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ABSTRACT
Increasingly, vehicles sold today are connected cars: they

offer vehicle-to-infrastructure connectivity through built-in

WiFi and cellular interfaces, and they act as mobile hotspots

for devices in the vehicle. We study the connection quality

available to connected cars today, focusing on user-facing,

latency-sensitive applications. We find that network latency

varies significantly and unpredictably at short time scales and

that high tail latency substantially degrades user experience.

We also find an increase in coverage options available due

to commercial WiFi offerings and that variations in latency

across network options are not well-correlated.

Based on these findings, we develop RAVEN, an in-kernel

MPTCP scheduler that mitigates tail latency and network

unpredictability by using redundant transmission when con-

fidence about network latency predictions is low. RAVEN

has several novel design features. It operates transparently,

without application modification or hints, to improve inter-

active latency. It seamlessly supports three or more wire-

less networks. Its in-kernel implementation allows proactive

cancellation of transmissions made unnecessary through

redundancy. Finally, it explicitly considers how the age of

measurements affects confidence in predictions, allowing

better handling of interactive applications that transmit infre-

quently and networks that exhibit periods of temporary poor

performance. Results from speech, music, and recommender

applications in both emulated and live vehicle experiments

show substantial improvement in application response time.

CCS CONCEPTS
• Networks→ Mobile networks; • Computer systems or-
ganization→ Redundancy;
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1 INTRODUCTION
Increasingly, vehicles sold today are “connected cars

1
.” They

have multiple built-in cellular [5, 7, 16, 48] and WiFi [11, 17,

48] interfaces that allow applications running on the vehicle

human-machine interface (HMI) to connect to the Internet.

Connected cars also act as mobile hotspots, so that passenger

mobile devices can also connect via the vehicle’s built-in

network interfaces. Finally, tethering allows a mobile device

to export its network interfaces for use by other devices

within the vehicle. Thus, there is increasingly a plethora of

wireless connectivity options available.

Many applications running on the HMI and passenger

cellphones are user-facing and latency-sensitive; e.g. speech

recognition and recommendation services such as Yelp. Un-

fortunately, wireless network performance from moving

vehicles is notoriously unpredictable. Frequent disconnec-

tions and high tail latencies have been noted by prior stud-

ies [6, 8, 10, 13, 14, 28, 39, 40, 46]. For interactive applications,

these problems manifest as unacceptable delays that degrade

the user experience.

We begin our work with a detailed study of network qual-

ity for vehicle-to-infrastructure (V2I) communication. Our

study focuses on supporting user-facing, latency-sensitive

applications in a variety of scenarios (city, suburban, high-

way, and rural driving). We note several important findings.

Although almost no open (free, without splash screen) WiFi

access points are available, commercial WiFi offers valu-

able connectivity for suburban and urban driving. Network

round-trip time (RTT) is very stable in aggregate, but varies

substantially from second to second: a given network re-

mains the lowest-latency option for a median duration of

1
Note that while the definition of “connected car” may include both vehicle-

to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, we

focus only on the latter in this paper.
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only two seconds. Thus, predicting future quality, or even

the lowest RTT network, is quite challenging. Further, tail

latency (e.g., at the 95th percentile of the RTT distribution)

is very high. Yet, high RTTs are rarely correlated across net-

works, so one network could possibly mask high RTTs in

another.

Based on our study, we created RAVEN,
2
an in-kernel

MPTCP scheduler that uses redundant communication over

multiple networks to reduce interactive delay for applica-

tions and mask high tail latency. RAVEN uses passive moni-

toring to measure RTT at the TCP subflow layer and predicts

RTT for future communication. It explicitly calculates its

confidence in each prediction and employs additional net-

works to send data when confidence intervals overlap. Thus,

RAVEN sends data over a single network when it is confident

that the network will offer the lowest RTT, but it employs

multiple networks when it is unsure which network will be

superior.

Compared to recent systems that also employ redundancy

to mask uncertainty in wireless communication [20, 26],

RAVEN has several important innovations. First, unlike prior

systems, RAVEN requires no hints about transmission size

and works with unmodified applications; it inspects ker-

nel data structures such as congestion windows and queue

sizes to automatically switch between redundant and non-

redundant transmission. Second, RAVEN generalizes to three

(or more) wireless networks, whereas these prior systems

are fundamentally limited to using two networks. Third,

RAVEN decreases its confidence in measurements as they be-

come more stale, which provides a more efficient and elegant

method than active probing for checking whether poorly-

performing networks have improved. Fourth, confidence

intervals provide an intuitive mechanism to tune the trade-

off between data usage and network performance. Finally,

whereas prior systems have been implemented at user-level,

RAVEN’s in-kernel implementation creates several opportu-

nities to proactively cancel work that becomes useless due

to redundancy.

We evaluate RAVEN with three latency-sensitive appli-

cations: speech recognition, music streaming, and Yelp rec-

ommendation. Emulated and live vehicle results show that

RAVEN reduces application latency for all applications across

a diverse set of driving scenarios. In live vehicle experiments,

RAVEN speeds up median application response time from

46% to more than a factor of 3, as compared to MPTCP. 95%

tail response time is 2-11 times faster.

The contributions of this paper are:

• A study of vehicle-to-infrastructure connectivity focus-

ing on latency-sensitive applications and examining

the potential of using multiple wireless interfaces.

2
Redundancy-Aided VEhicular Networking

• Design of an in-kernel MPTCP scheduler that employs

multiple networks to mitigate prediction uncertainty

and high tail latencies through strategic redundancy.

• An exploration of using confidence in network predic-

tions for tasks such as probing poorly-performing net-

works, tuning the tradeoff between performance and

data usage, and determining when redundant trans-

mission is appropriate.

2 RELATEDWORK
RAVEN builds on prior works that reduce interactive latency

via redundant multipath communication, study wireless net-

work performance for vehicle-to-infrastructure communica-

tion, and explore MPTCP scheduler design and implementa-

tion. We discuss each in turn.

DEMS [20] and Meatballs [25, 26] both reduce comple-

tion time in multipath communication by transmitting data

redundantly. Although both use redundancy to mask predic-

tion uncertainty, RAVEN has several important innovations.

