IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2018 1

Distributed Perception by Collaborative Robots

Ramyad Hadidi!, Jiashen Cao!, Matthew Woodward!, Michael S. Ryooz, and Hyesoon Kim!

Abstract—Recognition ability and, more broadly, machine
learning techniques enable robots to perform complex tasks and
allow them to function in diverse situations. In fact, robots can
easily access an abundance of sensor data that is recorded in
real time such as speech, image, and video. Since such data is
time sensitive, processing it in real time is a necessity. Moreover,
machine learning techniques are known to be computationally
intensive and resource hungry. As a result, an individual resource-
constrained robot, in terms of computation power and energy
supply, is often unable to handle such heavy real-time computa-
tions alone. To overcome this obstacle, we propose a framework to
harvest the aggregated computational power of several low-power
robots for enabling efficient, dynamic, and real-time recognition.
Our method adapts to the availability of computing devices at
runtime and adjusts to the inherit dynamics of the network. Our
framework can be applied to any distributed robot system. To
demonstrate, with several Raspberry-Pi3-based robots (up to 12)
each equipped with a camera, we implement a state-of-the-art
action recognition model for videos and two recognition models
for images. Our approach allows a group of multiple low-power
robots to obtain a similar performance (in terms of the number
of images or video frames processed per second) compared to a
high-end embedded platform, Nvidia Tegra TX2.

Index Terms—Deep Learning in Robotics and Automation,
Distributed Robot System

I. INTRODUCTION

HE availability of larger datasets, improved algorithms,

and increased computing power is rapidly advancing the
applications of deep neural networks (DNNs). This advance-
ment has extended the capabilities of machine learning to areas
such as computer vision [1], natural language processing [2],
neural machine translation [3], and video recognition [4],
[5]. In the meantime, robots have access to an abundance
of data from their environment and are in desperate need to
extract useful information for enhanced handling of complex
situations. While robots can benefit tremendously from DNNS,
satisfying their intensive computation and data requirements is
a challenge for robots. These challenges are even exacerbated
in resource-constrained devices, such as low-power robots,
mobiles, and Internet of things (IoT) devices, and a significant
amount of research efforts has been invested to overcome

Manuscript received: February, 24, 2018; Revised May, 23, 2018; Accepted
June, 19, 2018.

This paper was recommended for publication by Editor Nak Young Chong
upon evaluation of the Associate Editor and Reviewers’ comments. *This
work was supported by Intel.

'Ramyad Hadidi, Jiashen Cao, Matthew  Woodward, and
Hyesoon Kim are with Computer Science School and Electrical
Engineering Department, Georgia Institute of Technology, GA 30332,
USA {rhadidi, jcao62,mwoodward}@gatech.edu,
hyesoon@cc.gatech.edu.

’Michael S. Ryoo is with EgoVid Inc.,
mryoo@egovid.com

Digital Object Identifier (DOI): see top of this page.

Ulsan 44919, Korea

|
-°
7 7 oy H

Computation Domain

(a) Single Robot

(b) Collaborative Robots

Fig. 1: Collaborative robots performing distributed inference.

them [6]-[10], such as collaborative computation between
edge devices and the cloud [11]-[13], or customized mobile
implementations [14]-[20]. Despite all these efforts, scaling
current DNNs to robots and processing generated data in
real time faces challenges due to limited computing power
and energy supplies in robots. Hence, in order to handle
current and future DNN applications that are more resource
hungry [21]-[23] and extract useful information from raw data
in a timely manner, creating an efficient solution is critical.
Our main idea is to utilize the aggregated computational
power of robots in a distributed robot system to perform DNN-
based recognition in real time. Such collaboration enables
robots to take advantage of the collective computing power
of the group in an environment to understand the collected
raw data, while none of the robots would experience energy
shortage. Although such collaboration could be extended to
a variety of systems, limited computing power and mem-
ory, scarce energy resources, and tight real-time performance
requirements make this challenge unique to robots. In this
paper, we propose a technique for collaborative robots to
perform cost-efficient, real-time, and dynamic DNN-based
computation to process raw data (Figure 1). Our proposed
technique examines and distributes a DNN model to gain high
real-time performance, the number of inferences per second.
We explore both data parallelism and model parallelism,
where data parallelism consists of processing independent
data concurrently and model parallelism consists of splitting
the computation across multiple robots. For demonstration,
we use up to 12 GoPiGos [24], which are Raspberry-Pi3-
based [25] robots, each with a camera [26] (Figure 2). As an
example DNN, to detect an object and related types of actions
happening in an environment, we implement a state-of-the-art
action recognition model [4] with 15 layers and two popular
image recognition models, AlexNet [1] and VGG16 [22].
The summary of our contributions in this paper is as follows:
(i) We develop a profiling-based technique to effectively dis-

% [
50} @
i R

GoPiGo $
g

(b) Our Distributed Robot System

(a) GoPiGo Robot
Fig. 2: Our GoPiGo distributed robot system.



IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2018

TABLE I: Comparison with recent related work.

End-Compute Number ‘ Localized Real-Time Partitioning Model- & Data- Runtime
Device of Devices Inference Data Process Mechanism Parallelism Adaptability
Neurosurgeon [11] Tegra TK1 [27] 1 X X Inter-Layer X X
MoDNN [28] LG Nexus 5 4 v X Intra-Layer X X
DDNN [13] X Many X v Inter-Layer Data Parallelism X
Our Method Raspberry Pi [25] Many v v Intra- & Inter-Layer Both v

tribute DNN-based applications on a distributed robot system
while considering memory usage, communication overhead,
and real-time data processing performance. (ii) We propose
a technique that dynamically adapts to the number of avail-
able collaborative robots and is able to interchange between
the robot, which inputs data, and computational robots. (iii)
We apply our technique on a distributed robot system with
Raspberry-Pi3-based hardware, investigating a state-of-the-art
action and two image recognition DNN models.

