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ABSTRACT KEYWORDS

Increasingly, vehicles sold today are connected cars: they
offer vehicle-to-infrastructure connectivity through built-in
WiFi and cellular interfaces, and they act as mobile hotspots
for devices in the vehicle. We study the connection quality
available to connected cars today, focusing on user-facing,
latency-sensitive applications. We find that network latency
varies significantly and unpredictably at short time scales and
that high tail latency substantially degrades user experience.
We also find an increase in coverage options available due
to commercial WiFi offerings and that variations in latency
across network options are not well-correlated.

Based on these findings, we develop RAVEN, an in-kernel
MPTCP scheduler that mitigates tail latency and network
unpredictability by using redundant transmission when con-
fidence about network latency predictions is low. RAVEN
has several novel design features. It operates transparently,
without application modification or hints, to improve inter-
active latency. It seamlessly supports three or more wire-
less networks. Its in-kernel implementation allows proactive
cancellation of transmissions made unnecessary through
redundancy. Finally, it explicitly considers how the age of
measurements affects confidence in predictions, allowing
better handling of interactive applications that transmit infre-
quently and networks that exhibit periods of temporary poor
performance. Results from speech, music, and recommender
applications in both emulated and live vehicle experiments
show substantial improvement in application response time.
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1 INTRODUCTION

Increasingly, vehicles sold today are “connected cars'” They
have multiple built-in cellular [5, 7, 16, 48] and WiFi [11, 17,
48] interfaces that allow applications running on the vehicle
human-machine interface (HMI) to connect to the Internet.
Connected cars also act as mobile hotspots, so that passenger
mobile devices can also connect via the vehicle’s built-in
network interfaces. Finally, tethering allows a mobile device
to export its network interfaces for use by other devices
within the vehicle. Thus, there is increasingly a plethora of
wireless connectivity options available.

Many applications running on the HMI and passenger
cellphones are user-facing and latency-sensitive; e.g. speech
recognition and recommendation services such as Yelp. Un-
fortunately, wireless network performance from moving
vehicles is notoriously unpredictable. Frequent disconnec-
tions and high tail latencies have been noted by prior stud-
ies [6, 8, 10, 13, 14, 28, 39, 40, 46]. For interactive applications,
these problems manifest as unacceptable delays that degrade
the user experience.

We begin our work with a detailed study of network qual-
ity for vehicle-to-infrastructure (V2I) communication. Our
study focuses on supporting user-facing, latency-sensitive
applications in a variety of scenarios (city, suburban, high-
way, and rural driving). We note several important findings.
Although almost no open (free, without splash screen) WiFi
access points are available, commercial WiFi offers valu-
able connectivity for suburban and urban driving. Network
round-trip time (RTT) is very stable in aggregate, but varies
substantially from second to second: a given network re-
mains the lowest-latency option for a median duration of

Note that while the definition of “connected car” may include both vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, we
focus only on the latter in this paper.
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only two seconds. Thus, predicting future quality, or even
the lowest RTT network, is quite challenging. Further, tail
latency (e.g., at the 95th percentile of the RTT distribution)
is very high. Yet, high RTTs are rarely correlated across net-
works, so one network could possibly mask high RTTs in
another.

Based on our study, we created RAVEN,? an in-kernel
MPTCP scheduler that uses redundant communication over
multiple networks to reduce interactive delay for applica-
tions and mask high tail latency. RAVEN uses passive moni-
toring to measure RTT at the TCP subflow layer and predicts
RTT for future communication. It explicitly calculates its
confidence in each prediction and employs additional net-
works to send data when confidence intervals overlap. Thus,
RAVEN sends data over a single network when it is confident
that the network will offer the lowest RTT, but it employs
multiple networks when it is unsure which network will be
superior.

Compared to recent systems that also employ redundancy
to mask uncertainty in wireless communication [20, 26],
RAVEN has several important innovations. First, unlike prior
systems, RAVEN requires no hints about transmission size
and works with unmodified applications; it inspects ker-
nel data structures such as congestion windows and queue
sizes to automatically switch between redundant and non-
redundant transmission. Second, RAVEN generalizes to three
(or more) wireless networks, whereas these prior systems
are fundamentally limited to using two networks. Third,
RAVEN decreases its confidence in measurements as they be-
come more stale, which provides a more efficient and elegant
method than active probing for checking whether poorly-
performing networks have improved. Fourth, confidence
intervals provide an intuitive mechanism to tune the trade-
off between data usage and network performance. Finally,
whereas prior systems have been implemented at user-level,
RAVEN’s in-kernel implementation creates several opportu-
nities to proactively cancel work that becomes useless due
to redundancy.

We evaluate RAVEN with three latency-sensitive appli-
cations: speech recognition, music streaming, and Yelp rec-
ommendation. Emulated and live vehicle results show that
RAVEN reduces application latency for all applications across
a diverse set of driving scenarios. In live vehicle experiments,
RAVEN speeds up median application response time from
46% to more than a factor of 3, as compared to MPTCP. 95%
tail response time is 2-11 times faster.

The contributions of this paper are:

o A study of vehicle-to-infrastructure connectivity focus-
ing on latency-sensitive applications and examining
the potential of using multiple wireless interfaces.

?Redundancy-Aided VEhicular Networking

e Design of an in-kernel MPTCP scheduler that employs
multiple networks to mitigate prediction uncertainty
and high tail latencies through strategic redundancy.

e An exploration of using confidence in network predic-
tions for tasks such as probing poorly-performing net-
works, tuning the tradeoff between performance and
data usage, and determining when redundant trans-
mission is appropriate.

2 RELATED WORK

RAVEN builds on prior works that reduce interactive latency
via redundant multipath communication, study wireless net-
work performance for vehicle-to-infrastructure communica-
tion, and explore MPTCP scheduler design and implementa-
tion. We discuss each in turn.