First, both prior systems require extensive application hints

(DEMS requires applications to disclose transfer sizes, while

Meatballs requires applications to distinguish small, latency-

sensitive transfers). In contrast, RAVEN requires no hints

or application modification. Second, DEMS and Meatballs

are user-level implementations. RAVEN’s kernel implementa-

tion allowed us to add several optimizations that cancel work

rendered unnecessary by redundant operation. Third, our

study shows substantial benefit available from using three

networks. Whereas RAVEN easily scales to any number of

networks, DEMS is fundamentally limited to two networks

(because each network starts transmitting at one end of the

data block and they meet in the middle), and Meatballs com-

putation scales exponentially with the number of networks

because it uses joint probability distributions. RAVEN also

explores the power of explicit confidence intervals, using

them to balance latency and data usage, decide when to trans-

mit redundantly, and test poorly-performing networks for

improvement.

ReMP [18] is an MPTCP scheduler that transmits data

redundantly over all available networks; this will consume

too much mobile data. In comparison, RAVEN uses redun-

dancy only when it is most likely to improve user-perceived

performance for latency-sensitive applications.

Researchers have noted that tail pocket drop can substan-

tially degrade small, latency-sensitive TCP transfers, and

they have proposed various methods for aggressively re-

transmitting tail data to mitigate this phenomenon [1, 15, 55].

These works can be viewed as potentially sending redun-

dant data over the same network to reduce latency, whereas

RAVEN proactively sends redundant data over multiple net-

works. Network coding [9, 30, 34, 47, 53] offers different

tradeoffs between performance and data usage and may be



applicable when the number of possible networks is large.

However, at small numbers of networks, redundancy can of-

fer better latency since only one packet need arrive over any

network (as opposed to m out of n networks with coding).

Sprout [49] minimizes latency for interactive TCP applica-

tions over cellular networks by using probabilistic inference

to predict the near-future network link rate based on the

packet arrival interval. Sprout targets high-throughput ap-

plications and limits bytes transmitted so that less packets

are buffered. RAVEN targets smaller flows and employs re-

dundancy over multiple networks to reduce network delays.

While many prior studies have examined wireless network

performance [6, 10, 13, 28, 46], our specific focus is on ex-

amining network performance for vehicle-to-infrastructure

communication and latency-sensitive applications. Thus,

many prior studies measure bandwidth, while we measure

round-trip time (RTT). Further, the findings in our study

often differ significantly from those of prior vehicular stud-

ies. Balasubramanian et al. [6] study WiFi availability for

offloading cellular traffic to WiFi. Deng et al. [13] and Chen

et al. [10] study the goodput of MPTCP over WiFi and LTE.

Sommers et al. [46] show high variability and tail latency for

wireless networks.

Many prior studies investigate using intermittent open

WiFi APs from fast-moving vehicles [8, 14, 39, 40]. In contrast

to these prior studies, we find that commercialWiFi offerings

now provide reasonable coverage in densely-populated areas

and support moving vehicles with no modifications, yet open
WiFi access points without splash screens or other authen-

tication are very hard to find. Use of multiple networks for

public bus WiFi has been studied [24, 37].

MPTCP [23] extends TCP to provide multipath commu-

nication over multiple underlying networks [43]. Its default

scheduler uses the network with the lowest RTT for small

transfers and stripes larger transmissions across multiple net-

works. MPTCP is increasingly being adopted by mobile op-

erating systems, and scheduler design is a very active area of

innovation [2, 32]. RAVEN is a newMPTCP scheduler that im-

plements strategic redundancy. Although many vendors are

adding support for MPTCP [2, 32], deployment is still not uni-

versal. To support unmodified applications and operating sys-

tems, we use a TCP-to-MPTCP proxy, similar to the approach

used by previous MPTCP research projects [20, 21, 38].

MPTCP performance issues when using heterogeneous

mobile networks are well-documented. Several schedulers

address aspects of this problemwithout redundancy.Wischik

et al. [50] consider both RTT and congestion to select net-

works. Yang et al. [52] and Khalili et al. [31] compensate for

RTT spikes with adaptive, rate-based scheduling. Paasch et

al. [41] mitigate bufferbloat by detecting RTT spikes. While

these solutions each ameliorate negative side-effects from un-

predictable, high network latency, RAVEN instead attacks the

underlying issue by transmitting over additional networks

to mask latency spikes in a single network. The limitations

of TCP’s default RTT estimation algorithm [29] are also well-

studied. Several studies [21, 36, 38] show it is vulnerable

to RTT fluctuations arising from use of multiple heteroge-

neous networks. MPTCP has also been used in data centers

to aggregate bandwidth of multiple networks [42, 54].

3 STUDY OF V2I CONNECTIVITY
We begin by studying the current state of vehicle-to-

infrastructure connectivity. We explore the possibilities en-

abled by multiple built-in WiFi [17, 48] and 4G LTE [16, 48]

network interfaces, as well as tethered interfaces, by simul-

taneously measuring quality for multiple wireless networks

from a moving vehicle in different scenarios. We focus specif-

ically on how connectivity affects the performance of user-

facing, interactive applications such as voice commands, GPS,

and music streaming. Since these applications require good

performance for small data transfers, we measure network

RTT rather than bandwidth.

It has been observed that the number of open WiFi access

points (APs) not requiring a splash screen or other authenti-

cation has been steadily decreasing. In fact, we found almost

no availability of such WiFi APs. However, several large

ISPs [4, 51] currently provide reasonable WiFi coverage by

selling access to the wireless routers they rent to personal

and business customers. This is done by turning an individ-

ual AP into two APs: one for the customer’s use and another

that acts as a hotspot. These commercial offerings support

WiFi roaming by enabling seamless handoff between APs

without breaking TCP connections. Thus, these offerings

appear well-suited for vehicular WiFi access.

3.1 Methodology
We built a V2I trace collection tool, called VNperf, that simul-

taneously measures network quality over multiple wireless

networks, as well as vehicle data such as speed and location

via the vehicle’s OBD2 port and an external GlobalSat BU-

353-S4 USB GPS Receiver. Every second, VNperf samples

network quality over two cellular networks (Verizon and

Sprint) and commercial WiFi (Comcast’s XFinityWiFi). The

one second interval minimizes external variables that impact

RTT measurements (e.g., network congestion and throttling)

noted by a previous study [28].

