THEME: Accelerating Scientific Discovery with Reusable Software

The role of scientific
communities in creating
reusable software: lessons
from geophysics

The domain of geophysics has historically been a driver of scientific software
development due to the size, complexity, and societal importance of the research
guestions. Geophysical computation complements field observation, laboratory
analysis, experiment, and theory. Specialized scientific software is regularly developed
by geophysicists in collaboration with computational scientists and applied
mathematicians; in this cross-disciplinary environment, reusability is critically important
both to preserve the intellectual investment and to ensure the quality of the research
and its replicability. The Computational Infrastructure for Geodynamics is a “community
of practice” that advances Earth science by developing and disseminating software for
geophysics and related fields. We discuss CIG’s best practices, lessons learned, and
community practices, and highlight how development of high-quality, reusable scientific
software has accelerated scientific discovery by enabling simulations of the dynamics of
Earth’s surface and interior across a wide spectrum of

problems using resources from laptops to leadership-class
Louise H. Kellogg

University of California, supercomputers.

Davis

Wolfgang Bangerth

Colorado State Established in 2005 with funding from the National Science
University Foundation, the Computational Infrastructure for Geodynamics

(CIG, geodynamics.org) is a partnership between the scientific
domains of solid-earth science (the study of the crust, mantle, and
core of the Earth and other terrestrial planets) and computational

Lorraine J. Hwang
University of California,

Davis

science. CIG’s goal is to advance geophysics and related fields of
Timo Heister research by developing and disseminating scientific software,
University of Utah using best practices from computational science. CIG grew out of

Rene GassmoOller
University of California,
Davis

N Cisc

the realization, common to many scientific communities, that a lot of science depends on
software that was written for specific research projects by scientists with little formal
background in software engineering. This software was handed from scientist to scientist who
then continued to modify their own copies before handing them off once again to someone else.
Although some scientists shared software and several successful benchmark projects
investigated the accuracy and performance of different numerical methods (for example in
dynamical modeling of mantle convection'*?), the scientific community did not fully benefit
from the investments being made in scientific software development and did not have the
capability to take full advantage of developments in numerical methods, applied mathematics,
and software and hardware advances.

Over the last 13 years, CIG has grown into a “community of practice”, identifying and
encouraging use of those best practices that are most effective for this community, while also
supporting development and dissemination of high quality, free, open source scientific software
for geophysics. CIG has worked with and supported authors of some of the popular and complex
packages in the community in an effort to improve its development practices. CIG has also run
many workshops and training sessions, teaching early career scientists in particular to work with
and extend these software packages using the best practices we have learned. These training
efforts prepare our scientific workforce to be expert users and how to contribute to scientific
software.

As aresult of these activities, software is developed very differently today in the geodynamics
community. Software packages disseminated by CIG follow a set of best practices: they are
available under an open source license; are extensively documented; use version control; and
have automated test suites. These practices have become the accepted standard in the
community, with CIG maintaining a leadership role in the continuous development of software
best practices in the geosciences.

BUILDING A COMMUNITY OF SOFTWARE
DEVELOPERS

While a large percentage of Ph.D. students in the geosciences takes courses on quantitative and
computational methods*, these courses generally do not focus on software development, software
design, and software management. The geosciences are of course not alone in this challenge: The
lack of formal software training is typical across the sciences and engineering®%”%. The software
development education self-reported by members of the CIG community reflects these
experiences’.

Geophysicists typically come to computational geophysics with strong quantitative backgrounds
in geology or physics; their education prepares them in the foundations of their science, but not
the practical aspects of developing scientific software. This lack of formal training in software
means that students and postdocs often learn software development practices from their advisors,
collaborators, and mentors. Mentorship (“apprenticeship relationships™), peer learning, and in-
person interactions at conferences and workshops are key to professional development in this
community. Recognizing the important role of professional and peer networks, CIG’s activities
include providing interaction with computational and mathematical scientists, who bring
background and skills in scientific software development to the geophysics community that
would otherwise have been missing. The connection to computational scientists allows
geophysicists to learn from and hear about how other scientific communities develop and use
scientific software. In turn, the real-world scientific questions posed by geodynamics research
drive and provide a test-bed for the work of computational scientists and inform their
interactions with communities in other scientific domains.