II. RELATED WORK

Performing distributed perception with collaborative robots
is a new concept; however, various related research to process
DNN applications for real-time performance has been done.
One of the first papers to distribute computation is [29];
however, it investigates such distribution and partitioning
specific for training and not inference while only focusing
on high-performance hardware. A recent work, Neurosur-
geon [11], dynamically partitions a DNN model between a
single edge device (Tegra TK1, $200) and the cloud for higher
performance and better energy consumption. Neurosurgeon
does not study the collaboration between edge devices and
is dependent on the existence of a cloud service. A similar
study of partitioning the computations between mobile and
cloud is also done in [12] using the Galaxy S3. Another work,
MoDNN [28], creates a local distributed mobile computing
system and accelerates DNN computations. MoDNN uses only
mobile platforms (LG Nexus 5, $350) and partitions a DNN
using input partitioning within each layer, especially by relying
on sparsity in the matrix multiplications. However, MoDNN
does not consider real-time performance because its most op-
timized system with four Nexus-5 devices has a latency of six
seconds. DDNN [13] also aims to distribute the computation
in local devices. However, in its mechanism, in addition to
retraining the model, each sensor device performs the first
few layers in the network and the rest of the computation is
offloaded to the cloud system. Therefore, similar to [11], [12]
is dependent on the cloud. Table I provides a comparison of
these works with our method. Additionally, executing DNN
models in resource-constrained platforms has recently gained
great attention from industry, such as ELL library [14] by
Microsoft and Tensorflow Lite [19] by Google. However,
these frameworks are still in development and have limited
capability. Our work is different because (i) we study cost-
efficient distributed robot systems, (ii) we examine conditions
and methods for real-time processing of DNNs, and (iii) we
design a collaborative system with many devices.

I1I. BACKGROUND

In the past three years, the use of DNN for robots has become
increasingly popular. This not only includes robot perception

of objects [30], [31] and actions [32], but also robot action
policy learning [33], [34] using DNNs. This section gives
an overview of common DNN layers and models we use for
object and action recognitions. DNN models are composed of
several layers stacked together for processing inputs. Usually,
first layers are convolution layers (conv), which consist
of a set of filters that are applied to a subset of inputs by
sweeping each filter (i.e., kernel) over them. To introduce non-
linearity, activation layers (act) apply a non-linear function,
such as ReLU, f(x) = max(0,x), allowing a model to learn
complex functions. Sometimes, a pooling layer, such as a
max pooling layer (maxpool), downsamples the output of
a prior layer and reduces the dimensions of data. Finally, a
few fully connected (dense) layers (fc) perform a linear
operation of weighted summation. A fully connected layer
of size n has n set of weights and creates an output of
size n. Among the mentioned layers, fc and conv layers
are among the most compute- and data-intensive layers [35].
Hence, our technique aims at alleviating the compute cost and
overcoming the resource barriers of these layers by distributing
their computation.

Image-based Object Recognition Models: Recent advance-
ments in computer vision [36] have allowed us to achieve high
accuracies and surpass human-level accuracy [37]. Computer
vision models extensively use conv layers, the heavy compu-
tations of which are not ideal for low-power robots [38]. For
demonstration, we studied AlexNet [1] and VGG16 [22], the
models of which are shown in Figure 3.

o

2x conv2D
conv2D maxpool

Convolution (CNN) Layers

conv2D conv2D

Input |

maxpool

maxpool conv2D
conv2D conv2D maxpool

N 1 13 13
13

7

13

| — - 4
[

192

192 128

IS
Q
o
o

3 48
(a) Single stream AlexNet model.

Block 3 Block 4 Block 5

1o V1

Block 1 Block 2

conv2D conv2D
conv2D maxpool conv2D maxpool

V1

4096————— fc_2

conv2D

2% convaD
conv2D maxpool

2x
conv2D maxpool

4096 ———————1fc 1

(b) VGG16 model.
Fig. 3: Image recognition models.

Action Recognition Model: Recognizing human activities
and classifying them (i.e., action recognition) in videos is a
challenging task for DNN models. Such DNN models, while
performing still image classification, must also consider the
temporal content in videos. We use the model of Ryoo et
al. [4], which consists of two separate recognition streams,

C— fc 3

o
=3
S

1000 ————fc 3



HADIDI et al.: DISTRIBUTED PERCEPTION BY COLLABORATIVE ROBOTS

— 3 ] s
. I g . ] 5
— © | Spatial = S
— w P T w
2 R P i | Stream T GE, £ §
| o £ oo
| i@
] £ =
ey u ez &£ &
= \ s S
*H . P § & .
) -
n o ' Temporal %’ o« °
n i | &
— =1 | { Stream 3 <
n o l S = i' o ~ )
| i@

Fig. 4: Temporal pyramid generation.

spatial and temporal convolution neural networks (CNNs), the
outputs of which are combined in a temporal pyramid [39] and
then fused in fully connected layers to produce predictions.
(a) Spatial Stream CNN: The spatial stream, similar to image
recognition models that classify raw still frames from the video
(i.e., images), is implemented with conv layers. This model,
as input, takes a frame of size 16x12x3 (in RGB) and processes
it with three conv layers, each with 256 filters, the kernel sizes
of which are 5x5, 3x3, and 3x3, respectively. Then, features
of each frame are summarized in a 256-element vector. Since
this stream processes still images, for training, we can use
any representative dataset, such as ImageNet [36], by adding
a dummy output dense layer.

(b) Temporal Stream CNN: The temporal stream takes optical
flow as input, which explicitly describes the motion between
video frames (we use Firenback [40] algorithm). In other
words, for every pixel at a position (u;,v,) at time ¢, the
algorithm finds a displacement vector d, for each pair of con-
secutive frames, or d; = (&, d?) = (uysar — s, Viear —vi). We
compute the optical flow for 10 consecutive frames and stack
their (d¥,d)) to create an input with the size of 16x12x20.
Subsequently, the data is processed with three conv layers,
each with 256 filters, the kernel sizes of which are 5x5, 3x3,
and 3x3, respectively. Finally, the features are summarized in
a 256-element vector. By adding a dummy output dense layer,
we can train the temporal stream with any video dataset, such
as HMDB [41].

