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of task assignment for VGG16 with eight and 11 robots,

respectively. Our method for fc_1, since its input size is

large, performs model parallelism, while for fc_2 and fc_3,

since their computations are not a bottleneck, it assigns

them to a single robot. We measure the performance and

energy consumption of both systems and the TX2, shown in

Figure 18. When the number of robots increases from eight

to 11, we achieve 2.3x better performance by reassigning all

conve blocks to a robot and performing more optimal data

parallelism. In fact, compared to the TX2 with GPU, the 11-

robot system achieves comparable IPS (15% degradation).

VII. CONCLUSION

In this paper, we proposed a technique to harvest the com-

putational power of distributed robot systems by collaboration

to enable efficient real-time recognition. Our technique uses

model- and data-parallelism to effectively distribute computa-

tions of a DNN model among low-cost robots. We demonstrate

our technique with a system consisting of Raspberry-Pi3-based

robots by implementing a state-of-the art action recognition

model and two well-known image recognition models. For

future work, we plan to extend our work to heterogeneous

robot systems and increase the robustness of our technique.
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