| BEST PRACTICES IN USE

The software development community has long developed best practices that are widely known and used
among professional software developers. However, until recently, these practices have rarely been used in do-
main-based scientific software due to a lack of education and differences between production and research
software. In addition, the research environment did not recognize or reward the effort involved in developing

I cCisE

sustainable software.This is beginning to change, and CIG has consequently identified a simplified set of best
practices in software and training (github.com/geodynamics/best_practices) that is readily accessible to user-
developers and takes into account the community’s software ecosystem. CIG provides a range from mini-
mum to target goals for practices which underpin sustainable and usable software, promote development in
an open source environment, and emphasize inclusive and welcoming developer communities. We next dis-
cuss the implementation of some of these practices.

| Building on existing software

The scientific domain of geodynamics has been defined as the “application of continuum
mechanics to geological problems”*° and draws heavily from the general governing equations in
continuum mechanics: mass, momentum, and heat flow, and electromagnetics. Similarity of the
physics between the disciplines allows us to take advantage of algorithmic and computational
advances in other communities. In doing so, our community has learned that building on
externally and professionally developed open source libraries leads to sustainable high-quality
software. For example, utilizing the many person-years of development that have gone into
PETSc or Trilinos for parallel linear algebra, or into deal.II for finite element methods has
greatly accelerated geodynamic software development, extending its abilities to tackle new
classes of research questions. External libraries were not widely used in geodynamics before
CIG was started, in part due to a reluctance to rely on external projects. This changed when early
in its history, CIG participants made personal connections with many key developers of large
software packages through workshops and advisory committees, leading, in some cases, to direct
involvement by computational scientists in the development of geodynamics software.

| Benchmarking

How will domain scientists know that using a particular code is not only useful for their research
but will produce reliable results? Often a code gains a reputation within a close scientific
community because its effectiveness and correctness are supported by scientific publications,
and because it has been shown to reproduce community-established benchmarks". Both peer-
reviewed publications and benchmarks are consequently also requirements for codes donated to
and developed by CIG.

As an example, CIG conducted a community benchmark challenge as one step in the
development of a next generation code for modeling planetary dynamos. The scientific problem
involves study of solutions to the equations governing magnetohydrodynamics in a rotating
spherical shell, in order to understand the origin and evolution of the magnetic field of the Earth
and other planets. This has long been recognized as both a scientific and computational
challenge, due to the high resolution required to model real planetary systems". In preparation
for developing the next generation dynamo code, CIG first held a workshop bringing together
geodynamo and solar dynamo researchers. Their goal was to identify state-of-the-art methods
and grand challenge problems, and to define a common benchmark for geodynamo model codes.
In response to the benchmark invitation, 14 research groups worldwide submitted their codes for
testing. Performance benchmarks were run by CIG staff using CIG’s Extreme Science and
Engineering Discovery Environment (XSEDE) allocation on the Texas Advanced Computing
Center’s Stampede supercomputer'’. The workshop also outlined a long-term strategy leading to
CIG support for developing a new community code, Rayleigh," using the anelastic spherical
harmonic (ASH) method that had previously been developed for and is widely used in solar
physics'®.

The Rayleigh code was designed with insights from community discussions and benchmarks
specifically targeting scalability and performance for leadership class computing. A start-up
award at Argonne Leadership Computing Facility (ALCF)’s Mira machine, currently the world’s
seventh fastest computer, led to the definition of a small number of very large, high-resolution
models needed to make substantial progress on outstanding questions in earth and planetary
sciences. Assisted by the catalyst assigned to the team through the ALCF Innovative and Novel
Computational Impact on Theory and Experiment (INCITE) program, the team was successful in
their application for up to 493 million core hours over three years that have been used to
simulate the creation of magnetic fields of Earth, Jupiter, and the Sun (Figure 1).