(b) Temporal Pyramid: To generate a single representation
from the two streams, a single spatio-temporal pyramid [39]
is generated for each video. Figure 4 depicts the steps of
generating a four-level temporal pyramid from a video. Such a
pyramid structure of maxpool layers creates an output with
a fixed size that is agnostic to the duration of videos. For
each stream, 15 maxpool layers with different input ranges
generate a 15x256 output. Finally, the data with size 2x15x256
is processed by two fc layers with sizes of 8192, and an fc
layer with the size of 51 outputs HMDB classes.

IV. DISTRIBUTING DNN

In this section, we examine our distribution and paral-
lelization methods for computation of a DNN model over
multiple low-power robots (i.e., devices). We examine this
problem in the context of real-time data processing, which
means a continuous stream of raw data is available. Our goal
is to reduce the effective process time per input data. As
terminology, a task is the processes that are performed on
input data by a layer or a group of consecutive layers. We

Arbitrary Task

" Task A TaskB TaskC
Assignments:

®
oY

7050
A\
et
X 9
xa ."\\\\Q%%,’ @
o
1

NY/
\\\v//'

Model Parallelism:
Part 1

Input 1 TaskB Part1
7= Output 1
®©

Data Parallelism:

Input 1 Task B

7=y Output 1 )

©
o

|
|
|
1
|
|
—
I
|
1
|
1

|
|
|
|
|
| —>
|
|
|
|
|

1000000

Copy Part2

Input 1 TaskB  Part2
" Output 1

'

Custom DNN Model:

.0,
-

g [e]
123
o2

Bouti2 Output 2

0000000

1
|
| |
| |
| |
| i
|—> i
| |
| |
| |
| |
| |
\

—
Output Task B

Input Task B

Fig. 5: Model and data parallelism for task B on two devices.

introduce data parallelism and model parallelism (inspired
by concepts in GPU training [42]), which are applicable to
a task. Data parallelism is duplicating devices that perform
the same task, or share the same model parameters. Model
parallelism is distributing a task, which is dividing the task
into sub parts and assigning them to additional devices. Thus,
in model parallelism, since the parameters of the model are
divided among devices, the parameters are not shared.
Figure 5 depicts model and data parallelism of task B, an
arbitrary task, for two devices in an example DNN with three
layers. Data parallelism basically performs the same task on
two independent inputs, while in model parallelism, one input
is fed to two devices that perform half of the computations.
To create the output, a merge operation is required (for now,
we assume inputs are independent, see §V-C). Implementing
data parallelism starts with assigning each newly arrived data
to devices. However, performing model parallelism requires
a knowledge of deep learning. In fact, the effectiveness of
model parallelism depends on factors such as the type of a
layer, input and output sizes, and the amount of data transfer.
Furthermore, the performance is tightly coupled with the com-
putation balance among devices, whereas, in data parallelism,
the computations are inherently balanced. We investigate these
methods for fc and conv layers since these layers demand
the most computations and resources.
Fully Connected Layer: In an fc layer, the value of each
output is dependent on the weighted sum of all inputs. To
apply model parallelism to this layer, we can distribute the
computation of each output while transmitting all the input
data to all devices. Since the model remains the same, such
a distribution does not require training new weights. Later,
when each subcomputation is done, we need to merge the
results for the consumption of the next layer. As an example
of how model and data parallelism affect the performance,
we examine various fc layers, the input sizes of which are
7,680, but with different output sizes. For each layer, we

M Inference (Single Device) Data Parallelism @ Model Parallelism
Two Devices

Speedup
oRrNwWwhO

512 1024 2048 4096 8192 10240

Size of the £c layer
Fig. 6: Performance (i.e., throughput) speedup of model and
data parallelism on two Raspberry Pis executing an fc layer.

12288 14336 16384



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2018

(i) Profiling DNN Layers

Task Assignments

| 7 oNNModel

(i) Gather Data on Environment and DNN Model

Communication

and Bandwidth

| (iii) Generate Task Assignments

for {1...n} devices

it Devices(n) |

Latency

Environment and DNN Model Inspection

Distributaion

| Task Assignment Phase |

Fig. 7: Steps for generating task assignments in our solution.

M Inference (Single Device) Data Parallelism @ Model Parallelism

Two Devices

o 25
3 2
? 15
a1
Y 05
o A ) ;
20 40 60 80 100 120 160 200 220 240 320 400 440 480 500
Number of conv layer filters
Fig. 8: Performance speedup of model and data parallelism on

two Raspberry Pis executing a conv layer.

measure its performance (i.e., throughput) on a Raspberry Pi
3 (Table II). Figure 6 illustrates the performance of model and
data parallelism normalized to performing the inference on a
single device. As we see, for fc layers larger than 10,240,
model parallelism performs better. In fact, after examining the
performance counters of processors, we find that processors
start using the swap space for fc layers larger than 10,240.
Since in model parallelism a layer is distributed on more than
one device, we reduce memory footprint and avoid swap space
activities, which results in speedups greater than 2x.

Convolution Layer: Since computations between the filters of
a conv layer are independent, distributing the computations
has various forms, such as distributing filters while copying
the input, dividing input while copying all filters, or a mix of
these two. In fact, such methods of distributions are already
integrated in many machine learning frameworks to increase
data reuse and therefore decrease execution time. To gain
insights, we examine a series of conv layers with the input
size of 200x200x3 and the kernel size of 5x5, with different
numbers of filters in Figure 8. As seen, the performance of
data parallelism is always better than that of model paral-
lelism, because while model parallelism pays the high costs of
merging and transmitting the same inputs, for data parallelism,
frameworks optimize accesses better for high data reusability.

