanczos method is used to estimate the smallest eigenvalue
of H starting with a random vector uniformly generated on the unit sphere, where
|H| < M. Forany § € [0, 1), this approach finds the smallest eigenvalue of H to an
absolute precision of € /2, together with a corresponding direction v, in at most

. 1 o | M . .
minJin, 1+ 3 In(2.75n/6%),/ — iterations, ©)]
€

with probability at least 1 — 6.

Proof If ;5; > 1, we have =51 < —M1 < H < MI < §I. Therefore, letting b be
the (unit norm) random start of the Lanczos method, we obtain
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BTHb <M << =545 < oM+ S <omn(H) + <,
- 4 4 2 2~ 2
thus the desired conclusion holds at the initial point.

We now suppose that ;5; € (0, 1). By setting € = ;5; in Lemma 9, we have
that when £ is at least the quantity in (9), the estimate &nin (H, b, k) of the smallest
eigenvalue after k iterations of Lanczos applied to H starting from vector b satisfies
the following bound, with probability at least 1 — §:

Amax (H) — Amin (H) < €
2M -2

Emin(H, b, k) — Amin(H) < €Cumax (H) — Amin(H)) < %

as required. O

Procedure 2 can be implemented by outputting the approximate eigenvalue A for
H, determined by the randomized Lanczos process, along with the corresponding
direction v, provided that A < —e/2. When A > —e€/2, Procedure 2 returns the
certificate that Amin (H) > —e€, which is correct with probability at least 1 — §.

The second approach to implementing Procedure 2 is to apply the classical CG
algorithm to solve a linear system in which the coefficient matrix is a shifted version of
the matrix H and the right-hand side is random. This procedure has essentially identical
performance to Lanczos in terms of the number of iterations required to detect the
required direction of sufficiently negative curvature, as the following theorem shows.

Theorem 1 Suppose that Procedure 2 consists in applying the standard CG algorithm
(see Appendix A) to the linear system

(H+ el)d =b,

where b is chosen randomly from a uniform distribution over the unit sphere. Let M
satisfying ||H|| < M and § € (0, 1) be given. If Amin(H) < —¢, then with probability
atleast 1 — 6, CG will yield a direction v satisfying the conditions of Procedure 2 in a
number of iterations bounded above by (9). Conversely, if CG runs for this number of
iterations without encountering a direction of negative curvature for H + %el , then
Amin(H) > —e with probability at least 1 — 4.

We prove this result, and give some additional details of the CG implementation, in
Appendices A and B. We also present in Appendix B.3 a variant of the randomized-
Lanczos implementation of Procedure 2 that does not require prior knowledge of the
bound M suchthat || H| < M. In this variant, M itself is also estimated via randomized
Lanczos, and the number of iterations required does not different significantly from
(9). It follows from this result, together with our observation above that M can also be
obtained adaptively inside Algorithm 1, that knowledge of the bound on || V2 f (x)| is
not needed at all in implementing our method.

3.3 Damped Newton-CG

Algorithm 3 presents our method for finding a point that satisfies (2). It uses two kinds
of search directions. Negative curvature directions (that are also first-order descent
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steps) are used when they are either encountered in the course of applying the Capped
CG method (Algorithm 1) to the damped Newton equations, or found explicitly by
application of Procedure 2. The second type of step is an inexact damped Newton
step, which is the other possible outcome of Algorithm 1. For both types of steps,
a backtracking line search is used to identify a new iterate that satisfies a sufficient
decrease condition, that depends on the cubic norm of the step. Such a criterion is
instrumental in establishing optimal complexity guarantees in second-order methods
[3,13,14,26].

Algorithm 3 Damped Newton-CG

Inputs: Tolerances €g > 0, g > 0; backtracking parameter 6 € (0, 1); starting point x(; accuracy

parameter ¢ € (0, 1); sufficient decrease parameter n > 0;

Optional input: Upper bound M > 0 on Hessian norm;

fork=0,1,2,... do

if |V f(xp)ll > €g then

Call Algorithm 1 with H = sz(xk), € = €y, 8§ = Vf(xg), accuracy parameter { and M if
provided, to obtain outputs d, d_type;
if d_type=NC then

dp < —sgn(d gyl 2L wd| d .
else {d_type=SOL}
dy < d;
end if
Go to Line Search;
else
Call Procedure 2 with H = sz(xk), € = ey and M if provided;
if Procedure 2 certifies that Apmin (V2 £ (x;)) > —ep then
Terminate;
else {direction of sufficient negative curvature found}

Tv2
de < —sen(uT o) TV G0l
i« —senv! S

|2 [

v (where v is the output from Procedure 2) and go to Line

Search;
end if
end if
Line Search: Compute a step length o = 67k, where j;, is the smallest nonnegative integer such that

F ok + i) < f () = Zod (10)

Xjt1 < X + oygdy;
end for

In its deployment of two types of search directions, our method is similar to Stei-
haug’s trust-region Newton-CG method [27], which applies CG (starting from a zero
initial guess) to solve the Newton equations but, if it encounters a negative curvature
direction during CG, steps along that direction to the trust-region boundary. It differs
from the line-search Newton-CG method described in [25, Section 7.1] in that it makes
use of negative curvature directions when they are encountered, rather than discard-
ing them in favor of a steepest-descent direction. Algorithm 3 improves over both
approaches in having a global complexity theory for convergence to both approximate
first-order points, and points satisfying the approximate second-order conditions (2).
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In Sect. 4, we will analyze the global complexity properties of our algorithm. Local
convergence could also be of interest, in particular, it is probably possible to prove
rapid convergence of Algorithm 3 once it reaches the neighborhood of a strict local
minimum. We believe that such results would be complicated and less enlightening
than the complexity guarantees, so we restrict our study to the latter.

4 Complexity analysis

In this section, we present a global worst-case complexity analysis of Algorithm 3.
Elements of the analysis follow those in the earlier paper [26]. The most technical
part appears in Sect. 4.1 below, where we show that the Capped CG procedure returns
(deterministically) either an inexact Newton step or a negative curvature direction,
both of which can be used as the basis of a successful backtracking line search.
These properties are used in Sect. 4.2 to prove complexity results for convergence to
a point satisfying the approximate first-order condition ||V f(x)|| < €,. Section 4.3
proves complexity results for finding approximate second-order points (2), leveraging
properties of the minimum eigenvalue oracle, Procedure 2.

4.1 Properties of Capped CG

We now explore the properties of the directions d that are output by our Capped CG
procedure, Algorithm 1. The main result deals with the case in which Algorithm 1
terminates due to insufficiently rapid decrease in ||r;||, showing that the strategy for
identifying a direction of sufficient negative curvature for H is effective.

Theorem 2 Suppose that the main loop of Algorithm 1 terminates with j = J, where
Je{l,...,min{n, J(M, €, O)}},

(where J(M, €, ¢) is defined in Lemma 1 and (8)) because the fourth termination test
is satisfied and the three earlier conditions do not hold, that is, y;Hyj > e||yf||2,

pjHpj = e€lp;|* and

Il > max{f,ﬁrm} Iroll. (11)

where M, T, 2, and t are the values returned by Algorithm 1. Then y ;| is computed
by Algorithm 1, and we have

Vjor —¥) T HG o — i)
1y — il

<€, forsomeie{O,...,f—l}. (12)

The proof of Theorem 2 is quite technical, and can be found in Appendix C. It relies
on an argument previously used to analyze a strategy based on accelerated gradient [5,
Appendix A.1], itself inspired by a result of Bubeck [4], but it needs some additional
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steps that relate specifically to CG. The part of our proof that corresponds to [5,
Appendix A.1] is simplified in some respects, thanks to the use of CG and the fact that
a quadratic (rather than a nonlinear) function is being minimized in the subproblem.