https://github.com/geodynamics/best_practices

B Cisc

Figure 1. Simulation using the code Rayleigh showing temperature perturbations as realized in
rotating convection in an Earth-core geometry. Regions of warm flow are depicted in yellow, and
regions of cool flow in violet. Run on NASA's Pleiades on about 4096 Sandy Bridge cores. This
model uses Rayleigh 0.9.0* ' published under the GPL3 license. (Courtesy of Nick Featherstone,
University of Colorado, Boulder)

| Supporting reuse and quality = supporting developers

Because scientific software is developed in response to a specific scientific question, it is often
developed by individuals who did not anticipate that their software would be used by others or
reused in other projects. However, reuse of software avoids duplication of effort, saving time and
money. Equally importantly, reusing existing well-tested code also improves software quality
and, consequently, trust in the scientific results. The challenge lies in creating a community in
which developers feel it is worth the effort needed to create well-designed, well-tested,
documented, and reusable software, and users feel it is worth their effort to use.

Supporting an ecosystem of good scientific software for a community not only includes setting
up a curated repository, but also establishing a mechanism to make the software findable.
Furthermore, those that contribute to software need to receive credit for their efforts. For CIG’s
research-based core community, software is treated as a scholarly product. CIG hosts software
landing pages for its software packages on geodynamics.org, maintains GitHub repositories, and
a Zenodo community to increase the visibility of geodynamics software. Through integration
with Zenodo, each software release is assigned a persistent identifier -- a DOI. This is added to
the attribution information for each software package. To assist researchers who are trying to
determine what to cite when they use software in their own publications, CIG developed the
attribution builder for citation (“abc”, see geodynamics.org/cig/abc). The attribution builder
provides the software citation, citations to appropriate primary and secondary publications about
the software, and suggested language for both the body of the publication and the
acknowledgment sections of a paper; we used it to construct the citations for the examples used
in this paper.

Through these efforts, CIG has been improving the challenging task of computational
reproducibility in scientific publications. The attribution builder simplifies the task for the user to
cite the specific version of the code that was used. The Zenodo releases point to an exact version
of the software, that can be used by a third party to reproduce the exact computations assuming
the input files used have been made available by the researcher. The CIG best practices require
“Citation of code version” and encourage developers to provide a way to archive a “workflow”

I Cise

for reproducibility. For instance, in the mantle convection software ASPECT," a git repository
includes input files, source code, and plotting scripts necessary to reproduce examples.

| Supporting users
Supporting users requires providing good documentation and training. CIG has been supporting
and running software tutorials regularly, often co-located with conferences and other meetings.
Key elements to successful software tutorials include discussions of the scientific background
(the theory), its numerical implementation, software dependencies, and worked end-to-end
examples. We have found that longer tutorials (one week) should incorporate “tinker time”:
scheduled blocks of several hours, during which participants are free to play with software, work
on and modify existing cookbooks, try software for their own research problems, and ask
questions of the instructors. This self-directed time allows researchers to delve further into their
interests, while interacting with trainers and expert users. Training sessions typically begin with
a round of brief introductions so that everyone knows which participants are interested in related
problems. The immersive character of these tutorials has led to numerous new collaborations
between participants that often began during tinker time.

A significant hurdle for participants is often just to get the software installed on the diverse
hardware they bring to these tutorials. If the number of participants is small, this can be
addressed by scheduling time early in or prior to the tutorial (via online help sessions) to
troubleshoot software installation problems. However, this does not scale up to larger numbers of
participants, and we have found that the usage of virtual machines and Docker images has vastly
decreased installation issues, allowing tutorials to start using the software right away, on a
system that looks identical on all participants’ machines.

When HPC resources are required, we have installed software at a host facility or an allocation
on a national computing resource. Though this sounds straightforward, in practice providing
access to computing resources during a tutorial comes with difficulties, including batch systems
that do not prioritize access for many jobs submitted at the same time, bandwidth limitations
when moving large files in and out of limited access systems, and other real-world problems that
are difficult to anticipate ahead of and resolve during a workshop.

