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Abstract

A microstructure analytics and 3D reconstruction software package, DREAM.3D, was integrated as a module into a
cloud-based platform, BisQue. Parallelization of DREAM.3D module executions and the ability to parameterize pipeline
variables over a range of values have led to insights about the grain segmentation misorientation tolerance in TriBeam-
collected 3D EBSD datasets of additively manufactured materials with complex anisotropic microstructures. Furthermore,
a comparison in grain size measurements was made between standard 2D metallographic slices and 3D measures using
BisQue’s parallelized DREAM.3D module executions. The direction of cloud-based data infrastructure and the prospects

for impact in material science are also discussed.
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Introduction

Recent external pressures mandated by government grants
requiring data be accessible to the public, and internal
pressures within academic communities for data sharing
and reproducibility have led to the emergence of data-
driven platforms within the scientific community [1-4].
Requirements for these platforms include providing data
provenance, data sharing, and hosting services for data that
may otherwise disappear when a lab closes or hardware
fails [5]. Recently, data repositories have shifted from
simply siloing data to include data analytics and predictive
capabilities. Furthermore, some of these repositories are
directly linked with high-performance computing in order
to populate an ever growing database, such as with
thermodynamic databases such as the Materials Project [6]
and the Open Quantum Materials Database (OQMD) [7].
More sophisticated predictive/interactive databases, such as
the aforementioned thermodynamic ones, have been slower
to develop with the 3D Materials Science community. This
is likely due to the less standardized and more diverse data
modalities, the complexity and diversity of microstructures,
and the relative infancy of the community itself.

In almost all regards, using 3D data to answer scientific
questions in Materials Science is challenging due to the
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need for dataset acquisition, reconstruction, and analysis.
Reconstruction of 3D datasets is a complex process with
many degrees of freedom. The algorithms employed, and
tolerances selected by the user to align slices, segment
features, and remove data artifacts (i.e., remove noise),
ultimately determine the quantitative data extracted from
the volume. Significant progress on the reconstruction and
analysis of electron backscatter diffraction (EBSD) data has
been made by a software package DREAM.3D [8], which
creates a unified data structure for 3D data treatment and
aggregates tools and algorithms collectively developed by
the community. In DREAM.3D, this process takes the form
of a pipeline, which typically consists of well over a dozen
steps, and in which each step has its own set of input
variables and outputs. DREAM.3D typically runs in a serial
process on a workstation, with predefined input parameters.
Due to the long computation times required to process
3D data, which often scales proportionately as dataset size
and complexity increases, it is impractical to explore the
full parameter space by manually running reconstructions.
Typically, only several variables are adjusted by a user until
a qualitatively acceptable reconstruction is attained. This
process inherently imparts bias and typically provides little
opportunity to justify specific reconstruction variables.

The bias generated during reconstruction of 3D datasets
is subsequently carried through to data analysis, which,
for microstructural data, is still an ill-defined process.
Standardization of analysis involving new characterization
techniques is generally a slow process. Automated orien-
tation imaging analysis via EBSD first emerged in the
early 90s, but standards did not emerge for nearly two
decades [9, 10]. These new standards covered basic quan-
titative analysis, including methods for grain size measure-
ment, as well as guidelines governing data quality, quan-
tity, and resolution sufficient to make such measurements
[11]. Even in 2D EBSD analysis, such standards are rare
and do not necessarily address additional subtleties arising
from more complex, albeit commonly studied, microstruc-
tures, including twinned materials, nanocrystalline mate-
rials, and deformed materials [12—17]. Standardization of
characterization methods becomes critical as the complex-
ity of the analyses increases. For example, high-resolution
EBSD (HR-EBSD) and Heaviside Digital Image Corre-
lation (HDIC) [18] are extensions of conventional EBSD
and digital image correlation (DIC) that require specialized
post-processing to measure elastic and plastic strain at a
resolution of 10 or smaller [19, 20] and 1.5x1073 [21],
respectively. The variety of analytic approaches available to
make accurate strain measurements, as well as the sensi-
tivity of these measurements to instrumentation and sample
preparation, motivates more rigorous standardization of the
technique via sample reference standards [22, 23].
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In 3D characterization techniques, such as X-ray-based
diffraction contrast tomography (DCT), the problems of
data reconstruction and analysis are also convoluted. Coher-
ent volumes must be reconstructed from individual 2D
images via back projection techniques [24]. The diffraction
spots from the 2D projections are generally assumed to orig-
inate from a single grain, limiting the characterization of
materials with large internal strain gradients [25]. Moreover,
stereological conventions established in 2D do not neces-
sarily capture the real 3D microstructures, particularly at
extrema of property distributions [26, 27]. Given the wealth
of additional data provided by 3D characterization, new
tools aimed at exploring the parameter space offered to 3D
reconstruction are required. In the following manuscript, we
describe the use of a cloud-based platform, BisQue [28, 29],
enhanced with the DREAM.3D microstructural software
analysis package for the 3D reconstruction and analysis
of additively manufactured microstructures characterized
using TriBeam tomography [30].