Having shown that Algorithm 1 is well-defined, we summarize the properties of its
outputs.

Lemma 3 Let Assumptions 1 and 2 hold, and suppose that Algorithm 1 is invoked at an
iterate xy of Algorithm 3 (so that |V f (xi)|| > €4 > 0). Let di be the vector obtained
in Algorithm 3 from the output d of Algorithm 1. Then, one of the two following
statements holds:

1. d_type =SOL, and the direction dy, satisfies

d] (V2 f(x) + 2ep Dy > eglldi |12, (13a)
ldell < L1z IV F ol (13b)
R 1
el < Sentldill, (13c)
where
Pei= (V2 F(xp) + 2 Ddi + V f (x0); (14)

2. d_type=NC, and the direction dy satisfies d,;r Vf(xr) <0aswell as

d V2 f (xi)dy
S~ L — il < —en (15)
TAE ¢ "

Proof For simplicity of notation, we use H = V2 f(xx)and g = V f(x¢) in the proof.
Suppose first that d_type =SOL. In that case, we have from the termination conditions
in Algorithm 1 and (14) that

dl (H 4+ 2ey dy > ep|ldi|?, (16a)
17l < Zllgll, (16b)

where 2 was returned by the algorithm. We immediately recognize (13a) in (16a). We
now prove (13b). Observe first that (16a) yields

enlldell* < d (H 4 2ey Dy < ||di|l|(H + 2ep Ddg|,
so from (14) we have

ldell < € ICH + 2ep Dell = €' — g + Al
= '\ I8 + 17l < e’y 1+ £2)gll,
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where we used (16b) to obtain the final bound, together with the equality || —g+7||> =
llgll>+ lI7|I%, which follows from g "7 = r 7 = 0, by orthogonality of the residuals

in CG (see Lemma 7, Property 2). Since 2 < ¢/(Bk) < 1/6 by construction, we have

ldi |l < /377365 llgll < 1.1€5;' llg|l. proving (13b).
The bound (13c) follows from (16b) and the logic below:

17l < Eligll < & (ICH + 2em Ddell + 117ll) < & (M + 2em)lldic]l + 17

= |l = (M + 2ep) lldk|l,

1-¢

where M is the value returned by the algorithm. We finally use 7 < 1/6 to arrive at

~

¢
1-¢

6Cey
53

6~ 1
(M+2€H)§§§(M+2€H)= <§§€H,
yielding (13c).

In the case of d_type=NC, we recall that Algorithm 3 defines

[dTHd| d

di = —sgn(d g) S
1412 Tidl

7)

where d denotes the direction obtained by Algorithm 1. It follows immediately that
d,j g < 0. Since dj and d are collinear, we also have that

dl (H +2eyDdy  d"(H +2epl)d d! Hdy
2 = 2 =€n = 7 =
Nl I ]| Nl l

—€H.

By using this bound together with (17), we obtain

&l ld"Hd| |d] Hdy| d; Hdy .
k = = = — =
lld||? lldi ||? lldy 112

€H7
proving (15). O

4.2 First-order complexity analysis

We now find a bound on the number of iterations and the amount of computation
required to identify an iterate x; for which ||V f(x¢)|l < €. We consider in turn
the two types of steps (approximate damped Newton and negative curvature), finding
a lower bound on the descent in f achieved on the current iteration in each case.
We then prove an upper bound on the number of iterations required to satisfy these
approximate first-order conditions (Theorem 3) and an upper bound on the number of
gradient evaluations and Hessian-vector multiplications required (Theorem 4).
We start with a lemma concerning the approximate damped Newton steps.
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Lemma4 Suppose that Assumptions 1 and 2 hold. Suppose that at iteration k of
Algorithm 3, we have |V f (xp) || > €, so that Algorithm 1 is called. When Algorithm 1
outputs a direction dy with d_type =SOL, then the backtracking line search requires
at most ji < jsoi + 1 iterations, where

X 1 3(1 —¢) 6%_1
= |21 I S - S , 18
Jsol |:2 ©80 (LH—l-n 1.1U, (18)

and the resulting step Xr+1 = X + axdy satisfies

o) = fGrrn) = coomin (19 (s e’ €y ) (19)

where

n 4 [392<1—;>T
Csol = gmm > s
V@ +2+8Ly+4+¢ Ly +n

Proof The proof tracks closely that of [26, Lemma 13]. The only significant difference
is that equation (65) of [26], which is instrumental to the proof and requires a proba-
bilistic assumption on Amin (V2 f(xx)), is now ensured deterministically by (13a) from
Lemma 3. As a result, both the proof and the result are deterministic. O

When ||V f(xikyr1)]l < €g, the estimate (19) may not guarantee a “significant”
decrease in f at this iteration. However, in this case, the approximate first-order con-
dition ||V f(x)|| < €, holds at the next iteration, so that Algorithm 3 will invoke
Procedure 2 at iteration k + 1, leading either to termination with satisfaction of the
conditions (2) or to a step that reduces f by a multiple of 6?1 , as we show in Theorem 4
below.

We now address the case in which Algorithm 1 returns a negative curvature direction
to Algorithm 3 at iteration k. The backtracking line search guarantees that a sufficient
decrease will be achieved at such an iteration. Although the Lipschitz constant Ly
appears in our result, our algorithm (in contrast to [5]) does not require this constant
to be known or estimated.

Lemma5 Suppose that Assumptions 1 and 2 hold. Suppose that at iteration k of Algo-
rithm 3, we have ||V f (xi) |l > €, so that Algorithm 1 is called. When Algorithm 1
outputs d_type = NC, the direction di (computed from d in Algorithm 3) has the fol-
lowing properties: The backtracking line search terminates with step length o, = 67

with ji < jpe + 1, where
e 1= [lo < 3 >] (20)
Jne = Bo Ly+n + '

and the resulting step Xr+1 = Xr + axdy satisfies

Fou) = fOx+axde) > cpceyy, (21)
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with

no. { 2763 }
Cpe '= —min i1, — ("
6 (La+mn)

Proof By Lemma 3, we have from (15) that
df V2 f)di = —|ldill> < —epr i ]I? (22)
The result can thus be obtained exactly as in [26, Lemma 1]. O
We are ready to state our main result for first-order complexity.
Theorem 3 Let Assumptions 1 and 2 hold. Then, defining
Ih = [—f(x()) — Jiow max {673621, 6;13]—‘ ,

min{Csof, Cne} 8
some iterate xi, k =0,1, ..., 151 + 1 generated by Algorithm 3 will satisfy

IV fll < €. (23)

Proof Suppose for contradiction that ||V f (x;)|| > €, forallk =0, 1, ..., Ki+1,s0
that

IVfGDll > €, 1=0,1,....Kj. (24)

Algorithm 1 will be invoked at each of the first K1 + 1 iterates of Algorithm 3. For
eachiteration/ = 0, 1, ..., K for which Algorithm 1 returns d_type=SOL, we have
from Lemma 4 and (24) that

: 3 -3 3 : 3 -3 3
f ) — f(xi41) = csor min {IIVf(xm)II €y ,EH} > Cyo1 Min {egeH ,eH}.

