
Achieving a Fairer Future by Changing the Past

Jiafan He1 , Christos-Alexandros Psomas2 , Ariel D. Procaccia2 , David Zeng2

1Institute for Interdisciplinary Information Sciences, Tsinghua University
2Computer Science Department, Carnegie Mellon University

Abstract
We study the problem of allocating T indivisible
items that arrive online to agents with additive val-
uations. The allocation must satisfy a prominent
fairness notion, envy-freeness up to one item (EF1),
at each round. To make this possible, we allow
the reallocation of previously allocated items, but
aim to minimize these so-called adjustments. For
the case of two agents, we show that algorithms
that are informed about the values of future items
can get by without any adjustments, whereas unin-
formed algorithms require Θ(T) adjustments. For
the general case of three or more agents, we prove
that even informed algorithms must use Ω(T) ad-
justments, and design an uninformed algorithm that
makes do with O(T 3/2).

1 Introduction
One of the most well-studied problems in computational
social choice [Brandt et al., 2016] is that of fairly allo-
cating indivisible items when agents have additive valua-
tions [Kurokawa et al., 2018; Bouveret and Lemaı̂tre, 2016;
Bouveret et al., 2017; Caragiannis et al., 2016; Barman and
Krishnamurthy, 2017; Barman et al., 2018; Amanatidis et al.,
2016; Cole and Gkatzelis, 2015]. Here, ‘indivisible’ means
that items cannot be split between multiple agents, and ‘addi-
tive valuations’ means that the value of an agent for a bundle
of items is the sum of his values for individual items in the
bundle; it remains to define ‘fairly.’

In contrast to several prominent fair division settings —
such as cake cutting [Brams and Taylor, 1996; Procaccia,
2016] and rent division [Su, 1999; Gal et al., 2017] — the
foregoing setting clearly does not admit solutions that are
envy free, in the sense that each agent (weakly) prefers his
own bundle to the bundle of any other agent. But a natural
relaxation of envy-freeness can always be guaranteed [Lipton
et al., 2004]. Specifically, an allocation is envy free up to one
item (EF1) if, for every two agents i and j, it is sufficient to
remove a single item from the bundle of j to eliminate any
envy i might have had. This notion of fairness underlies a
widely-used algorithm for the allocation of indivisible items,
which is deployed on the website Spliddit.org [Goldman
and Procaccia, 2014; Caragiannis et al., 2016].

The picture becomes muddier, however, when the items ar-
rive online instead of being available upfront, and must be
allocated as they arrive. This setting was most recently ex-
plored by Benadè et al. [2018]. Assuming values are normal-
ized to be in [0, 1], they show that the maximum envy — the
maximum difference between an agent’s value for another
bundle and his own bundle — must be (roughly) as large as
Ω(
√
T) after T rounds in the worst case. That is, not only

is it impossible to achieve EF1, but agents must become in-
creasingly envious over time.

We propose to circumvent this obstacle by slightly relaxing
the requirements. Specifically, we allow adjustments to the
allocation — each adjustment is a reallocation of a previously
allocated item. This is relevant in any setting where alloca-
tions are provisional, and can change as new items become
available. A common example is the (re)distribution of ex-
pensive scientific equipment (such as confocal laser scanning
microscopes) among different departments within a college
or a medical school.

Needless to say, adjustments are undesirable and should be
avoided as much as possible, subject to maintaining fairness.
More formally, our research question is:

What is the minimum number of adjustments
needed to guarantee EF1 in each round, as a func-
tion of the number of items (equivalently, rounds)
and the number of agents?

A simple baseline is to reallocate all items in each round,
which would require Θ(T 2) adjustments for T rounds. Of
course, we aim to do better.

1.1 Our Results
We study the foregoing question in two related models. In
the first model the allocation algorithm is uninformed, in that
it has no information about items that will arrive in the fu-
ture. In the second model, the algorithm is informed, that is,
it knows the future; even in this model adjustments are in-
evitable due to the requirement of maintaining EF1 in each
round. The former model is pertinent when the arrival of
items is outside the organization’s control, as is the case when
items are donated. The latter model is relevant when the ar-
rival of items follows a budgetary or production schedule.
Real-world settings are likely to include both predictable and
unpredictable item arrivals, but, as we shall see, it is actually

Number of agents Uninformed algorithm Informed algorithm

n = 2 (Sec. 3) Θ(T) (Thms. 3.2 and 3.3) 0 (Thm. 3.4)

n > 2 (Sec. 4)
O(T 3/2) (Thm. 4.1)

Ω(T)

=⇒
⇐=

O(T 3/2)

Ω(T) (Thm. 3.3)

Table 1: Minimum number of adjustments required to achieve EF1 in each of T rounds.

quite difficult to leverage (even complete) information about
future arrivals.

We first look at the problem when there are only two agents
(Section 3), and demonstrate a separation between the in-
formed and uninformed settings. In the uninformed setting,
we give an allocation algorithm that uses at most T adjust-
ments to maintain EF1 at each round. We then show that this
is tight up to constant factors by constructing an instance that
ensures that any allocation algorithm would need Ω(T) ad-
justments to maintain an EF1 allocation. By contrast, when
our algorithm knows the values for all the items that will ar-
rive, it becomes possible to maintain an EF1 allocation with-
out using any adjustments.

For the general case of three or more agents (Section 4),
we show that even an informed algorithm requires Ω(T) ad-
justments to maintain EF1. In addition, we present an un-
informed algorithm that uses O(T 3/2) adjustments — an im-
provement over the baseline ofO(T 2) adjustments. Note that
here we cannot separate the informed and uniformed settings,
and leave open the challenging problem of obtaining tighter
bounds, as we discuss in Section 5.

Our results are summarized in Table 1.