Methods

The following sections describe the software infrastructure
and materials investigated.

BisQue for Cloud-Based Data Storage and Analysis

All data processing was performed in the cloud with BisQue
[28, 29] using a web browser interface to interact with the
3D datasets. BisQue has backend infrastructure support for
web services such as Amazon S3, IRODS, and federated
local file systems as well as client facing tools such as
Java, Python, and Matlab. A DREAM.3D [8] plugin was
developed for BisQue in order to incorporate the materials
science based 3D dataset analysis tools. The database
architecture of BisQue is such that every processing
execution, dataset (input and output), and workflow
processing pipeline receives a unique web address URL.
These URLs are useful for at least two reasons: tracking
data provenance and data sharing. Data provenance with
BisQue is automatically captured and can be easily accessed
through visualized workflows, as shown in Fig. 1. The
workflow shows where input data is located, the parameters
of a module execution are captured in the metadata, and
the output data location is tracked. Therefore, passing
data between research colleagues becomes straightforward
due to the data operation transparency. Furthermore, data
sharing is facilitated due to the data all being stored
and accessed remotely, mitigating versioning problems
common to large data operations. For example, two
groups collaborating between the US and Europe may find
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Fig.1 BisQue data provenance tree from an additively manufactured 304L Stainless Steel 3D dataset. Arrows show workflow between input data,

DREAM.3D pipelines, module executions (mex), and associated datasets

difficulty operating on the same dataset version, especially
when business hours do not overlap, without extensive
communication.

BisQue DREAM.3D Integration

A DREAM.3D module was incorporated into BisQue to
allow for the processing and treatment of 3D datasets
with the advantages of cloud-based infrastructure described
in the previous section (“BisQue for Cloud Based Data
Storage and Analysis”). The DREAM.3D processing capa-
bilities were also extended to allow for parallelized pro-
cessing across wide parameter spaces. Anytime a process-
ing pipeline is generated in DREAM.3D through BisQue,
parameter input variables can be represented as a range
of values (with sub-increments), rather than as a distinct
value. An example of DREAM.3D pipeline execution is
shown in Fig. 2 alongside the analogous representation
in DREAM.3D. The user selects an input source and
pipeline source, parameterizable values are then automati-
cally displayed in the parameter section. Using straightfor-
ward list comprehension, many independent instantiations
of DREAM.3D can be run at once across multiple nodes on
a compute cluster, dramatically decreasing setup and analy-
sis time for detailed parameter studies. The resulting output
files can then be examined as individual pipelines as BisQue
has a fully integrated table viewer that allows for both table
viewing and inspection of the tree structure of HDF files.

In addition, a volume viewer enables web-based visual-
ization of cell-level data, removing the need for programs
like HDFView or ParaView and their associated hardware
requirements [31, 32]. 3D volumes collected via TriBeam
tomography and reconstructed in DREAM.3D generally
require many tens of gigabytes of RAM for visualiza-
tion in ParaView, limiting analysis to powerful workstation
computers.

Materials and Data Collection

The 3D datasets were collected via TriBeam tomography
from two additively manufactured alloys in their as-
built state, meaning no additional heat treatments were
performed on the samples after additive processing.
TriBeam tomography [33] utilizes a femtosecond laser
for micromachining within a dual-beam scanning electron
microscope (SEM) equipped with a focused ion beam
(FIB). The ultrashort pulse length minimizes damage to
the machined surface while enabling high material removal
rates, roughly four to five orders of magnitude faster than
FIB milling alone, resulting in an accessible volume on
the order of a cubic millimeter [30, 34]. The FIB can
also be used at a glancing angle to minimize surface
roughness due to laser-induced periodic surface structures
(LIPSS); however, this cleaning step is material dependent
and is not always required to obtain high-quality 3D EBSD
data.
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Fig.2 DREAM.3D pipeline for reconstruction of an additively manu-
factured 304L Stainless Steel 3D dataset as viewed in (a) DREAM.3D
on a workstation computer and (b) the DREAM.3D BisQue mod-
ule in a web browser. The DREAM.3D BisQue module allows for

LENS-Processed 304L Stainless Steel

Laser engineered net shaping (LENS) is a directed energy
deposition (DED) additive manufacturing technique derived
from laser cladding processes, in which metal powder
is blown into a molten pool created using a laser. The
low dilution area and high deposition rates achievable in
LENS, up to an order of magnitude higher than powder-
bed additive processes, allow for the manufacture of large
scale parts [35]. A sample of 304L stainless steel fabricated
by the LENS process was characterized in the TriBeam
system using a slice thickness of 3 um. The femtosecond
laser ablated surface was cleaned using glancing-angle
FIB milling to increase the quality of EBSD patterns.

