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ABSTRACT
In underlay coexistence, secondary users (SUs) attempt to keep

their interference to the primary users (PUs) under a threshold.

Due to the absence of cooperation from the PUs, there exists much

uncertainty at the SUs in terms of channel state information (CSI).

An effective approach to cope such uncertainty is to introduce

occasional interference threshold violation by the SUs, as long as

such occasional violation can be tolerated by the PUs. This paper

exploits this idea through a chance constrained programming (CCP)

formulation, where the knowledge of uncertain CSI is limited to

only the first and second order statistics rather than its complete

distribution information. Our main contribution is the introduction

of a novel and powerful technique, called Exact Conic Reformulation
(ECR), to reformulate the intractable chance constraints. ECR guar-

antees an equivalent reformulation for linear chance constraints

into deterministic conic constraints and does not suffer from the lim-

itations associated with the state-of-the-art approach – Bernstein

Approximation. Simulation results confirm that ECR offers signif-

icant performance improvement over Bernstein Approximation

in uncorrelated channels and a competitive solution in correlated

channels (where Bernstein Approximation is no longer applicable).

CCS CONCEPTS
•Networks→Network resources allocation;Mobile networks;
Network performance analysis; Cognitive radios;
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1 INTRODUCTION
Underlay coexistence is a key technique to improve spectrum ef-

ficiency by allowing simultaneous transmission of primary and

secondary users (PUs and SUs) on the same spectrum [15]. The

SUs must carefully control their transmission powers so that their
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interference to each PU is under a threshold. An important fea-

ture (benefit) of underlay is that it does not require any coopera-

tion (involving any hardware/software change) from the PUs to

achieve coexistence, as the burden of successful coexistence with

the PUs solely rests upon the SUs. Such feature is especially at-

tractive for incremental deployment of new secondary networks

over existing communication infrastructure, often referred to as

primary networks. Due to this benefit, underlay coexistence has

attracted many active efforts from the research community (see,

e.g., [2, 10, 21, 23, 29]).

However, such benefits pose significant challenge for the SUs.

Due to the absence of cooperation (feedback) from the PUs, accu-

rate estimation of Channel State Information (CSI) is impossible.

With such uncertainty in CSI, how to ensure the SUs limit their

interference to the PUs under a threshold is a challenging problem.

On the other hand, in many situations, we notice that occasional

violations of interference threshold are not fatal to the PUs. First, to

certain extent, the inherent channel coding is capable of recovering

original transmitted symbols in the presence of interference [7].

Second, for applications such as video streaming and audio calls,

human perception is quite tolerable to occasional errors (distor-

tions) and there are numerous techniques to mitigate their impacts

[28, 34].

Existing approaches to address CSI uncertainty can be classified

into three categories: stochastic programming, worst-case optimiza-
tion and Chance Constrained Programming (CCP). Under stochastic
programming, Random Variables (RVs) such as channel gains are as-

sumed to have known distributions. For example, in [8], the wireless

channel is assumed to have log-normal shadowing and Nakagami

small-scale fading while in [32], it is assumed to have Rayleigh

fading. However, in reality, many channels do not follow these sim-

plified models and a blind assumption of these models could lead to

misleading results (either overly optimistic or conservative). Even

if we had accurate probability distributions for the RVs, the corre-

sponding optimization problem could be extremely complicated,

depending on the structure of the distributions.

Under worst-case optimization, the uncertainties are assumed to

have some (known) upper and lower bounds and the constraints are

enforced using the worst cases to achieve robustness. For example,

in [37], the authors studied cognitive beamforming with a bounded

ellipsoid for RVs (channel gains). In [30], the authors relaxed the

interference constraint in underlay scenario to a linear constraint

by defining a maximum estimation error. It is well known that

such worst-case optimization is usually conservative with overly

pessimistic performance. Further, many channel models are either

https://doi.org/10.1145/3323679.3326505
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unbounded (e.g. Rayleigh fading) or an accurate estimation of the

bounded set is difficult.

The third approach, chance constrained programming (CCP) [6],

is a relatively new approach to address uncertainty in spectrum

sharing [22, 24, 26, 31, 33]. In contrast to stochastic programming

and worst-case optimization, CCP can be applied with any available

knowledge of the unknown RVs, such as estimated mean, covari-

ance and symmetricity, etc. To address uncertainty, CCP allows

certain constraints to be violated and employs a control parameter

called risk level to keep the violation probability below a limit. In

this way, CCP explores a unique trade-off between performance

objective and occasional constraint violations.