An example of a successful HPC software tutorial is one CIG recently organized in collaboration
with and at Lawrence Livermore National Laboratory’s (LLNL) Livermore Valley Open
Campus'®. LLNL provided a meeting space with robust high-speed internet access and dedicated
resources. LLNL staff provided user account support, monitored queues and jobs in real time.
Most importantly, LLNL provided access to 7,200 dedicated cores of the Quartz HPC cluster for
the last 3 days of the week-long workshop, enabling the 55 participants to simultaneously run
simulations on 100s of processors. Participants successfully ran a simulation of the September
19, 2017 M7.1 Mexico earthquake that occurred during this workshop and were presenting the
resulting research at conferences within 6 months of the tutorial.

The SW4 development team recently enhanced the code for efficient simulation of earthquake
ground motions for hazard and risk analysis' under DOE’s Exascale Computing Program.
Figure 2 shows results from a recent study where direct access to support staff operating the
HPC systems being used was a key to success®.

(8) 1DFLAT

2000
1.500
1.160
0 600
0310
0.180
0.081
0034
oomn
0006
0001
0.000

Peak Ground Velocity (m/s)

B Cisc

Figure 2: Access to HPC is essential to successfully compute many geophysics models. Here, the
wave propagation code SW4 2.01?° on LLNL’s Quartz is used to simulate ground motions from a
hypothetical large earthquake on the Hayward fault in the San Francisco Bay region®. Sufficient
computing power is required to incorporate realistic frequencies and earth properties. The figures
show peak ground velocity for: (a) a simple plane-layered model with flat free surface; and (b) a 3D
model with the effects of topography. The differences between these models can influence policy
and business decisions for Northern California.

I Building communities through hackathons
Most developers do not begin a software project with the intent of launching an open source
community. Rather, they develop the software for themselves or their research group. Thinking
about expanding a project to be community software is a significant step in the life of the project
and its developers. It involves a willingness by the original authors to be responsible for their
software, to give up some degree of control over it, and to move from a few personal interactions
to larger, internet-based groups. Most importantly, it involves seeing the software’s users as
potential future developers that can be mentored to grow into roles supporting the project itself.

CIG makes use of and supports “hackathons” to build and bring these user, developer, and
software manager communities together. In our practice, we think of hackathons as longer events
associated with a single software project, in which participants focus on learning and extending
the software. We have found that these hackathons provide an excellent structure for a
community to discuss software and community development directions and practices, as well as
to build personal connections that reduce the barrier to entry for new community members to
contribute to the project.

As one example, CIG has run an annual hackathon since 2014 for current and would-be
developers of one of its flagship projects, the ASPECT software for modeling global and
regional scale deformation in the solid earth through geologic time (see
aspect.geodynamics.org). These hackathons are typically 10 day long immersive events, in
which 20 or more scientists convene at a remote location, living and working together. The focus
is on improving ASPECT, and in the process, on building a community of expert user-developers
who are able to use the code effectively and contribute to the development in the future. These
hackathons have significantly contributed to both the code base as well the number and skill
level of user-developers. Novice participants have risen to become code maintainers helping to
reduce its “bus factor” (a measure of how dependent a project is on a small number of key
developers.)

Successive hackathons have steadily increased the level of active contributors to the repository.
Figure 3 shows both the history of code development and the number of individuals who
contribute code or documentation per month over time; Figure 4 shows the cumulative number
of developers of ASPECT over time. The annual hackathons are clearly visible as contributing
significantly to the growth of the code as well as to the growth of the developer community. All
participants at the hackathons must generate at least one “pull request” to the GitHub repository,
however small or inconsequential, to get them used to the process of contributing. In practice,
most participants develop substantial contributions over the course of the hackathon, or in case
of bigger projects, over the following weeks and months. Senior developers’ role is thus to
provide feedback, peer review of code contributions, and guidance during and after the
hackathon to integrate the new user-developers into the community.

Commits per month Committers per month

||||I||1,,||||I. L suttatlli, o |;II..|I||||‘||I.||.||| il

2012 2014 2016 2018

https://aspect.geodynamics.org/

I Cise

Figure 3: (Left) Number of commits per month to the GitHub repository of the ASPECT code.
(Right) Number of people making contributions each month. Peaks reflect activity and new
developers at CIG’s annual 10-day hackathons, which started in 2014.