@ Springer

MisorientationTolerance: 0.1,0.2,..,,10.0
Step 10 (Minimum Size) - MinAllowedFeatureSize: 64
Step 12 (Minimum Number of Neighbors) - MinNumNeighbors: 2
Step 13 (Fill Bad Data) - MinAllowedDefectSize: 125
Step 3 (Align Sections (Misorientation)) - MisorientationTolerance: 2
Step 4 (Neighbor Orientation Comparison (Bad Data)) - MisorientationTolerance: 2
Step 5 (Neighbor Orientation Correlation) - MinConfidence: 0.300000011921
Step 5 (Neighbor Orientation Correlation) - MisorientationTolerance: 2

Name prefix for the output HDF myoutput
resol

urce(s):

3. Run algorithm:

Rrun | This may take some time, progress will be shown here.

parameterization for variable inputs in a DREAM.3D pipeline, which
can be executed in parallel on high-performance compute clusters and
then analyzed to determine the ideal reconstruction parameters

EBSD scans were collected on each slice with an in-plane
resolution of 3 um, yielding square voxels. Roughly 200 GB
of data was collected from a total of 80 slices over the course
of two days, resulting in a volume of 816 x 834 x 240 um.
Raw EBSD patterns, comprising nearly 90% of the collected
data, were saved for post-processing. Individual slices were
reconstructed into a coherent volume using DREAM.3D
in BisQue. A minimum confidence index (CI) of 0.1 was
chosen as the threshold for data quality, as the indexing
of EBSD patterns has been shown to be 95% accurate at
a CI of 0.1 [36]. This threshold is then used to create a
“mask” that flags individual voxels as containing good or
bad (noisy) data, so the mask represents a subset of the
total volume characterized during data collection. The mask
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for the sample of 304L can be seen in Fig. 3. Grains were
segmented using a misorientation tolerance as described
in “Misorientation Tolerance Parameterization for Feature
Identification,” and grains containing less than 64 voxels
were considered too small to be resolved and were removed.
This corresponds to 4 x 4 x 4 points across a feature and an
equivalent diameter of 14.9 um, roughly five times smaller
than the average grain size determined from 2D analysis
done prior to 3D characterization. Gaps remaining from
these removed features were filled via iterative dilation of
the surrounding grains. Indexed EBSD data was uploaded
to BisQue for analysis after data collection.

EBM Inconel 718

Electron beam melting (EBM) is a powder-bed additive
technique which utilizes an electron beam as a heat source.
A fine layer of powder on the order of 50-100 pum is
spread over a build plate, and the electron beam selectively
melts the powder. The build plate is then lowered and
the process is repeated to create complex geometries in
3D. Unlike laser melting techniques, electron beam melting
requires vacuum processing environment, and the electron
beam heat source can also be used to achieve preheat
temperatures in excess of 1000 °C. A sample of EBM
Inconel 718 was fabricated with 50-um-thick build layers
and was characterized in the TriBeam system with 1.5-pum-
thick slices as described previously [37], and EBSD data
was collected to characterize grain texture and morphology.
Roughly 25 GB of data was collected from a total of 204
slices over the course of three days, resulting in a volume
of 952.5 x 501.0 x 306.0 um. Raw EBSD patterns were
not collected, but the Hough transforms of the patterns

Fig.3 Mask of the 3D data from
a sample of LENS-processed
304L stainless steel generated by
thresholding on the Confidence
Index (CI) of EBSD patterns

Build
Direction

were saved for post-processing. Glancing-angle FIB was not
required to resolve EBSD patterns, which were collected
with an in-plane resolution of 1.5 um to create square
voxels. As with the 304L sample, a minimum CI of 0.1
was chosen for the initial mask. Grains were segmented
using a misorientation tolerance of 2° using the same
segmentation algorithm as explained in “Misorientation
Tolerance Parameterization for Feature Identification.” A
minimum size requirement of 125 voxels was applied to
delete grains that were too small to be properly charac-
terized. This corresponds to 5 x 5 x 5 points across a feature
and an equivalent diameter of 9.3 wm, roughly five times
smaller than the average grain size determined from 2D
analysis done prior to 3D characterization. Gaps remaining
from these removed features were filled via iterative dilation
of the surrounding grains. Indexed EBSD data was uploaded
to BisQue for analysis after data collection.