1.2 Related Work
On a high level, our paper is related to the literature on online
or dynamic fair division [Benadè et al., 2018; Friedman et
al., 2015; Friedman et al., 2017; Aleksandrov et al., 2015;
Aleksandrov and Walsh, 2017; Walsh, 2011; Kash et al.,
2014]. We elaborate on the two most closely related papers.

Benadè et al. [2018] consider indivisible items that arrive
online, additive valuations, and uninformed algorithms. As-
suming values are in [0, 1], they design a deterministic algo-
rithm that achieves maximum envy of Õ(

√
T/n), where T is

the number of items (rounds) and n is the number of agents.
They also show that this bound is tight up to polylogarith-
mic factors (and extend these results to a setting where items
arrive in batches that are allocated simultaneously). By con-
trast, we are able to achieve EF1, and circumvent the lower
bound of Benadè et al., by allowing adjustments.

Apropos adjustments, they are inspired by the notion of
disruptions, first suggested by Friedman et al. [2015] as a
way to achieve fairness in an online setting, albeit a funda-
mentally different one. In their setting, it is the agents — not
the items — that arrive dynamically, and, in fact, there is only
a single divisible good. The utility of each agent only depends
on the fraction of the good he is allocated. A disruption here
means taking a fraction of the good that has been allocated
to an agent and redistributing it. The goal is to optimize cer-
tain measures of fairness (fairness ratio and envy ratio) while

minimizing disruptions. Friedman et al. give optimal bounds
that relate the allowed number of disruptions per round to
their measures of fairness. In a subsequent paper [Friedman
et al., 2017], they extend the results to the case where less
than one disruption per arrival, on average, is allowed.

2 Preliminaries
For each natural number s ∈ N, we let [s] = {1, · · · , s}. In
our setting, there is a set A = {a1, a2, · · · , an} of n agents
and a set G = {g1, g2, · · · , gT } of T items (also known as
goods, hence the notation).

Each agent ai has a utility function vi; vi(S) is the value
ai has for a subset of items S. We simplify notation by using
vi(gj) to denote vi({gj}). A utility function vi is additive if
vi(S) =

∑
g∈S vi(g). We assume throughout this paper that

agents have additive valuation functions.
An allocation of the goods is a partition A =

(A1, . . . , An), where Ai is the bundle of goods allocated
to agent ai. We are interested in fair allocations that are,
specifically, envy-free up to one item (EF1). Formally, an
allocation (A1, A2, · · ·An) is EF1 if for any i, j such that
vi(Ai) < vi(Aj), there exists an item g ∈ Aj such that
vi(Ai) ≥ vi(Aj \ {g}).

Despite our focus on this ‘qualitative’ notion of fairness,
we often find it useful to refer to a numerical value for envy.
Given an allocation A, we define

ENVYi,j(A) = vi(Aj)− vi(Ai).

2.1 The Online Setting
We assume that the items arrive in order, one per round, over
T total rounds. Let Gt = {g1, g2, · · · gt} be the set of items
that have arrived by round t. We denote an allocation ofGt by
At = (At

1, · · · , At
n). An online allocation algorithm outputs

an allocationAt of the itemsGt for each round t ∈ [T]. When
we say that an online algorithm is EF1, we mean that At is
EF1 for all t ∈ [T]. We also use ENVYt

i,j as a shorthand for
ENVYi,j(A

t). Throughout the paper we use superscripts in
the allocations to denote the round and subscripts to denote
the agent.

An adjustment is a reallocation of a previously allocated
item to a different agent. The number of adjustments needed
by an allocation algorithm at round t is the number of adjust-
ments needed to go from At−1 to At. Formally, this can be
expressed as

∑
i∈[n]|At

i\(A
t−1
i ∪{gt})|. The sum of the num-

ber of adjustments needed across the T rounds is the number
of adjustments needed by an online allocation algorithm.

2.2 Informed and Uninformed Algorithms
Intuitively, an informed algorithm ‘knows the future,’
whereas an uninformed algorithms does not. To formalize
this, we can think of the setting as a zero-sum two-player
game between an algorithm and an adversary that chooses
the values of agents for items. The algorithm must maintain
EF1 at each round, and may need to use adjustments to that
end. The payoffs in the game are the number of adjustments
used (which the algorithm tries to minimize, and the adver-
sary tries to maximize).

An informed algorithm moves second in this game, that is,
it first observes the sequence of values chosen by the adver-
sary, and then decides how to allocate. By contrast, an unin-
formed algorithm moves first, i.e. the algorithm is announced,
and then the instance is constructed by the adversary.1

Consequently, to establish a lower bound against an in-
formed algorithm, we must construct a sequence of values
that is independent of the algorithm. To establish a lower
bound against an uninformed algorithm, we may design an
adversary that chooses values for the items that depend on
the history.

3 Two Agents
We start with the case of two agents, i.e., n = 2, which of-
ten plays a central role in computational fair division. We
establish tight bounds on the required number of adjust-
ments, which, in particular, show that informed algorithms
are strictly more powerful than their uninformed counterparts.

3.1 Uninformed Algorithms
In order to present our uninformed algorithm for the two-
agent case, we first introduce the concept of fractional allo-
cations. Rather than each item being assigned to an agent, a
fractional allocation is an n by m matrix X , where n is the
number of agents and m the number of items. For each i, j,
Xij represents the proportion of gj allocated to agent i. X is
constrained so that

∑
i∈[n]Xij = 1 for all j and Xij ∈ [0, 1]

for all i, j. For a fractional allocation X , we define the num-
ber of fractional items as the number of items gj for which
there exists an i such that Xij ∈ (0, 1). All other items are
whole items. In addition, let Xi denote the ith row of X . Xi

can be thought of as the allocation to agent i.
Given an additive valuation function for each agent, we can

extend each agent’s valuation function to work with fractional
items by treating items as if they were divisible, that is, by
setting vi(Xi) =

∑
j∈[m]Xijvi(gj). Finally, an allocation is

proportional if for all i, vi(Xi) ≥ 1
n

∑
j∈[m] vi(gj).