(25)

For each iteration [ = 0, 1, ..., K; for which Algorithm 1 returns d_type=NC, we
have by Lemma 5 that

FQ) = f(xig1) = cnceyy. (26)

By combining these results, we obtain

£,
FGx0) = fOg ) = Y (FGa) = fag)
=0
£
> Z min{cges, Cpe} Min {626;13, e%}
=0
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= (151 + 1) min{cy,;, Cpe} Min {6361_13, e%,}

8
> f(x0) — fiow-

where we used the definition of K for the final inequality. This inequality contradicts

the definition of fiow in (3), so our claim is proved. O
If we choose €y in the range [eé/ 3, eé/ 3], this bound improves over the classi-

1/

cal O(e, 2) rate of gradient-based methods. The choice ey = €g 2 yields the rate

O(eq 3 2), which is known to be optimal among second-order methods [9].

Recalling that the workload of Algorithm 1 in terms of Hessian-vector products
depends on the index J defined by (8), we obtain the following corollary. (Note the
mild assumption on the quantities of M used at each instance of Algorithm 1, which
is satisfied provided that this algorithm is always invoked with an initial estimate of
M in the range [0, Ug].)

Corollary 1 Suppose that the assumptions of Theorem 3 are satisfied, and let K| be
as defined in that theorem and J(M, €y, ¢) be as defined in (8). Suppose that the
values of M used or calculated at each instance of Algorithm 1 satisfy M < Up.
Then the number of Hessian-vector products and/or gradient evaluations required by
Algorithm 3 to output an iterate satisfying (23) is at most

@min{n, J(Un, €n, O)} +2) (K1 + 1).
For n sufficiently large, this bound is 9] (max lfg_361§1/2’ 6;17/2}>, while if

J(WUy,€x, ) > n, the bound is ) (n max {e?efq, 61;3})

Proof From Lemma 1, the number of Hessian-vector multiplications in the main
loop of Algorithm 1 is bounded by min {n, J(Ugy, €g,¢) + 1}. An additional
min {n, J(Ug, €x, ¢)} Hessian-vector products may be needed to return a direction
satisfying (6), if Algorithm 1 does not store its iterates y ;. Each iteration also requires a
single evaluation of the gradient V f, giving a bound of 2 min {n, J(Ug, €g, )} +2)
on the workload per iteration of Algorithm 3. We multiply this quantity by the iteration
bound from Theorem 3 to obtain the result. O

By setting ey = 6;/2

, we obtain from this corollary a computational bound of
@(eg_ 7 4) (for n sufficiently large), which matches the deterministic first-order guar-
antee obtained in [5], and also improves over the (’)(eg_z) computational complexity

of gradient-based methods.

4.3 Second-order complexity results

We now find bounds on iteration and computational complexity of finding a point that
satisfies (2). In this section, as well as using results from Sects. 4.1 and 4.2, we also
need to use the properties of the minimum eigenvalue oracle, Procedure 2. To this end,
we make the following generic assumption.
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Assumption 3 For every iteration k at which Algorithm 3 calls Procedure 2, and for
a specified failure probability § with 0 < § < 1, Procedure 2 either certifies that
V2 f(xx) = —ey I or finds a vector of curvature smaller than —e /2 in at most

Nineo = min {1, 1+ [ Crneoe /] @7)

Hessian-vector products, with probability 1 — &, where Cpeo depends at most logarith-
mically on § and €.

Assumption 3 encompasses the strategies we mentioned in Sect. 3.2. Assuming the
bound Uy on ||H|| is available, for both the Lanczos method with a random starting
vector and the conjugate gradient algorithm with a random right-hand side, (27) holds
with Cmeo = In(2.751/8%)/Ug /2. When a bound on || H || is not available in advance,
it can be estimated efficiently with minimal effect on the overall complexity of the
method, as shown in Appendix B.3.

The next lemma guarantees termination of the backtracking line search for a neg-
ative curvature direction, regardless of whether it is produced by Algorithm 1 or
Procedure 2. As in Lemma 4, the result is deterministic.

Lemma 6 Suppose that Assumptions 1 and 2 hold. Suppose that at iteration k of
Algorithm 3, the search direction dy is of negative curvature type, obtained either
directly from Procedure 2 or as the output of Algorithm 1 and d_type = NC. Then the
backtracking line search terminates with step length o = 0% with jr < jpe + 1,
where j, is defined as in Lemma S, and the decrease in the function value resulting
Jfrom the chosen step length satisfies

S ) = f O +onde) > %e%,, (28)

with ¢y is defined in Lemma 5.

Proof Lemma 5 shows that the claim holds (with a factor of 8 to spare) when the
direction of negative curvature is obtained from Algorithm 1. When the direction is
obtained from Procedure 2, we have by the scaling of dj applied in Algorithm 3 that

1
df V2 f(dr = —lldi |l < —EeHndknz <0, (29)

from which it follows that ||dk| > %E 1 - The result can now be obtained by following
the proof of Lemma 5, with %e g replacing €p. O
We are now ready to state our iteration complexity result for Algorithm 3.

Theorem 4 Suppose that Assumptions 1, 2, and 3 hold, and define

el 3 - ow — —
Ky = ’7% max(e, 3e3,, 6H3}—‘ +2, (30)
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where constants cso; and c,c are defined in Lemmas 4 and 5, respectively. Then with
probability at least (1 — 8)K2 Algorithm 3 terminates at a point satisfying (2) in at

most K2 iterations. (With probability at most 1 — (1 — 5)K2 it terminates incorrectly
within K» iterations at a point for which ||V f (xp)|| < €g but Ain (V2 f(x)) < —€q.)

Proof Algorithm 3 terminates incorrectly with probability § at any iteration at which
Procedure 2 is called, when Procedure 2 certifies erroneously that Amin(V2f(x)) >
—epy. Since an erroneous certificate can only lead to termination, an erroneous certifi-
cate at iteration k means that Procedure 2 did not produce an erroneous certificate at
iterations O to k — 1. By a disjunction argument, we have that the overall probability of
terminating with an erroneous certificate during the first K, iterations is bounded by
1 — (1 — 8)%2. Therefore, with probability at least (1 — 8)%2, no incorrect termination
occurs in the first K iterations.

Suppose now for contradiction that Algorithm 3 runs for K, iterations without
terminating. That is, for all [ = 0, 1, ..., K2, we have either IVfx)ll > € or
Amin(Vz f(x)) < —epn. We perform the following partition of the set of iteration
indices:

KiUK,UK3=1{0,1,..., Ko — 1}, 31)

where K, K7, and K3 are defined as follows.