Since we are interested in performance for latency-

sensitive applications, we configured VNperf to measure

network quality by performing a small RPC over TCP to a

dedicated server at our home institution. We also tried host-

ing the server in various commercial clouds but found that

our dedicated server offered the lowest RTTs and jitter.
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Figure 1: Scatter plot of RTTs in four driving scenarios. RTTs above 200ms are not shown.

Trace Duration

Mean Verizon Sprint XFinityWiFi Hotspot

MPH Median 95% 99% Median 95% 99% Median 95% 99% Availability

D1: Downtown 62 mins 5.33 83 99 125 81 127 142 30 1166 4273 30.07%

D2: Highway 53 mins 66.55 87 120 182 115 370 12569 N/A N/A N/A 0.00%

D3: Rural 49 mins 35.71 85 174 2933 110 221 8533 N/A N/A N/A 0.00%

D4: Suburban 40 mins 7.52 82 98 127 111 135 9019 48 516 2333 25.75%

Table 1: Median and tail RTTs for traces collected in four driving scenarios. RTTs are given in milliseconds. The
last column shows how often WiFi was available in each scenario.

Because XFinityWiFi supports seamless WiFi roaming,

packets are queued while the interface is not connected to an

AP and delivered once an association to a new AP is success-

ful. The XFinityWiFi driver also handles WiFi authentication.

Periods of network unavailability can sometimes appear to

be intervals that exhibit extremely high latency. Thus, we

declare that latencies of over 5 seconds represent periods

where WiFi is disconnected. Note that this timeout does not

change application behavior; it is merely a mechanism to

better classify the data we have collected.

When multiple APs are available, XFinityWiFi selects the

one with the highest signal strength. DHCP can incorrectly

fail to trigger when the interface has not been associated

with any AP for more than 5 minutes, so we corrected DHCP

to trigger in this circumstance for routing to new gateways.

We ran VNperf on a Dell XPS 13 Developer laptop with

3.8 GHz CPU and 16GB RAM, running Ubuntu 16.04. The

laptop has Verizon Wireless MiFi U620L and Sprint Franklin

U772 interfaces. We used a TP-Link T4U USB WiFi interface

card to connect to XFinityWiFi.

We report results from four traces, collected in October

2017, each ranging from 40-62 minutes in length; these traces

were specifically selected to illustrate behavior in different

driving scenarios. Trace D1 was collected driving through

the downtown areas of Ann Arbor, MI (population approx-

imately 120,000 and metro area population approximately

350,000). Trace D2 was collected solely on interstate highway

driving, primarily but not exclusively through rural areas.

Trace D3 was collected on rural roads in sparsely-populated

areas. Trace D4 was collected in suburban locations that in-

cluded neighborhoods, subdivisions, and secondary roads.

Additional details are shown in Table 1.

3.2 Results and discussion
Figure 1 shows a scatter plot of RTTs for all three networks,

measured once per second. For clarity, only measurements
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Figure 2: CDF of RTTs in four driving scenarios

for RTTs less than 200ms are shown. It is immediately ap-

parent that no network offers consistently superior perfor-

mance. Further, measurements often vary substantially from

second to second. This finding aligns with recent studies that

have shown high variance in RTTs over cellular networks in

high-mobility environments [10, 33]. In contrast, the average
behavior of the networks is surprisingly stable. We see very

few trends where RTT averaged over a longer time window

increases or decreases.

Figure 2 plots the RTT CDFs for each network. The RTTs

have very different distributions, with Verizon having an ap-

proximately normal distribution, Sprint exhibiting bimodal

behavior, and XFinityWiFi mixing periods of low RTT with

periods of high latency and frequent disconnection.

Table 1 shows the median, 95%, and 99% RTTs measured

for each network. Both cellular networks have reasonable tail

latency in the downtown trace. Sprint has extremely high 99%

tail latency in all other traces, whereas Verizon shows very

high 99% tail latency only in the rural trace. XFinityWiFi only

was available in the downtown and suburban traces (where

it offered coverage 30% and 26% of the time, respectively).

Even counting only times when coverage was available, both

95% and 99% tail latencies are very high.

Our WiFi results are a considerable change from a previ-

ous 2010 study [6] that reported results from an area corre-

sponding to our downtown trace. That study found average

vehicle-to-WiFi access through open APs to be available only

11% of the time. We found almost zero access through open

APs, but commercial WiFi access was available 3 times more

often than APs in the prior study. WiFi performance is su-

perior to that reported in prior studies. In 2014, Deng et al.

found that only 20% of ping RTTs over WiFi were lower than

RTTs over LTE [13]. We found that, when WiFi is available,

it has lower RTTs than both cellular options 66% of the time

in D1 and 58% of the time in D4.

We next examine the predictability of network latency.

For each sample, we fist determine which network offers the

lowest RTT. We then ask: how often does the network with

the lowest RTT in each sample offer the lowest RTT in the

next sample (one second later)? The answer is: surprisingly

infrequently. Across the four traces, the lowest-latency net-

work at a given time remains the lowest-latency network one

second later only 56% of the time. If the vehicle is stopped,

predictability increases: 61% of the time, the lowest-latency

network for a stopped vehicle remains the best network one

second later. For vehicles in motion, we found no correlation

between the vehicle’s speed and how often the lowest-latency

network would remain best one second later.

When the lowest-latency network changes, the median

difference between the latency of the new lowest-latency

network and that of the previous lowest-latency network is

31ms. Thus, even frequent active probing of network condi-

tions has limited predictive power.

We also examined run length, i.e., the amount of time a

given network remains the lowest-latency one before being

supplanted by a different network. Across the four traces,

the median run length is only two seconds. XFinityWiFi has



longer run lengths than other networks, but its performance

also drops off the most sharply when RTTs increase.

We measured the impact of high tail latencies by exam-

ining instances in which the RTT for a network exceeded

250ms. Verizon had high tail latency for 1% of all measure-

ments, Sprint for 2.9% of all measurements, and XFinityWiFi

for 3.6% of all measurements when available.

We then considered if high RTTs are correlated by measur-

ing the number of instances in which all connected networks

had RTTs over 250ms. High RTTs for all connected networks

occurred in only 0.17% of all samples, much less than for any

individual network. This indicates that there exists consider-

able potential to mask RTT spikes in one network by sending

data over another one. There is some correlation between

high RTTs: if they were perfectly uncorrelated, we would

expect only 0.02% of samples to exhibit high RTTs on all

available networks. Over 95% of the correlated high RTT

samples occurred in the rural trace.