V. PROPOSED SOLUTION
A. Task Assignments

To find a close to optimal distribution for each DNN model,
given the number of devices in the system, we devise a solution
based on profiling. Our goal is to increase the number of
performed inferences per second, or IPS. As discussed in §IV,
profiling is necessary for understanding the performance ben-
efits of data and model parallelism. In other words, we must
consider whether assigning more than one task to any device
will cause significant slowdown because of the limited mem-
ory resource or if data or model parallelism with its overheads,
such as data transmits and merges, increases IPS. In our solu-
tion, Figure 7, first, for each layer, we profile execution times
and memory usages of its original, model-parallelism, and
data-parallelism variants. For each hardware system, the pro-
filing is performed offline and only once for creating this data.

Second, our solution takes the target DNN model, number of
devices, and communication overhead (a regression model of
latency based on the data size). Finally, using gathered data, we
generate task assignments based on the flow of Algorithm 1.

Algorithm 1 Task Assignment Algorithm.

1: function TASKASSIGNMENT(dnn, nyqy, comm,ments;z,)
Inputs: dnn: DNN model in form of layers[type, size, inputyiz., 51

Nmax: Maximum number of the devices
comm: Communication overhead model (comm(size u4))
memyiz.: Device memory size

L = EXTRACT_MODEL_TO_LAYERS(dnn)

for n from 1 to ny,,,: do
tasks finai [n] = @

TG, noFit := FIND_INITIAL_TASKGROUP(L, memyjz,)
if sizeof(T'G) > n then
: tasks[n] =COMBINE_TASKS(T G, memyize, Nnqx, 1)
9: if sizeof (T G) = n then
tasks[n) = TG
if sizeof (T G) < n or noFit == True then

2
3
4
5: for n from 1 to ny,,,: do
6.
7
8

while sizeof(TG) # n do
13: taskyarion =
14: for every t € TG: do
15: [taskyarign:] += PROFILED_VARIANTS(t, comm)
16: taskyepiaceds 1asknew = SELECT_LOWEST([taskyarian])
17: TG =TG —taskrepiaced +tasknew
18: 1asks fipai [n] = TG
19: return 1asks final

In this algorithm, the function in line 2 extracts the model
input, dnn, into layers, L, while also accounting for buffering
requirements (i.e., sliding windows> 1, see §V-C). Required
extra buffers should be specified by the user in 3. Because
of the possibility that during execution some devices are
inactive, busy, or have more than one input, we generate task
assignments offline for all the possible number of devices (e.g.,
one, two, ..., total number of devices). For every number of
devices, n, we create a dictionary of the node’s name to its
tasks, tasks fingi[n], and initialize it in Line 4 to the empty set.
Then, from Line 5, we start a for loop for generating task
assignments for the n number of devices. Since we generate
all of the task assignments for any number of devices offline,
our system can dynamically change the number of devices
without the cost of computing a new assignment. To do so,
first, the function in Line 6 generates an initial tasks group,
TG, from L, such that every entity in TG fits in memy;,
of our devices. Basically, the function starts from the first
layer while using the profiled data and creates a group of
consecutive layers until they cannot fit in the mem;,,, and
then moves on for creating the next group. (If a single layer
does not fit in the memory, noFit flag is set for that entity
in TG.) Then, based on the number of initial tasks groups,
sizeof (T G), the algorithm changes TG by adding or removing
tasks until all n nodes are utilized, or sizeof(TG) = n. If



HADIDI et al.: DISTRIBUTED PERCEPTION BY COLLABORATIVE ROBOTS

sizeof(TG) > n, it means current tasks need more devices
than what the system has, so we have to co-locate some tasks
together and pay the overhead of task reloads. Hence, the
function in Line 8 tries to combine two consecutive tasks (two
tasks such that one produces data and the other consumes it
directly) that together have the lowest memory consumption
across all possible consecutive tasks and performs the process
until the tasks fit on n devices. This is because lowest memory
consumption is directly related to the lower reloading time
of tasks to the memory. If sizeof(TG) < n (or noFit is
set), the function in Line 15 uses the profiled data and the
communication model, comm, to estimate the execution time
of new task variants, task,q e, for all variants of the task,
that is, original, model- and data-parallelism variants. Then,
Line 16 chooses the variant with the lowest execution time
across all possible variants for all tasks and outputs the to-be-
replaced task (taskyepiacea) and the selected variant (taskpew).
Finally, Line 17 updates TG. This process continues in the
while loop (Line 12) until we utilize all available devices,
or sizeof(TG) = n. In this algorithm, since performance gain
and communication overhead are estimations, optimality is
not guaranteed. However, since task assignment is not in the
critical path, we can fine-tune assignments before deployment
(fine-tuning is not performed in our experiments).

B. Dynamic Communication

In our solution, devices need to communicate with each
other efficiently for transmitting data and commands. We use
Apache Avro [43], a remote procedure call (RPC) and data
serialization framework in our solution. The RPC capacity of
Avro enables us to request a service from a program located in
another device. In addition, Avro’s data serialization capability
provides flexible data structures for transmitting and saving
data during processing while preserving its format. Therefore,
a device may offload the results of a computation to another
device and initiate a new process. To effectively identify all
devices, each device has a local copy of a shared IP address
table from which its previous and next set of devices and
its assigned task are identified. Furthermore, to adapt to the
dynamics of the environment, a master device may update the
IP table based on the generated task assignments. Similar to
any network, we allocated a buffer of incoming data on all the
devices. Whenever a buffer is almost full, the associated device
(i) sends a signal to the previous devices, which permits them
to drop some unnecessary input data (i.e., reducing sampling
frequency), and (ii) sends a notification the master device.
Afterward, the master device, based on such notification and
the availability of devices, may update the IP table to achieve
better performance (in our experiments, updates stop real-time
processing for <minute).