Casel Ky :={l=0,1,..., Ky—1: IVf(xDIl < €g}. At each iteration [ € Ky,
Algorithm 3 calls Procedure 2, which does not certify that Amin(V2 f(x) = —€n
(since the algorithm continues to iterate) but rather returns a direction of sufficient
negative curvature. By Lemma 6, the step along this direction leads to an improvement
in f that is bounded as follows:

S — fx) = LGH (32)

Case2 [ :={l =0,1,..., Ko =1 : [[Vf(xpIl > € and ||V f (x| > €}
Algorithm 3 calls Algorithm 1 at each iteration/ € /Cy, returning either an approximate
damped Newton or a negative curvature direction. By combining Lemmas 4 and 5,
we obtain a decrease in f satisfying

FO0) = ) = min{egr ened min {1V F G0 P )

> min{cge;, Cne/8} mMin [636;13, 6?_[} . (33)

Case3/3:={=0,1,.... Ko —1: |Vf(x)| > €g = IV f(xi41)|}. Because
IV f(x;+1) || may be small in this case, we can no longer bound the decrease in f by an
expression such as (33). We can however guarantee at least that f (x;) — f(x;41) > 0.
Moreover, provided that [ < K> — 1, we have from ||V f (x;41)] < €, that the next
iterate [ + 1 is in /Cy. Thus, a significant decrease in f will be attained at the next
iteration, and we have
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K3l < 1K1+ 1. (34)

We now consider the total decrease in f over the span of I?z iterations, which is
bounded by f(x0) — fiow as follows:

122—1
F0) = fiow = D (f(x) = f(xi41))
1=0
> (fe) = foas)) + Y (fe) = f)  (35)
ek leky

where both sums in the final expression are nonnegative. Using first the bound (32)
for the sum over Ky, we obtain

f(x0) = fiow -3

Cne
F(x0) = fiow = |/c1|?ei, & K] < TR (36)

Applying (33) to the sum over K, leads to
S (x0) = flow -3 3

[y < ————————— max{e, ¢ ,6_3}. (37
? min{csor, Cnc/8} § “H"H

Using these bounds together with (34), we have

Ky = |K1] + [K2| + K]
<2K |+ 1K + 1
< 3max{|Ky], [z} + 1
< 3(f(x0) — fiow)
~ min{cyo/, Cne/8}
<Ky—1,

-3.3 _-3
max{eg €y et +1

giving the required contradiction. O

We note that when§ < 1/ K> in Theorem 4, a technical result shows that (1—8)%2 >
1 — 8 K». In this case, the qualifier “with probability at least (1 — 8)X2 in the theorem
can be replaced by “with probability at least 1 — § K»” while remaining informative.

Finally, we provide an operation complexity result: a bound on the number of
Hessian-vector products and gradient evaluations necessary for Algorithm 3 to find a
point that satisfies (2).

Corollary 2 Suppose that assumptions of Theorem 4 hold, and let K» be defined as in
(30). Suppose that the values of M used or calculated at each instance of Algorithm 1
satisfy M < Upy. Then with probability at least (1 — 8)X2, Algorithm 3 terminates at
a point satisfying (2) after at most

(max {2min{n, J(Un, €, §)} + 2, Nmeol}) IEZ
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Hessian-vector products and/or gradient evaluations. (With probability at most 1 —(1—
8)K2, it terminates incorrectly with this complexity at a point for which |V f (x) || < €
but hmin(V? f (X)) < —€n.) i i

For n sufficiently large, and assuming that § < 1/K,, the bound is O
(max {66,_36?_1/2, 6,}7/2}) with probability at most 1 — K»8.

Proof The proof follows by combining Theorem 4 (which bounds the number of
iterations) with Lemma 1 and Assumption 3 (which bound the workload per iteration).
O

Bysettingey = eél,/z

and assuming that n is sufficiently large, we recover (with high
probability) the familiar complexity bound of order (7)(65,_ 7 4), matching the bound of

accelerated gradient-type methods such as [1,6,19].

5 Discussion

We have presented a Newton-CG approach for smooth nonconvex unconstrained
minimization that is close to traditional variants of this method, but incorporates
additional checks and safeguards that enable convergence to a point satisfying approx-
imate second-order conditions (2) with guaranteed complexity. This was achieved by
exploiting the properties of Lanczos-based methods in two ways. First, we used CG
to compute Newton-type steps when possible, while monitoring convexity during the
CQG iterations to detect negative curvature directions when those exist. Second, by
exploiting the close relationship between the Lanczos and CG algorithms, we show
that both methods can be used to detect negative curvature of a given symmetric matrix
with high probability. Both techniques are endowed with complexity guarantees, and
can be combined within a Newton-CG framework to match the best known bounds
for second-order algorithms on nonconvex optimization [11].

Nonconvexity detection can be introduced into CG in ways other than those used in
Algorithm 1. For instance, we can drop the implicit cap on the number of CG iterations
that is due to monitoring of the condition ||r;|| > VTt//%|rg|| and use of the negative
curvature direction generation procedure (6) from Algorithm 1, and instead impose an
explicit cap (smaller by a factor of approximately 4 than J(M, €, ¢)) on the number
of CG iterations. In this version, if the explicit cap is reached without detection of a
direction of sufficient negative curvature for H, then Procedure 2 is invoked to find one.
This strategy comes equipped with essentially the same high-probability complexity
results as Theorem 4 and Corollary 2, but it lacks the deterministic approximate-first-
order complexity guarantee of Theorem 3. On the other hand, it is more elementary,
both in the specification of the Capped CG procedure and the analysis.

A common feature to the Capped CG procedures described in Algorithm 1 and in
the above paragraph, which also emerges in most Newton-type methods with good
complexity guarantees [11], is the need for high accuracy in the step computation. That
is, only a small residual is allowed in the damped Newton system at the approximate
solution. Looser restrictions are typically used in practical algorithms, but our tighter
bounds appear to be necessary for the complexity analysis. Further investigation of the
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differences between our procedure in this paper and practical Newton-CG procedures
is a subject of ongoing research.

Acknowledgements We thank sincerely the associate editor and two referees, whose comments led us to
improve the presentation and to derive stronger results.

Funding Funding was provided by National Science Foundation (Grant Nos. 1447449, 1628384, 1634597,
1740707), Air Force Office of Scientific Research (Grant No. FA9550-13-1-0138) and Argonne National
Laboratory (Grant Nos. 3F-30222, 8F-30039) and DARPA (Grant No. N660011824020).

A Linear conjugate gradient: relevant properties

In this appendix, we provide useful results for the classical CG algorithm, that also
apply to the “standard CG” operations within Algorithm 1. To this end, and for the
sake of discussion in Appendix B, we sketch the standard CG method in Algorithm 4,
reusing the notation of Algorithm 1.

Algorithm 4 Conjugate Gradient

Inputs: Symmetric matrix H, vector g;
ro <= g, pg < —ro,yo < 0,j < 0;
while p [ Hp; > Oandr; # 0 do
a; <—rorj/pjTHpj;
Vi+l < yjtajpj
Tj+1 <_”j_‘r|‘ajHl7j§ .
Bj+1 < i rj+0)/(rj 1)
Pj+l < —Tjx1 +Bjyipjs
J<Jj+Lh
end while

Here and below, we refer often to the following quadratic function:

1 _
q(y) = EyTHy +g'y, (38)

where H and g are the matrix and vector parameters of Algorithms 1 or 4. When H is

positive definite, the minimizer of ¢ is identical to the unique solution of Hy = —g.
CG can be viewed either as an algorithm to solve Hy = —g or as an algorithm to
minimize q.

The next lemma details several properties of the conjugate gradient method to be
used in the upcoming proofs.

Lemma 7 Suppose that j iterations of the CG loop are performed in Algorithm 1 or 4.
Then, we have

p; Hpi

W>O foralli:O,l,...,j—l. (39)
Pi
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Moreover, the following properties hold.

1. yi espan{pg, ..., pi—1}, i=1,2,...,].
2. ri €span{pg, ..., pitforalli =1,2,...,j, and

T

rp;v=_0, forallvespan{pg,...,pi—1}andalli =1,2,...,].