These findings motivate the work in the next section:

• No network consistently offers the lowest RTTs.

• It appears quite challenging to predict which network

will offer the lowest RTT over short time scales.

• At the tail of each CDF, RTTs are very high, which will

substantially degrade interactive applications.

• High RTTs are weakly correlated. High RTTs on one

network could be masked by using another network.

4 DESIGN AND IMPLEMENTATION
The findings from our study create a dilemma. On one hand,

there is ample opportunity to improve interactive perfor-

mance by using the network that currently offers the low-

est RTT. On the other hand, predicting which network will

be the best is extremely challenging. Our solution to this

dilemma is to transmit latency-sensitive data over multiple

networks; the receiver uses the data that arrives first and

discards copies that arrive later.

The challenge is that naively transmitting all data redun-

dantly can double (or triple, etc.) mobile data usage. Thus, we

must balance interactive latency and extra bytes transmitted

by employing strategic redundancy, i.e., we should send extra
copies only when it does the most good.

We first discuss MPTCP background and then describe

how RAVEN modifies MPTCP for strategic redundancy.

4.1 Background: MPTCP
MPTCP multiplexes a single socket connection over multiple

low-level TCP subflows [23, 43] that traverse different routes.
In the mobile setting, each subflow corresponds to a differ-

ent wireless network interface. For intermittent networks

such as WiFi, MPTCP detects that a network has become

unavailable via a timeout. The default MPTCP scheduler

(called the minRTT scheduler) sends each packet over one

network at a time (i.e., it does not transmit redundantly).

For each packet, the scheduler selects the subflow with the

lowest predicted RTT among all networks that have not yet

reached their congestion window. Once data sent over the

minimum RTT network reaches the congestion window, the

next-lowest RTT network is used, and so on. Thus, small

transmissions are usually sent over the network with the

smallest predicted RTT. Large transmissions are striped over

all available networks. MPTCP links are bidirectional; both

endpoints have independent schedulers. MPTCP is flexible;

new schedulers can be implemented as a loadable kernel

module. This has helped to make MPTCP scheduling an ac-

tive area of innovation for industry [2, 32] and the research

community [22, 35, 36] (e.g., the latest release of iOS has 3

separate MPTCP scheduling policies [2]).

MPTCP calculates a TCP RTT estimate for each subflow

based on Jacobson’s algorithm [29]; it collects samples from

passive measurement of network traffic and calculates an

exponentially-weighted moving average over those samples

to estimate current RTT. RAVEN also uses per-subflow RTT

measurements, but it instead employs the estimation algo-

rithm described in the next two sections.

4.2 Adjusting for stale measurements
TCP weights RTT samples by the order in which they arrive;

e.g., the nth sample receives the same weight if it was taken

100ms or 10 seconds in the past. This is reasonable when the

network is constantly used, since a highly-weighted observa-

tion is unlikely to be old. However, interactive applications

transmit infrequently andmay send small amounts of data, so

predictions based on ordering may assign too much weight

to stale samples.

Strategy: to support interactive applications, use
elapsed time rather than order toweight RTT samples.
RAVEN uses a weighted average of per-subflow RTT samples

to predict RTT for each subflow:

RTTpred =

∑n
i wi ∗ RTTi∑n

i wi
(1)

RAVEN weights the ith RTT sample by the time elapsed

since the sample was taken:

wi = e−(tnow−ti )/λ (2)

where tnow is the current timestamp, ti is the time the

RTT sample was taken, and λ is a network-specific aging

factor. Thus, two consecutive samples will have almost the

same weight if they occur within a short time period and

very different weights if they are separated by a long time.

RAVEN adaptively sets λ to minimize the root mean

squared error (RMSE) of the prediction error for previous

predictions made for each network. It temporarily logs each



prediction and the actual RTT measured by TCP. We observe

that λ changes infrequently, so RAVEN recalculates values

once per day based on the previous day’s observations.

4.3 Confidence and multi-networking
RAVEN always sends data over the network with the lowest

predicted RTT. When predicting RTT for each subflow, it

also estimates certainty in the form of a confidence interval

calculated using the distribution of past relative prediction

errors. If the RTT confidence interval for any other network

overlaps with the confidence interval of the lowest RTT net-

work, RAVEN also transmits the data over that network. This

yields strategic redundancy: RAVEN uses multiple networks

when it has poor confidence that one will be faster than

another.

Our study shows that different networks have different

RTT and relative error distributions: we cannot assume a

normal distribution or sufficient measurements for the cen-

tral limit theorem to hold. RAVEN thus calculates confidence

intervals from the order statistics of relative prediction er-

rors. For each sample, it computes relative error by dividing

the actual RTT measurement by the value it predicted. We

tried using both relative error and absolute error and found

that relative error yielded slightly better results. Specifically,

RAVEN sorts the relative errors and takes, e.g., the 5% and

95% percentile values to calculate the 90% confidence interval

over the relative error. Confidence intervals are recalculated

once per day when RAVEN recalculates λ.
Strategy: Confidence intervals provide an effective

knob for adaptively tuning the tradeoff between per-
formance and data usage. An application or user can

choose which confidence interval RAVEN should use and

thereby adjust the tradeoff between minimizing RTT and

minimizing data usage. Intervals of 100% cause data to be

sent over all available networks; intervals of 0% yield no

redundancy. Section 5.5 shows how changing the confidence

interval affects RTT and data usage; based on this analysis,

RAVEN uses 90% confidence intervals by default.

4.4 Replacing active probing
Protocols that send over the best predicted network often

underperform when one network exhibits temporary poor

performance that leads the protocol to become “stuck” in

a mode where the network is no longer used. Poor perfor-

mance leads to the network not being chosen, which in turn

means that the protocol is unable to observe a subsequent

performance improvement. A common, but ad-hoc, solution

is to actively probe networks that have not been used due to

poor predicted performance after an arbitrary timeout.