C. Sliding Window

Our action recognition model processes a whole video for
each inference. However, in reality, the frames of a video
are generated by a camera (30 FPS). To adapt a model for
real-time processing, we propose the use of a sliding window
over the input and intermediate data, whenever needed, while

# 10 spatiall

+~@
,,,,,,, N
‘:> f#26 @

% pyramid 1

- 100

256 elements f# 24 spatial
per one f# 25 spatial
frame f# 26 spatial

f#1-10 temporal

One | - >
frame

Spatial Stream

Input Frames

f#15 - 24 temporal
f#16 - 25 temporal
256 elements | f#17~26 temporall

per ten @
frames

Temporal Pyramid & Dense Layers

N

#16-25
----------- >

Ten
frames

f# 17-26
---------- >

Recorder Node

Temporal Stream
f# : frame number

Fig. 9: Sliding window for an example system of eight devices.
While some tasks require sliding window, with different sizes,
others may not need it.
TABLE II: Raspberry Pi 3 specifications [25].
CPU 1.2GHz Quad Core ARM Cortex-A53

Memory 900MHz 1 GB RAM LPDDR2
GPU No GPGPU Capability

Price $35 (Board) + $5 (SD Card)
Idle (No Power Gating) 1.3W
Power %100 Utilization SW
Consumption Averaged Observed 3W

distributing the model. For instance, the temporal stream
accepts an input of optical flows from 10 consecutive frames,
so a sliding window of size 10 over the recent inputs is
required. In a sliding window, whenever new data arrives, we
remove the oldest data and add the new data to the sliding
window. Note that to order arriving data, a unique tag is
assigned to each raw data during recording time. Figure 9
illustrates this point with an example of eight devices in a
system. The recorder device keeps a sliding window of size
10 to supply the data, while the devices that process spatial and
temporal streams do not have a sliding window buffer. On the
other hand, since the temporal pyramid calculation requires a
spatial data of 15 frames and temporal data of 25 frames, the
last device keeps two sliding window buffers with different
sizes. We can extend the sliding window concept to other
models that have a dependency between their inputs to create
a continuous data flow. Furthermore, the sliding window is
required to enable data and model parallelism. This is because
a device needs to order its input data while buffering arrived
unordered data.

VI. EVALUATION

We evaluate our method on distributed Raspberry-Pi-
based [25] (Table II) robot (GoPiGo [24]). Furthermore, we
compare our results with two localized implementations: (i) a
high-performance (HPC) machine (Table III) and (ii) Jetson
TX2 [44] (Table 1V). For all implementations, we use Keras
2.1 [45] with the TensorFlow GPU 1.5 [46]. We measure
power consumption of all modules, except mechanical parts,
with a power analyzer. A local WIFI network with the

TABLE III: HPC machine specifications.

CPU 2x 2.00GHz 6-core Intel E5-2620
Memory 1333 MHz 96 GB RAM DDR3
GPU Titan Xp (Pascal) 12 GB GDDR5X
Total Price $3500
Idle 125W
Power %100 Only-CPU Utilization | 240 W
Consumption | 9,100 Only-GPU Utilization | 250 W




6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2018

TABLE IV: Nvidia Jetson TX2 specifications [44].
2.00GHz Quad Core ARM Cortex-A57

CPU 2.00GHz Dual Denver 2
Memory 1600 MHz 8 GB RAM LPDDR4
GPU Pascal Architecture - 256 CUDA Core
Total Price $600
Idle (Power Gated) 5SW
Comeomer %100 Utilization i5W
onsumption Averaged Observed 9.5W

measured bandwidth of 62.24 Mbps and a measured client-to-
client latency of 8.83 ms for 64 B is used. We use a measured
communication model of ¢ = 0.0002d + 0.002, in which ¢ is
latency (seconds) and d is the data size (kB). All trained
weights are loaded to each robot’s storage, so each robot can
be assigned to any task.

A. Single Robot

Since a single robot has limited memory, it usually cannot
handle the execution of all the tasks efficiently because for
performing any computation, data should be loaded to memory
from storage. Figures 10a and b show the loading time and
memory usage of general tasks in the action recognition
model. The memory requirement of dense layers is larger than
1 GB, so a single robot needs to store and load intermediate
states (i.e., activations of a layer) to its storage, which incurs
high delays. To gain insight, we even try a dense layer with
half-sized dimensions of the original one, with 15% lower
accuracy. Figure 10 shows that, in this case, even with a
negligible computation time, the overhead of loading each task
is high for real-time processing. Even when assuming zero
loading time, as in Figure 10c and d depict for energy and
inference time, the inference time of the half-sized fc layer
is more than 0.7 seconds, while its energy per inference is 10x
larger than that of spatial/temporal streams. Hence, in such an
implementation, we still cannot process data in real time.

B. Action Recognition

In the action recognition model, the recording robot also
computes optical flow, the computation of which is not heavy
(e.g., 4ms for 100 frames using the method in [40]). Each
robot manages a sliding window buffer, explained in §V-C, the

OModel EWeights .
Temporal [

Temporal Ty o
L Spatial [
Spatial |[ETETIITNTTNTTTTTTNTT B
Maxpool | Maxpool |
De‘:lse 1 Dense |
4 Not Possible D 1/2) 1
Dense (1/2) ense (1/2) [/ : | | |
j ' ‘ 0 05 1 15 2
0 20 40 60
Time (s) Memory (GB)
(a) Loading Time (b) Memory Usage
Temporal |1 0.199 Temporal [710.36
Spatial [ 0.192 Spatial []0.34
Maxpool | 0.0052 Maxpool | 0.011
Dense Dense |
Dense (1/2) ———"70.728 Dense (1/2) ] 3.638
0 0.5 1 0

2
Energy (J)
(d) Energy Per Inference

Time (s)
(c) Inference Time

Fig. 10: (a) Loading time, (b) memory usage, (c) time per
inference, and (d) energy per inference of general tasks in
action recognition on a Raspberry Pi.

Node D Tasks

Node B Task
Maxpool

Spatial CNN
Node A Tasks fc 1 (8k) Node E Tasks

Recording ® o~ £fc 2 (8k)
optical Flow 0* © ® | ez (51)
Node C Task ©

(a) Five robots: Exploiting model parallelism for fc layers.