DEMS [20] and Meatballs [25, 26] both reduce comple-
tion time in multipath communication by transmitting data
redundantly. Although both use redundancy to mask predic-
tion uncertainty, RAVEN has several important innovations.
First, both prior systems require extensive application hints
(DEMS requires applications to disclose transfer sizes, while
Meatballs requires applications to distinguish small, latency-
sensitive transfers). In contrast, RAVEN requires no hints
or application modification. Second, DEMS and Meatballs
are user-level implementations. RAVEN’s kernel implementa-
tion allowed us to add several optimizations that cancel work
rendered unnecessary by redundant operation. Third, our
study shows substantial benefit available from using three
networks. Whereas RAVEN easily scales to any number of
networks, DEMS is fundamentally limited to two networks
(because each network starts transmitting at one end of the
data block and they meet in the middle), and Meatballs com-
putation scales exponentially with the number of networks
because it uses joint probability distributions. RAVEN also
explores the power of explicit confidence intervals, using
them to balance latency and data usage, decide when to trans-
mit redundantly, and test poorly-performing networks for
improvement.

ReMP [18] is an MPTCP scheduler that transmits data
redundantly over all available networks; this will consume
too much mobile data. In comparison, RAVEN uses redun-
dancy only when it is most likely to improve user-perceived
performance for latency-sensitive applications.

Researchers have noted that tail pocket drop can substan-
tially degrade small, latency-sensitive TCP transfers, and
they have proposed various methods for aggressively re-
transmitting tail data to mitigate this phenomenon [1, 15, 55].
These works can be viewed as potentially sending redun-
dant data over the same network to reduce latency, whereas
RAVEN proactively sends redundant data over multiple net-
works. Network coding [9, 30, 34, 47, 53] offers different
tradeoffs between performance and data usage and may be



applicable when the number of possible networks is large.
However, at small numbers of networks, redundancy can of-
fer better latency since only one packet need arrive over any
network (as opposed to m out of n networks with coding).

Sprout [49] minimizes latency for interactive TCP applica-
tions over cellular networks by using probabilistic inference
to predict the near-future network link rate based on the
packet arrival interval. Sprout targets high-throughput ap-
plications and limits bytes transmitted so that less packets
are buffered. RAVEN targets smaller flows and employs re-
dundancy over multiple networks to reduce network delays.

While many prior studies have examined wireless network
performance [6, 10, 13, 28, 46], our specific focus is on ex-
amining network performance for vehicle-to-infrastructure
communication and latency-sensitive applications. Thus,
many prior studies measure bandwidth, while we measure
round-trip time (RTT). Further, the findings in our study
often differ significantly from those of prior vehicular stud-
ies. Balasubramanian et al. [6] study WiFi availability for
offloading cellular traffic to WiFi. Deng et al. [13] and Chen
et al. [10] study the goodput of MPTCP over WiFi and LTE.
Sommers et al. [46] show high variability and tail latency for
wireless networks.

Many prior studies investigate using intermittent open
WiFi APs from fast-moving vehicles [8, 14, 39, 40]. In contrast
to these prior studies, we find that commercial WiFi offerings
now provide reasonable coverage in densely-populated areas
and support moving vehicles with no modifications, yet open
WiFi access points without splash screens or other authen-
tication are very hard to find. Use of multiple networks for
public bus WiFi has been studied [24, 37].

MPTCP [23] extends TCP to provide multipath commu-
nication over multiple underlying networks [43]. Its default
scheduler uses the network with the lowest RTT for small
transfers and stripes larger transmissions across multiple net-
works. MPTCP is increasingly being adopted by mobile op-
erating systems, and scheduler design is a very active area of
innovation [2, 32]. RAVEN is a new MPTCP scheduler that im-
plements strategic redundancy. Although many vendors are
adding support for MPTCP [2, 32], deployment is still not uni-
versal. To support unmodified applications and operating sys-
tems, we use a TCP-to-MPTCP proxy, similar to the approach
used by previous MPTCP research projects [20, 21, 38].

MPTCP performance issues when using heterogeneous
mobile networks are well-documented. Several schedulers
address aspects of this problem without redundancy. Wischik
et al. [50] consider both RTT and congestion to select net-
works. Yang et al. [52] and Khalili et al. [31] compensate for
RTT spikes with adaptive, rate-based scheduling. Paasch et
al. [41] mitigate bufferbloat by detecting RTT spikes. While
these solutions each ameliorate negative side-effects from un-
predictable, high network latency, RAVEN instead attacks the

underlying issue by transmitting over additional networks
to mask latency spikes in a single network. The limitations
of TCP’s default RT T estimation algorithm [29] are also well-
studied. Several studies [21, 36, 38] show it is vulnerable
to RTT fluctuations arising from use of multiple heteroge-
neous networks. MPTCP has also been used in data centers
to aggregate bandwidth of multiple networks [42, 54].

3 STUDY OF V2I CONNECTIVITY

We begin by studying the current state of vehicle-to-
infrastructure connectivity. We explore the possibilities en-
abled by multiple built-in WiFi [17, 48] and 4G LTE [16, 48]
network interfaces, as well as tethered interfaces, by simul-
taneously measuring quality for multiple wireless networks
from a moving vehicle in different scenarios. We focus specif-
ically on how connectivity affects the performance of user-
facing, interactive applications such as voice commands, GPS,
and music streaming. Since these applications require good
performance for small data transfers, we measure network
RTT rather than bandwidth.

It has been observed that the number of open WiFi access
points (APs) not requiring a splash screen or other authenti-
cation has been steadily decreasing. In fact, we found almost
no availability of such WiFi APs. However, several large
ISPs [4, 51] currently provide reasonable WiFi coverage by
selling access to the wireless routers they rent to personal
and business customers. This is done by turning an individ-
ual AP into two APs: one for the customer’s use and another
that acts as a hotspot. These commercial offerings support
WiFi roaming by enabling seamless handoff between APs
without breaking TCP connections. Thus, these offerings
appear well-suited for vehicular WiFi access.

3.1 Methodology

We built a V21 trace collection tool, called VNperf, that simul-
taneously measures network quality over multiple wireless
networks, as well as vehicle data such as speed and location
via the vehicle’s OBD2 port and an external GlobalSat BU-
353-54 USB GPS Receiver. Every second, VNperf samples
network quality over two cellular networks (Verizon and
Sprint) and commercial WiFi (Comcast’s XFinityWiFi). The
one second interval minimizes external variables that impact
RTT measurements (e.g., network congestion and throttling)
noted by a previous study [28].