However, a major challenge in CCP is that chance constraints are

usually mathematically intractable. A critical step in solving CCP

is, therefore, to reformulate (substitute) the chance constraints with

deterministic constraints and by doing so, to convert the CCP into

a tractable optimization problem. The most primitive methods date

back to Chebyshev and Markov inequalities, both of which intro-

duce high relaxation errors [12, 17]. The state-of-the-art approach

to perform this substitution (see, e.g., [22, 24, 26, 31, 33]) is the so-

called Bernstein Approximation [27]. It performs such substitution

by treating each RV separately (assuming they are independent

and bounded) and solving an additional optimization problem for

each RV to obtain the parameters used in the derived deterministic

constraints. However, we find that there are a number of serious

limitations with Bernstein Approximation. First, Bernstein Approx-

imation explicitly requires that the RVs to be independent from

each other. But this assumption does not always hold as correla-

tions among uncertain RVs (e.g., CSI of sub-channels) are common

and should be considered. Second, the performance of Bernstein

Approximation depends heavily on the knowledge of the bound-

aries of uncertain RVs [27], which is hard to obtain in many cases.

Finally, due to its generic nature, Bernstein Approximation does not

explore the unique structure of linear CCP. As a consequence, its

result tends to be rather conservative, as shown in our simulation

results in Section 6.

In this paper, we study an underlay coexistence scenario where

the PUs do not offer feedback to the SUs. Our goal is to maximize

spectrum efficiency of picocells while keeping SUs’ occasional inter-

ference threshold violation within a small probability. This scenario,

in its simpler form (with one PU), was studied in [22, 31] follow-

ing the Bernstein Approximation. In this paper, we introduce a

novel technique called Exact Conic Reformulation (ECR) to address

the underlying CCP. The proposed ECR allows us to handle more

practical and general problem settings and to achieve better per-

formance when compared to Bernstein Approximation. The main

contributions of this paper are summarized as follows:

• To address channel uncertainty in underlay coexistence, we

employ CCP but only rely on the first and second order sta-

tistics of the uncertain channel gains, which can be readily

estimated and are quite accurate. By allowing occasional vi-

olation of interference threshold and keeping such violation

under a target probability, we are able to exploit an optimal

trade-off between spectrum efficiency and interference to

the PUs.

• To reformulate the intractable chance constraints, we intro-

duce ECR to offer mathematically exact conic reformulation

and overcome the key limitations in the state-of-the-art ap-

proach (Bernstein Approximation). To the best of our knowl-

edge, this is the first paper that has successfully addressed

the limitations of Bernstein Approximation when it is used

to study CCP problems in wireless networking and spectrum

sharing in particular.

• We show that our solution (predicated on ECR) achieves

higher spectrum efficiency when channel gains are indepen-

dent and Bernstein Approximation is applicable. Specifically,

our solution outperforms Bernstein Approximation by up to

60% (30% on average) higher spectrum efficiency. In the cor-

related scenario where Bernstein Approximation is no longer

applicable, our proposed approach can still guarantee the

violation probability while maximizing spectrum efficiency

for the SUs.

• Our proposed approach is able to reap the full benefits of

CCP in both general and practical settings thanks to our

novel ECR technique. Through extensive simulations, we

demonstrate the effectiveness of our approach under differ-

ent settings of interference thresholds and channel models.

We organize this paper as follows. In Section 2, we introduce the

system model and in Section 3, we formulate our problem. In Sec-

tion 4, we present the novel ECR technique for CCP. In Section 5, we

present the solution to the equivalent (reformulated) deterministic

optimization problem. In Section 6, we present simulation results.

Section 7 concludes the paper.

2 SYSTEM MODEL
Consider several picocells residing within a macrocell as shown in

Fig. 1. An example of such scenario is that each picocell is installed

as a set-up box inside a residential unit [4, 9]. Users connected with

the macro base station (BS) are called PUs while users connected

to the pico BSs are called SUs. We assume each picocell can use

only a fraction of the spectrum allocated to the macrocell. To avoid

the inter-cell interference between neighboring picocells, we as-

sume adjacent picocells use different frequency bands (as shown

in different colors of footprint in Fig. 1). This scheme is known as

"fractional frequency reuse" in the literature [5, 11, 20].

In the underlay coexistence paradigm [15], the PUs are unaware

of the presence of the SUs. The SUs take the sole responsibility of

keeping their transmissions not to disrupt the normal operation of

nearby PUs. Since the uplink problem (transmission from multiple

SUs to the pico BS in a picocell) is harder than the downlink problem

(only the pico BS in a picocell is transmitting), we focus on the

(harder) uplink problem in this paper.

To keep the interference from the SUs to the PUs under control,

each SU performs channel sensing before transmission. During

channel sensing, a SU estimates both the channel conditions (for its

own transmission
1
) as well as those of nearby active PUs based on

known signals (e.g., pilots) and channel reciprocity property [36].

Then the pico BSs will collect these CSI from the SUs through a

dedicated control channel and find optimal solution for scheduling

1
For instance, a SUmay send pilots to its connected pico BS for uplink channel training.
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Figure 1: Network topology: multiple picocells within a
macrocell.