(In particular, rl.Trl =0if0<l<i<j.Ifj=n,thenr, =0.)

3ol < lipill i =0,1,..., j.

4o pi=—lrlPi=0,1,.... ]

5. pl Hpy =0foralli,k=0,1,...,jwithk #i.

6. pi == p—oUlril?/IlrlPr i = 0,1, j.

7 g =qon - oo
Zpi H p;

8. rl.TI-_Irl- zpi—rgpi,izo,l,...,j.

Proof Since CG has not terminated prior toiteration j, (39) clearly holds. All properties
then follow from the definition of the CG process, and most are proved in standard
texts (see, for example, [25, Chapter 5]). Property 8 is less commonly used, so we
provide a proof here.

The case i = 0 is immediate since 7o = — po and there is equality. When i > 1,
we have:

7 11> [l
I ||2Pi—1 & ri=—pi+
i—1

pi=—Ti+

(Note that if iteration i is reached, we cannot have ||r;_1|| = 0.) It follows that

[T Il + -
I 1”217,' Pi—1 |4Pi71 Pi—1
-

rl-TI-_Iri = pi—rﬁp; -2 ]
i

T Irll* + -
= p; Api 4Pi71HPi—1,
ll7i—1ll

as pl.—r H pi—1 = 0 by Property 5 above. Since iteration i has been reached, p;_1 is a
direction of positive curvature, and we obtain riT Hr; > piT H p;, as required. O

We next address an important technical point about Algorithm 1: the test (6) to
identify a direction of negative curvature for H after an insufficiently rapid rate of
reduction in the residual norm ||r;|| has been observed. As written, the formula (6)
suggests both that previous iterations y;, i = 1,2,...,j — 1 must be stored (or
regenerated) and that additional matrix-vector multiplications (specifically, H (y 11—
vi),i =0, 1,...) must be performed. We show here that in fact (6) can be evaluated
at essentially no cost, provided we store two extra scalars at each iteration of CG: the
quantities o and ||ri||%, fork = 0,1, ..., j.
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Lemma 8 Suppose that Algorithm 1 computes iterates up to iteration j + 1. Then, for
anyi € {0, ..., j}, we can compute (6) as

i1 — ) TH(yj1 — i) > el l?

2 - . . 2 .
—
i =il o [ cmanie exlrel2] /lrel?

Proof By definition, y;11 — yi = Z,{:i ok pr. By conjugacy of the pi vectors, we
have
B J B J
(yje1 =y T H(yjor —yi) = Y _egp{ Hpr =) _ erllrll?, (40)
k=i k=i

where we used the definition of ¢ to obtain the last equality. Now we turn our attention
to the denominator. Using Property 6 of Lemma 7, we have that

J J k 2
ll7sl
Yi+l —Yi = E Ok Pk = E (073 <—§ ”m”ﬂz ,
k=i

k=i £=0
By rearranging the terms in the sum, we obtain

J J

j ok
2 It 2|
=) el e == ) 2 el -

k=i £=0 lIre =0 | k=max{t,i)

Using the fact that the residuals {r¢},=0,1
of Lemma 7), we have that

;j form an orthogonal set (by Property 2

,,,,,

i J g
1y — yill? :ZW Yo adnl?
e=0 " | k=max{e.i)
Combining this with (40) gives the desired result. O

B Implementing Procedure 2 via Lanczos and conjugate gradient

In the first part of this appendix (Appendix B.1) we outline the randomized Lanc-
zos approach and describe some salient convergence properties. The second part
(Appendix B.2) analyzes the CG method (Algorithm 4) applied to a (possibly non-
convex) quadratic function with a random linear term. We show that the number of
iterations required by CG to detect nonpositive curvature in an indefinite matrix is the
same as the number required by Lanczos, when the two approaches are initialized in
a consistent way, thereby proving Theorem 1. As a result, both techniques are imple-
mentations of Procedure 2 that satisfy Assumption 3, provided than an upper bound
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M on || H|| is known. In the third part (Appendix B.3), we deal with the case in which
abound on || H || is not known a priori, and describe a version of the randomized Lanc-
zos scheme which obtains an overestimate of this quantity (to high probability) during
its first phase of execution. The complexity of this version differs by only a modest
multiple from the complexity of the original method, and still satisfies Assumption 3.

B.1 Randomized Lanczos

Consider first the Lanczos algorithm applied to a symmetric, n-by-n matrix H and a
starting vector b € R” with ||b|| = 1. After ¢ + 1 iterations, Lanczos constructs a basis
of the 7-th Krylov subspace defined by

K;(b, H) = span{b, Hb, ..., H'b}. 41)

The Lanczos method can compute estimates of the minimum and maximum eigenval-

ues of H.Fort =0, 1, ..., those values are given by
Emin(H,b,t) = min z' Hz subjectto ||z]l» = 1,z € K;(b, H), (42a)
Z
Emax(H,b,t) = max z' Hz subjectto ||z]lo = 1,z € K;(b, H). (42b)
Z

The Krylov subspaces satisfy a shift invariance property, that is, for any H=al+
a» H with (a1, a) € R2, we have that

Kb, H) = K,(b, H) fort=0,1,... (43)

Properties of the randomized Lanczos procedure are explored in [22]. The following
key result is a direct consequence of Theorem 4.2(a) from the cited paper, along with
the shift invariance property mentioned above.

Lemma9 Let H be an n x n symmetric matrix, let b be chosen from a uniform
distribution over the sphere ||b|| = 1, and suppose that € € [0, 1) and § € (0, 1) are
given. Suppose that Emin(H , b, k) and &max (H, b, k) are defined as in (42). Then after
k iterations of randomized Lanczos, the following convergence condition holds:

Amax (H) — Emax (H, b, k) < € (max (H) — Amin (H))
with probability at least 1 — §, (44)

provided k satisfies
k=n or 1.648/nexp (—x/E(Zk - 1)) <. (45)
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A sufficient condition for (44) thus is

1

k > min n,l+’r
{ 4€

In(2.75n /3%} } ) (46)
Similarly, we have that

Smin(l:la b, k) - )‘min(g) = g()\max([;) - )\min([:l))
with probability at least 1 — § 47)

for k satisfying the same conditions (45) or (46).

B.2 Lanczos and conjugate gradient as minimum eigenvalue oracles

Lemma 2 implies that using the Lanczos algorithm to generate the minimum eigenvalue
of H from (42a) represents an instance of Procedure 2 satisfying Assumption 3. The
sequence of iterates {z,} given by zo = b and

1 +- -
Zr41 € argmin EZTHZ subjectto ||zl = 1,z € K, (b, H), fort =0,1,... (43)
Zz

eventually yields a direction of sufficient negative curvature, when such a direction
exists.

Consider now Algorithm 4 applied to H, and g = —b. By Property 2 of Lemma 7,
we can see that if Algorithm 4 does not terminate with j < ¢, for some given index ¢,
then y;41, 7141, and p,4| are computed, and we have

span{po,...,pi}:span{ro,...,ri}:ICi(b,I:I), fori =0,1,...,t, (49)

because {W}Zzo is a set of i + 1 orthogonal vectors in K; (b, H). Thus {po,...,pi}
{ro,...,ri}, and {b, Hb, ..., H'b} are all bases for K;(b, H),i = 0,1,...,7. As
long as they are computed, the iterates of Algorithm 4 satisfy

1 ;- N
Vi4] i= argmin 5yTHy — by subjecttoy e K;(b, H), forr =0,1,.... (50)
y

The sequences defined by (48) (for Lanczos) and (50) (for CG) are related via the
Krylov subspaces. We have the following result about the number of iterations required
by CG to detect non-positive-definiteness.