Since we are interested in performance for latency-
sensitive applications, we configured VNperf to measure
network quality by performing a small RPC over TCP to a
dedicated server at our home institution. We also tried host-
ing the server in various commercial clouds but found that
our dedicated server offered the lowest RTTs and jitter.
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Figure 1: Scatter plot of RTTs in four driving scenarios. RTTs above 200 ms are not shown.

Trace Duration Mean Verizon Sprint XFinityWiFi Hotspot

MPH || Median | 95% | 99% || Median | 95% | 99% || Median | 95% | 99% | Availability
D1: Downtown || 62 mins | 5.33 83 99 | 125 81 127 | 142 30 1166 | 4273 30.07%
D2: Highway 53 mins | 66.55 87 120 | 182 115 370 | 12569 N/A N/A | N/A 0.00%
D3: Rural 49 mins | 35.71 85 174 | 2933 110 221 | 8533 N/A N/A | N/A 0.00%
D4: Suburban 40 mins | 7.52 82 98 | 127 111 135 | 9019 48 516 | 2333 25.75%

Table 1: Median and tail RTTs for traces collected in four driving scenarios. RTTs are given in milliseconds. The
last column shows how often WiFi was available in each scenario.

Because XFinityWiFi supports seamless WiFi roaming,
packets are queued while the interface is not connected to an
AP and delivered once an association to a new AP is success-
ful. The XFinityWiFi driver also handles WiFi authentication.
Periods of network unavailability can sometimes appear to
be intervals that exhibit extremely high latency. Thus, we
declare that latencies of over 5 seconds represent periods
where WiFi is disconnected. Note that this timeout does not
change application behavior; it is merely a mechanism to
better classify the data we have collected.

When multiple APs are available, XFinityWiFi selects the
one with the highest signal strength. DHCP can incorrectly
fail to trigger when the interface has not been associated
with any AP for more than 5 minutes, so we corrected DHCP
to trigger in this circumstance for routing to new gateways.

We ran VNperf on a Dell XPS 13 Developer laptop with
3.8 GHz CPU and 16GB RAM, running Ubuntu 16.04. The
laptop has Verizon Wireless MiFi U620L and Sprint Franklin

U772 interfaces. We used a TP-Link T4U USB WiFi interface
card to connect to XFinityWiFi.

We report results from four traces, collected in October
2017, each ranging from 40-62 minutes in length; these traces
were specifically selected to illustrate behavior in different
driving scenarios. Trace D1 was collected driving through
the downtown areas of Ann Arbor, MI (population approx-
imately 120,000 and metro area population approximately
350,000). Trace D2 was collected solely on interstate highway
driving, primarily but not exclusively through rural areas.
Trace D3 was collected on rural roads in sparsely-populated
areas. Trace D4 was collected in suburban locations that in-
cluded neighborhoods, subdivisions, and secondary roads.
Additional details are shown in Table 1.

3.2 Results and discussion

Figure 1 shows a scatter plot of RTTs for all three networks,
measured once per second. For clarity, only measurements
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Figure 2: CDF of RTTs in four driving scenarios

for RTTs less than 200 ms are shown. It is immediately ap-
parent that no network offers consistently superior perfor-
mance. Further, measurements often vary substantially from
second to second. This finding aligns with recent studies that
have shown high variance in RTTs over cellular networks in
high-mobility environments [10, 33]. In contrast, the average
behavior of the networks is surprisingly stable. We see very
few trends where RTT averaged over a longer time window
increases or decreases.

Figure 2 plots the RTT CDFs for each network. The RTTs
have very different distributions, with Verizon having an ap-
proximately normal distribution, Sprint exhibiting bimodal
behavior, and XFinityWiFi mixing periods of low RTT with
periods of high latency and frequent disconnection.

Table 1 shows the median, 95%, and 99% RTTs measured
for each network. Both cellular networks have reasonable tail
latency in the downtown trace. Sprint has extremely high 99%
tail latency in all other traces, whereas Verizon shows very
high 99% tail latency only in the rural trace. XFinityWiFi only
was available in the downtown and suburban traces (where
it offered coverage 30% and 26% of the time, respectively).
Even counting only times when coverage was available, both
95% and 99% tail latencies are very high.

Our WiFi results are a considerable change from a previ-
ous 2010 study [6] that reported results from an area corre-
sponding to our downtown trace. That study found average
vehicle-to-WiFi access through open APs to be available only
11% of the time. We found almost zero access through open
APs, but commercial WiFi access was available 3 times more

often than APs in the prior study. WiFi performance is su-
perior to that reported in prior studies. In 2014, Deng et al.
found that only 20% of ping RT Ts over WiFi were lower than
RTTs over LTE [13]. We found that, when WiFi is available,
it has lower RTTs than both cellular options 66% of the time
in D1 and 58% of the time in D4.

We next examine the predictability of network latency.
For each sample, we fist determine which network offers the
lowest RTT. We then ask: how often does the network with
the lowest RTT in each sample offer the lowest RTT in the
next sample (one second later)? The answer is: surprisingly
infrequently. Across the four traces, the lowest-latency net-
work at a given time remains the lowest-latency network one
second later only 56% of the time. If the vehicle is stopped,
predictability increases: 61% of the time, the lowest-latency
network for a stopped vehicle remains the best network one
second later. For vehicles in motion, we found no correlation
between the vehicle’s speed and how often the lowest-latency
network would remain best one second later.

When the lowest-latency network changes, the median
difference between the latency of the new lowest-latency
network and that of the previous lowest-latency network is
31 ms. Thus, even frequent active probing of network condi-
tions has limited predictive power.

We also examined run length, i.e., the amount of time a
given network remains the lowest-latency one before being
supplanted by a different network. Across the four traces,
the median run length is only two seconds. XFinityWiFi has



longer run lengths than other networks, but its performance
also drops off the most sharply when RTTs increase.

We measured the impact of high tail latencies by exam-
ining instances in which the RTT for a network exceeded
250 ms. Verizon had high tail latency for 1% of all measure-
ments, Sprint for 2.9% of all measurements, and XFinityWiFi
for 3.6% of all measurements when available.

We then considered if high RTTs are correlated by measur-
ing the number of instances in which all connected networks
had RTTs over 250 ms. High RTTs for all connected networks
occurred in only 0.17% of all samples, much less than for any
individual network. This indicates that there exists consider-
able potential to mask RTT spikes in one network by sending
data over another one. There is some correlation between
high RTTs: if they were perfectly uncorrelated, we would
expect only 0.02% of samples to exhibit high RTTs on all
available networks. Over 95% of the correlated high RTT
samples occurred in the rural trace.