(in spectrum and/or time) and power control. The goal is to maxi-

mize spectrum efficiency while keeping the aggregate interference

from the SUs to each nearby PU below a threshold (see Fig. 1). The

optimal solution for scheduling and power control will be sent to

the SUs by the pico BSs and then the SUs can execute their uplink

transmission based on this solution. Since neighboring picocells

operate independently on non-overlapping frequency bands, we

only need to study our problem in one picocell.

Consider one picocell (the lower portion of Fig. 1) with several

nearby PUs. To control the aggregate interference to each PU, the

CSI from the SUs to each PU is needed. Since there is no feedback

from the PUs to the SUs, the SUs can only estimate CSI to the PUs

unilaterally based on known signals from the PUs (e.g., pilot signal

to the macro BS) and channel reciprocity property. As a result,

channel gains from the SUs to the PUs, the key component for

controlling the transmission powers of the SUs, can be characterized

as RVs at best, rather than deterministic values. To differentiate

different PUs, a SU can exploit the orthogonality in pilots as well as

location techniques based on existing spectrum sensing algorithms

[13, 35].

In our setting, we assume the PUs can tolerate occasional thresh-

old violation as long as the probability of such violation is small.

For practical purpose, such occasional violation is tolerable, as

discussed in Section 1. As we shall see in the next section, such

tolerance can be formulated as chance constraints under CCP.

3 MATHEMATICAL MODELING AND
FORMULATION

We are interested in maximizing spectrum efficiency for the SUs in

a picocell while keeping their violation of interference threshold

to each nearby PU under a target small probability. Denote N as

the number of SUs in the picocell and J as the number of nearby

PUs. Suppose the transmission bandwidth in the picocell is further

divided intoM sub-channels. Following cellular terminology, we

call each sub-channel over one transmission time interval (TTI) as

a resource block (RB). Due to multipath, channel gains vary over

time and differ among different sub-channels (with perhaps some

level of correlation).

For each TTI, a scheduling algorithm needs to allocate the avail-

able RBs among the SUs for uplink transmission. A popular sched-

uling objective is to achieve long-term proportional fair (PF) among

SUs’ throughput [25]. This is equivalent to maximizing a weighted

sum of throughput in each TTI, with the weight of each SU being

updated at the beginning of each TTI based on their long-term data

rates. This is equivalent to assuming that the weights are given for

the current TTI and we need to maximize the weighted sum rate

for all SUs in the picocell.

Denote xmiB as a binary variable to indicate whether SU i will
transmit to the pico BS on RBm, i.e.,

xmiB =

{
1 if SU i will transmit to the pico BS on RBm,

0 otherwise.

(1)

Under single user Orthogonal Frequency-Division Multiple Ac-

cess (OFDMA), each RB can be assigned to at most one SU. We

have ∑
i ∈N

xmiB ≤ 1 (m ∈ M) , (2)

whereM is the set {1, 2, · · · ,M}.

Denote pmiB as the transmission power from SU i to the pico BS

on RBm. Denote Pmax

iB as the maximum power when SU i transmits

to the pico BS over all RBs. Then we have

0 ≤ pmiB ≤ xmiBP
max

iB (i ∈ N , m ∈ M), (3)

and ∑
m∈M

pmiB ≤ Pmax

iB (i ∈ N), (4)

where N = {1, 2, · · · ,N }. Constraints (4) represent the internal

power control due to the SUs’ equipment.

Assume each RB occupies the same bandwidth, which we nor-

malize to 1 unit. Denote cmiB as SU i’s normalized capacity to the

pico BS on RBm (w.r.t. normalized RB bandwidth). Then we have:

cmiB = log
2
(1 + hmiBp

m
iB ) (i ∈ N , m ∈ M), (5)

where hmiB is the overall channel gain of SU i toward the pico BS on
RBm, including both interference from the macro BS and thermal

noise at the pico BS.

Denote дmij as the channel gain from SU i to PU j on RBm and

Ij as the interference threshold for PU j (j ∈ J ). Under CCP, the

aggregate interference from the SUs to PU j is allowed to occa-

sionally violate Ij but must be below a target (small) probability.

This behavior, in its complementary form, can be formulated by

the following chance constraints:

P

{∑
i ∈N

∑
m∈M

дmij p
m
iB ≤ Ij

}
≥ 1 − ϵj (j ∈ J), (6)

where J = {1, 2, · · · , J }. P{·} denotes the probability function

and ϵj is called risk level. Note that proper power control at the
SUs is the key to meet these chance constraints. This risk level
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ϵj could vary over a wide range (e.g, 0.01 to 0.5) depending on

the application of PU j. A higher ϵj means a larger tolerance to

violation of interference threshold (and corresponding to a larger

optimization space) and hence higher spectrum efficiency.