Theorem 5 Consider applying Algorithm 4 to the quadratic function (38), with g =
—b for some b with ||b|| = 1. Let J be the smallest value of t > 0 such that K;(b, H)
contains a direction of nonpositive curvature, so that J is also the smallest index
t > 0 such that z;zr 11‘-_1 Zr+1 < 0, where {z;} are the Lanczos iterates from (48). Then
Algorithm 4 terminates with j = J, with p}ﬁp; <0.
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Proof We consider first the case of J = 0. Then z; = b/||b|| and b Hb < 0, so since
po = —rog = b, we have pS—F_Ipo < 0, so the result holds in this case. We assume that
J > 1 for the remainder of the proof.

Suppose first that Algorithm 4 terminates with j = ¢, for some ¢ satisfying 1 <
t < J,because of a zero residual — r, = 0—without having encountered nonpositive
curvature. In that case, we can show that H'b € span{b, ..., H'~'b}.

We can invoke (49) with ¢ replaced by ¢+ — 1 since Algorithm 4 has not terminated
at iteration ¢+ — 1. By the recursive definition of r;_1 within Algorithm 4, there exist
coefficients t; and o; such that

t—1 t—1

ri_1=—b+ Z‘E{I:]ib, Pi—1 = Zdil:lib.
i=1 i=0

Since r; = 0, we have again from Algorithm 4 that

—1
O=r—1+a_1Hp—1=—b+ Z(Ti +or_10i-1)H'b + ;10,1 H'b.  (51)

i=1

The coefficient ;10,1 must be nonzero, because otherwise this expression would
represent a nontrivial linear combination of the basis elements {b, Hb, ... H' ’lb}
of KC,_1(b, H) that is equal to zero. It follows from this observation and (51) that
H'b € span{b, Hb, ..., H b} = K;_1(b, H), as required.

Consequently,

K:(b, H) = span{b, Hb, ..., H'b} = span{b, ..., H'~'b} = K,;_ (b, H).

By using a recursive argument on the definition of K; (b, H yfori =1¢,...,J, we
arrive at K;_1 (b, H) = K; (b, H). Thus there is a value of # smaller than J such that
KC;(b, H) contains a direction of nonpositive curvature, contradicting our definition of
J. Thus we cannot have termination of Algorithm 4 with j < J unless p!| Hp ;i <0.

Suppose next that CG terminates with j = ¢ for some ¢t > J. It follows that
p}—I:ij > (0 forall j = 0,1,...,J. By definition of J, there is a nonzero vec-

tor z € K (b, H) such that z" Hz < 0. On the other hand, we have K; (b, H) =
span{po, p1, ..., ps} by (49), thus we can write z = Z]J:O Yjpj» for some scalars
vi»J=0,1,...,J. By Property 5 of Lemma 7, we then have

J

0>z Hz= ZyjzpjTHpj.
j=0

Since pjTI-_ij > O forevery j =0,1,...,J, and not all y; can be zero (because
z # 0), the final summation is strictly positive, a contradiction.

Suppose now that CG terminates at some j < J. Then p}rﬁ pj < 0, and since
pj € K;(b, H), it follows that K i (b, H) contains a direction of nonpositive curvature,
contradicting the definition of J.
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We conclude that Algorithm 4 must terminate with j = J and p; THpy <0, as
claimed. O

Theorem 5 is a generic result that does not require b to be chosen randomly. It does
not guarantee that Lanczos will detect nonpositive curvature in H whenever present,
because b could be orthogonal to the subspace corresponding to the nonpositive curva-
ture, so the Lanczos subspace never intersects with the subspace of negative curvature.
When b is chosen randomly from a uniform distribution over the unit ball, however,
we can certify the performance of Lanczos, as we have shown in Lemma 2 based on
Lemma 9 above. We can exploit Theorem 5 to obtain the same performance for CG,
as stated in Theorem 1. We restate this result as a corollary, and prove it now.

Corollary 3 Let b be distributed uniformly on the unit ball and H be a symmetric
n-by-n matrix, with ||H|| < M. Given § € [0, 1), define

2

Consider applying Algorithm 4 with H = H + %EI and g = —b. Then, the following
properties hold:

(a) If \min(H) < —¢€, then with probability at least 1 — 8, there is some mdex Jj
J such that Algorithm 4 terminates with a direction p; j such that p; i THp; i
— (/D pjlI* i

(b) if Algorithm 4 runs for J iterations without terminating, then with probability at
least 1 — 8, we have that Amin(H) > —e¢.

=
=

Proof We will again exploit the invariance of the Krylov subspaces to linear shifts
given by (43). This allows us to make inferences about the behavior of Algorithm 4
applied to H from the behavior of the Lanczos method applied to H, which has been
described in Lemma 2.
Suppose first that Amin(H) < —e. By Lemma 2, we know that with probability
at least 1 — §, the Lanczos procedure returns a vector v such that |[v]| = 1 and
v Hv < —(¢/2) after at most J iterations. Thus, for some j < J, we have v €
Kb, H) = I, H), and moreover v Hv < 0 by definition of H, so the Krylov
subspace K (b, H) contains directions of nonpositive curvature, for some j < J. It
then follows from Theorem 5 that pTH pj < 0 for some j < J. To summarize: If

Amin(H) < —é, then with probability 1 — 8, Algorithm 4 applied to H and g = —b
will terminate with some p; such that pl.TI:I pj < 0forsome j with j < J . The proof
of (a) is complete.

Suppose now that Algorithm 4 applied to H and g = —b runs for J iterations
without terminating, that is pjTI-_I pj>0forj=0,1,..., J . Tt follows from the logic
of Theorem 5 that KC7(b, H) contains no directions of nonpositive curvature for H.
Equivalently, there is no direction of curvature less than —e/2 for H in K 7(b, H). By
Lemma 2, this certifies with probability at least 1 — § that Apin (H) > —e€, establishing
(b). O
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B.3 Randomized Lanczos with internal estimation of a bound on ||H||

The methods discussed in Sect. B.2 assume knowledge of an upper bound on the
considered matrix, denoted by M. When no such bound is known, we show here
that it is possible to estimate it within the Lanczos procedure. Algorithm 5 details
the method; we show that it can be used as an instance of Procedure 2 satisfying
Assumption 3 when the optional parameter M is not provided.

Algorithm 5 consists in applying the Lanczos method on H starting with a random
vector b. We first run Lanczos for jjs iterations, where jj; does not depend on any
estimate on the minimum or maximum eigenvalue and instead targets a fixed accu-
racy. After this initial phase of jjs iterations, we have approximations of the extreme
eigenvalues Enax (H, b, jyr) and Enin (H, b, jpr) from (42). An estimate M of || H|| is
then given by:

M=2max{|§maX(Hsb9]M)|v|§mln(H7bv .]M)l} (53)

We show below that ||H|| < M < 2| H||, with high probability. This value can then
be used together with a tolerance € to define a new iteration limit for the Lanczos
method. After this new iteration limit is reached, we can either produce a direction of
curvature at most —e /2, or certify with high probability that Apyin (H) > —el—the
desired outcomes for Procedure 2.