Cumulative number of contributors

Figure 4: Cumulative number of people who have contributed to the ASPECT code.

While we have found that hackathons are great tools to build communities of contributors, there
are also challenges. For example, as seen from the right graph in Figure 3, at least half of the
hackathon participants do not continue to contribute regularly (at least once a month) to the code
base after the end of the hackathon, though many do continue to contribute more sporadically.
On the other hand, the drop-off in the number of commits after the hackathon (left graph) must
be expected given the intense, ten-day around-the-clock development sprint. Hackathons are
challenged by the time limitations of senior developers, who often spend the entirety of the
workshop on providing feedback in person or through code review; these individuals’ time does
not scale well to larger groups. We have found that for optimal efficiency, at least 20% of
hackathon participants need to be experienced developers with a global overview of the code
base to serve in these roles. Finally, hackathons lend themselves to extending the periphery of a
code in many different directions (in the case of a modular code such as ASPECT through
plugins) by participants. However, they are not well suited to addressing large-scale rewrites or
software infrastructure needs since the developers with sufficient knowledge for these tasks do
not have available time during the hackathon; such work therefore needs to take place between
hackathons.

LESSONS LEARNED FROM A DECADE AND A HALF
OF CIG

In the first stages of CIG, software was largely donated to the repository by their developers
from the larger geodynamics community, often individuals or small teams of scientists who
wrote software to address a compelling research problem. While such projects continue, we have
seen a marked shift towards more collaborative and open development. As the community found
its footing, its members have pursued the development of a new generation of codes whose roots
range from established research codes to numerical libraries. Some of these were directly
supported by CIG, with each of these codes forging different paths to wider adoption; in
addition, codes continue to be donated by research groups who want help disseminating their
work and bringing it up to CIG’s standard best practices. As scientific software development is
more recognized as scientific contribution on par with theoretical advances, experimental data,
and field observations, CIG’s best practices have been invoked by geoscientists to develop data
management plans for their research and teaching programs.

Based on our observation of the paths of the dozens of projects that CIG hosts (of which it
currently directly supports the development of seven), we summarize some of the lessons
learned from the CIG experience.

N Cisc

I Successful scientific software requires scientific champions
Although it may sound obvious, to succeed, scientific software must have an engaged group of
scientists who have a compelling need for the capabilities it provides. It cannot be built in
expectation that a user community will emerge. Codes under active development require
attention to develop that community. This is one purpose of the hackathons, which both improve
the code and create users who deeply understand it and are confident in their skills to contribute
back. Building community is a major objective of workshops, tutorials, and webinars. An
important CIG goal for all software under active development is that a software project be
sustainable even when founding developers are no longer active project members.

| Software can be sunsetted
Software has a life history and lifetime for different reasons. Software that ceases development
can suffer code rot as developers move on in their careers or interests, while other software will
naturally be superseded as new methods or models are adopted, new physical capabilities are
implemented, or the scientific questions evolve. The decision to retire a code can be simple when
it can no longer be built on current platforms; more often, software simply endures a slow
decline into disuse as users move on to other packages.

For codes whose development is actively supported, the decision to sunset a code is as complex
as the codes themselves. Early in CIG’s history, a project was initiated to develop a new code to
model fundamental processes involved in the dynamics of Earth’s tectonic plates. The
computational requirements varied widely depending on the specific scientific question; hence,
the resulting code was quite complex. Although it was used to solve important scientific
problems, it proved overly challenging to use, and never found the dedicated user-developer
champions needed for long-term sustainability. As a result, after several years, the decision was
made to cease further active development. This decision relied on CIG’s governance practices,
and involved careful discussions among CIG’s elected governing committees, staff, leadership,
and the user community. To ensure the provenance of scientific work done with this code, stable
versions remain available and CIG continues to run automated testing. Since then several other
codes both within and outside CIG have expanded capabilities to cover this area.