We now formulate a lemma that will play a central role
in the design of our algorithm. While we require only the
n = 2 case of the lemma, we establish a more general version,
which may be of independent interest. It is related to a result
of Bogomolnaia et al. [2017], but our proof is different.

1Importantly, the adversary is non-adaptive, i.e., the sequence
may not depend on actions taken by the algorithm. At the risk of be-
ing cryptic, we note that if the adversary were adaptive, both players
could solve the induced extensive-form game by backward induc-
tion, and there would be no difference between the two settings.

Lemma 3.1. For any proportional fractional allocation X ,
there exists a proportional allocation Y where Y has at most
n − 1 fractional items and every whole item gj in X is allo-
cated to the same agent in Y . Moreover, Y can be computed
in polynomial time.

Proof. Consider the bipartite graph B induced by X , where
edges are between two vertex sets A,G representing the
agents and items. Let there be an edge between (ai, gj) when
Xij > 0.

Suppose B has a cycle C of length 2k. Since the graph is
bipartite, it contains k agents and k items. Note that whole
items cannot be part of a cycle since they have degree 1. For
ease of notation, in the following section, take all indices
modulo k. Without loss of generality, assume that for each
i ∈ [k], (ai, gi) ∈ C and (ai, gi+1) ∈ C.

Now suppose that for each item gi, we were to transfer δi
of the item from ai to ai−1. Consider the vector ∆, where ∆i

is the change in each agents’ value for their own items. We
can express ∆ using the following linear equations, where we
denote vij = vi(gj):


−v11 v12 0 0 · · · 0

0 −v22 v23 0 · · · 0
...

...

vk1 0 0 0 · · · −vkk

 ·

δ1

δ2
...

δk

 =


∆1

∆2

...

∆k


Let V be the value matrix defined above. We case on

whether V is invertible. If it is invertible, then there exists
a vector δ such that V · δ = ∆, where ∆ = ~1. If V is
not invertible, then there exists a non-zero vector δ such that
V δ = ~0. In either case, we can find a non-zero δ such that
V δ = ∆ where for each i, ∆i ≥ 0.

We conclude that, if we choose c appropriately, c · δ will
describe a way to transfer items that is implementable (af-
ter the transfer, no agent will have a negative fraction of any
item) while ensuring that there is at least one Xij that is now
equal to 0. After implementing the transfers c · δ, we know
that vi(X̂i) ≥ vi(Xi), where X̂ is the new allocation. More-
over, the number of i, j such that Xij > 0 decreases by at
least 1. Thus, the number of edges in the induced graph also
decreases by 1.

We repeat the above until no cycles exist, which is guar-
anteed to happen because the number of edges is strictly de-
creasing in each step. Let Y be the resulting allocation. Since
for each i, vi(Xi) cannot decrease, Y must be proportional.

Any graph with no cycles has at most |V | − 1 edges. So if
there are n agents and m items, there are at most n + m − 1
edges. Since each item must have an edge to at least one
agent, this implies that the number of fractional items in Y
is at most n − 1. Because cycles do not contain any integral
items inX , the allocation of each integral item stays the same.

The proof of existence clearly induces a computationally
efficient algorithm, which we will refer to as fractional item
elimination.

We next present Algorithm 1. We compute a proportional
fractional allocation Xt for every round t. To obtain the frac-
tional allocation for items Gt we start with Xt−1, give a 1

2
fraction of the newly arrived item to each agent and then ap-
ply fractional item elimination, as described in the proof of
Lemma 3.1. We obtain the actual allocations by rounding
fractional items to the agent with the larger portion of the
item. Since the (integral) allocation for round t, At, depends
only on the value of the first t items, this is an uninformed
algorithm.

Algorithm 1 Fractional Item Rounding
input: v1, v2

1: for t = 1, . . . , T do
2: Let P ∈ R2×t such that

Pa,b ←

{
Xt−1

a,b if b < t
1
2 otherwise

3: Let Xt be the allocation found by applying fractional
item elimination to P under v1, v2

4: At
1 ← {gk ∈ Gt : Xt

1,k ≥ 1
2}

5: At
2 ← {gk ∈ Gt : Xt

2,k >
1
2}

6: end for
7: return [A1, A2, · · · , AT]

Theorem 3.2. Algorithm 1 is an uninformed EF1 algorithm
for two agents that uses at most T adjustments.

Proof. We first show that the algorithm maintains an EF1 al-
location. From Lemma 3.1, in every round t the underly-
ing fractional allocation Xt satisfies proportionality. When
n = 2, this implies thatXt is also an envy-free allocation. Let
At be the corresponding rounded allocation. Without loss of
generality, assume that a1 is assigned the only fractional item
gj .2 In this case, v1(At

1) ≥ v1(Xt
1) ≥ v1(Xt

2) ≥ v1(At
2) so

a1 does not envy a2. In addition, because a1 received gj , we
know that in the fractional allocation, a1 received at least half
of it and a2 received at most half of it. Therefore,

v2(At
2) ≥ v2(Xt

2)− 1

2
v2(gj)

≥ v2(Xt
1)− 1

2
v2(gj) ≥ v2(At

1 \ {gj}).

Thus, the allocation satisfies EF1.
To show that at most T adjustments are needed, note that,

on any round t, the only item that could be reallocated is the
fractional item in Xt−1. Over T rounds, this leads to at most
T adjustments.

We complement Theorem 3.2 with an asymptotically tight
lower bound.

Theorem 3.3. Any uninformed EF1 algorithm must use at
least bT/6c adjustments in the worst case, even when there
are two agents.