Per our earlier discussion, in (6), channel gains дmij ’s are mod-

eled as RVs with unknown distributions. In this paper, we assume

their mean and covariance can be obtained via online estimation.

Specifically, whenever the SUs overhear the signals transmitted by

PU j, the SUs can estimate the channel condition in current TTI

based on channel reciprocity. But for those TTIs that PU j is silent,
the channel state information becomes quickly outdated. However,

the estimated mean and covariance are relatively time-invariant

and remain valid. It is reasonable to assume such statistics are up-

to-date at the SUs through continuous tracking of the mean and

covariance over time. Thus, it is more prudent and practical to use

the first and second order statistics (mean and covariance) when

modeling RVs дmij ’s for our problem.

Denotewi as the weight of SU i in current TTI. Then our problem
can be formulated as follows:

(P1) max

xmiB,p
m
iB

∑
i ∈N

∑
m∈M

wic
m
iB

s.t. RB allocations (2)

Transmission powers (3)

Internal power control (4)

Calculations of capacity (5)

External power control (6)

xmiB ∈ {0, 1},pmiB ≥ 0

Clearly, the main challenge in this optimization problem lies in

chance constraints (6). Although we have the first and second order

statistics of дmij ’s, we do not have the knowledge of their distribu-

tions.
2
For the same first and second order statistics, there are an

infinite number of corresponding distributions. Since it is impossi-

ble to enumerate all possible distributions for constraints (6), P1 is

intractable.

4 A NOVEL REFORMULATION OF CHANCE
CONSTRAINTS

In this section, we present a novel approach to perform exact refor-
mulation of (6) as second-order cones. By Exact Conic Reformulation
(ECR), we mean that the newly derived deterministic constraints

(with tractable conic formulations) are mathematically equivalent

to the original chance constraints. We show that for the worst-case

distribution, the supremum of threshold violation probability is ex-

actly the risk level ϵj , while for all other distributions, the threshold
violation probability is smaller than ϵj [3]. In addition, the derived

deterministic constraints belong to second order cones which are

guaranteed to be convex.

Since the J chance constraints in (6) are independent from each

other, we can perform ECR for each chance constraint w.r.t. PU j.

2
Even if we had knowledge of the exact distributions, it remains unclear if problem

P1 could be solved. This would heavily depend on the underlying probability density

functions.

For ease of exposition, we rewrite the j-th constraint in (6) as

P
{
gTj p > Ij

}
≤ ϵj , (7)

where superscript
T
denotes transposition. p is aMN × 1 column

vector, i.e.,

p =
[
p1
1B , · · · ,p

M
1B ,p

1

2B , · · · ,p
M
2B , · · · ,p

1

NB , · · · ,p
M
NB

]T
, (8)

which representsMN transmission powers from the SUs (over all

RBs). gj is aMN × 1 random column vector given as

gj =
[
д1
1j , · · · ,д

M
1j ,д

1

2j , · · · ,д
M
2j , · · · ,д

1

N j , · · · ,д
M
N j

]T
, (9)

which representsMN random channel gains from the SUs (over all

RBs) to PU j.
Denote gj (aMN ×1 column vector) and Rj (aMN ×MN matrix)

as the mean and covariance matrix of gj , i.e., gj ∼ (gj ,Rj). Since
constraint (7) is satisfied for gj under all distributions with gj ∼
(gj ,Rj ), we have

sup

gj∼(gj ,Rj)

P
{
gTj p > Ij

}
≤ ϵj , (10)

where "sup" is taken over all distributions for gj with mean gj and
covariance Rj .

Denote ξ j as a scalar RV defined as ξ j = gTj p − gTj p. It is easy
to see that ξ j has mean 0 and variance pT Rjp, i.e., ξ j ∼ (0, pT Rjp).
For ease of exposition, denote ϕ j as ϕ j = Ij − gTj p. With ξ j and ϕ j ,

we can rewrite (7) as following

sup

ξ j∼(0,pT Rjp)
P

{
ξ j > ϕ j

}
≤ ϵj . (11)

To perform an exact reformulation of chance constraint (11),

we need to derive a closed form expression for the supremum of

violation probability where ξ j can take any form of distribution

with mean 0 and variance pT Rjp. Then we can upper bound this

closed form expression by ϵj . Since this closed form expression has

no randomness, we have a deterministic constraint on the decision

variables in p.
To derive a closed form expression for the "sup" in (11), we need

to find the worst-case distribution of ξ j that maximizes the violation

probability P{ξ j > ϕ j }. This is not a trivial problem, as the worst-

case distribution of ξ j may take any form. As a start, we present

the following lemma to shrink the searching space of all forms of

distributions.