| Focus on building diverse user and developer communities
In practice, most of the codes CIG hosts are neither entirely CIG-supported nor entirely donated;
CIG-developed codes involve significant community contributions, while donated code
generally requires some CIG contribution, including support of automated testing, assistance
with documentation, and the like. Successful community-based software requires technical and
scientific expertise, but equally requires significant attention to and investment in the culture of
the community involved. CIG’s role in building self-sustaining communities is to provide
examples of success and to build structures that enable such communities to form and thrive, for
example by running workshops, hackathons, and tutorials, hosting mailing lists, establishing
wiki-based knowledge repositories, and promoting user-developer groups.

| Provide support and credit for code development
Because producing high quality, reusable scientific software takes significant effort, providing
mechanisms to credit that effort is essential to sustain software growth and usage. Very few
scientists are fortunate enough to develop code full time; code development is more often
pursued as a means to address a research problem. Researchers who develop code worry that by
sharing code, their research may be “scooped” or worse, their code misused; they will not
receive credit, lose control of their project, and/or be overwhelmed with requests for user support
and feature development. Tools like abc can help developers get credit, while CIG’s community-
building efforts and support can alleviate some of this burden.

I Cise

| CHALLENGES FOR THE FUTURE

Over nearly a decade and a half of existence, CIG has both witnessed and incubated significant
changes in how the geodynamics community develops software. As the community moves
towards diverse collaborative teams; more adoption of software best practices; and increasingly
writes software that can be used for larger, more complex problems, what challenges and
opportunities might the future hold?

| Preparing the next generation of scientist-developers
Software development strategies are still not part of typical graduate curricula in the sciences.
CIG’s workshops and training for scientists in the geoscience domain create an educational
infrastructure that is not otherwise generally available and meets a real need. Software tutorials,
available online, have become a steadily used resource by the community. The hackathons and
best practices serve both an operational role: improving and advancing code, and an educational
role: scientists learn from experts at the hackathons and from the best practices. By acting as a
laboratory and clearinghouse, CIG is able to extend the reach of these projects; for example, CIG
has begun holding hackathons for other projects in a style similar to ASPECT. involving
experienced hackathon leaders from the ASPECT team to share practical insights and assist with
the training components of the hackathons. The result will be a workforce with expertise in their
primary scientific domain and proficiency in code development.

| Balancing large and small projects
Organizational structures that work for a project of a few developers and a dozen users do not
necessarily work for tens of developers and hundreds of users, a scale that is now reached by
some of the CIG-supported projects. CIG therefore gathers feedback from its community and is
experimenting with new methods to scale projects, include developing online tutorials and
holding regular online user meetings that engage larger, geographically dispersed communities.
Our expectation is that these activities will also increase access to CIG activities by scientists
who may find it difficult to travel to events. At the same time, it is critically important to be open
to new, small, imaginative projects on the horizon.

| International collaborations
The scientific community of computational geophysicists is vast and global. Fostering
international collaboration brings diverse approaches and practices to scientific problems,
resulting in better research. Establishing and sustaining collaborations is challenging, due to the
different ways that science is funded in different countries and differences in scientific culture.
However, scientific collaboration across international boundaries has a long and successful
history in the geosciences and will continue to benefit computational geophysics.

I Com putatlonal capaC|ty
A great deal - perhaps the majority - of scientific research in geophysics is carried out using the
small to meso-scale computer clusters available to most practicing scientists. Yet as our
knowledge of the physical systems increases, scientific software increases in capability, and new
observations become available, several scientific problems in geodynamics have grown to
require leadership-class computation. The frontiers of computational geodynamics require
identifying sufficient computational capacity to match the computational capabilities provided
by high-quality scientific software. Some of the requirements are specific to geophysics, while
others are not: geodynamics models often need very high resolutions, and in some cases require
very long duration computations to allow the model to progress through geologic time. This need
is likely to prove to be a sustained challenge, even as hardware capabilities and software
developments evolve.

B cisE

| Concluding remarks
Each project and each user community are made up of individuals. What is usually cast as a
technical challenge — the development of sustainable, reusable, high-quality scientific software --
is as much a social challenge as it is a technological one. What works for one project may not
work for another because of the personalities of the principal developers and the communities
they engage. We also need to consider the importance of retaining talent in our communities, and
that involves ensuring that those who spend significant parts of their work life developing
software for whole communities have career paths in research and academia.