Tasks of D
Task of B Task of F

7 Maxpool
Spatial CNN fo 1(ak) |% £c_2(4k)
R di ® ® — 0‘ Task of H
ecording R OO~———— .
Optical Flow O«GAG»”@HQ £c_3(51)

Task of C Tasks of E o

Task of G
Temporal CNN Maxpool
fc_1(4k) fc_2(4k)

(b) Eight robots: Exploiting model parallelism for each fc layer.

Tasks of A

Task of B & C Tasks of F

= 1 Task of H
axpoo
£o 1(ak) |4, | £o-2(4)
%
5H) Task of J

Tasks of A

Recording
Optical Flow

Tasks of G
Task of D & E ® ey Task of
__Tempor‘al CNN X
fc_1(4k) -_fc_2(4k)

(c) 10 robots: Adding data parallelism for the two streams.
Tasks of H Task of J
Maxpool

Task of L

Tasks of B, C,& D

Tasks of A

DA

Recording
Optical Flow

77>

Tasks of E, F, & G Tasks of | Task of K
[Tenporar cw]
(d) 12 robots: Adding more data parallelism for the two streams.

Fig. 11: System architectures of action recognition.

size of which is dependent on the model and data parallelism
of the previous robot and the input of the next robot. As
discussed in the previous section, a single robot is unable
to process data efficiently in real time. Hence, for demon-
stration, we perform distributed perception utilizing various
systems, as shown in Figure 11, while measuring IPS, energy
consumption, and end-to-end latency (Figures 12, 13, and 14,
respectively)!. Our first system has five robots, Figure 11a, for
which the final fc layers are distributed. Note that the systems
with fewer than five robots are bounded by reloading time, and
do not experience significant improvements in performance.
From eight robots, Figure 11b, our method performs model
parallelism on both fc layers, creating two 4,096 fc layers
per each layer. Furthermore, we are able to achieve 4.6x
improvement in the performance and exceed the performance
of TX2, shown in Figure 12. In the 10-robot system, two more
robots process temporal and spatial streams exploiting data
parallelism, illustrated in Figure 11c. New frames and optical
flows are assigned in a round-robin fashion to two robots (of
each stream) and are ordered using tags in subsequent robots.
Finally, in the 12-robot system, more robots are assigned to
process temporal and spatial streams with data parallelism.
In summary, in comparison with a single robot, we gain up

'We evaluate these experiments and make the source code publicly available
in this artifact [47].



HADIDI et al.: DISTRIBUTED PERCEPTION BY COLLABORATIVE ROBOTS

69.35 15.28

T .
§ 1 Je9 909
3 [ H H
Tw 4 1.97 167
2 a
g= g [ 0.02 1
]
g N N N & . & ) &
£ \‘320 \éz" \"Qo \‘3\) oé\g oé\b oé\c oé\c 04\0
= 9 < < < S <

& & & & Ve Yy

System Architecture
Fig. 12: Measured inference per second.
—_ O Computation 0O Ci icati @ iy
K 3 3 2
@
£ © @ NN 4
g 2 o N
v 3

@ o, I
s 1 S S 5 o Y N
S S S o EI hd o2 Q.“
S 0 =
>
z
< ) O S\ O P & &
g & & ¢ ¢ ¥ e° q;\° &
- & & PO s N

System Architecture

Fig. 13: Measured end-to-end latency of one frame.

to 90x energy savings and a speedup of 500x for IPS. As
Figures 12 and 13 depict, although increasing the number of
devices in a system also increases the latency notably, we
observe a performance gain in IPS with a higher number of
devices. This is because in both data and model parallelism,
the systems hide latency by distributing or parallelizing tasks.

For the larger number of robots, we achieve not only
similar energy consumption with TX2 but also save energy in
comparison with the HPC machine. Figure 14b depicts that,
except for the TX2 with GPU, the energy consumption per
inference (i.e., Watyperformance) of systems with more than five
robots is always better than in other cases (up to 4.3x and
an average of 1.5x). Note that in our evaluations, the power
consumption of the robot systems is inclined to higher energy
consumption because (i) in comparison with TX2, since each
robot’s Raspberry-Pi is on a development board, it has several
unnecessary peripherals, the energy consumption of which
increases significantly with more robots, which is shown in
static energy; (ii) TX2 is a low-power design with power gating
capabilities that gates three cores if not needed, but robots do
not have such capabilities; and (iii) the energy consumption of
the robot systems also includes the energy for communication
between the devices and the wasted energy of powering an
idle core during data transmission.

O Static Energy

Dynamic Energy

Energy per Inference (J)
oRrNWhUO

System Architecture

(a) Measured static and dynamic energy consumption per inference.

= 239.7 OTotal Energy
2 12 10.15
£ 10
<8 6.6
€ 6 3 46 3 81
< 4 206 234 253 2.65
@
g7 | ; T P R
oo
] S S & G & & &
: & & & & & & & &
€ 9 o~ & o Y o ° 9
& & < N N K

System Architecture
(b) Measured total energy consumption per inference.

Fig. 14: Energy consumption per inference.

Task of B

Task of D Tasks of B & C Task of D
fc 1(2k)

fo2 (4k) [ NN Layers ] |fc 12 | ot
1k
=1 2Oy [r2 @0
Tasks of A s@, et 3 (k)
:
Task of C Tasks of A Task of E K

Input Stream
CNN Layers £6_1(2k) | | [Input strean| [£c_1(2K) ]

(a) Four-device system

;u

(b) Six-device system

Fig. 15: System architectures for AlexNet.

ODynamic Energy O Static Energy E Total Energy

2
5 8 s 2 SZ‘S
g s g1s g 2
55 5 £15
oz 4 g ! g1
g 2 <05 HH | H X
@ » U , | = 0.5
[ 3 |'| 3
€ o0 Z0 s 0
= D S ¢ @ g D O & ¢ g S & & &
At P g g & &
& & PP Al & &
(a) IPS (b) Dynamic and Static Energy (c) Total Energy

Fig. 16: AlexNet: Measured IPS (a), static and dynamic energy
consumption (b), and total energy consumption (c).