Lemma 1. For any distribution of ξ j (denote f (u) as its probability
density function) and a given interval [a,b],ab ≤ 0, there exists a
discrete RV that has two elements at 0 and c ∈ [a,b], c , 0 with
probabilities P0 and Pc respectively, such that3∫ b

a
f (u)du = Pc + P0 (Probability) , (12a)∫ b

a
u f (u)du = cPc (Mean) , (12b)∫ b

a
u2 f (u)du = c2Pc (Variance) . (12c)

3
Here we use the notation of a closed interval, but a or b can be infinite.



Coping Uncertainty in Coexistence via Exploitation of Interference Threshold Violation Mobihoc ’19, July 2–5, 2019, Catania, Italy

Proof Sketch. Obviously, Pc ,P0 and c can be solved based on the

three equations in (12). Specifically, c and Pc can be solved based

on (12b) and (12c). Then P0 can be obtained from (12a) and Pc . It
is easy to verify that P0 and Pc are valid probabilities (i.e. P0 ≥

0,Pc ≥ 0,P0 + Pc ≤ 1). Further, we can show that c ∈ [a,b], c , 0

based on the relation between mean cPc and variance c2Pc .

Lemma 1 states that this newly constructed discrete RV preserves

probability, mean and variance in [a,b] with no influence on other

intervals since 0 ∈ [a,b], c ∈ [a,b]. Based on Lemma 1, we are

able to explore some properties associated with the worst-case

distribution, as stated in Property 1.

Property 1. (Worst-case Distribution of ξ j ) The worst-case
distribution of ξ j has the following properties:

(1) If ϕ j < 0, then P{ξ j ≤ ϕ j } = 0,
(2) If ϕ j ≥ 0, then P{ξ j > Φj } = 0, for all Φj > ϕ j .

Proof. Our proof is based on contradictions.

(1) When ϕ j < 0, suppose ξ ′j is a worst-case distribution but

P{ξ ′j ≤ ϕ j } > 0, then the violation probability P{ξ ′j > ϕ j } =

1 − P{ξ ′j ≤ ϕ j } must be smaller than 1. However, consider the

following discrete distribution of ξ j :

P

{
ξ j =

ϕ j

2

}
=

4pT Rjp

4pT Rjp + ϕ2j
,

P

{
ξ j = −

2pT Rjp
ϕ j

}
=

ϕ2j

4pT Rjp + ϕ2j
.

(13)

Obviously, the above distribution is valid and the violation prob-

ability P{ξ j > ϕ j } = 1. It is larger than the violation probability

from ξ ′j , which contradicts the assumption that ξ ′j is the worst-

case distribution. Therefore, any worst-case distribution of ξ j has
probability 0 in interval (−∞,ϕ j ], i.e., P{ξ j ≤ ϕ j } = 0.

(2) When ϕ j ≥ 0, suppose ξ ′j is a worst-case distribution but has

an positive element at b ′ > ϕ j with probability Pb′
4
. We can con-

struct another distribution that has an element at b with probability

Pb such that

b ′ > b > ϕ j ,Pb > Pb′ . (14)

Based on Lemma 1, such distribution always exists with neces-

sary changes in interval (−∞,ϕ j ] to maintain the first and second

order statistics. Consequently, the violation probability becomes

higher, which contradicts the assumption that ξ ′j is the worst-

case distribution. Thus, the worst-case distribution of ξ j when
ϕ j ≥ 0 only has one element that is sufficiently close to ϕ j as all
of the possibilities of ξ j in interval (ϕ j ,+∞) are pushed to ϕ j , i.e.,
P{ξ j > Φj } = 0, for all Φj > ϕ j . □

Under Property 1, there may still exist many forms for the worst-

case distribution, i.e., we may have many worst case distributions.

However, these worst-case distributions all share the same closed

form expression for the supremum of violation probability. More-

over, Lemma 1 shows that for the purpose of deriving closed form

expression of the supremum in (11), we only need to consider a

discrete distribution with a small number of elements. Therefore,

we have the following result.

4
This conclusion also holds for continuous RV by discretization.

Lemma 2. A closed form expression for the supremum of violation
probability is given by:

sup

ξ j∼(0,pT Rjp)
P

{
ξ j > ϕ j

}
=


1 ϕ j < 0 ,

pT Rjp

ϕ2j + p
T Rjp

ϕ j ≥ 0 .
(15)

Proof. Consider the following two cases.

Case 1. If ϕ j < 0, the distribution in (13) already achieves the

supremum at 1, which is a trivial case.