Results

Misorientation Tolerance Parameterization
for Feature Identification

In order to analyze 3D tomography data, individual fea-
tures, or grains, must be segmented from the reconstructed
volume. When working with 3D EBSD data, orientation
information exists at every voxel in the volume. Straight-
forward segmentation algorithms such as connected compo-
nent analysis (CCA) are used to identify grains from the 3D
data using a misorientation tolerance between adjacent vox-
els. The misorientation tolerance is one of the most critical
parameters for the segmentation and analysis of EBSD data.

240 pm

Confidence Index

0.1 1.0
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A mask is defined that distinguishes good data from noise in
the dataset by using a threshold on the electron backscatter
pattern confidence index (CI) [36]. To perform grain seg-
mentation, a seed is selected from voxel 0 within the mask
volume and its orientation is compared to each of its nearest
neighbors that are still within the mask (up to six neigh-
bors in a rectilinear voxelized grid). If the misorientation
between two adjacent voxels is below the user-defined mis-
orientation tolerance, then the voxel is added to the current
grain. This process is repeated until no additional neighbor-
ing voxels can be added to the grain. A new seed is then
selected at the smallest voxel index not previously grouped
and the process continues until all voxels in the mask have
been assigned to some grain ID.

It is essential that an optimal misorientation tolerance
value is used during dataset reconstruction due to the
impact of the misorientation tolerance on the definition
of grain structure. Two-dimensional analysis of EBSD
data typically uses a misorientation tolerance of 5°, which
is generally sufficient for well-annealed or recrystallized
microstructures of various morphologies [38]. However, in
deformed or highly textured materials, as are commonly
observed in as-built additive structures [39, 40], such
large misorientation tolerances can inadvertently merge
grains that should otherwise be segmented separately.
The additional voxel connectivity provided by 3D data
further exacerbates this problem, and as there is generally
not an accepted misorientation tolerance that applies to
all 3D microstructures, these values must be chosen
intuitively and the resulting segmentation analyzed for
efficacy. This is a time-consuming, laborious process, and
the ultimate selection of a user-defined parameter is not
necessarily verifiable as the optimal choice. The use of
parameterization, enabled by the BisQue framework, allows
for the generation of many 3D volumes to better assess these
and other important reconstruction parameters.

Keeping all other pipeline parameters constant (mini-
mum number of two neighbors, minimum allowed defect
size of 125 voxels), the misorientation tolerance was tested
over a wide range of values, from 0.1 to 10° of mis-
orientation in 0.1° increments, generating a total of one-
hundred 3D reconstructions of the steel sample described
in “LENS-Processed 304L Stainless Steel.” This represents
some seventy gigabytes of generated data. To assess the
quality of the reconstruction, two high-level metrics were
used, the fraction of “good” data, and the total number
of grains found during the reconstruction. “Good” data is
defined by the confidence index of the EBSD data, and
therefore contains a constant number of voxels that does not
change between reconstructions. During the reconstruction
process, various cleanup steps are employed which retain
varying amounts of this initial group of voxels. DREAM.3D
filters such as “Minimum Size,” “Minimum Number of
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Neighbors,” and “Fill Bad Data” can affect whether individ-
ual voxels are retained or released from segmented features.
At the end of a reconstruction, post-processing scripts are
used to count the number of voxels belonging to segmented
features, which will always be a subset of the initial group
of “good” voxels.

As can be seen in Fig. 5a, these two metrics tend to have
opposite trends with increasing misorientation tolerance. As
larger misorientation tolerances are used to segment the
data, not only are more grains merged together, decreasing
the overall number of grains found, but noisier data on
the sample surfaces can also be connected to existing
grains during segmentation. This trend is true except for
the lowest misorientation tolerances, below 0.9°. At these
lower misorientation tolerances, the minimum grain size
requirement of 64 voxels eliminates many of the grains
found during the segmentation step, and for tolerances
below 0.4°, no continuous grains larger than 64 voxels
are found, so grain-level metrics do not exist in these
reconstructions.