IACKNOM&EDGEMENTS

The Computational Infrastructure for Geodynamics is supported by the National Science Foundation award
EAR-0949446 and EAR-1550901. The Attribution Builder for Citation Tool was developed under National
Science Foundation Award SMA-1448633

IREFERENCES

1.

10.

11.

12.

13.

14.

15.

King, S. D., Raefsky, A., and Hager, B. H. (1990) ConMan: Vectorizing a finite element code
for incompressible two-dimensional convection in the Earth's mantle, Physics of the Earth and
Planetary Interiors, 59, 195-207.

Blankenbach, B., F. Busse, U. Christensen, L. Cserepes, D. Gunkel, U. Hansen, H. Harder, G.
Jarvis, M. Koch, G. Marquart, D. Moore, P. Olson, H. Schmeling, and T. Schnaubelt (1989), A
benchmark comparison for mantle convection codes. Geophys. J. Int., 98:23-38,

Van Keken, P., King, S. D., Schmeling, H., Christensen, U. R., Neumeister, D., & Doin, M. P.
(1997). A comparison of methods for the modeling of thermochemical convection. Journal of
Geophysical Research: Solid Earth, 102(B10), 22477-22495.

Wilson, C. (2014), Status of Recent Geoscience Graduates, American Geosciences Institute,
Alexandria, VA. 0-922152-99-3

Basili, V., J. Carver, D. Cruzes, L. Hochstein, J. Hollingsworth, F. Shull, and M. Zelkowitz
(2008), Understanding the High-Performance-Computing Community: A Software Engineer's
Perspective,I EEE Softw., 25(4), 29-36, doi:10.1109/ms.2008.103.

Hannay, J., C. MacLeod, J. Singer, H. Langtangen, D. Pfahl, and G. Wilson (2009), How do
scientists develop and use scientific software?, 2009 ICSE Workshop on Software Engineering
for Computational Science and Engineering, doi:10.1109/secse.2009.5069155.

Merali, Z. (2010), Computational science: ...Error... why scientific programming does not
compute, Nature, 467(7317), 775-777, doi:10.1038/467775a.

Prabhuy, P. et al. (2011), A survey of the practice of computational science, State of the Practice
Reports on - SC '11, doi:10.1145/2063348.2063374.

Hwang, L. J., Fish, A., Soito, L., Smith, M., & Kellogg, L. H. (2017). Software and the
scientist: Coding and citation practices in geodynamics. Earth and Space Science, 4, 670-680.
https://doi.org/10.1002/2016EA000225

Turcotte, D. L., and Schubert, G. (1982), Geodynamics, 1st edition, John Wiley and Sons, 464
pages, ISBN-13: 978-0471060185.

Oberkampf W. L. and C. J. Roy. Verification and Validation in Scientific Computing.
Cambridge University Press, 2010.

Gary A. Glatzmaier, Paul H. Roberts, A three-dimensional convective dynamo solution with
rotating and finitely conducting inner core and mantle, Physics of the Earth and Planetary
Interiors, Volume 91, Issues 1-3, 1995, Pages 63-75, D0i:10.1016/0031-9201(95)03049-3.
National Research Council. 2005. Getting Up to Speed: The Future of Supercomputing.
Washington, DC: The National Academies Press. https://doi.org/10.17226/11148.

Matsui, H., et al. (2016), Performance benchmarks for a next generation numerical dynamo
model, Geochem. Geophys. Geosyst., 17, 1586—-1607, doi: 10.1002/2015GC006159.

Featherstone, N. (2018), Rayleigh Version 0.9.0, Computational Infrastructure for Geodynam-
ics, doi: 10.5281/zenodo.1158290

http://doi.org/10.5281/zenodo.1158290
https://doi.org/10.1002/2016EA000225

I Cise

16. Featherstone, N.A.; Hindman, B.W. (2016), The Spectral Amplitude Of Stellar Convection
And Its Scaling In The High-Rayleigh-Number Regime, The Astrophysical Journal, 818 (1),
32, doi: 10.3847/0004-637X/818/1/32

17. Heister, T., Dannberg, J., Gassmoller, R., Bangerth, W. (2017) High accuracy mantle convec-
tion simulation through modern numerical methods — II: realistic models and problems, Geo-
physical Journal International, 210 (2) 833-851, doi:10.1093/gji/ggx195.