Case 2. If ϕ j ≥ 0, based on Property 1, any worst-case distribu-

tion only has one element in interval (ϕ j ,+∞) at b approaching

ϕ j with probability Pb . In terms of the other interval (−∞,ϕ j ], it
can be characterized by two discrete elements at a < 0 and 0 with

probabilities Pa and P0 respectively based on Lemma 1. This con-

version from a worst-case distribution to a three-element discrete

distribution preserves the violation probability P{ξ j > ϕ j }, which
is calculated as

P{ξ j > ϕ j } = Pb . (16)

We can derive the closed form supremum by the following opti-

mization problem

sup

Pa,Pb ,P0,a,b
Pb

s.t. Pa + P0 + Pb = 1

aPa + bPb = 0

a2Pa + b
2Pb = pT Rjp

Pa ,P0,Pb ≥ 0,a ≤ 0,b > ϕ j

(17)

The optimization problem in (17) is easy to solve since there are

only five decision variables. The optimal objective (supremum of

violation probability) is

pT Rjp
ϕ2

j+p
T Rjp

.

Combining the above two cases, we have the results in (15).

□

We now need to ensure the closed from expression for the supre-

mum of violation probability is upper bounded by ϵj as in (11).

Based on Lemma 2, since 1 > ϵj , the case with ϕ j < 0 is infeasible.

So we only need to consider the case when ϕ j ≥ 0. That is, chance

constraint (11) can be replaced by the following two constraints.

ϕ j ≥ 0 (18a)

pT Rjp

ϕ2j + p
T Rjp

≤ ϵj (18b)

Rewrite (18b) as

1 − ϵj

ϵj
· pT Rjp ≤ ϕ2j . (19)

Taking the square root of both sides in (19) and considering (18a),

we have √
1 − ϵj

ϵj
·

√
pT Rjp ≤ ϕ j . (20)

Note that (20) has already considered the non-negativity of ϕ j
in (18a). Substituting ϕ j = Ij − gTj p into (20), we have the following

main result.
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Theorem 1. (ECR) With respect to the decision variables in p,
chance constraints (6) are equivalent to the following second order
cones √

1 − ϵj

ϵj

√
pT Rjp + gTj p ≤ Ij (j ∈ J) . (21)

This is our Exact Conic Reformulation for chance constraints (6)

where "exact" means that the supremum of violation probability

equals to ϵj . Constraints (21) are deterministic constraints since

the random interference channel gains дmij ’s are eliminated and the

mean gj and covariance matrix Rj are given constants.

Compared with state-of-the-art approach (Bernstein Approxi-

mation [22, 24, 26, 27, 31, 33]), ECR has no requirements for the

RVs in terms of their independence and boundaries. Therefore, it

is more general than Bernstein Approximation for linear chance

constraints.

Replacing (6) by (21) in P1, we have a deterministic maximization

problem stated as

(P2) max

xmiB,p
m
iB

∑
i ∈N

∑
m∈M

wic
m
iB

s.t. Constraints (2) − (5)

External power control from ECR (21)

xmiB ∈ {0, 1},pmiB ≥ 0

5 SOLVING THE DETERMINISTIC
OPTIMIZATION PROBLEM

P2 is a Mixed-Integer Non-Linear Program (MINLP), which is NP-

hard in general. The main difficulties reside in the two nonlinear

terms in constraints (5) and (21). In this section, we show how to

linearlize them.

5.1 Logarithm Functions
In (5), we have logarithm functions in calculations of capacity. We

propose to employ one convex hull to relax each logarithm term

log
2
(1 + hmiBp

m
iB ) [18]. Since we have a maximization problem, we

only need to consider the series of linear constraints to upper bound

the convex hull.

For each log term log
2
(1+hmiBp

m
iB ), we break the interval for p

m
iB

(i.e., [0, Pmax

iB ]) into K equal-length sub-intervals, each with length

Pmax

iB
K . Then we can upper bound the log function log

2
(1 + hmiBp

m
iB )

with K + 1 linear functions as follows:

cmiB ≤
1

ln 2

·

(
KhmiBp

m
iB

K + khmiBP
max

iB
+ ln(1 +

khmiBP
max

iB
K

) −
khmiBP

max

iB
K + khmiBP

max

iB

)
(k = 0, 1, · · · ,K , i ∈ N ,m ∈ M)

(22)

Constraints (22) are linear with cmiB and pmiB as variables. Clearly,

the larger the K , the tighter the linear relaxation. In our numerical

results in Section 6, we set K = 50 and the relaxation errors are

already smaller than 0.1%.

5.2 Second Order Cones
Constraints (21) from ECR are second order cones. Since Rj is the
covariance matrix of gj , it is guaranteed to be positive semi-definite

and symmetric. To relax the non-linear terms pT Rjp, we introduce
a constant matrix Vj as the square root of Rj , i.e., Rj = VTj Vj . Vj
can easily be calculated based on Cholesky decomposition.