2There are at most n− 1 = 1 fractional items in Xt.

Proof. We construct an adversary strategy that is built around
a repeated 6-step sequence. Sequence sj will describe the
values for items 6j+1 to 6j+6. For t = 6j+1, 6j+3, 6j+5,
the item values are fixed at v1(gt) = v2(gt) = 14j . For steps
t = 6j + 2, 6j + 4, 6j + 6, the adversary chooses item values
that depend on the allocation of item gt−1. If a1 received
gt−1 in At−1, then for gt, v1(gt) = 14j and v2(gt) = 1

414j .
The case where agent a2 receives the item is analogous, with
the values swapped. The adversary strategy ensures each pair
of items is allocated in a way that increases envy. After each
sequence, the values of the items increase exponentially to
minimize the effect of the allocation of previous items.

To establish the lower bound, we show that any allocation
algorithm must use at least one adjustment for each 6-step se-
quence to maintain an EF1 allocation at each round. Assume
for the sake of contradiction that for some sequence sj , no
adjustments are used during that sequence but the allocation
at each round in the sequence is EF1.

We first show that for each item pair (6j+1, 6j+2), (6j+
3, 6j + 4), (6j + 5, 6j + 6), each agent must receive exactly
one item from each pair. Let S6j = ENVY6j

1,2 + ENVY6j
2,1. It

holds that

S6j ≥ −
6j∑
t=1

|v1(gt)− v2(gt)| = −3

j−1∑
i=1

3

4
14i > − 9

52
14j .

Note that if v is the largest value of any item inAt, forAt to
be EF1, we must have ENVYt

i,j < v for any i, j. In particular,
the largest item value in A6j is 14j−1 so it must hold that
ENVY6j

1,2 ≤ 14j−1. Since ENVY6j
2,1 = S6j − ENVY6j

1,2, we
put the two inequalities together to conclude that

ENVY6j
2,1 > −

9

52
14j − 14j−1 > −1

4
14j .

We can show the same for ENVY6j
1,2. Thus, if both item 6j+1

and 6j + 2 are given to the same agent, the allocation would
not be EF1 since the other agent would have envy greater than
14j . To show this also holds for the remaining item pairs, note
that after the arrival of any item pair, the envy of each agent
can only increase.

Finally, we know that one of the agents received at least
two of the (less valuable) items 6j+2, 6j+4, 6j+6. Without
loss of generality, suppose it was agent 1. Then we have

ENVY6j+6
1,2 ≥ ENVY6j

1,2 + 2 · (14j − 1

4
14j) > 14j ,

implying that the allocation is not EF1.
In Table 2, we give an example of a sequence assuming no

adjustments.

3.2 Informed Algorithms
We now turn to the setting where the algorithm is informed of
the values of all items upfront. Lipton et al. [2004] introduce
the envy cycle elimination algorithm for finding EF1 alloca-
tions in the offline setting. We describe a modified version of
the algorithm that produces an allocation for the offline set-
ting. This allocation has the property that all prefixes of the

Round t 6j 6j + 1 6j + 2 6j + 3 6j + 4 6j + 5 6j + 6

Value of gt to Agent 1 · · · [14j] 14j 14j [1414j] [14j] 14j

Value of gt to Agent 2 · · · 14j [1414j] [14j] 14j 14j [1414j]

Lower bound for ENVYt
1,2 − 1

414j − 5
414j − 1

414j 3
414j 1

214j − 1
214j 1

214j

Lower bound for ENVYt
2,1 − 1

414j 3
414j 1

214j − 1
214j 1

214j 3
214j 5

414j

Table 2: An example of the adversarial sequence from the proof of Theorem 3.3, assuming no adjustments are made. The lower bounds are
non-inclusive and the brackets denote which agent the item was given to.

allocation are also EF1 allocations. This leads to the surpris-
ing result that no adjustments are needed to achieve an EF1
allocation at each round when the algorithm is informed.

Algorithm 2 considers the items one at a time in the or-
der they are to arrive and builds an allocation iteratively, with
a candidate allocation Ct for each round t. We maintain a
counter s that keeps track of the last round s in which Cs was
envy-free. Given a candidate allocation Cy and x ≤ y, define
Cx,y to be the candidate allocationCy when only considering
items in Gy \Gx.

We generate Ct by building from Ct−1. In Lines 3–7, we
assign the item gt to an arbitrary unenvied agent in Cs,t−1.
If this results in both agents envying each other in Cs,t, in
Line 9, we swap the allocation of items Gt \ Gs in Ct. This
step guarantees there will always be an unenvied agent when
assigning the next item.

The allocation for round t is found by taking the final can-
didate allocation CT and only considering the first t items. In
contrast to Algorithm 1, therefore, the allocation for round t
does depend on the values for all T items, which restricts this
algorithm to the informed setting.

Algorithm 2 Envy Balancing
input: v1, v2

1: s← 0, C0 = (∅, ∅)
2: for t = 1, . . . , T do
3: if a1 is unenvied in Cs,t−1 then
4: Ct ← (Ct−1

1 ∪ {gt}, Ct−1
2)

5: else
6: Ct ← (Ct−1

1 , Ct−1
2 ∪ {gt})

7: end if
8: if a1 and a2 envy each other in Cs,t then
9: Ct ← ((Ct

1 \ C
s,t
1) ∪ Cs,t

2 , (Ct
2 \ C

s,t
2) ∪ Cs,t

1)
10: end if
11: if Cs,t is envy-free then
12: s← t
13: end if
14: end for
15: for t = 1, . . . , T do
16: At = (CT

1 ∩Gt, CT
2 ∩Gt)

17: end for
18: return [A1, A2, · · · , AT]

To analyze the above algorithm, we introduce the following
notation. Let A be the allocation given by Algorithm 2. Then
define Ax,y to be the allocation A but only considering items
in Gy \Gx, and let ENVYx,y

i,j = ENVYi,j(A
x,y).