An optimized reconstruction will maintain a high fraction
of the masked voxels with high confidence index, while
also reducing unnecessary merging of grains. The merging
of grains when a large misorientation tolerance is selected
can be seen in Fig. 4. The feature in Fig. 4a is identified
as a single grain when using a misorientation tolerance
of 5.0°, but becomes separated into three separate grains
when using a misorientation tolerance of 2.0° (Fig. 4a).
The further separation of this feature results in grains with
more reasonable grain morphologies that reflect the additive
process. The best misorientation tolerance value is the
lowest value at which both the change in fraction of masked
data included and the change in the number of grains
became constant, or when the derivatives of these quantities
with respect to misorientation tolerance begin to converge,
similar to the Elbow method used for determining the
optimal number of clusters in a dataset. The derivatives are
approximated via the central difference method, shown in
Fig. 5b and c. A best balance between these metrics occurs
at 2.0°, making this an equitable choice of misorientation
tolerance for segmentation of this dataset to avoid excess
consolidation of separable grains. This results in a dataset
with 899 grains, wherein 98.4% of the masked data is
included in the reconstruction.

Subvolume Creation and Analysis of Large 3D
Volumes

Beyond investigation of individual pipeline parameters,
the BisQue framework also enables coupled parameteriza-
tion, wherein sets of variables are linked to each other.
This allows for automated generation of random samples
of equal-sized subvolumes of 3D datasets, among other
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Fig.4 a A single feature
identified from the bulk using a
misorientation tolerance of 5.0°
for segmentation via CCA.
Grain orientation is shown in
IPF coloring with the build
direction taken as the reference
direction. b The same feature is
split into three separate grains
when a misorientation tolerance
of 2.0° is used for segmentation

(a)

222 um

Build
Direction

001 101

(b)

Grain ID

applications. The characterization of subvolumes in 3D  Morphological Complexity of As-printed Additive

datasets has been previously applied to define microstruc-  Structures

tural and property volume elements (MVEs and PVEs) for

various material properties, to inform component design ~ Due to the complex thermal gradients and remelting

[41, 42].

phenomena inherent to additive manufacturing methods,
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Fig. 5 a The fraction of the voxels in the confidence index mask
included in the segmentation and the total number of grains, both as
a function of the defined grain segmentation misorientation tolerance.
The rate of change per degree of misorientation tolerance for b the
fraction of included mask voxels and c the total number of grains. The
optimal misorientation tolerance occurs at 2.0°, where the derivatives
start to converge

additive microstructures are highly variable and can be mor-
phologically complex [43—46]. As previously noted, these
heterogeneous microstructures can easily be misinterpreted
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in standard analyses of 2D cross-sections [47]. Columnar
grains near the center of melt pool, when cut perpendicu-
larly, can appear as fine equiaxed grains, which may mimic
traditional weld microstructures and can lead to misinter-
pretation of data. Misinterpretation is also highly likely
for larger grains in additive processes. Either as a result
of multiple remelting and solidification cycles, or from a
single solidification event with complex thermal gradients,
individual grains are commonly observed to possess large
misorientation gradients. One such large grain was identi-
fied in the reconstruction of the 304L stainless steel sample
described in “Misorientation Tolerance Parameterization
for Feature Identification.” Even while using the previously
determined misorientation tolerance of 2° for grain segmen-
tation, large changes in orientation are observed, in excess
of 12° from the average orientation of the grain. Changes in
orientation are evident via differences in inverse pole figure
(IPF) coloring of the grain shown in Fig. 6.

The limitations of 2D characterization of additive
structures such as those shown in Fig. 6 are demonstrated
by examining 2D cross-sections from the 3D data volume.
Using the coupled parameterization ability of BisQue and
the “Crop Geometry” filter in DREAM.3D, individual
subvolumes, each 1 voxel thick (to approximate 2D cross-
sections), were extracted from a 3D grain along the three
principal sample directions (Fig. 6b—d). Figure 6d shows
Z-normal slices, which are those taken with a plane
normal along the build direction of the sample, which
is also parallel to the TriBeam sectioning direction. X-
normal (Fig. 6b) and Y-normal (Fig. 6¢) slices are those
containing a plane normal along either of the in-plane axes
as defined by the TriBeam sectioning direction and the
sample geometry. These slices were then segmented using
the same misorientation tolerance used on the full volume,
2°, to determine how the lack of 3D data would affect
the characterization of such a grain. As this analysis was
only performed on voxels associated with a large feature
from the 3D volume, features resulting from this additional
segmentation are subfeatures of the initial 3D grain. An
example of a Z-normal slice characterization is shown in
Fig. 7. Since small features comprised of fewer than 64
voxels were already removed from the 3D volume, a modest
minimum size requirement of four pixels was applied to
these slices, effectively removing what would normally be
treated as noisy pixels in typical 2D cross-sections. The 3D
nature of this large grain can result in segmented subfeatures
that appear isolated from the rest of the original feature in a
single slice, but in fact connect out of plane. A summary of
the results from this analysis is shown in Fig. 8, where the
number of subfeatures found in a single cross-section, the
fraction of slice data contained within the largest subfeature,
and the stereologically corrected equivalent grain diameter
calculated from the largest subfeature are shown. A slice
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Build
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(d)