Strategy: Redundant transmission based on con-
fidence in predictions is a more efficient and ele-
gant method than periodic probing for determining if

poorly-performing networks have improved. RAVEN

uses its confidence in its predictions to determine when to

transmit data redundantly over a network. Intuitively, if

our last measurement of a poor-performing network is re-

cent, we have high confidence in that prediction. As time

passes without new measurements, our confidence in the

prediction decreases. Eventually, the confidence interval for

the poor-performing network will overlap with that of the

best-predicted network, and RAVEN will transmit data re-

dundantly over the poor-performing network, generating

new RTT measurements. This provides a more strategic re-

placement for active probing.

RAVEN scales each confidence interval by a factor that

is a function of the time since the most recent sample was

taken. Note that the recency of samples does not affect the ex-

pected value of predictions since the exponential weightings

of all prior samples decrease by the same relative amount as

time passes. The scaling function is calculated from empir-

ical observations once per day. RAVEN first calculates the

RMSE for past samples. To calculate the scaling factor for

the case where the most recent sample is n seconds old, it

first calculates a prediction for each sample omitting any

measurements that occurred less than n seconds prior to the

prediction. It then calculates the RMSE for those predictions.

The relative difference between RMSE is the scaling factor for

time n. RAVEN stores the scaling factor for different values

of n in a lookup table.

In summary, the bounds of the confidence interval for a

RTT prediction are:

RTTpred ± (RTTpred/RelErrorCI ) ∗Aдe (Tnow −Tn ) (3)

where RelErrorCI is the confidence interval of the relative
error calculated as described in the previous section, Aдe ()
is the scaling function,Tnow is the current time, andTn is the

most recent RTT measurement. Note that RelErrorCI and
Aдe () are calculated once per day, but the other variables are
based on recent RTT measurements.

In contrast to periodic probing, RAVENwill not try poorly-

performing networks when it is confident that a current

network offers better performance. For example, with a stable

low-latency WiFi connection, it makes little sense to see if a

poorly-performing cellular network has improved; even the

best case latency for the cellular network will not be superior

to that of the currently-available WiFi.

4.5 Identifying latency-sensitive traffic
Prior work has required applications to disclose the size of

each transfer [20] or which transfers require low latency [26,

27]. This has hindered adoption of redundant transmission.

Strategy: no application modification should be re-
quired to use redundant transmission. Rather than re-

quire application hints, RAVEN automatically detects traffic



for which low RTT is relatively unimportant and avoids

redundancy in those instances. Small transfers are most sen-

sitive to RTT. Large transfers (e.g., downloading a binary

or video) are potentially latency-sensitive, but the impact

of RTT on the relative completion time of the entire trans-

fer is insignificant; the default MPTCP scheduling policy of

striping across multiple networks is likely best [42, 43].

For each MPTCP connection, RAVEN automatically

switches between redundant mode (in which it may transmit

the same data over multiple networks) and non-redundant

mode (which, in order to limit implementation complexity,

is the same as the default MPTCP scheduler). Since RAVEN

is implemented as a kernel module, it can observe several

low-level data structures to attempt to differentiate small and

large transfers. We examined several options and determined

that the per-subflow TCP queue size, per-flow congestion

windows, and main MPTCP socket queue occupancy were

the most informative metrics to consider.

The RAVEN scheduler switches from redundant to non-

redundant mode if at least n−1 out of n active subflows have

their congestion window’s worth of data in the per-subflow

queue. It switches from non-redundant to redundant mode

if all per-subflow queues and the main MPTCP socket queue

have less than two packets to transmit.

With this algorithm, distinct transfers usually start in re-

dundant mode. Small transfers typically complete before a

mode switch happens, and large transfers switch after send-

ing several packets. Our results in Section 5.6 show that this

strategy results in very little data being sent redundantly for

typical large consumers of data such asWeb, video, and appli-

cation download. Since large transfers naturally contribute

the vast majority of bytes sent, most data sent by RAVENwill

be transmitted non-redundantly. Yet, RAVEN still improves

response time significantly for interactive applications with

small transmission sizes.

We have also built an MPTCP proxy so that applications

that are not MPTCP-aware can use RAVENwithout modifica-

tion. A client proxy, which we expect to run on the connected

car’s AP, accepts TCP connections and redirects traffic to

either MPTCP-aware servers or a persistent MPTCP connec-

tion with a cloud proxy. The cloud proxy, in turn, redirects

traffic to unmodified servers.

4.6 Canceling: Avoiding unneeded work
Prior user-level implementations [20, 26] have limited ability

to cancel useless work (e.g., sending data over one network

that has already been acknowledged by another) because

they cannot easily revoke data that has already been given

to the kernel. This leads to head-of-line blocking, and may

require throttling to improve interactive latency [27].

Strategy: Kernel support can improve performance
by proactively canceling work that becomes unneces-
sary. MPTCP requires each subflow to deliver data in order;

it pushes data from the subflow queue to its meta-level queue

only when the data is in order according to the subflow se-

quence number. In contrast, RAVEN also pushes data to the

meta-level queue if data that is out of order at the subflow

level would be in order at the meta level, and this avoids

unnecessary retransmissions. Note that applications still re-

ceive data in order.

When sending acknowledgments, RAVEN inspects the

MPTCP socket to see if missing packets have been delivered

via other subflows; it includes such data when calculating

the acknowledged sequence number, which in turn elimi-

nates unneeded subflow-level retransmission. Finally, at the

sender, when data is acknowledged by any subflow, RAVEN

removes it from all per-subflow queues. If the data has not

yet been sent by a subflow, this completely eliminates the

redundant transmission. Otherwise, this avoids possible re-

transmissions.

Proactive cancellation is especially useful when RTT

spikes are frequent or networks are intermittently available.

For instance, when a network is temporarily unavailable,

many packets can accumulate in the subflow queue. Eventu-

ally, this data is sent and acknowledged over another subflow.

RAVEN proactively removes these packets when acknowl-

edgments are received, so the subflow can transmit new data

when connectivity returns. A user-level implementation can-

not cancel this work, so considerable time and bandwidth

are wasted transmitting useless data.

4.7 Implementation
RAVEN is a new scheduler for MPTCP v0.93, implemented as

a Linux kernel module consisting of 3823 lines of code. Some

aspects of proactive cancellation required a kernel patch (882

LoC); we hope these changes are adopted by the community.

Otherwise, RAVEN requires no kernel changes.