Theorem 3.4. Algorithm 2 is an informed EF1 algorithm for
two agents that requires no adjustments.

Proof. The algorithm requires no adjustments by design, so
we focus on establishing EF1. Consider an arbitrary t ∈ [T]
and let s be the last round before t in which candidate alloca-
tion Cs is envy-free. Let M1 = max{v1(gj) : gj ∈ As,t

2 }.
Let M2 be defined analogously.

We claim that it is sufficient to show that

ENVYs,t
1,2 ≤M1 and ENVYs,t

2,1 ≤M2. (1)

Indeed, for any t,

ENVYt
1,2 = ENVYs

1,2 + ENVYs,t
1,2.

By definition of s, ENVYs
1,2 ≤ 0 and from Equation (1),

ENVYs,t
1,2 ≤ M1. Therefore ENVYt

1,2 ≤ M1, and the analo-
gous inequality holds for agent a2.

We therefore focus on proving (1). We will show that
ENVYs,t

1,2 ≤M1; the proof of ENVYs,t
2,1 ≤M2 is analogous.

We claim that either As,t = (Cs,t
1 , Cs,t

2) or As,t =

(Cs,t
2 , Cs,t

1). First, no swaps occur between s and t. To see
why, observe that if a swap occurred when generating Cx for
s < x ≤ t, the candidate allocation would be envy-free since
Cx consists of Cs and Cs,x and both portions are now envy
free, so s would have been updated to x. Now consider the
next candidate allocation Cy , for y > t, which is envy free (if
any). If a swap occurred on round y, then As,t = (Cs,t

2 , Cs,t
1)

and otherwise As,t = (Cs,t
1 , Cs,t

2). As a result, it is sufficient
to show that |ENVY1,2(Cs,t)| ≤M1.

We can show this through induction on t. Suppose that
s = t − 1. In this case, the allocation Cs,t consists of one
item so |ENVY1,2(Cs,t)| ≤ M1. Otherwise, we know that
s < t − 1. In this case, we can apply the induction hypoth-
esis which tells us that for the same s and some M ′1 ≤ M1,
|ENVY1,2(Cs,t−1)| ≤M ′1.

Now suppose that ENVY1,2(Cs,t−1) > 0. a2 is envied
so this implies the next item would be given to a1. Since
the value of the next item is at most M1, we know that

ENVY1,2(Cs,t) ≥ −M1. In addition, the envy can only de-
crease which means ENVY1,2(Cs,t) ≤M ′1 ≤M1.

Otherwise, ENVY1,2(Cs,t−1) ≤ 0. Since s < t − 1,
the allocation Cs,t−1 is not envy-free, and so it must be
that a1 is envied, and the next item is given to a2. Re-
calling that ENVY1,2(Cs,t−1) ≥ −M1, it follows that
|ENVY1,2(Cs,t)| ≤M1.

4 More Than Two Agents
In this section we explore the general case of n > 2, which —
we will show — is qualitatively different from the case of two
agents.

For our upper bound, consider the round-robin protocol for
allocating items. In this protocol, we start with an arbitrary
ordering of agents. Following this ordering, each agent takes
turns selecting their most preferred item out of the remaining
available items, continuing until no items remain.

This protocol is used in the following algorithm for the un-
informed setting for more than two agents. For ease of expo-
sition, we will assume here that T is a perfect square.

For each round t, we take the itemsGt and divide them into
a main pile and side pile. Let q = bt/

√
T c. The first q

√
T

items go into the main pile while the remaining t − q
√
T go

to the side pile. Equivalently, in each round, the new item gt
goes into the side pile and every

√
T rounds, the side pile is

emptied and the items are moved to the main pile.
On each round, to generate At, we allocate the main pile

using the ordering a1 > a2 > · · · > an and the side pile
using the reverse ordering an > · · · > a1, and then merge
the two allocations together. We use adjustments to maintain
the structure of these allocations at each step and, thus, this
algorithm is uninformed.

Algorithm 3 Double Round Robin
input: vi for each agent ai

1: M ← ∅, S ← ∅
2: for t = 1, . . . , T do
3: S ← S ∪ {gt}
4: if t is a multiple of

√
T then

5: M ←M ∪ S
6: S ← ∅
7: end if
8: AM ← ROUND-ROBIN(M,a1 > · · · > an)
9: AS ← ROUND-ROBIN(S, an > · · · > a1)

10: Let At be the combination of allocations AS and AM

11: end for
12: return [A1, A2, · · · , AT]

Theorem 4.1. Algorithm 3 is an uninformed EF1 algorithm
that requires O(T 3/2) adjustments.

Proof. To see why the allocation on each round is EF1, we
make a few observations about the round-robin protocol. Let
B be an ordering and let ai >B aj denote that ai chooses
before aj in that ordering. One can easily see that if we use
round-robin to allocate some set of items G, then for any pair

of agents ai, aj , ai will envy aj by at most one item. Fur-
thermore, if ai >B aj , then ai will not envy aj . To show
this, note that when ai >B aj , we can match each item that
aj receives to a distinct item that ai receives such that ai
prefers his item to the item it is matched with. Otherwise,
when aj >B ai, we can remove the first item aj receives and
then proceed with matching.

Since the main and side piles are allocated using reversed
orderings, ai envies aj in one allocation only if ai does not
envy aj in the other allocation. In both allocations, we know
ai envies aj by at most one item, so after combining the allo-
cations, ai still envies aj by at most one item.