Algorithm 5 Lanczos Method with Upper Bound Estimation

Inputs: Symmetric matrix H € R"*", tolerance € > 0.

Internal parameters: probability § € [0, 1), vector b uniformly distributed on the unit sphere.

Outputs: Estimate A of Ay, (H) such that A < —e/2, and vector v with ||v]| = 1 such that v Ho =21
OR certificate that Ain (H) > —e. If the certificate is output, it is false with probability 5.

Set jp = min {n, 1+ [%m(zsn/a?)“.
Perform j; iterations of Lanczos starting from b.
Compute Enin (H, b, jar) and Emax (H, b, jar), and set M according to (53).
Set jioral = min {jM, 1+ [% 1n(25n/82),/¥—‘ }
Perform max{0, jiotal — jas} additional iterations of Lanczos.
Compute Emin (H, b, jiotal)-
if Emin (H, b, jiotal) < —€/2 then
Output A = Emin(H, b, jiota1) and a unit vector v such that v Hv =\
else
Output & = Enin(H, b, jiotal) as a certificate that Anin(H) > —e. This certificate is false with
probability 8.
end if

Algorithm 5 could be terminated earlier, in fewer than jiy, iterations, when a
direction of sufficient negative is encountered. For simplicity, we do not consider this
feature, but observe that it would not affect the guarantees of the method, described
in Lemma 10 below.
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Lemma 10 Consider Algorithm 5 with input parameters H and €, and internal param-
eters 6 and b. The method outputs a value A such that

b < hnin (H) + % (54)

in at most

. 1 2 2 2IIHII
min 4 7, 1 + max 51n(25n/8 )|, —l (25n/6%) (55)

matrix-vector multiplications by H, with probability at least 1 — §.

Proof We begin by showing that the first phase of Algorithm 5 yields an accurate
estimate of ||H || with high probability. We assume that ||H| > 0 as the result is
trivially true otherwise. By setting § <— §/3 and € = % in Lemma 9, we obtain that
the following inequalities hold, each with probability at least 1 — §/3:

Emax (H, b, jam) = Amax(H) = § (omax (H) — Amin(H)), (56a)
Emin(H, b, jy) < dmin(H) + § Oomax (H) — Amin (). (56b)

We consider the various possibilities for Amin(H) and Apax (H) separately, showing
in each case that M defined by (53) has |H|| < M <2||H]|.

— When Apax(H) > Amin(H) > 0, we have &nax(H, b, jy) > 4 Amin(H) and
0 <é&min(H,b, ju) < &max(H, b, ju), so that
. 3 3
M = 28nax (H, b, JM) < 2hmax(H) = 2| H|,

as required.
~ When Amin(H) < Amax(H) < 0, we have &min(H, b, ji) < 3Amin(H) < 0 and
Emin(H, b, ji) < max(H, b, jy) < 0, so that

. 3 3
M =2|&min(H, b, ju)| = El)\min(HN = §|IH||,
M =2|&min(H, b, jm)| < 2|Amin(H)| = 2| H ],
as required.
— When Amin(H) < 0 < Amax(H) and —Amin(H) =< Amax(H), we have

Amax (H) = Amin(H) < 2Amax (H), so from (56a), it follows that Emax (H, b, ju) >
$hmax(H) = 3||H||, and so

M > 2§max(H,ba ]M) = ||H||,

M = 2max {|Emax (H, b, ja)l, [Emin(H, b, jm)|}
< 2max {|Amax (H) I, [Amin (H)[} = 2| H |,

as required.
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— When Apin(H) <0 < Amax(H) and —Amin(H) > Amax(H), we have Amax (H) —
Amin(H) < —2Anin(H), so from (56b), it follows that &nin(H, b, jy) <
%Amin(H) < 0, and so

M > 2|Emin(H, b, jm)| = |Amin(H)| = || H]|,
M =2max {|Emax (H, b, jm)l, 1Emin(H, b, ju)l}
< 2max {|Amax (H)|, [Amin (H)|} = 2| H |,

as required.

Since each of the bounds in (56) holds with probability at least 1 — §/3, both hold
with probability at least 1 — 25/3, by a union bound argument.

We finally consider the complete run of Algorithm 5, which requires ji,] iterations
of Lanczos. If our estimate M is accurate, we have by setting § <— §/3and M < 2||H||
in Lemma 2 that A = &nin(H, b, jiota) satisfies (54) with probability 1 — §/3. By
using a union bound to combine this probability with the probabilities of estimating
M appropriately, we obtain the probability of at least 1 — §.

In conclusion, Algorithm 5 runs ji,) iterations of Lanczos (each requiring one
matrix-vector multiplication by H) and terminates correctly with probability at least
1-4. O

The lemma above shows that Algorithm 5 is an instance of Procedure 2 that does
not require an a priori bound on || H||. Assuming || H|| < Up, we further observe that

2
Algorithm 5 satisfies the conditions of Assumption 3 with Cpeo = %«/U H,

which is within a modest constant multiple of the one obtained for the Lanczos method
with knowledge of | H|| or Ug.

C Proof of Theorem 2

Proof The proof proceeds by contradiction: If we assume that all conditions specified
in the statement of the theorem hold, and in addition that

Gy = T HGjp = 30) .
L 0 TN T o foralli = 0,1, 0 — 1, (57)
ly; o —vill

then we must have
Il < VTT!2iroll, (58)
contradicting (11). Note that

- T 7 Tg
O =YD THO =) _ojp;Hjpy)  p;Hpj

= > ¢
1y — ill? lloejpj1I? lp;l2

(59)
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by assumption, therefore we can consider (57) to hold fori =0, 1, ..., J. MoreoverA,
recalling the definition (38) of the quadratic function ¢, we have foranyi =0, 1, ..., J
that

1 _
q(je) =q0) + VgD (i, —yi) + 30— yi) TH(yjq — ).
Thus, (57) can be reformulated as

€ . A
q(j) = qO) +r G — )+ F1yjen = yill?, foralli=0,1,...,J,
(60)

where we used Vg(y;) = r; and the definitions (57), (59) of strong convexity along
the directions y Je1 — i In the remainder of the proof, and similarly to [5, Proof of
Proposition 1], we will show that (60) leads to the contradiction (58), thus proving
that (12) holds.

We define the sequence of functions @;, j = 0,1, ... J as follows:

€
P0(2) = q (o) + 7 Iz = yoll?,

A

andforj=0,...,J —1:
€
@11 =70+ (1 =) (g +r] G =y + 51z = yil2). (6D
Since each @ is a quadratic function with Hessian €/, it can be written as follows:
* € 2
Dj(z) = ¢j+§IIZ—vaI ; (62)
where v; is the unique minimizer of @, and CD;.k = @;(v;) is the minimum value of

@ ;. (Note that vg = yo = 0 and @5 = g(yo) =0.)
Defining

v (y) :==q(o) —q(y) + %IIy — yol* = @0y — (), (63)
we give a short inductive argument to establish that

(i) g0 )+ TG =01 (64)
For j = 0, (64) holds because @((y) = ¢g(y) + ¥ (y) by definition. Assuming that

(64) holds for some index j > 0, we find by first applying (61) (withz = y; ) and
then (60) (with i = j) that

€
@107, = 7@ 07, + =) (a0 +7] Gy =3 + 51374 =31
<tPi(yj ) +A—-Dglyj, ).
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Thus, we have

Pit1(j) =t@i(yj )+ A =1q(j, )
1q(yj, )+ MYy, + A= 1)q(yj,,) from (64)
=q(j )+ L),

IA

which proves (64) for j + 1, and thus completes the inductive argument.
We next prove another technical fact about the relationship between g (y;) and (D}k,
namely, ‘

qyj) < @F, j=0.1.....J. (65)

We establish this result by an inductive argument that is quite lengthy and technical,
we note the termination of this phase of the proof clearly below.