These findings motivate the work in the next section:

o No network consistently offers the lowest RT Ts.
e It appears quite challenging to predict which network
will offer the lowest RTT over short time scales.

o At the tail of each CDF, RTTs are very high, which will
substantially degrade interactive applications.

e High RTTs are weakly correlated. High RTTs on one
network could be masked by using another network.

4 DESIGN AND IMPLEMENTATION

The findings from our study create a dilemma. On one hand,
there is ample opportunity to improve interactive perfor-
mance by using the network that currently offers the low-
est RTT. On the other hand, predicting which network will
be the best is extremely challenging. Our solution to this
dilemma is to transmit latency-sensitive data over multiple
networks; the receiver uses the data that arrives first and
discards copies that arrive later.

The challenge is that naively transmitting all data redun-
dantly can double (or triple, etc.) mobile data usage. Thus, we
must balance interactive latency and extra bytes transmitted
by employing strategic redundancy, i.e., we should send extra
copies only when it does the most good.

We first discuss MPTCP background and then describe
how RAVEN modifies MPTCP for strategic redundancy.

4.1 Background: MPTCP

MPTCP multiplexes a single socket connection over multiple
low-level TCP subflows [23, 43] that traverse different routes.
In the mobile setting, each subflow corresponds to a differ-
ent wireless network interface. For intermittent networks
such as WiFi, MPTCP detects that a network has become
unavailable via a timeout. The default MPTCP scheduler

(called the minRTT scheduler) sends each packet over one
network at a time (i.e., it does not transmit redundantly).
For each packet, the scheduler selects the subflow with the
lowest predicted RT'T among all networks that have not yet
reached their congestion window. Once data sent over the
minimum RTT network reaches the congestion window, the
next-lowest RTT network is used, and so on. Thus, small
transmissions are usually sent over the network with the
smallest predicted RTT. Large transmissions are striped over
all available networks. MPTCP links are bidirectional; both
endpoints have independent schedulers. MPTCP is flexible;
new schedulers can be implemented as a loadable kernel
module. This has helped to make MPTCP scheduling an ac-
tive area of innovation for industry [2, 32] and the research
community [22, 35, 36] (e.g., the latest release of iOS has 3
separate MPTCP scheduling policies [2]).

MPTCP calculates a TCP RTT estimate for each subflow
based on Jacobson’s algorithm [29]; it collects samples from
passive measurement of network traffic and calculates an
exponentially-weighted moving average over those samples
to estimate current RTT. RAVEN also uses per-subflow RTT
measurements, but it instead employs the estimation algo-
rithm described in the next two sections.

4.2 Adjusting for stale measurements

TCP weights RTT samples by the order in which they arrive;
e.g., the nth sample receives the same weight if it was taken
100 ms or 10 seconds in the past. This is reasonable when the
network is constantly used, since a highly-weighted observa-
tion is unlikely to be old. However, interactive applications
transmit infrequently and may send small amounts of data, so
predictions based on ordering may assign too much weight
to stale samples.

Strategy: to support interactive applications, use
elapsed time rather than order to weight RTT samples.
RAVEN uses a weighted average of per-subflow RTT samples
to predict RTT for each subflow:

20 Win* RTT; )
Zi wi

RAVEN weights the ith RTT sample by the time elapsed

since the sample was taken:

RTTpred =

w; = e_([now_ti)//1 (2)

where t,,,,, is the current timestamp, t; is the time the
RTT sample was taken, and 4 is a network-specific aging
factor. Thus, two consecutive samples will have almost the
same weight if they occur within a short time period and
very different weights if they are separated by a long time.

RAVEN adaptively sets A to minimize the root mean
squared error (RMSE) of the prediction error for previous
predictions made for each network. It temporarily logs each



prediction and the actual RTT measured by TCP. We observe
that A changes infrequently, so RAVEN recalculates values
once per day based on the previous day’s observations.

4.3 Confidence and multi-networking

RAVEN always sends data over the network with the lowest
predicted RTT. When predicting RTT for each subflow, it
also estimates certainty in the form of a confidence interval
calculated using the distribution of past relative prediction
errors. If the RTT confidence interval for any other network
overlaps with the confidence interval of the lowest RTT net-
work, RAVEN also transmits the data over that network. This
yields strategic redundancy: RAVEN uses multiple networks
when it has poor confidence that one will be faster than
another.

Our study shows that different networks have different
RTT and relative error distributions: we cannot assume a
normal distribution or sufficient measurements for the cen-
tral limit theorem to hold. RAVEN thus calculates confidence
intervals from the order statistics of relative prediction er-
rors. For each sample, it computes relative error by dividing
the actual RTT measurement by the value it predicted. We
tried using both relative error and absolute error and found
that relative error yielded slightly better results. Specifically,
RAVEN sorts the relative errors and takes, e.g., the 5% and
95% percentile values to calculate the 90% confidence interval
over the relative error. Confidence intervals are recalculated
once per day when RAVEN recalculates A.

Strategy: Confidence intervals provide an effective
knob for adaptively tuning the tradeoff between per-
formance and data usage. An application or user can
choose which confidence interval RAVEN should use and
thereby adjust the tradeoff between minimizing RTT and
minimizing data usage. Intervals of 100% cause data to be
sent over all available networks; intervals of 0% yield no
redundancy. Section 5.5 shows how changing the confidence
interval affects RTT and data usage; based on this analysis,
RAVEN uses 90% confidence intervals by default.

4.4 Replacing active probing

Protocols that send over the best predicted network often
underperform when one network exhibits temporary poor
performance that leads the protocol to become “stuck” in
a mode where the network is no longer used. Poor perfor-
mance leads to the network not being chosen, which in turn
means that the protocol is unable to observe a subsequent
performance improvement. A common, but ad-hoc, solution
is to actively probe networks that have not been used due to
poor predicted performance after an arbitrary timeout.
Strategy: Redundant transmission based on con-
fidence in predictions is a more efficient and ele-
gant method than periodic probing for determining if

poorly-performing networks have improved. RAVEN
uses its confidence in its predictions to determine when to
transmit data redundantly over a network. Intuitively, if
our last measurement of a poor-performing network is re-
cent, we have high confidence in that prediction. As time
passes without new measurements, our confidence in the
prediction decreases. Eventually, the confidence interval for
the poor-performing network will overlap with that of the
best-predicted network, and RAVEN will transmit data re-
dundantly over the poor-performing network, generating
new RTT measurements. This provides a more strategic re-
placement for active probing.