The kernel module implements the MPTCP

next_segment() and get_subflow() functions to en-

force its scheduling decisions and direct packets to the

appropriate subflow queue. It maintains a shadow data

structure, the redundant queue, that records which subflows

are responsible for transmitting which data, along with

the per-subflow transmission status. Currently, RAVEN

clones packets headers for data in the redundant queue; this

avoids conflicting with packet counting for TCP Segment

Offloading (TSO). RAVEN uses integer approximation of

floating point calculations. For the exponential function,

it uses Schraudolph’s approximation [45]. Confidence

intervals derived from order statistics and aging factors are

stored in lookup tables to improve performance.



5 EVALUATION
Our evaluation answers the following questions:

• How much does RAVEN improve performance for in-

teractive applications compared to default MPTCP?

• Are confidence intervals an effective method for bal-

ancing performance and data usage?

• How effectively does RAVEN conserve bandwidth by

avoiding redundancy for larger transmissions?

• How much do individual elements of RAVEN’s design

contribute to its performance improvements?

5.1 Methodology
We use both trace-driven emulation and side-by-side compar-

ison in live vehicle experiments. Section 5.4 reports live ve-

hicular experiments; for repeatability, all other experiments

use trace-driven emulation of the four network traces from

the study in Section 3. We use a leave-one-out method in

which we first train RAVEN to determine λ, confidence in-
tervals, and scaling factors (discussed in Section 4) for each

network using three traces, and then we evaluate the re-

sults of running RAVEN on the remaining network trace.

Note that these traces were selected to be dissimilar, so this

methodology biases against RAVEN to some degree.

Our emulated setup has a client with multiple interfaces

and a server that responds to client requests. All machines

run Ubuntu 14.04. The client has 8 3.5 GHz cores and 16GB

RAM; the server has 8 2.8 GHz cores and 8GB RAM. We

use tc to replay collected traces, changing the RTT for each

network every second to match the RTTs measured in Sec-

tion 3. Note that since we measured RTTs every second, our

emulation results do not include delays from network power

management that occur after multiple seconds of network

idleness. We evaluate the impact of power management in

live vehicle experiments in Section 5.4. Since we are evaluat-

ing latency-sensitive applications that send only a few bytes,

bandwidth values do not particularly affect our results. We

set bandwidth to 2Mb/s.

For live vehicular experiments, we run the same applica-

tion simultaneously on two identical laptops, configured as

described in Section 3.1. Although these experiments are in-

herently unrepeatable, we try to keep characteristics similar

to a specific trace by driving in the same geographic area in

which we collected the trace. We also synchronize the two

applications so that they initiate requests at the same time.

5.2 Applications
We use three applications to evaluate RAVEN: speech recog-

nition, music streaming, and Yelp recommendation. We se-

lected these applications because they are commonly used

in a vehicle; they also have a diversity of network access

patterns. Each application records the response time of its

activities. Unless otherwise noted, the applications are not

modified to use RAVEN or provide hints.

Our speech application is a Google speech API client. It

streams an utterance to the server using the Google speech

API and retrieves the corresponding text when the user fin-

ishes (as determined by a period of silence). To eliminate

jitter during experiments, we modified the application to

connect to a local server at our institution rather than a

Google server. Our workload is the sample utterances from

the Sphinx speech recognition engine [12]. The client sends

raw audio input to the server every 100ms; this allows recog-

nition to proceed in parallel with speaking. Once the utter-

ance finishes (e.g., after 100ms of silence), the client asks

the server to recognize the utterance. The response time is

measured from the time when the client makes this request

to the time when it receives the response.

Our music application is the Music Player Daemon (MPD),

a popular music streaming server similar to commercial ser-

vices such as Spotify. We use Sonata, a GUI MPD client, and

we run a server at our institution. MPD and Sonata are un-

modified TCP applications, so they connect via our MPTCP

proxy. Our workload simulates a user scanning through a

playlist to select a song. Every 5 seconds, Sonata randomly

selects a song form a playlist and starts playing it. Our work-

load is the Billboard Top 100 songs in August 2017. The re-

sponse time is measured from the time from when a switch

is requested to the time when the new song starts playing.

This involves two round trips to the server.

Our recommender application is a Yelp client. Our client

uses Yelp’s public REST API to query for nearby features and

recommendations (e.g., gas stations and grocery stores) using

the vehicle’s recorded geolocation data. We insert delays

between requests drawn from a normal distribution with

mean of 20 seconds and standard deviation of 3.7 seconds.

We recorded actual requests and responses for this workload.

A pseudo-server at our institution provides repeatability by

returning the recorded response for each request. The client

and server are connected through our MPTCP proxy. The

response time is measured from the time when the client

makes the request to the time when it receives the response.

5.3 Application response time
We begin by evaluating how much RAVEN improves ap-

plication response time compared to the default MPTCP

scheduler. Figure 3 shows results for speech, music, and Yelp,

from left to right. Results for the four traces from our study

in Section 3 are shown from top to bottom.

RAVEN uses its default confidence interval of 90%; in Sec-

tion 5.5, we explore the effect of changing this parameter.

Since our applications do not send much data, MPTCP does
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Figure 3: CDFs of application response time for speech, music and Yelp. We compare RAVEN (using its default
90% confidence interval) with the MPTCP default scheduler, as well as with TCP over cellular and WiFi.

App Trace

Verizon Sprint MPTCP RAVEN

Median 95% 99% Median 95% 99% Median 95% 99% Median 95% 99%

Speech

D1 84 101 119 75 125 141 85 112 132 59 93 109

D2 89 119 173 115 2240 T/O 98 414 T/O 79 111 129

D3 87 215 T/O 105 820 T/O 87 156 781 75 127 T/O

D4 83 97 155 113 135 T/O 85 129 T/O 71 93 103

Music

D1 169 201 242 154 255 283 168 236 275 124 188 213

D2 177 240 341 228 300 1056 180 232 281 163 230 260

D3 173 289 825 190 296 657 179 315 867 153 244 317

D4 167 205 312 220 265 436 167 246 339 146 195 245

Yelp

D1 85 101 185 91 131 169 85 125 137 61 93 105

D2 89 129 175 119 265 10677 87 145 579 83 117 135

D3 86 161 815 109 149 5565 112 257 713 75 129 149

D4 83 105 135 113 141 251 83 131 558 63 93 111

Table 2: Median, 95%, and 99% application response times for speech, music, and Yelp. All values are in msecs.

not stripe data and instead sends all data over the subflow

with lowest predicted RTT. Thus, its behavior should be the

same as other schedulers such as Apple’s modified minRTT

scheduler [3]. We also show performance using TCP over

each network.