This result trivially holds (with equality) at j = 0. Supposing that it holds for some
j=0,1,..., J— 1, we will prove that it also holds for j + 1.

By using Properties 7 and 8 of Lemma 7, and also ||ﬁrj|| < (M +2¢)||rjll, we
have

a0 = g0y — 0 gy o Ml Il
" ! ZpJ—Hpj - 2rlTHrj - 2M +2e)
It follows from induction hypothesis g (y;) < CD;“ that
de0 < a0 — 1 o+ (1 = g —
ST =TT (M 4 2€) / 7 2UM + 2€)
<ot 4 (- gy — (66)
- 7 2UM + 2€)

By taking the derivative in (61), and using (62), we obtain

VO,11(2) = TV®;(2) + (1 — 1) [r; + ez — y))]
= e@z—vjr) =etz—v) + (1 —1)(rj +ez—y)).

By rearranging the above relation (and noting that the z terms cancel out), we obtain:

1—1

Viyl = TUj — ri+ {1 —=1)y;. (67)
It follows from this expression together with Properties 1 and 2 of Lemma 7 that

vjespan{po,pl,...,pj_l}, j=1,2,...,f. (68)

(The result holds for j = 1, from (67) we have v; € span{vg, ro, yo} = span{ro} =
span{pop}, and an induction based on (67) can be used to establish (68) for the other
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values of j.) By combining the expressions (62) for @;, @;, with the recurrence
formula (61) for @, 1, we obtain

o* _|_6|| . 2_ . .
jer T+ 5l Vit =@41(y))
=1P;(y;) + (1 —1)q(y;)
€
- (cp;‘-‘ + 5y~ v,,||2) +(1 -0y

and therefore
o =1 (@ + Sy —vl?) + (1 — D= Sy —val? ®
i =7(P; + 2IIyJ vill7)+ A —1)g(y)) 2IIy./ vip1ll©. (69)

On the other hand, we have by (67) that

2
-1
lyj = vl = r0j = v) + ——7;
(1-1)?2 2
= @y = vl + =l + 20 =D (v = v)
(1-27?
=2 llyj = vl + =, (70)
where the last relation comes from r; L span{py, ..., p;—1} (Property 2 of Lemma 7)

and (68) in the case j > 1, and immediately in the case j = 0, since yp = vg = 0.
By combining (69) and (70), we arrive at:

€ €
@y = (@] + Sl —vil?) + (1 = gy = Sl = vy

€
=1 (q)j + §||yj - va|2) + (I —1)g(y))

€ 5 , (-2
= 5Ty =il = =il
€ (1-1)2
=@+ = [t = 2]y = w4 (= D90y = Iy 12
2 2e
€ (1—-1)32
=707+ (= Dtlly; = vl + (1= Dg () = = IIrj I’
(1-1)°
> 107+ (1= Dg(y) — ———IIrjlI®
1 , 1-0%
> q(y; —|Ir I = ——=1Iril* 71
2 400 + 3030 1l Sl (71)

where the last inequality comes from (66). By using the definitions of t and « in
Algorithm 1, we have
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(1—-1)2 1 _ 1
2¢  2e(Jk+ 12 T 2e 2(M+2€)
It therefore follows from (71) that g(y;4+1) < (D;’.‘ L1 At this point, we have shown
that when g(y;) < @;‘f forj =0,1,..., J— 1, it follows that g(y; 1) < q§;.‘
establishing the inductive step. As a result, our proof of (65) is complete.
By substituting j = J into (65), we obtain g(y f) < QD;, which in combination

with (64) with j = J, and the definition (62), yields

+10

a0 =q(j ) =5 —q(j ) =Py ) —a(jy) < rjw(yj+1). (72)

By substitution from (63), we obtain

q(y;) —q(yj ) = o/ (CI(YO)_Q(Yj+1)+§||)’0_}’f+1”2)~ (73)

We now depart from the analysis of [5], and complete the proof of this result by
expressing (73) in terms of residual norms. On the left-hand side, we have

1 i
q(y;) —q(yj ) = rJTH(yj Vst E(Yj R TR

1 T
= E(yj — Vi) HOj;—y5)

because rJT+1 Vj=Yje) = rJT+1 (ejpj) = 0by Lemma 7, Property 2. We thus have
from (59) that

€
907 =aje) = 515 = i I
€
=5 lep;I?

€ - ) ) _
z W”H(O‘jl’j)” (since | Hp;|l < (M +26)|ip;1)

€ 5 2
= |H(y;—v;
200+ 20)2 IHCGj; =yl

€ . _
= 2202 77T i 1> (sincer; =g+ Hyj))

€ 2 2
= m(||rj|| +rj 17 (by Lemma 7, Property 2)

e e
> sargaae i (74)

On the right-hand side of (73), because of the strong convexity condition (60) at
i = 0, we have

€
900) =4 i) + 150 = ¥l = =VaGo) "y = y0)

=—rg Vj4; — ¥0) < llrollly 7, — yoll.
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Moreover, we have

J J

ll7i 11

1y =voll = |D aipi| < > aillpill = }1
i=0 i=0

i=0 pl

where the last relation follows from the definition of ;. By combining these last two
bounds, and using Property 3 of Lemma 7, we obtain

J
€ |Ipz 12 1
900) =4y ) + 5150 =y l® < lirol Z Irifl— < lroll- X(; Il
=
(75)
because p}—l-_]pj > e||pj||2 forj=0,1,..., J by assumption.
To bound thf: sum in (75), we recall that since Algorithm 1 did not terminate
until iteration J, the residual norms ||r;| at all iterations i = 0,1, ..., J — 1 must

have decreased at the expected convergence rate. In particularly, we have ||r;| <
VTt/2|rg| for the possibly smaller versions of /T and 7 that prevailed at iteration
i, so certainly ||r;] < VTt/?|ro| for the final values of these parameters. Thus for
i:O,l,...,f— 1, we have

2 N2
Irill < VT2 roll < T D725,

where we used |7 ;|| > \/Trj/2||r0|| (from (11)) for the last inequality. Observing
that this bound also holds (trivially) for i = J, we obtain by substituting in (75) that

€ 2 1 i-9)/2
900 = 40 + 5150 = yj 12 < roll= Y22

i=0
—J2
< llroll ——1ir; Z(f )’
i=0
—in 1
<lrol——lrjl;——=- (6

Applying successively (74), (73) and (76) finally yields:

€
m””jﬂ2 =qp) =g

g0 =g ) + <llyo — vio, I
g0 AN AN ) Yo— Vi

; —Jin
<t rollllrjll——

-7
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After rearranging this inequality and dividing by || ;|| > 0, we obtain

2M +2¢)2 1112 ;
Ir sl < =lIroll = VT2 |ro). (77)

€2 -7

We have thus established (58) which, as we noted earlier, contradicts (11). Thus (57)

cannot be true, so we have established (12), as required. O
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