Fig.6 a A large grain in LENS-processed additive manufactured 304L traditional 2D metallurgical sample preparation and sectioning include
stainless steel with misorientation gradients. Three orthogonal slicing b X-normal slices, ¢ Y-normal slices, and d Z-normal slices
directions illustrating how the microstructure may be misinterpreted by

Fig.7 An example of a Z-slice 111

and the contained subfeatures (a) (b)
from the original grain. The
largest subfeature yields a Subfeature ID
llazegd:)cted equivalent diameter of J e =
A pm 001 101 0 29
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Fig.8 Summary of 2D analysis
of a large 3D grain. The number
of subfeatures found in a single
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that accurately represents the 3D data will lie in the upper
left portion of the graph and have a larger predicted
equivalent diameter, closer to that determined from the 3D
dataset.

Of the 467 slices generated, only 32 (6.85%) of the
slices retained a single feature, and 76.7% of slices were
found to contain five or more subfeatures, despite all of
the data having been obtained from a single 3D grain. Due
to the connectivity information that is missing in 2D, the
gradual changes in orientation that exist in the material
are interpreted as higher-angle grain boundaries (Fig. 7),
resulting in their separation during segmentation via CCA.
Similarly, attempts to characterize effective grain size of
additive materials are inconsistent when working with 2D
data. For example, the equivalent diameter of the large
grain was found to be 320.0 um as determined from the
3D reconstruction. Taking the largest subfeature found in
a particular slice, the equivalent diameter of the grain can
also be calculated from the 2D cross-sections. The 2D
cross-sections under-predict the grain size as measured from
the full volume of the dataset, with a median equivalent
diameter of 189 um. There is also a clear dependence on
the location and orientation of the slice in the calculation
of this value, with X- and Y-normal slices yielding median
equivalent diameters of 156 and 155 um, respectively,
whereas the Z-normal slices have a median equivalent
diameter of 267 pum. X- and Y-normal slices also show
similar variability in the number of subfeatures found during
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Number of Subfeatures Found

2D analysis, as well as the relative fraction of data contained
in the largest subfeature. The distinctive trend of Z-
normal slices, namely larger predicted equivalent diameters
and proportionally larger subfeatures, indicates that these
slices contain a larger number of small subfeatures, which
can be seen in Fig. 7. These generated cross-sections
reveal the inadequacy of 2D analysis to accurately assess
grain size and shape, and emphasize the importance of
3D characterization in additively manufactured materials.
The directional dependence of calculated properties also
highlights the anisotropic properties that exist as a result of
the microstructure in additively manufactured materials.

Anisotropic Defect Generation in Additive Processes

Characterization of a sample of EBM Inconel 718, as
described in “EBM Inconel 718, revealed a large, lack
of fusion defect. The lack of fusion event resulted in
the formation of large clusters of equiaxed grains above
the defect, creating microstructural inhomogeneity in the
otherwise columnar microstructure that cannot be easily
mitigated via post-processing heat treatments, even if the
porosity is closed from hot isostatic pressing (HIP) [37].
The clusters of equiaxed grains also lacked the strong
texture present in the columnar grains that comprise the
bulk of the volume. Quantification of clustering behavior
of equiaxed grains was performed on a slice-per-slice basis
through the volume, along the build direction. What was
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previously a time-intensive process to characterize a single
lack of fusion defect can now be easily performed on the
entire collected volume using a coupled-slicing procedure
in BisQue as described in “Morphological Complexity of
As-printed Additive Structures.” The clustering of equiaxed
grains was quantified by comparing the area fraction of
equiaxed grains in a single slice to the average volume
fraction of equiaxed grains in the entire volume (Fig. 9).
A basic relationship of stereology states that in regular,
homogeneous structures, the volume fraction of a given
phase or feature type in 3D is equivalent to measured
areas in cross-section [48]. Thus, discrepancies between
the measured area fraction of equiaxed grains in individual
2D cross-section and the volume fraction of these grains
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Fig.9 The percent increase in equiaxed grains from dataset average in
an AM Inconel 718 alloy as a function of dataset slice location along
the build direction. Several secondary electron micrographs from the
volume exhibit porosity, and in each case equiaxed grains lie above

from 3D characterization arise due to heterogeneity in the
microstructure.