RAVEN substantially outperforms default MPTCP for all

applications in all scenarios, as shown by the CDF line in each

graph being further to the left. For example, in D1:Speech

in the top left corner of Figure 3, RAVEN is able to effec-

tively use WiFi when it offers low latency, but MPTCP often



Speech with Speech without Yelp with Yelp without

power management power management power management power management

D1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

C
D

F

MPTCP
RAVEN (90%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

C
D

F

MPTCP
RAVEN (90%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500

C
D

F

MPTCP
RAVEN (90%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500

C
D

F

MPTCP
RAVEN (90%)

D2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

C
D

F

MPTCP
RAVEN (90%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

C
D

F

MPTCP
RAVEN (90%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500

C
D

F

MPTCP
RAVEN (90%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500

C
D

F

MPTCP
RAVEN (90%)

D3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

C
D

F

MPTCP
RAVEN (90%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

C
D

F

MPTCP
RAVEN (90%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500

C
D

F

MPTCP
RAVEN (90%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500

C
D

F

MPTCP
RAVEN (90%)

D4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

C
D

F

Response time in msec

MPTCP
RAVEN (90%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

C
D

F

Response time in msec

MPTCP
RAVEN (90%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500

C
D

F

Response time in msec

MPTCP
RAVEN (90%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500

C
D

F

Response time in msec

MPTCP
RAVEN (90%)

Figure 4: CDFs of application response time for speech and Yelp in live experiments.

does not use the network due to stale, high RTT measure-

ments. At higher latencies, RAVEN has lower response times

than either cellular network because it exploits whichever

offers better connectivity at the moment. Across all scenar-

ios, RAVEN provides an average speedup in median response

time of 26%, 19% and 30% for speech, music, and Yelp, respec-

tively, as compared to MPTCP.

We note that these results seem to track how frequently

each application transmits: the music application’s network

usage is most continuous, whereas Yelp’s is the most infre-

quent. Our belief is that RAVEN’s explicit incorporation of

when each measurement was taken into its predictions yields

greater improvement for applications with less frequent net-

work usage. We explore this further in Section 5.8.

Table 2 provides more detail about tail behavior for the

individual cellular networks, MPTCP, and RAVEN (we omit

WiFi since it is not frequently available for any entire trace).

These results show that both RAVEN and MPTCP substan-

tially improve tail response time compared to the individual

networks by using a different network when performance

on a given network is poor. However, RAVEN also substan-

tially improves on MPTCP response times. Across the four

scenarios, RAVEN provides an average speedup in 95% tail

response time of 66%, 20% and 30% for speech, music, and

Yelp, respectively, as compared to MPTCP.

For 99% tail response time, the speech application times

out for over 1% of the recognitions in two scenarios for

MPTCP, but only one for RAVEN. RAVEN provides a speedup

of 21% over MPTCP in the other speech scenarios. Across

all scenarios, RAVEN provides an average speedup in 99%

tail response time of 52% for music and 341% for Yelp as

compared to MPTCP. Thus, RAVEN reduces the substantial

delays at the tail of the distribution.

5.4 Live vehicular results
We confirmed our emulated results by repeating a subset

of the experiments in the vehicle. With two laptops avail-

able, we chose to compare RAVEN running with default 90%

confidence intervals and MPTCP using its default scheduler.

Figure 4 shows results for speech and Yelp in live scenarios

of about 1 hour duration similar to our four traces.

Interestingly, RAVEN’s relative performance benefit in

the live experiments is greater than in the emulated experi-

ments. More variation occurs in a vehicle; e.g., disconnected

networks and poorly performing networks are not always

distinguished correctly, and the frequency of RTT variation

is greater than the one-second variation in our traces. RAVEN

is designed to deal with uncertainty, and so it adapts better

to this variation. For speech, RAVEN’s average speedup in

median response time over MPTCP is 46%, ranging between

8% and 80% for the four scenarios. RAVEN’s average 95%

response time is over two times faster, and its average 99%

response time is over three times faster.



MPTCP performs extremely poorly for Yelp in every sce-

nario. RAVEN’s average speedup in median response time

over MPTCP is 3.4x. There is over an order of magnitude

difference in both 95% and 99% response times.

From packet logs, we found the reason for this behavior:

the defaultMPTCP scheduler interacts extremely poorlywith

network power management. Yelp transmits infrequently,

so when a network is selected, it is often in power saving

mode. When sending a request to the server, both RAVEN

and MPTCP experience a power promotion delay, which

is the time for the network to resume sending data when

it was previously in a low-power mode. However, MPTCP

often incurs a second power promotion delay because the

server chooses to send the response over a different network.

RAVEN often avoids this cost because it sends the original

request over two or more networks; the second network has

already exited from its low-power mode when the response

is transmitted. For speech, MPTCP will often incur a power

promotion delay when switching to a new network; RAVEN

often hides this delay by transmitting redundantly during

periods where the lowest-latency network is changing.

A second poor interaction is that MPTCP’s retransmission

mechanism is unaware of power management delays; as a

result, it can be either too aggressive or too conservative. The

default MPTCP scheduler retransmits data over additional

subflows if the subflow-level retransmission timer expires.

The timer is conservatively set by multiplying the RTT es-

timation by 4 (see [44] for details). Thus, when the default

MPTCP scheduler selects wrong subflow, it can wait a long

time before retransmitting over other subflows (i.e., it is too

conservative). However, when a power promotion delay oc-

curs, the default MPTCP scheduler will observe a long delay

in receiving an acknowledgment and incorrectly switch to

another subflow. In turn, that subflow will likely experience

a power promotion delay. Because the default scheduler is

not aware of power management delays, it is too aggressive

in switching between subflows. Strategies that aggressively

retransmit tail data [1, 15, 55] would help with the first prob-

lem, but also would likely make the second problem worse

unless they explicitly consider power management behavior.