18. Rodgers, A. J., L. J. Hwang, and L. H. Kellogg (2018), Computational seismology workshop
trains early-career scientists, Eos, 99, doi: 10.1029/2018E0090991

19. H Johansen, A Rodgers, NA Petersson, D McCallen, B Sjogreen, M Miah (2017) Toward
Exascale Earthquake Ground Motion Simulations for Near-Fault Engineering Analysis,
Computing in Science & Engineering 19 (5), 27-37

20. Petersson, N.A.; Sjogreen, B. (2017), SW4, version 2.01 [software], Computational
Infrastructure of Geodynamics, doi: 10.5281/zenodo.1063644

21. Rodgers, A. J., Pitarka, A., Petersson, N. A., Sjogreen, B., & McCallen, D. B. (2018).
Broadband (0—4 Hz) ground motions for a magnitude 7.0 Hayward fault earthquake with
three-dimensional structure and topography. Geophysical Research Letters, 45, 739-747.

https://doi.org/10.1002/2017G1.076505

IABOUTTHEAUTHORS

Wolfgang Bangerth is a Professor of Mathematics at Colorado State University. He is one
of the founders and a Principal Developer of both the deal.Il (www.dealii.org) and ASPECT
(aspect.geodynamics.org) projects, and is a computational scientists with interests in finite
element methods, scientific software, and parallel computing. His has collaborated with
geoscientists, biomedical imaging experts, nuclear engineers, physicists, and scientists from

other areas. Contact him at bangerth@colostate.edu.

Rene Gassmoller is Project Scientist at the Computational Infrastructure for Geodynamics
at the University of California, Davis. His research focuses on the interaction between man-
tle convection and plate tectonic processes, numerical methods of geodynamic modeling,
and sustainable software development in the Earth Sciences. He received a Ph.D. in Geo-
physics from Potsdam University in cooperation with the German Research Centre for Geo-
sciences. Contact him at rgassmoeller@ucdavis.edu.

Timo Heister is an Assistant Professor at the University of Utah in Mathematics and the
Scientific Computing and Imaging Institute and his research interests include numerical
methods for PDEs, parallel finite element methods, efficient discretizations for fluid flow,
and computational science in general. You can contact him at heister@sci.utah.edu.

Lorraine J. Hwang is the Associate Director at the Computational Infrastructure for Geo-
dynamics at the University of California, Davis. Her research interests include sustainable
software and preservation of historical seismogram data. She received her Ph.D. in Seis-

mology from the California Institute of Technology. Contact her at ljhwang@ucdavis.edu.

Louise H. Kellogg is Distinguished Professor of Earth and Planetary Sciences and Director
of the Computational Infrastructure for Geodynamics at the University of California, Davis.
Her research interests include mantle convection, crustal deformation, and scientific visual-
ization. Kellogg received a Ph.D. in Geological Sciences from Cornell University. Contact
her at kellogg@ucdavis.edu.

mailto:heister@clemson.edu
mailto:bangerth@colostate.edu
https://doi.org/10.1002/2017GL076505
http://doi.org/10.5281/zenodo.1063644
http://doi.org/10.3847/0004-637X/818/1/32

	Building a Community of Software Developers
	Best Practices in Use
	Building on existing software
	Benchmarking
	Supporting reuse and quality = supporting developers
	Supporting users
	Building communities through hackathons

	Lessons Learned from A Decade and a half of CIG
	Successful scientific software requires scientific champions
	Software can be sunsetted
	Focus on building diverse user and developer communities
	Provide support and credit for code development

	Challenges for the future
	Preparing the next generation of scientist-developers
	Balancing large and small projects
	International collaborations
	Computational capacity
	Concluding remarks