With Vj , we can rewrite constraints (21) as√
1 − ϵj

ϵj

√
(Vjp)T (Vjp) + gTj p ≤ Ij (j ∈ J) . (23)

For any feasible p, denote r j (an integer) as an upper bound on

the number of non-zero elements in the column vector Vjp. Since
p is an MN × 1 vector, the maximum value for r j is MN . For a

tighter relaxation, we propose to set r j (≤ MN ) based on the sparse

structures of Vj and p in our problem.

Recall p (i.e.,
[
p1
1B , · · · ,p

M
1B ,p

1

2B , · · · ,p
M
2B , · · · ,p

1

NB , · · · ,p
M
NB

]T
)

has at mostM non-zero elements because each RB can only be al-

located to at most one SU. Further, Vj , as the square root of the
covariance matrix Rj , is an MN ×MN matrix. Since the channel

gains from different SUs to PU j are usually independent, Vj is a
block diagonal matrix with the i-th block (denoted as Vi j ) corre-

sponding to SU i (i = 1, · · · ,N ), i.e.,

Vj =


V1j

V2j
· · ·

VN j

 . (24)

Moreover, for SU i , the correlation between two RBs decreases

as they are further apart. Define Lj as the maximum subcarrier

spacing that has correlations, meaning that each RB is correlated

with at most 2Lj neighboring RBs. Then, each blockVi j is aM ×M
band matrix [16] that has the following form:

Vi j =
v11i j · · · v

1(Lj+1)
i j

v21i j v22i j · · · v
2(Lj+2)
i j

· · · · · · · · · · · · · · ·

v
M (M−Lj )
i j · · · vMM

ij


.

(25)

Based on the sparsity of Vj and p, we can set r j as the maximum

non-zero elements in Vjp before solving p. Specifically, we consider
two cases to calculate r j :

(i) When M ≥ 2Lj + 1, denote rmj as the number of non-zero

elements in Vjp generated by pmiB if pmiB > 0. rmj is calculated (based

onm) by

rmj =


m + Lj ifm ≤ Lj

(2Lj + 1) if Lj + 1 ≤ m ≤ M − Lj

M −m + Lj + 1 ifm ≥ M − Lj + 1

. (26)

The three cases in (26) corresponds to the RBs in the left, middle

and right part of the picocell’s spectrum.

Since only one transmission power pmiB in {pm
1B ,p

m
2B , · · · ,p

m
NB }

(the transmission powers on RBm for all SUs) is non-zero, we can
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set r j as

r j =
∑

m∈M

rmj = M(2Lj + 1) − Lj (Lj + 1) (27)

.

(ii) WhenM < 2Lj + 1, r j can be set to r j = min{MN ,M(2Lj +
1) − Lj (Lj + 1)} sinceMN is always an upper bound of r j .

Combining both case, we set r j as

r j = min{MN ,M(2Lj + 1) − Lj (Lj + 1)} (j ∈ J) . (28)

Denote | |Vjp| |∞ as the infinity norm of Vjp. Based on the fact

that

√
(Vjp)T (Vjp) ≤

√
r j | |Vjp| |∞, we have the following relax-

ation of constraints (23):√
1 − ϵj

ϵj

√
r j | |Vjp| |∞ + gTj p ≤ Ij (j ∈ J) . (29)

Constraints (29) are linear with the decision variables in p.
With the above linear relaxation, we have the following relaxed

optimization problem.

(P3) max

xmiB,p
m
iB

∑
i ∈N

∑
m∈M

wic
m
iB

s.t. Constraints (2) − (4)

Linearly relaxed capacity constraints (22)

Linearly relaxed external power control (29)

xmiB ∈ {0, 1},pmiB ≥ 0

P3 belongs to Mixed Integer Linear Programming (MILP), which

can be solved by commercial solvers such as CPLEX. For our prob-

lem size, the solution can be obtained on the order of second. For

real time implementation of MILP, one can employ a recent break-

through in real-time optimization based on GPU platform [19].

6 SIMULATION RESULTS
In this section, we conduct simulations to evaluate our proposed

solution predicated on ECR. For performance evaluation, we mainly

focus on spectrum efficiency (our objective value) and threshold

violation probability. Our numerical study covers general and prac-

tical settings in consideration of different risk levels, interference

thresholds and channel models.

6.1 Simulation Settings
For all topologies in the simulation study, we set the distance be-

tween the macro BS and the pico BS to 400 meters. The radius of

the picocell is set to 40 meters. The transmission power of macro

BS on each RB is set to 46 dBm and the thermal noise on each RB is

assumed to be 1 × 10
−7

mW. We assume each SU has a maximum

transmission power of 20 dBm across all RBs.

The channels are generated based on ITU path loss model and

small-scale fading. We consider two types of path loss models [1]

as following:

(i) The path loss for the macro BS follows the ITU free-space

path loss model as:

PL(dB) = 128.1 + 37.6 × log
10
(dmacro) , (30)

where dmacro is the distance from the macro BS to the pico BS (in

kilometers).