C. Image Recognition

We apply our method to two popular image recognition
models, described in §III. For AlexNet, Figures 15a and b
display the generated tasks for four- and six-robot systems,
respectively. While in the four-robot system, model parallelism
is performed on the fc_1 layer, in the six-robot system,
additional data parallelism is performed on conv layers. We
implement both systems and measure their performance and
energy consumption, shown in Figure 16. Figure 16a depicts
a performance increment by increasing the number of devices
in a system. In fact, the achieved performance of the six-
robot system is similar to the TX2 with CPU, and 30% worse
than the TX2 with GPU. Furthermore, as discussed in the
previous section, Figure 16b shows that most of the energy
consumption of the Raspberry-Pi-based robots is because of
the static energy consumption.

VGG16 (Figure 3b), in comparison with AlexNet, is more
computationally intensive [38]. To distribute the model, our
method divides the VGG16 model to several blocks of se-
quential conv layers. Figures 17a and 17b depict the outcome

Tasks of B, C,& D Tasks of E Task of F Tasks of B, C, D, E Task of J

F G&H
2 G, _fc_1(2k)
Block 1,2,
3,4 Task of L
‘* “;m

Tasks of A Task of H
Input Stream|T2skofG £c_2 (4K)
Block 1 £c 1(2k) | fc_3 (1k)

(a) Eight-device system

Fig. 17: System architectures for VGG16.

fc_2 (4K)
fc_3 (1k)
Tasks of A Task of K

Input Stream fc 1(2k)

(b) 11-device system

ODynamic Energy O Static Energy ETotal Energy

-

14 =30 _.50

g 12 = =

@ 1 2 20 B0

87 o8 5 § 30

= Q

$= 02 £ £

[ 13 -

E 0.2 g g 5

£ 0 & 0 & N & &
é\s N 05? - éo do\ & dt,\e" g \q" & f K

HL0F 8 0T R

(a) IPS (b) Dynamlc and Static Energy (c) Total Energy

Fig. 18: VGG16: Measured IPS (a), static and dynamic energy
consumption (b), and total energy consumption (c).



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2018

of task assignment for VGG16 with eight and 11 robots,
respectively. Our method for fc_1, since its input size is
large, performs model parallelism, while for fc_2 and fc_3,
since their computations are not a bottleneck, it assigns
them to a single robot. We measure the performance and
energy consumption of both systems and the TX2, shown in
Figure 18. When the number of robots increases from eight
to 11, we achieve 2.3x better performance by reassigning all
conve blocks to a robot and performing more optimal data
parallelism. In fact, compared to the TX2 with GPU, the 11-
robot system achieves comparable IPS (15% degradation).

VII. CONCLUSION

In this paper, we proposed a technique to harvest the com-
putational power of distributed robot systems by collaboration
to enable efficient real-time recognition. Our technique uses
model- and data-parallelism to effectively distribute computa-
tions of a DNN model among low-cost robots. We demonstrate
our technique with a system consisting of Raspberry-Pi3-based
robots by implementing a state-of-the art action recognition
model and two well-known image recognition models. For
future work, we plan to extend our work to heterogeneous
robot systems and increase the robustness of our technique.

REFERENCES

[11 A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet Classification
With Deep Convolutional Neural Networks,” in NIPS’12. ACM, 2012,
pp. 1097-1105.

[2] R. Collobert and J. Weston, “A Unified Architecture for Natural Lan-
guage Processing: Deep Neural Networks with Multitask Learning,” in
ICML’8.  ACM, 2008, pp. 160-167.

[3] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by
Jointly Learning to Align and Translate,” in /CLR’15). ACM, 2015.

[4] M. S. Ryoo, K. Kim, and H. J. Yang, “Extreme Low Resolution Activity
Recognition with Multi-Siamese Embedding Learning,” in AAAI’IS.
IEEE, Feb. 2018.

[5] K. Simonyan and A. Zisserman, “Two-Stream Convolutional Networks
for Action Recognition in Videos,” in NIPS’14. ACM, 2014, pp. 568—
576.

[6] Y. Wang, H. Li, and X. Li, “Re-Architecting the On-Chip Memory Sub-
System of Machine-Learning Accelerator for Embedded Devices,” in
ICCAD’16, 2016, pp. 1-6.

[71 Y.-D. Kim, E. Park, S. Yoo, et al., “Compression of Deep Convolutional
Neural Networks for Fast and Low Power Mobile Applications,” in
ICLR’16. ACM, 2016.

[8] B. McDanel, S. Teerapittayanon, and H. Kung, “Embedded Binarized
Neural Networks,” in EWSN’17, 2017, pp. 168—173.

[9] S. Bang, J. Wang, Z. Li, et al., “14.7 A 288uW Programmable Deep-
Learning Processor with 270KB On-Chip Weight Storage Using Non-
Uniform Memory Hierarchy for Mobile Intelligence,” in ISSCC’17.
IEEE, 2017, pp. 250-251.

[10] R. LiKamWa, Y. Hou, J. Gao, et al., “RedEye: Analog ConvNet Image
Sensor Architecture for Continuous Mobile Vision,” in ISCA’16. ACM,
2016, pp. 255-266.

[11] Y. Kang, J. Hauswald, C. Gao, et al., “Neurosurgeon: Collaborative
Intelligence Between the Cloud and Mobile Edge,” in ASPLOS’17.
ACM, 2017, pp. 615-629.

[12] J. Hauswald, T. Manville, Q. Zheng, et al., “A Hybrid Approach to
Offloading Mobile Image Classification,” in I[CASSP’14. 1EEE, 2014,
pp. 8375-8379.

[13] S. Teerapittayanon, B. McDanel, and H. Kung, “Distributed Deep Neural
Networks Over the Cloud, the Edge and End Devices,” in ICDCS’17.
IEEE, 2017, pp. 328-339.