RAVEN scales each confidence interval by a factor that
is a function of the time since the most recent sample was
taken. Note that the recency of samples does not affect the ex-
pected value of predictions since the exponential weightings
of all prior samples decrease by the same relative amount as
time passes. The scaling function is calculated from empir-
ical observations once per day. RAVEN first calculates the
RMSE for past samples. To calculate the scaling factor for
the case where the most recent sample is n seconds old, it
first calculates a prediction for each sample omitting any
measurements that occurred less than n seconds prior to the
prediction. It then calculates the RMSE for those predictions.
The relative difference between RMSE is the scaling factor for
time n. RAVEN stores the scaling factor for different values
of n in a lookup table.

In summary, the bounds of the confidence interval for a
RTT prediction are:

RTTyreq = (RTTpred/RelErrorCI) * Age(Tnow — Tn)  (3)

where RelErrorcy is the confidence interval of the relative
error calculated as described in the previous section, Age()
is the scaling function, T},4,, is the current time, and T}, is the
most recent RTT measurement. Note that RelErrorc; and
Age() are calculated once per day, but the other variables are
based on recent RTT measurements.

In contrast to periodic probing, RAVEN will not try poorly-
performing networks when it is confident that a current
network offers better performance. For example, with a stable
low-latency WiFi connection, it makes little sense to see if a
poorly-performing cellular network has improved; even the
best case latency for the cellular network will not be superior
to that of the currently-available WiFi.

4.5 Identifying latency-sensitive traffic

Prior work has required applications to disclose the size of
each transfer [20] or which transfers require low latency [26,
27]. This has hindered adoption of redundant transmission.

Strategy: no application modification should be re-
quired to use redundant transmission. Rather than re-
quire application hints, RAVEN automatically detects traffic



for which low RTT is relatively unimportant and avoids
redundancy in those instances. Small transfers are most sen-
sitive to RTT. Large transfers (e.g., downloading a binary
or video) are potentially latency-sensitive, but the impact
of RTT on the relative completion time of the entire trans-
fer is insignificant; the default MPTCP scheduling policy of
striping across multiple networks is likely best [42, 43].

For each MPTCP connection, RAVEN automatically
switches between redundant mode (in which it may transmit
the same data over multiple networks) and non-redundant
mode (which, in order to limit implementation complexity,
is the same as the default MPTCP scheduler). Since RAVEN
is implemented as a kernel module, it can observe several
low-level data structures to attempt to differentiate small and
large transfers. We examined several options and determined
that the per-subflow TCP queue size, per-flow congestion
windows, and main MPTCP socket queue occupancy were
the most informative metrics to consider.

The RAVEN scheduler switches from redundant to non-
redundant mode if at least n — 1 out of n active subflows have
their congestion window’s worth of data in the per-subflow
queue. It switches from non-redundant to redundant mode
if all per-subflow queues and the main MPTCP socket queue
have less than two packets to transmit.

With this algorithm, distinct transfers usually start in re-
dundant mode. Small transfers typically complete before a
mode switch happens, and large transfers switch after send-
ing several packets. Our results in Section 5.6 show that this
strategy results in very little data being sent redundantly for
typical large consumers of data such as Web, video, and appli-
cation download. Since large transfers naturally contribute
the vast majority of bytes sent, most data sent by RAVEN will
be transmitted non-redundantly. Yet, RAVEN still improves
response time significantly for interactive applications with
small transmission sizes.

We have also built an MPTCP proxy so that applications
that are not MPTCP-aware can use RAVEN without modifica-
tion. A client proxy, which we expect to run on the connected
car’s AP, accepts TCP connections and redirects traffic to
either MPTCP-aware servers or a persistent MPTCP connec-
tion with a cloud proxy. The cloud proxy, in turn, redirects
traffic to unmodified servers.

4.6 Canceling: Avoiding unneeded work

Prior user-level implementations [20, 26] have limited ability
to cancel useless work (e.g., sending data over one network
that has already been acknowledged by another) because
they cannot easily revoke data that has already been given
to the kernel. This leads to head-of-line blocking, and may
require throttling to improve interactive latency [27].

Strategy: Kernel support can improve performance
by proactively canceling work that becomes unneces-
sary. MPTCP requires each subflow to deliver data in order;
it pushes data from the subflow queue to its meta-level queue
only when the data is in order according to the subflow se-
quence number. In contrast, RAVEN also pushes data to the
meta-level queue if data that is out of order at the subflow
level would be in order at the meta level, and this avoids
unnecessary retransmissions. Note that applications still re-
ceive data in order.

When sending acknowledgments, RAVEN inspects the
MPTCP socket to see if missing packets have been delivered
via other subflows; it includes such data when calculating
the acknowledged sequence number, which in turn elimi-
nates unneeded subflow-level retransmission. Finally, at the
sender, when data is acknowledged by any subflow, RAVEN
removes it from all per-subflow queues. If the data has not
yet been sent by a subflow, this completely eliminates the
redundant transmission. Otherwise, this avoids possible re-
transmissions.

Proactive cancellation is especially useful when RTT
spikes are frequent or networks are intermittently available.
For instance, when a network is temporarily unavailable,
many packets can accumulate in the subflow queue. Eventu-
ally, this data is sent and acknowledged over another subflow.
RAVEN proactively removes these packets when acknowl-
edgments are received, so the subflow can transmit new data
when connectivity returns. A user-level implementation can-
not cancel this work, so considerable time and bandwidth
are wasted transmitting useless data.

4.7 Implementation

RAVEN is a new scheduler for MPTCP v0.93, implemented as
a Linux kernel module consisting of 3823 lines of code. Some
aspects of proactive cancellation required a kernel patch (882
LoC); we hope these changes are adopted by the community.
Otherwise, RAVEN requires no kernel changes.