We confirmed these observations by re-running all exper-

iments while injecting a small amount of additional traffic

to keep all networks from entering power save mode. The

second and last columns of Figure 4 show results for speech

and Yelp, respectively. As expected, the speech results are

roughly similar (especially given the lack of repeatability in

live driving), but the Yelp results show considerable improve-

ment for MPTCP, and, to a lesser extent, for RAVEN. Still,

for Yelp, RAVEN provides median application response time

more than two times faster than MPTCP, while 95% and 99%

tail response times are approximately four times faster.

5.5 Effect of changing confidence intervals
Figure 5 shows the effect on RTT of modifying which confi-

dence intervals RAVEN uses. Figure 6 shows the extra bytes

sent over the network (normalized to the total bytes transmit-

ted by the application) for each confidence interval. These

and subsequent experiments are run in the emulated envi-

ronment.

It is important to note that these experiments are designed

to generate only latency-sensitive trafficwith small data sizes.

Thus, these values do not reflect how much redundant data

would be sent for a typical workload. As we will see in the

next section, RAVEN transmits almost no data redundantly

for larger transmissions, and, due to their size, one would

expect such transmissions to comprise the vast majority of

bytes sent and received by a mobile device.

100% confidence intervals are always redundant: all bytes

are sent over all networks. This offers the lowest RTTs, but it

also effectively doubles the number of bytes sent when two

networks are available and triples it with three networks

(actually, the total number of bytes is slightly larger due

to retransmission). Shrinking the confidence intervals re-

sults in successively fewer bytes sent, but also higher RTTs.

While users may have different preferences, we chose 90%

confidence intervals as the default setting for RAVEN be-

cause it lies at the knee of the curve. This setting has similar

performance to always sending redundantly, but it sends

many fewer bytes. Lower confidence intervals offer further

reduction in bytes sent, but they also noticeably degrade

performance.

5.6 Effect of mode switching
Unlike prior systems [20, 26], RAVEN does not require appli-

cations to declare or hint about data size in order to decide

when to transmit redundantly. Instead, it infers small and

large transmissions as described in Section 4.5,

Figure 7 shows how mode switching affects the number of

bytes sent redundantly for different transfer sizes. We trans-

mit data from the client to the server 10 times, with a pause

of 30 seconds between transmissions, while we replay the

D1 trace. We configured RAVEN to always send redundantly

in this experiment to isolate the effect of mode switching.

For small transfers (1 KB and 10KB), all data is sent re-

dundantly. For 50 KB transfers, 41.67% of data is sent redun-

dantly. Yet, only 6.28% of 100 KB transfers and 1.27% of 1MB

transfers are sent redundantly. We do not explicitly measure

power usage because, in connected cars, the built-in network

interfaces are powered by the vehicle engine, and mobile

devices connect to these interfaces via the hotspot. With

the MPTCP proxy at the AP, mobile devices transmit only a

single copy of the data.
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Figure 5: These CDFs show how the choice of confidence interval affects application response time for speech,
music and Yelp. We show results with the default MPTCP scheduler for comparison.
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We confirmed the micro-benchmark results by examining

redundant bytes transmitted for representative mobile work-

loads while replaying the downtown trace. All applications

are unmodified and use our MPTCP proxy.

Web, video, and, and application download are three large

consumers of mobile bandwidth. We loaded the home pages

of the Alexa top 100 Web sites (as of March 2018) in the

Chrome Web browser. Overall, 4.9% bytes were sent redun-

dantly. 2.4% of bytes received and 55.3% of byte sent by the

client are transmitted redundantly. The difference reflects

the size disparity between typical HTTP requests and re-

sponses, and the results show that our heuristics do a good

job of distinguishing small and large transmissions. When
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Figure 7: Percentage of data sent redundantly and non-
redundantly for different data sizes.
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we used mplayer to stream a 50MB mkv video via MPEG-

DASH, only 0.03% of bytes were transmitted redundantly.

We installed the libreoffice-help-en-us package via apt-get,

which sent 2.4MB of data to the client. Only 0.59% of the

bytes were sent redundantly. Thus, for heavy consumers of

mobile bandwidth (Web, video, and application download),

RAVEN transmits very little data redundantly.

5.7 Effect of proactive cancellation
We next examine how much benefit RAVEN derives from

its in-kernel implementation that allows it to cancel useless

work (described in Section 4.6). Figure 8 compares RAVEN

with and without cancellation enabled for the speech applica-

tion and the downtown trace (other applications and scenar-

ios exhibit similar behavior). We see a small but consistent

improvement across the entire CDF. RAVEN cancellation

speeds up both median and 95% tail response time by 9%

because queue lengths shorten as work is removed.

5.8 Effect of using scaling for sample age
Finally, we examine the impact of RAVEN’s policy of dis-

counting samples by the amount of time that has passed

since they were collected (discussed in Section 4.2). We mod-

ified RAVEN to not take sample age into account when cal-

culating confidence intervals. Figure 9 compares RAVEN

with and without aging for the Yelp application and trace
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Figure 9: Application response time for Yelp in the
downtown scenario with and without scaling for sam-
ple age.

D1 (we chose Yelp because it has the least-frequent network

transmissions). The aging mechanism appears to be very

important, as RAVEN actually underperforms both cellular

networks with the mechanism disabled. Without scaling,

RAVEN attaches too much importance to stale samples, cre-

ating an overconfidence in its predictions that leads to it not

employing redundancy when it should.

5.9 Discussion
While our evaluation shows that RAVEN benefits substan-

tially from using more than one cellular network, current

practice is for connected devices to either use a single cellu-

lar network or switch between networks as with Google’s

Project Fi [19]. By pointing out the substantial benefit from

using multiple cellular networks simultaneously, these re-

sults can provide impetus to change practice in the future,

at least for vehicle-to-infrastructure communication.

Further optimizations are possible. For instance, if multi-

ple networks offer predictably low RTT that is good enough

for a particular application, employing redundancy is un-

necessary. However, this optimization requires application-

specific knowledge of delay tolerance, which could require

application modification. Alternatively, considering external

factors such as vehicle motion and geolocation could allow

better estimation of confidence, but would add complexity.

6 CONCLUSION
RAVEN is an MPTCP scheduler that reduces interactive la-

tency for vehicular applications through the strategic use

of redundant transmission over multiple wireless networks.

In emulation, RAVEN speeds up median interactive latency

by 19-30% compared to the default MPTCP scheduler. Live

vehicular experiments show even greater improvements.
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