Now, we show that this algorithm uses at most O(T 3/2)
adjustments. If we consider successive rounds, the main pile
will only change every

√
T rounds. The first change uses at

most
√
T adjustments, the second one uses at most 2

√
T , and

so on, until the last change that uses T adjustments, for a to-
tal of (at most) T 3/2 adjustments. Meanwhile, the side pile
can be completely reallocated every round, but reaches size at
most

√
T . Therefore, the total number of adjustments needed

to maintain the allocation of the side pile over T rounds can
be upper-bounded by T 3/2. Overall, this leads to at most
2T 3/2 adjustments.

In contrast to the case of two agents, where informed al-
gorithms can achieve EF1 at each round without adjustments,
when n ≥ 3, a linear number of adjustments is inevitable.

Theorem 4.2. For n ≥ 3, any informed EF1 algorithm must
use at least Ω(T) adjustments in the worst case.

The theorem’s proof is relegated to Appendix A.

5 Discussion
While our results for the case of two agents are tight — and
show a stark separation between informed and uninformed
algorithms — our bounds for the general case are not. The
most interesting open question is whether there is a separation
between informed and uninformed algorithms in the general
case. Our results allow for the possibility of informed EF1
algorithms that require O(T) adjustments, and a lower bound
of Ω(T 3/2) on the adjustments required by uninformed al-
gorithms. However, we conjecture that O(T) adjustments
are sufficient even for uninformed algorithms. In fact, we
can prove this in the special case where n is constant, and
each vi(j) can only take a constant number of values; see
Appendix B for details.

In addition, our results focus on achieving EF1 at each
round, and this fairness guarantee may not be sufficient to
ensure truly satisfying outcomes. For example, a number of
recent papers aim to guarantee EF1 and Pareto efficiency si-
multaneously [Caragiannis et al., 2016; Barman et al., 2018].
However, as noted by Benadè et al. [2018], it is crucial to first
understand fairness constraints in isolation; if the require-
ments were more stringent, our negative results would imme-
diately carry over, while our positive results would potentially
serve as building blocks for more elaborate algorithms.

References
[Aleksandrov and Walsh, 2017] M. Aleksandrov and

T. Walsh. Pure Nash equilibria in online fair division. In
Proceedings of the 26th International Joint Conference on
Artificial Intelligence (IJCAI), pages 42–48, 2017.

[Aleksandrov et al., 2015] M. Aleksandrov, H. Aziz,
S. Gaspers, and T. Walsh. Online fair division: Analysing
a food bank problem. In Proceedings of the 24th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
pages 2540–2546, 2015.

[Amanatidis et al., 2016] G. Amanatidis, G. Birmpas, and
E. Markakis. On truthful mechanisms for maximin share
allocations. In Proceedings of the 25th International Joint
Conference on Artificial Intelligence (IJCAI), pages 31–
37, 2016.

[Barman and Krishnamurthy, 2017] S. Barman and S. K. Kr-
ishnamurthy. Approximation algorithms for maximin fair
division. In Proceedings of the 18th ACM Conference on
Economics and Computation (EC), pages 647–664, 2017.

[Barman et al., 2018] S. Barman, S. K. Krishnamurthy, and
R. Vaish. Finding fair and efficient allocations. In Pro-
ceedings of the 19th ACM Conference on Economics and
Computation (EC), pages 557–574, 2018.

[Benadè et al., 2018] G. Benadè, A. M. Kazachkov, A. D.
Procaccia, and C.-A. Psomas. How to make envy vanish
over time. In Proceedings of the 19th ACM Conference on
Economics and Computation (EC), pages 593–610, 2018.

[Bogomolnaia et al., 2017] A. Bogomolnaia, H. Moulin,
F. Sandomirskiy, and E. Yanovskaia. Dividing goods or
bads under additive utilities. arXiv:1608.01540, 2017.

[Bouveret and Lemaı̂tre, 2016] S. Bouveret and
M. Lemaı̂tre. Characterizing conflicts in fair division of
indivisible goods using a scale of criteria. Autonomous
Agents and Multi-Agent Systems, 30(2):259–290, 2016.

[Bouveret et al., 2017] S. Bouveret, K. Cechlárová,
E. Elkind, A. Igarashi, and D. Peters. Fair division
of a graph. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence (IJCAI), pages
135–141, 2017.

[Brams and Taylor, 1996] S. J. Brams and A. D. Taylor. Fair
Division: From Cake-Cutting to Dispute Resolution. Cam-
bridge University Press, 1996.

[Brandt et al., 2016] F. Brandt, V. Conitzer, U. Endriss,
J. Lang, and A. D. Procaccia, editors. Handbook of Com-
putational Social Choice. Cambridge University Press,
2016.

[Caragiannis et al., 2016] I. Caragiannis, D. Kurokawa,
H. Moulin, A. D. Procaccia, N. Shah, and J. Wang. The
unreasonable fairness of maximum Nash welfare. In Pro-
ceedings of the 17th ACM Conference on Economics and
Computation (EC), pages 305–322, 2016.

[Cole and Gkatzelis, 2015] R. Cole and V. Gkatzelis. Ap-
proximating the Nash social welfare with indivisible items.
In Proceedings of the 47th Annual ACM Symposium on
Theory of Computing (STOC), pages 371–380, 2015.

[Friedman et al., 2015] E. J. Friedman, C.-A. Psomas, and
S. Vardi. Dynamic fair division with minimal disruptions.
In Proceedings of the 16th ACM Conference on Economics
and Computation (EC), pages 697–713, 2015.

[Friedman et al., 2017] E. J. Friedman, C.-A. Psomas, and
S. Vardi. Controlled dynamic fair division. In Proceedings
of the 18th ACM Conference on Economics and Computa-
tion (EC), pages 461–478, 2017.

[Gal et al., 2017] Y. Gal, M. Mash, A. D. Procaccia, and
Y. Zick. Which is the fairest (rent division) of them all?
Journal of the ACM, 64(6): article 39, 2017.