The kernel module implements the MPTCP
next_segment() and get_subflow() functions to en-
force its scheduling decisions and direct packets to the
appropriate subflow queue. It maintains a shadow data
structure, the redundant queue, that records which subflows
are responsible for transmitting which data, along with
the per-subflow transmission status. Currently, RAVEN
clones packets headers for data in the redundant queue; this
avoids conflicting with packet counting for TCP Segment
Offloading (TSO). RAVEN uses integer approximation of
floating point calculations. For the exponential function,
it uses Schraudolph’s approximation [45]. Confidence
intervals derived from order statistics and aging factors are
stored in lookup tables to improve performance.



5 EVALUATION

Our evaluation answers the following questions:
o How much does RAVEN improve performance for in-
teractive applications compared to default MPTCP?

e Are confidence intervals an effective method for bal-
ancing performance and data usage?

o How effectively does RAVEN conserve bandwidth by
avoiding redundancy for larger transmissions?

e How much do individual elements of RAVEN’s design
contribute to its performance improvements?

5.1 Methodology

We use both trace-driven emulation and side-by-side compar-
ison in live vehicle experiments. Section 5.4 reports live ve-
hicular experiments; for repeatability, all other experiments
use trace-driven emulation of the four network traces from
the study in Section 3. We use a leave-one-out method in
which we first train RAVEN to determine A, confidence in-
tervals, and scaling factors (discussed in Section 4) for each
network using three traces, and then we evaluate the re-
sults of running RAVEN on the remaining network trace.
Note that these traces were selected to be dissimilar, so this
methodology biases against RAVEN to some degree.

Our emulated setup has a client with multiple interfaces
and a server that responds to client requests. All machines
run Ubuntu 14.04. The client has 8 3.5 GHz cores and 16 GB
RAM,; the server has 8 2.8 GHz cores and 8 GB RAM. We
use TC to replay collected traces, changing the RTT for each
network every second to match the RTTs measured in Sec-
tion 3. Note that since we measured RTTs every second, our
emulation results do not include delays from network power
management that occur after multiple seconds of network
idleness. We evaluate the impact of power management in
live vehicle experiments in Section 5.4. Since we are evaluat-
ing latency-sensitive applications that send only a few bytes,
bandwidth values do not particularly affect our results. We
set bandwidth to 2 Mb/s.

For live vehicular experiments, we run the same applica-
tion simultaneously on two identical laptops, configured as
described in Section 3.1. Although these experiments are in-
herently unrepeatable, we try to keep characteristics similar
to a specific trace by driving in the same geographic area in
which we collected the trace. We also synchronize the two
applications so that they initiate requests at the same time.

5.2 Applications

We use three applications to evaluate RAVEN: speech recog-
nition, music streaming, and Yelp recommendation. We se-
lected these applications because they are commonly used
in a vehicle; they also have a diversity of network access

patterns. Each application records the response time of its
activities. Unless otherwise noted, the applications are not
modified to use RAVEN or provide hints.

Our speech application is a Google speech API client. It
streams an utterance to the server using the Google speech
API and retrieves the corresponding text when the user fin-
ishes (as determined by a period of silence). To eliminate
jitter during experiments, we modified the application to
connect to a local server at our institution rather than a
Google server. Our workload is the sample utterances from
the Sphinx speech recognition engine [12]. The client sends
raw audio input to the server every 100 ms; this allows recog-
nition to proceed in parallel with speaking. Once the utter-
ance finishes (e.g., after 100 ms of silence), the client asks
the server to recognize the utterance. The response time is
measured from the time when the client makes this request
to the time when it receives the response.

Our music application is the Music Player Daemon (MPD),
a popular music streaming server similar to commercial ser-
vices such as Spotify. We use Sonata, a GUI MPD client, and
we run a server at our institution. MPD and Sonata are un-
modified TCP applications, so they connect via our MPTCP
proxy. Our workload simulates a user scanning through a
playlist to select a song. Every 5 seconds, Sonata randomly
selects a song form a playlist and starts playing it. Our work-
load is the Billboard Top 100 songs in August 2017. The re-
sponse time is measured from the time from when a switch
is requested to the time when the new song starts playing.
This involves two round trips to the server.

Our recommender application is a Yelp client. Our client
uses Yelp’s public REST API to query for nearby features and
recommendations (e.g., gas stations and grocery stores) using
the vehicle’s recorded geolocation data. We insert delays
between requests drawn from a normal distribution with
mean of 20 seconds and standard deviation of 3.7 seconds.
We recorded actual requests and responses for this workload.
A pseudo-server at our institution provides repeatability by
returning the recorded response for each request. The client
and server are connected through our MPTCP proxy. The
response time is measured from the time when the client
makes the request to the time when it receives the response.

5.3 Application response time

We begin by evaluating how much RAVEN improves ap-
plication response time compared to the default MPTCP
scheduler. Figure 3 shows results for speech, music, and Yelp,
from left to right. Results for the four traces from our study
in Section 3 are shown from top to bottom.

RAVEN uses its default confidence interval of 90%; in Sec-
tion 5.5, we explore the effect of changing this parameter.
Since our applications do not send much data, MPTCP does
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Figure 3: CDFs of application response time for speech, music and Yelp. We compare RAVEN (using its default
90% confidence interval) with the MPTCP default scheduler, as well as with TCP over cellular and WiFi.

App Trace Verizon Sprint MPTCP RAVEN
Median [ 95% | 99% | Median [ 95% | 99% | Median [ 95% | 99% | Median [ 95% [ 99%
D1 84 [101[119] 75 125 | 141 85 112 [ 132 [ 59 93 [ 109
Speech | D2 89 [ 119173 | 115 | 2240 | T/O 98 | 414 [T/O[ 79 | 111 [ 129
D3 87 215 [T/O] 105 | 820 | T/O 87 [ 156 [ 781 75 | 127 [ T/O
D4 83 97 [ 155 | 113 [ 135 | T/O 85 120 T/O] 71 93 | 103
D1 169 | 201 | 242 | 154 [ 255 | 283 168 | 236 | 275 | 124 [ 188 | 213
Music | D2 177 [ 240 | 341 | 228 [ 300 [ 1056 | 180 | 232 [ 281 | 163 | 230 | 260
D3 173 | 289 | 825 | 190 [ 296 | 657 179 | 315 | 867 | 153 [ 244 | 317
D4 167 | 205 | 312 | 220 [ 265 | 436 167 | 246 | 339 | 146 [ 195 [ 245
D1 85 | 101 [ 185 [ 91 131 | 169 85 125 | 137 | 61 93 [ 105
yelp | D2 89 [ 129 [ 175 | 119 | 265 [ 10677 | 87 | 145 [ 579 | 83 [ 117 | 135
D3 86 [ 161 [ 815 | 109 | 149 [ 5565 | 112 | 257 | 713 | 75 [ 129 | 149
D4 83 | 105 [ 135 [ 113 | 141 | 251 83 | 131 [ 558 [ 63 93 [ 111

Table 2:

not stripe data and instead sends all data over the subflow
with lowest predicted RTT. Thus, its behavior should be the
same as other schedulers such as Apple’s modified minRTT
scheduler [3]. We also show performance using TCP over
each network.