[14] Microsoft, “Embedded Learning Library (ELL),” https:/microsoft.
github.io/ELL/, 2017, [Online; accessed 11/10/17].

[15] M. Rastegari, V. Ordonez, J. Redmon, et al, “XNOR-Net: Ima-
genet Classification Using Binary Convolutional Neural Networks,” in
ECCV’16. Springer, 2016, pp. 525-542.

[16] A. G. Howard, M. Zhu, B. Chen, et al., “Mobilenets: Efficient Convolu-
tional Neural Networks for Mobile Vision Applications,” arXiv preprint
arXiv:1704.04861, 2017.

[17] S. Han, H. Shen, M. Philipose, et al., “MCDNN: An Execution Frame-
work for Deep Neural Networks on Resource-Constrained Devices,” in
MobiSys’16, 2016.

[18] Facebook, “Caffe2Go: Delivering real-time Al in the palm of your
hand,”  https://code.facebook.com/posts/196146247499076/delivering-
real-time-ai-in-the-palm-of-your-hand/, 2017, [Online; accessed
11/10/17].

[19] Google, “Introduction to TensorFlow Lite,” https://www.tensorflow.org/
mobile/tflite/, 2017, [Online; accessed 11/10/17].

[20] F. N. Iandola, S. Han, M. W. Moskewicz, et al., “SqueezeNet: AlexNet-
Level Accuracy with 50x Fewer Parameters and <0.5 MB Model Size,”
arXiv preprint arXiv:1602.07360, 2016.

[21] K. He, X. Zhang, S. Ren, et al., “Deep Residual Learning for Image
Recognition,” in CVPR’16. IEEE, 2016, pp. 770-778.

[22] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in /ICLR’15. ACM, 2015.

[23] C. Szegedy, W. Liu, Y. Jia, et al., “Going Deeper with Convolutions,”
in CVPR’15. 1EEE, 2015, pp. 1-9.

[24] D. Industries, “GoPiGo Robot,” https://www.dexterindustries.com/
gopigo3/, 2017, [Online; accessed 22/02/18].

[25] R. P. Foundation, “Raspberry Pi 3.” https://www.raspberrypi.org/
products/raspberry-pi-3-model-b/, 2017, [Online; accessed 11/10/17].

[26] R. P. Foundation, “Raspberry Pi 3,” https://www.raspberrypi.org/
products/camera-module-v2/, 2017, [Online; accessed 11/10/17].

[27] NVIDIA, “NVIDIA TK,” http://www.nvidia.com/object/jetson-tk1-
embedded-dev-kit.html, 2017, [Online; accessed 11/10/17].

[28] J. Mao, X. Chen, K. W. Nixon, et al., “MoDNN: Local Distributed
Mobile Computing System for Deep Neural Network,” in DATE’I7.
IEEE, 2017, pp. 1396-1401.

[29] J. Dean, G. Corrado, R. Monga, et al., “Large scale distributed deep
networks,” in NIPS’12. ACM, 2012, pp. 1223-1231.

[30] J. Redmon and A. Angelova, “Real-Time Grasp Detection Using Con-
volutional Neural Networks,” in ICRA’15. 1EEE, 2015.

[31] D. Maturana and S. Scherer, “VoxNet: A 3D Convolutional Neural
Network for Real-Time Object Recognition,” in JROS’15. 1EEE, 2015.

[32] M. S. Ryoo, B. Rothrock, C. Fleming, e al., “Privacy-Preserving Human
Activity Recognition from Extreme Low Resolution.” in AAAI’I7.
IEEE, 2017, pp. 4255-4262.

[33] C. Finn and S. Levine, “Deep Visual Foresight for Planning Robot
Motion,” in ICRA’17. 1IEEE, 2017.

[34] J. Lee and M. S. Ryoo, “Learning Robot Activities from First-Person
Human Videos Using Convolutional Future Regression,” in IROS’17.
IEEE, 2017.

[35] S. Venkataramani, A. Ranjan, S. Banerjee, ef al., “Scaledeep: A scalable
compute architecture for learning and evaluating deep networks,” in
ISCA’17. ACM, 2017, pp. 13-26.

[36] O. Russakovsky, J. Deng, H. Su, et al., “Imagenet Large Scale Visual
Recognition Challenge,” IJCV, vol. 115, no. 3, pp. 211-252, 2015.

[37] K. He, X. Zhang, S. Ren, et al, “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on Imagenet Classification,” in
ICCV’15. 1EEE, 2015, pp. 1026-1034.

[38] A. Canziani, A. Paszke, and E. Culurciello, “An Analysis of Deep
Neural Network Models for Practical Applications,” arXiv preprint
arXiv:1605.07678, 2016.

[39] J. Choi, W. J. Jeon, and S.-C. Lee, “Spatio-Temporal Pyramid Matching
for Sports Videos,” in ICMR’8.  ACM, 2008, pp. 291-297.

[40] G. Farnebick, “Two-Frame Motion Estimation Based on Polynomial
Expansion.”  Springer, 2003, pp. 363-370.

[41] H. Kuehne, H. Jhuang, E. Garrote, et al., “HMDB: A Large Video
Database for Human Motion Recognition,” in /CCV’11. IEEE, 2011,
pp. 2556-2563.

[42] A. Coates, B. Huval, T. Wang, et al., “Deep Learning with COTS HPC
Systems,” in ICML’13. ACM, 2013, pp. 1337-1345.

[43] T. A. S. Foundation, “Apache Avro,” https://avro.apache.org, 2017,
[Online; accessed 11/10/17].

[44] NVIDIA, “NVIDIA Jetson TX,)”
embedded- systems-dev-kits-modules.html,
11/10/17].

[45] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.

[46] M. Abadi et al, “TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

[47] R. Hadidi, J. Cao, M. Woodward, et al., “Real-time image recognition
using collaborative iot devices,” in ReQuEST ’18. ACM, 2018.

http://www.nvidia.com/object/
2017, [Online; accessed