The extent of these deviations from a fully heterogeneous
microstructure are plotted in Fig. 9. Local maxima in
the curve correspond to local clusters of equiaxed grains.
The width of the associated peaks are consistently smaller
than the build layer thickness of 50 pum, indicating that
all of these clusters appear on individual build layers.
Analysis of the entire volume shows that several clusters
of equiaxed grains exist throughout the volume beyond the
large cluster previously identified. In every case, clusters of
equiaxed grains appear in the build layer above the lack of
fusion defect. The change in thermal gradients arising from
the lack of fusion result in formation of equiaxed grains

these defects along the build direction. These equiaxed grains can be
seen via a loss of the <001> texture in the region above the defects
in the EBSD data. The location of the secondary electron images and
EBSD data are highlighted
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that interrupt the otherwise columnar grain morphology
observed in the bulk of this sample [37]. As successive
build layers are deposited above the lack of fusion
defects, columnar growth can resume, but equiaxed grains
persist above the porosity. Secondary electron images taken
during TriBeam tomography confirm that these clusters
are spatially correlated to planar porosity defects occurring
during part fabrication (Fig. 9). Many of these planar voids
are < 5 um thick, below the detectable limit of lab-scale X-
ray computed tomography and microtomography methods
[49], so would not be readily identified with nondestructive
evaluation techniques, despite their impact on changing the
local microstructure morphology and texture. Quantitative
analysis of the EBSD data in BisQue reveals that these
smaller lack of fusion defects are much more prevalent
throughout the sample, beyond the more easily identifiable,
large-scale defect previously characterized.

Discussion

The ability of the BisQue platform to integrate materials sci-
ence tools such as DREAM.3D can significantly advance
the emerging 3D and 4D characterization communities. As
the routines used to segment, reconstruct, clean, and ana-
lyze higher-dimensional data have not yet reached technical
maturity, it is essential to develop tools that allow for sim-
ple and scalable exploration of parameter space offered by
these data. This approach is especially important for cer-
tain classes of materials that are not easily analyzed through
conventional segmentation algorithms. Additively manufac-
tured microstructures in particular result from compound
melting and solidification cycles, as well as associated solid-
state transformations in the thermal histories of these parts.
The complex grain morphologies and long-range orienta-
tion gradients present in additive microstructures cannot be
accurately assessed using conventional techniques. Unlike
reconstruction and analysis of 3D data based on trial-and-
error efforts, adopting necessarily simplified approaches
that cannot guarantee fidelity of an individual analysis,
BisQue enables dataset-specific reconstruction parameters
to be rigorously defined and studied. To that end, paral-
lelization methods for assessing reconstruction fidelity offer
a path forward for standardizing 3D materials characteriza-
tion in a materials agnostic form; there may be no “one-
size-fits-all” misorientation tolerance for segmentation of
3D EBSD data, but there could be a “one-size-fits-all”
approach to determining the optimal value, streamlining
the process of 3D materials analysis and more accurately
representing these rich datasets. Such parameter studies
could be extended to entire 3D reconstruction pipelines in
DREAM.3D, rather than focusing on individual reconstruc-
tion parameters. Combined with other services in BisQue,
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such as a volume and table viewer compatible with com-
mon 3D data formats, much of the 3D reconstruction and
analysis process is already possible completely through a
web browser. Development of 3D analysis tools such as
DREAM.3D for BisQue could take the entire process off
of individual workstations, simplifying the process of 3D
data analysis. Capabilities for raw data storage, reconstruc-
tion, and analysis of 3D microstructures discussed here are
also useful because they can be combined with tools for
predicting microstructure-sensitive properties. Such tools
which may include analytic bounds (e.g., Voigt/Reuss) or
emerging data-driven models for microstructure-property
relationships [50] can also be incorporated into BisQue,
which is discussed in detail elsewhere [51].

The scalable infrastructure of BisQue offers numerous
advantages to the materials science community. Scale-
up and replication of BisQue servers is achievable
using well-known methods such as reverse proxies and
replicated servers. Leveraging high-performance computing
capabilities provides the potential to process very large
datasets in a distributed manner. Accessed via a web-
browser, BisQue enables efficient and straightforward use
of complex analysis algorithms with minimal software and
hardware requirements on the user end. Underlying all of
this is continual updating and tracking of metadata, whose
structure and context can be formulated to cater to specific
research community needs, maintaining high flexibility of
the infrastructure. A core component of metadata is the
retention of data provenance at every stage of the process.
When a resource is created or modified, it is marked by
the system, so a user can track the full history of a dataset
from its creation, even when shared among several users.
This fosters collaboration and allows multiple researchers to
analyze and edit the same dataset without fear of modifying
the original raw data. Due to the highly specialized
equipment and facilities required to generate 3D materials
data, 3D materials science is necessarily collaborative. The
ability to share and distribute large datasets around the
globe, as well as the associated analyses, is critical to the
growth of the 3D materials community at large.