Median, 95%, and 99% application response times for speech, music, and Yelp. All values are in msecs.

RAVEN substantially outperforms default MPTCP for all
applications in all scenarios, as shown by the CDF line in each
graph being further to the left. For example, in D1:Speech
in the top left corner of Figure 3, RAVEN is able to effec-
tively use WiFi when it offers low latency, but MPTCP often
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Figure 4: CDFs of application response time for speech and Yelp in live experiments.

does not use the network due to stale, high RTT measure-
ments. At higher latencies, RAVEN has lower response times
than either cellular network because it exploits whichever
offers better connectivity at the moment. Across all scenar-
ios, RAVEN provides an average speedup in median response
time of 26%, 19% and 30% for speech, music, and Yelp, respec-
tively, as compared to MPTCP.

We note that these results seem to track how frequently
each application transmits: the music application’s network
usage is most continuous, whereas Yelp’s is the most infre-
quent. Our belief is that RAVEN’s explicit incorporation of
when each measurement was taken into its predictions yields
greater improvement for applications with less frequent net-
work usage. We explore this further in Section 5.8.

Table 2 provides more detail about tail behavior for the
individual cellular networks, MPTCP, and RAVEN (we omit
WiFi since it is not frequently available for any entire trace).
These results show that both RAVEN and MPTCP substan-
tially improve tail response time compared to the individual
networks by using a different network when performance
on a given network is poor. However, RAVEN also substan-
tially improves on MPTCP response times. Across the four
scenarios, RAVEN provides an average speedup in 95% tail
response time of 66%, 20% and 30% for speech, music, and
Yelp, respectively, as compared to MPTCP.

For 99% tail response time, the speech application times
out for over 1% of the recognitions in two scenarios for

MPTCP, but only one for RAVEN. RAVEN provides a speedup
of 21% over MPTCP in the other speech scenarios. Across
all scenarios, RAVEN provides an average speedup in 99%
tail response time of 52% for music and 341% for Yelp as
compared to MPTCP. Thus, RAVEN reduces the substantial
delays at the tail of the distribution.

5.4 Live vehicular results

We confirmed our emulated results by repeating a subset
of the experiments in the vehicle. With two laptops avail-
able, we chose to compare RAVEN running with default 90%
confidence intervals and MPTCP using its default scheduler.
Figure 4 shows results for speech and Yelp in live scenarios
of about 1 hour duration similar to our four traces.

Interestingly, RAVEN’s relative performance benefit in
the live experiments is greater than in the emulated experi-
ments. More variation occurs in a vehicle; e.g., disconnected
networks and poorly performing networks are not always
distinguished correctly, and the frequency of RTT variation
is greater than the one-second variation in our traces. RAVEN
is designed to deal with uncertainty, and so it adapts better
to this variation. For speech, RAVEN’s average speedup in
median response time over MPTCP is 46%, ranging between
8% and 80% for the four scenarios. RAVEN’s average 95%
response time is over two times faster, and its average 99%
response time is over three times faster.



MPTCP performs extremely poorly for Yelp in every sce-
nario. RAVEN’s average speedup in median response time
over MPTCP is 3.4x. There is over an order of magnitude
difference in both 95% and 99% response times.

From packet logs, we found the reason for this behavior:
the default MPTCP scheduler interacts extremely poorly with
network power management. Yelp transmits infrequently,
so when a network is selected, it is often in power saving
mode. When sending a request to the server, both RAVEN
and MPTCP experience a power promotion delay, which
is the time for the network to resume sending data when
it was previously in a low-power mode. However, MPTCP
often incurs a second power promotion delay because the
server chooses to send the response over a different network.
RAVEN often avoids this cost because it sends the original
request over two or more networks; the second network has
already exited from its low-power mode when the response
is transmitted. For speech, MPTCP will often incur a power
promotion delay when switching to a new network; RAVEN
often hides this delay by transmitting redundantly during
periods where the lowest-latency network is changing.

A second poor interaction is that MPTCP’s retransmission
mechanism is unaware of power management delays; as a
result, it can be either too aggressive or too conservative. The
default MPTCP scheduler retransmits data over additional
subflows if the subflow-level retransmission timer expires.
The timer is conservatively set by multiplying the RTT es-
timation by 4 (see [44] for details). Thus, when the default
MPTCP scheduler selects wrong subflow, it can wait a long
time before retransmitting over other subflows (i.e., it is too
conservative). However, when a power promotion delay oc-
curs, the default MPTCP scheduler will observe a long delay
in receiving an acknowledgment and incorrectly switch to
another subflow. In turn, that subflow will likely experience
a power promotion delay. Because the default scheduler is
not aware of power management delays, it is too aggressive
in switching between subflows. Strategies that aggressively
retransmit tail data [1, 15, 55] would help with the first prob-
lem, but also would likely make the second problem worse
unless they explicitly consider power management behavior.

We confirmed these observations by re-running all exper-
iments while injecting a small amount of additional traffic
to keep all networks from entering power save mode. The
second and last columns of Figure 4 show results for speech
and Yelp, respectively. As expected, the speech results are
roughly similar (especially given the lack of repeatability in
live driving), but the Yelp results show considerable improve-
ment for MPTCP, and, to a lesser extent, for RAVEN. Still,
for Yelp, RAVEN provides median application response time
more than two times faster than MPTCP, while 95% and 99%
tail response times are approximately four times faster.