[Goldman and Procaccia, 2014] J. Goldman and A. D. Pro-
caccia. Spliddit: Unleashing fair division algorithms.
SIGecom Exchanges, 13(2):41–46, 2014.

[Kash et al., 2014] I. Kash, A. D. Procaccia, and N. Shah.
No agent left behind: Dynamic fair division of multi-
ple resources. Journal of Artificial Intelligence Research,
51:579–603, 2014.

[Kurokawa et al., 2018] D. Kurokawa, A. D. Procaccia, and
J. Wang. Fair enough: Guaranteeing approximate max-
imin shares. Journal of the ACM, 64(2): article 8, 2018.

[Lipton et al., 2004] R. J. Lipton, E. Markakis, E. Mossel,
and A. Saberi. On approximately fair allocations of in-
divisible goods. In Proceedings of the 6th ACM Confer-
ence on Economics and Computation (EC), pages 125–
131, 2004.

[Procaccia, 2016] A. D. Procaccia. Cake cutting algorithms.
In F. Brandt, V. Conitzer, U. Endress, J. Lang, and A. D.
Procaccia, editors, Handbook of Computational Social
Choice, chapter 13. Cambridge University Press, 2016.

[Su, 1999] F. E. Su. Rental harmony: Sperner’s lemma in fair
division. American Mathematical Monthly, 106(10):930–
942, 1999.

[Walsh, 2011] T. Walsh. Online cake cutting. In Proceed-
ings of the 3rd International Conference on Algorithmic
Decision Theory (ADT), pages 292–305, 2011.

Appendix:
Achieving a Fairer Future

by Changing the Past

A Proof of Theorem 4.2
In the theorem’s proof, we will repeatedly invoke a useful
lemma. In its statement, we use the term envy cycle in an
allocation to refer to k ≥ 2 agents ai1 , ai2 , . . . , aik such that
aij envies aij+1 for all j = 1, . . . , k − 1, and aik envies ai1 .
We also define Mi,j = maxk∈[j] vi(gk)

Lemma A.1. For any t ∈ [T], if for all i 6= j and k ∈
[n] it holds that vi(gt+k) = Mi,t+k > −ENVYt

ij , and
At+1, . . . , At+n are EF1, thenAt cannot contain an envy cy-
cle.

Proof. The assumption that vi(gt+k) > −ENVYt
ij im-

plies that each agent must receive exactly one of the items
{gt+1, . . . , gt+n} in order to satisfy EF1 at each round.
Therefore, if there was an envy cycle in At, one of the agents
in the cycle would be the first to be allocated one of the items
{gt+1, . . . , gt+n}. At that point, say round t + k, the agent
would be envied by some other agent j in the cycle by more
than Mj,t+k. This means they must be envied by more than
one item, in contradiction to the EF1 assumption.

Proof of Theorem 4.2. We first present a sequence of 23
items to be allocated among 3 agents that requires at least
one adjustment to ensure EF1 at each round. Specifically, we
assume for the sake of contradiction that no adjustments are
needed, and show that the sequence cannot be EF1.

We say an allocation At satisfies ai ≺ aj ≺ ak if ai is
not envied by aj , ak and aj is not envied by ak. At a high
level, our sequence is broken up into three parts. The first
part consists of 7 items and ensures that A7 cannot satisfy
a2 ≺ a3 ≺ a1. The second part consists of 9 items and
ensures that in A16, some agent must envy a2. This fact can
be exploited in the final part to ensure a2 envies both other
agents, finally resulting in an item that cannot be allocated to
any agent. Item values are set so that, ignoring g7, each agent
must receive exactly one item from each group of 3.

Agent g1 g2 g3 g4 g5 g6 g7

a1 0.9 0.8 0.7 1 1 1 0.15

a2 0.9 0.7 0.8 1 1 1 0.95

a3 0.8 0.9 0.7 1 1 1 0.25

Above, we give the first 7 items. We can verify that A7

cannot satisfy a2 ≺ a3 ≺ a1. First, each agent receives ex-
actly one of g1, g2, g3 and one of g4, g5, g6. For a1 to not
envy either a2, a3, out of {g1, g2, g3, g7} he must receive one
of {g1, g7}, {g2, g7}, {g1}. Lemma A.1 tells us that A3 can-
not contain envy cycles.

• Case {g1, g7}: a2 will always envy a1 by more than one
item.

• Case {g2, g7}: a3 must receive g1 to not envy a2. As a
result, a1 and a3 form an envy cycle in A3, a contradic-
tion.

• Case {g1} If a3 receives g3, there is an envy cycle be-
tween a3 and a2 in A3. Otherwise, a3 must receive
{g2, g7} to not envy a2. But then a1 will envy a3.

Agent g8 g9 g10 g11 g12 g13 g14 g15 g16

a1 100 110 120 200 200 200 200 200 200

a2 100 110 120 200 200 200 200 200 200

a3 100 110 120 200 200 185 200 200 200

Now, for the next 6 items, each agent is allocated one of
{g8, g11}, {g9, g12}, {g10, g13}. The values of these items
are sufficiently large that the values of ENVYi,j(A

7) can be
ignored and treated as 0. Then, observe that the choice of
allocation of g8, g9, g10 determines the allocation of the re-
maining items. Thus, we can specify the allocation of these
six items by simply providing the order the first three items
are chosen. Let (ai, aj , ak) refer to ai receiving g8, aj receiv-
ing g9, and ak receiving g10. We show that in each plausible
case, a2 is envied by some agent.

• Case (a1, a2, a3) and (a2, a1, a3): There will be an
envy-cycle between a3 and whomever received g9 in
A13. However, looking ahead at the next three items,
Lemma A.1 tell us that A13 cannot have envy cycles.

• Case (a2, a3, a1): Because A7 does not satisfy a2 ≺
a3 ≺ a1, allocating in this order would cause envy vio-
lating EF1 in A8 or A9.