A distributed computing infrastructure can also benefit
the need to certify additively manufactured parts and
characterize the build process, which requires powerful
analytic methods. During operation, additive manufacturing
machines record a myriad of variables simultaneously,
ranging from the power and location of the heat source
to chamber pressure and moisture content, all of which
are correlated to observed microstructures and defect
generation [52]. The use of specialized in situ sensors,
such as near-IR (infrared) imaging for defect detection,
thermographic measurement of temperature profiles, or
high-speed imaging to investigate fluid flow and powder
dynamics are essential to advancing our understanding of
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additive manufacturing techniques [53-56]. At the same
time, the emergence of these techniques increases the
complexity of data associated with individual additively
manufactured parts. Not all sensors record data at equivalent
rates, and many do not use regular sampling intervals. Data
visualization tools such as FALCON have been specifically
designed to mitigate these issues and enable machine
users to determine processing-property linkages [57].
New high-throughput ex situ characterization of additively
manufactured parts has also demonstrated the sensitivity
of part performance to build parameters and machine-to-
machine variability [58, 59], underlying the need for a
more comprehensive understanding of the build process.
Of particular concern to additive material qualification
are the so-called rare events at extrema of property
distributions not easily seen without such high-throughput
testing, severely limiting confidence in the application of
this technology to critical components [60]. Incorporation
of such tools, in combination with advanced statistical
approaches and emerging machine-learning algorithms
from other communities, into a collaborative environment
such as BisQue can help advance these algorithms and grow
user communities. Coupling of BisQue to additive machines
could enable real-time experimental analysis and provide
feedback to machine operators. Distributing analysis and
collection of build data and part properties allows users
to leverage advanced sensor capabilities, enabling additive
manufacturing to become a self-correcting, adaptive process
that can deliver “born qualified” parts [61].

As tools for BisQue develop, there is enormous oppor-
tunity to support growing research trends. Integration with
GitHub repositories would enable version management of
custom analytic tools, providing archival management of
developing codebases. The use of dockerized environments
for running such software in BisQue ensures that datasets
analyzed using out-of-date code will still function properly,
and old analyses will be preserved. Annotation on datasets
can be utilized as a new approach for performing collab-
orative analysis and marking data for automated analysis.
New analysis tools and custom scripts for common pack-
ages such as ImageJ and Jupyter notebooks can constantly
be updated and linked via BisQue’s data provenance con-
struct. Automated analysis for specific data structures could
be implemented, akin to facial recognition processes per-
formed by Google’s Vision API on images as they are
uploaded to the Cloud. BisQue could also serve as a reposi-
tory for published datasets, similar to the databases such as
Mendeley Data and Journals such as Data in Brief, Scientific
Data, and Data which publish scientific datasets, provid-
ing a Digital Object Identifier (DOI) and enabling their use
by other researchers. Beyond sharing the data, however,
BisQue can fully track the usage and analysis of the data
all the way back to its source. Particularly for 3D datasets,

which contain a wealth of information, BisQue can enable
multiple research groups with diverse specialties to work
on the same data, providing new insights and fostering new
connections among researchers.

Conclusion

The 3D microstructure reconstruction and analysis software
DREAM.3D was integrated as a module into the BisQue
cloud-based platform allowing for the following:

— Archival preservation of data provenance

— High-performance cluster computing integration (paral-
lelized DREAM.3D module execution)

— Parameterization of DREAM.3D pipelines for recon-
struction optimization

— Algorithms for the 2D and 3D volume element
sampling from large 3D datasets

The DREAM.3D pipeline parameterization combined
with parallelized module executions has allowed for the
exploration and optimization of dataset reconstructions. For
example, new insights into the choice of grain segmentation
misorientation tolerances for additively manufactured mate-
rials were discovered. Using algorithms for the virtual 2D
and 3D volume element sampling from large 3D datasets,
traditional 2D metallographic sectioning was found to yield
grain size measurements that were roughly half the size
of the equivalent 3D measurements in heterogeneously
distributed microstructures such as those found in AM mate-
rials. These measurements were performed with a massively
parallelized array of slicing/cropping pipelines to simulate
the 2D vs 3D statistical grain measurements.
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