5.5 Effect of changing confidence intervals

Figure 5 shows the effect on RTT of modifying which confi-
dence intervals RAVEN uses. Figure 6 shows the extra bytes
sent over the network (normalized to the total bytes transmit-
ted by the application) for each confidence interval. These
and subsequent experiments are run in the emulated envi-
ronment.

It is important to note that these experiments are designed
to generate only latency-sensitive traffic with small data sizes.
Thus, these values do not reflect how much redundant data
would be sent for a typical workload. As we will see in the
next section, RAVEN transmits almost no data redundantly
for larger transmissions, and, due to their size, one would
expect such transmissions to comprise the vast majority of
bytes sent and received by a mobile device.

100% confidence intervals are always redundant: all bytes
are sent over all networks. This offers the lowest RTTs, but it
also effectively doubles the number of bytes sent when two
networks are available and triples it with three networks
(actually, the total number of bytes is slightly larger due
to retransmission). Shrinking the confidence intervals re-
sults in successively fewer bytes sent, but also higher RTTs.
While users may have different preferences, we chose 90%
confidence intervals as the default setting for RAVEN be-
cause it lies at the knee of the curve. This setting has similar
performance to always sending redundantly, but it sends
many fewer bytes. Lower confidence intervals offer further
reduction in bytes sent, but they also noticeably degrade
performance.

5.6 Effect of mode switching

Unlike prior systems [20, 26], RAVEN does not require appli-
cations to declare or hint about data size in order to decide
when to transmit redundantly. Instead, it infers small and
large transmissions as described in Section 4.5,

Figure 7 shows how mode switching affects the number of
bytes sent redundantly for different transfer sizes. We trans-
mit data from the client to the server 10 times, with a pause
of 30 seconds between transmissions, while we replay the
D1 trace. We configured RAVEN to always send redundantly
in this experiment to isolate the effect of mode switching.

For small transfers (1 KB and 10 KB), all data is sent re-
dundantly. For 50 KB transfers, 41.67% of data is sent redun-
dantly. Yet, only 6.28% of 100 KB transfers and 1.27% of 1 MB
transfers are sent redundantly. We do not explicitly measure
power usage because, in connected cars, the built-in network
interfaces are powered by the vehicle engine, and mobile
devices connect to these interfaces via the hotspot. With
the MPTCP proxy at the AP, mobile devices transmit only a
single copy of the data.
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Figure 5: These CDFs show how the choice of confidence interval affects application response time for speech,
music and Yelp. We show results with the default MPTCP scheduler for comparison.
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Figure 6: This graph shows how the choice of confidence interval affects extra bytes sent by the speech, music and
Yelp applications. A value of 0 indicates no data was transmitted redundantly, 1indicates twice as many bytes were

sent, etc.

We confirmed the micro-benchmark results by examining
redundant bytes transmitted for representative mobile work-
loads while replaying the downtown trace. All applications
are unmodified and use our MPTCP proxy.

Web, video, and, and application download are three large
consumers of mobile bandwidth. We loaded the home pages
of the Alexa top 100 Web sites (as of March 2018) in the

Chrome Web browser. Overall, 4.9% bytes were sent redun-
dantly. 2.4% of bytes received and 55.3% of byte sent by the
client are transmitted redundantly. The difference reflects
the size disparity between typical HTTP requests and re-
sponses, and the results show that our heuristics do a good
job of distinguishing small and large transmissions. When
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Figure 8: Speech application response time for the
downtown scenario with and without proactive can-
cellation.

we used mplayer to stream a 50 MB mkv video via MPEG-
DASH, only 0.03% of bytes were transmitted redundantly.
We installed the libreoffice-help-en-us package via apt-get,
which sent 2.4 MB of data to the client. Only 0.59% of the
bytes were sent redundantly. Thus, for heavy consumers of
mobile bandwidth (Web, video, and application download),
RAVEN transmits very little data redundantly.

5.7 Effect of proactive cancellation

We next examine how much benefit RAVEN derives from
its in-kernel implementation that allows it to cancel useless
work (described in Section 4.6). Figure 8 compares RAVEN
with and without cancellation enabled for the speech applica-
tion and the downtown trace (other applications and scenar-
ios exhibit similar behavior). We see a small but consistent
improvement across the entire CDF. RAVEN cancellation
speeds up both median and 95% tail response time by 9%
because queue lengths shorten as work is removed.

5.8 Effect of using scaling for sample age

Finally, we examine the impact of RAVEN’s policy of dis-
counting samples by the amount of time that has passed
since they were collected (discussed in Section 4.2). We mod-
ified RAVEN to not take sample age into account when cal-
culating confidence intervals. Figure 9 compares RAVEN
with and without aging for the Yelp application and trace

05 e
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024  f
0 " . . . :
0 50 100 150 200 250 300

Response time in msec
Figure 9: Application response time for Yelp in the
downtown scenario with and without scaling for sam-
ple age.

D1 (we chose Yelp because it has the least-frequent network
transmissions). The aging mechanism appears to be very
important, as RAVEN actually underperforms both cellular
networks with the mechanism disabled. Without scaling,
RAVEN attaches too much importance to stale samples, cre-
ating an overconfidence in its predictions that leads to it not
employing redundancy when it should.

5.9 Discussion

While our evaluation shows that RAVEN benefits substan-
tially from using more than one cellular network, current
practice is for connected devices to either use a single cellu-
lar network or switch between networks as with Google’s
Project Fi [19]. By pointing out the substantial benefit from
using multiple cellular networks simultaneously, these re-
sults can provide impetus to change practice in the future,
at least for vehicle-to-infrastructure communication.
Further optimizations are possible. For instance, if multi-
ple networks offer predictably low RTT that is good enough
for a particular application, employing redundancy is un-
necessary. However, this optimization requires application-
specific knowledge of delay tolerance, which could require
application modification. Alternatively, considering external
factors such as vehicle motion and geolocation could allow
better estimation of confidence, but would add complexity.

6 CONCLUSION

RAVEN is an MPTCP scheduler that reduces interactive la-
tency for vehicular applications through the strategic use
of redundant transmission over multiple wireless networks.
In emulation, RAVEN speeds up median interactive latency
by 19-30% compared to the default MPTCP scheduler. Live
vehicular experiments show even greater improvements.
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