• Case (a1, a3, a2) and (a3, a1, a2): a1 will envy a2 in
A13 since g11, g12, g13 are identical to a1, a2.

• Case (a3, a2, a1): a3 will envy a2 in A13 since g11, g12
are identical to a2, a3.

The allocation of the next three items, g14, g15, g16 does
not affect envy since all items are valued equally.

Agent g17 g18 g19 g20 g21 g22 g23

a1 200 200 200 200 200 200 200

a2 200 120 120 200 120 120 200

a3 200 200 200 200 200 200 200

Since a2 is envied by some agent in A16, a2 cannot re-
ceive g17, g20, nor g23, and must instead receive one of
g18, g19 and one of g21, g22. This increases a2’s envy to-
wards whoever receives g17 and g20. In addition, a1 and a3
must each receive exactly one of {g17, g20} since a2 will envy
whomever receives g17. Suppose a1 receives g17. We know
that ENVY2,1(A19) ≥ ENVY2,1(A16)+80 > 0 and similarly
for ENVY2,3(A22). Thus, in A22, a2 is envied by some agent
while a1 and a3 are both envied by a2. Then, regardless of
whom g23 is assigned to, A23 will violate EF1.

We can use a similar strategy as in Theorem 3.3 of mak-
ing item values exponentially increasing for subsequent se-
quences to extend this example to arbitrary T so that Ω(T)
adjustments are required for T rounds.

When generalizing to n > 4, we use the fact that our above
sequence of items can be mostly broken up into groups of
three. We expand the items to be in groups of n. Item values
are set so that if a new agent chooses one of the ‘original’
items, the final allocation in the group will contain an envy
cycle. We then follow up each group with a sequence of n
identical items with value greater than the value of any pre-
vious item. Lemma A.1 ensures that new agents will only
choose one of the n− 3 items and so the analysis of envy for
the first 3 agents is the same as when n = 3.

B Restricted Item Values
We now explore setting when each agent has a restricted set
of possible utilities. Suppose that each agent has at most m
distinct utilities for items. Formally, each agent has some set
of values Vi such that vi(j) ∈ Vi for all j and |Vi| ≤ m. We
present a modification to the round robin protocol that uses a
linear number of adjustments when m and n are constants.

In Algorithm 4, we start with an arbitrary orderingB to use
for round-robin. To find the allocation At, we run the round
robin protocol, letting agents take turns choosing their most
preferred remaining item. However, we keep track of the turn
number each item was chosen to determine the next round’s
allocation.

On round t, when an agent is choosing items, ties between
equally valued items are broken by giving preference to items
that the agent received in At−1. Then, ties are broken by
giving preference to the item the agent received on the earliest
turn during the round robin protocol to find At−1.

Algorithm 4 Round Robin with Tiebreaking
input: vi for each agent ai

1: for t = 1, . . . , T do
2: At

i = ∅ for all i
3: s← 1
4: for j = 1, . . . , t do
5: Let gk be the unallocated item that maximizes

vs(gk), breaking ties by giving priority to items
where gk ∈ At−1

s and then to the item that mini-
mizes TURNt−1(gk)

6: At
s ← At

s ∪ {gk}
7: TURNt(gk)← j
8: s← (s+ 1) %n
9: end for

10: At = (At
1, A

t
2, · · · , At

n)
11: end for
12: return [A1, A2, · · · , AT]

Theorem B.1. Algorithm 4 is an uninformed EF1 algorithm
that requires at most m · n · T adjustments.

Proof. The round-robin protocol ensures the allocation each
round is EF1.

To bound the number of adjustments needed, we compare
the behavior of round-robin on round t− 1 to round-robin on
round t. Let Sj

t be the set of items remaining to be assigned
at the beginning turn j (Line 5) of round-robin on round t.

We make the following claims:

1. For all turns j, there exists an item gj such that Sj
t =

Sj
t−1 ∪ {gj}. We will refer to these items as the extra

items.
2. The number of adjustments on round t can be upper

bounded by the number of times an agent chooses gj
on turn j.

3. For each agent, the number of times they choose the ex-
tra item is at most m.

We can use induction on the turn number to show the first
claim. Initially, g1 is just the new item. Now suppose that
the claim holds for some turn j. On turn j, either the agent
selects gj or they select an item from Sj

t−1. If they select gj ,
then Sj+1

t = Sj
t−1 = Sj+1

t−1 ∪ {gj+1} where gj+1 is the item
chosen on turn j during round t − 1. If the agent selects an
item from Sj

t−1, they must select the same item they chose
on turn j during round t − 1. Then, Sj+1

t = Sj+1
t−1 ∪ {gj+1}

where gj+1 = gj .
To show the second claim, for an arbitrary round t, we

count the number of turns where an agent chooses an item
they were not allocated on round t− 1. If on turn j, the agent
does not choose gj , they will choose their favorite item from
Sj
t−1. This will be the same item they chose during turn j

on the previous round. If they choose gj , it is possible one
adjustment is needed.

To show the third claim, consider some agent i. Observe
that if agent chooses the extra gj at turn j, then we know that
vi(g

j) > maxgk∈Sj
t−1

vi(gk), as ensured by the tie-breaking
criteria. Thus, each time agent i chooses the extra item, their
maximum value for remaining items strictly decreases. This
can happen at most m times.

The second and third claim combined imply that the num-
ber of adjustments on any given round is bounded by m · n,
which implies at most m · n · T adjustments are used in to-
tal.

	Introduction
	Our Results
	Related Work

	Preliminaries
	The Online Setting
	Informed and Uninformed Algorithms

	Two Agents
	Uninformed Algorithms
	Informed Algorithms

	More Than Two Agents
	Discussion
	Proof of Theorem 4.2
	Restricted Item Values