(ii) The path loss from the SUs to nearby PUs and the pico BS

follows the ITU indoor path loss model given as

PL(dB) = 38 + 30 × log
10
(dpico) , (31)

where dpico is the distance from a SU to a nearby PU or the pico BS

(in m).

For small-scale fading, we consider Rayleigh, Rician, and Nak-

agami fadings as specified per discussion below.

6.2 The Case of Independent Channels with
Rayleigh Fading

We consider two types of network topology where the SUs are

randomly distributed in the picocell or closer to the PUs (a stressful

scenario). The channels are generated independently with Rayleigh

fading as the small-scale fading.

For comparison, we also include the results from Bernstein Ap-

proximation and worst-case optimization in the same figure. Worse-

case optimization uses the upper bounds of channel gains to remove

uncertainty and consequently the chance constraints (6) becomes

deterministic linear constraints. As for Bernstein Approximation,

since our channel model is unbounded, we employ the same trun-

cation method proposed in [22, 31] when the channel is Rayleigh

fading. Then the reformulated MINLP is solved directly by CPLEX

without any further relaxation.

In each specific topology, we perform 200 simulation runs and

the results presented in this section are the average objective val-

ues for P1 based on the feasible solution obtained from its relaxed

problem P3. For each simulation, we generate 10000 samples of

the channel gains from each SU to each PU. The first and second

order statistics from the 10000 samples are used in our solution.

The 10000 samples are also used when calculating the actual thresh-

old violation probability after the solution for each simulation is

obtained. All of the optimization problems are solved by CPLEX

using Branch & Cut for mixed-integer solution and the relative gap

is less than 1%.

6.2.1 Randomly distributed SUs inside the picocell. We test two

settings with one PU and three PUs separately. Six SUs are ran-

domly distributed in the picocell. Assuming the pico BS is at the

origin, the coordinates of SUs are (−10.67,−19.01), (32.47,−11.77),

(−0.23, 8.90), (12.04,−5.03), (28.89,−10.00) and (−22.66, 5.34). The

corresponding weights of SUs are 0.22, 0.09, 0.09, 0.23, 0.19 and 0.18.

The coordinates and interference threshold Ij for each PU are given

per discussion below. The number of RBs is set to 12 and remains

the same for the whole simulation study.

(i) The setting with one PU. We first consider the case with one

PU located at (50,0) with interference threshold I = 3 × 10
−7

mW.

Fig. 2 shows the performance of our solution as a function of risk

level ϵ and interference threshold I . In Fig. 2(a), we find that the

objective value of our solution monotonically increases with the

risk level ϵ . In particular, we achieve 2.92 bps/Hz with a risk level

of ϵ = 0.01 and 5.09 bps/Hz with ϵ = 0.5.
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Figure 2: Performance of our solution as a function of risk level ϵ and interference threshold I with randomly distributed SUs

In Fig. 2(a), the objective value of worst-case optimization stays

the same since it does not involve any risk level. Clearly, the per-

formance of worst-case optimization is overly pessimistic due to

zero tolerance of interference threshold violation.

The performance of our solution against Bernstein Approxima-

tion is shown in both Fig. 2(a) and Fig. 2(b). In particular, in Fig. 2(a),

with a small risk level ϵ = 0.01 (or 1%), the performance of Bern-

stein Approximation drops to 2.20 bps/Hz (almost the same with

the one from worst-case optimization) while our solution achieves

2.92 bps/Hz. In Fig. 2(b), we plot the ratio of the objective value

from our proposed solution over Bernstein Approximation. Our so-

lution can achieve between 15% to 42% improvement over Bernstein

Approximation.

Fig. 2(c) offers an in depth study of our solution and Bernstein

Approximation in terms of actual threshold violation probability

(i.e., percentage of samples where the interference threshold is ac-

tually violated). As shown in Fig. 2(c), the actual threshold violation

probability from Bernstein Approximation stays below 0.02 even

though the risk level is 0.5, which is unnecessarily conservative

and lose significant benefits of CCP. In comparison, our solution

violates the interference threshold with probability 0.14. Thus, our

solution can better achieve the desired benefits while keeping the

violation probability within the risk level.

Here the gap between actual threshold violation probability and

risk level ϵ is because the channel model (ITU path loss and Rayleigh

fading) is not the worst-case distribution since it does not have the

properties in Property 1. Based on the discussion in Section 4, the

violation probability does not achieve the supremum and conse-

quently, a gap exists between the actual threshold violation proba-

bility and the risk level ϵ .
We also alter the interference threshold I from 1×10−7 mW to 5×

10
−7

mWwhile keeping the risk level ϵ = 0.1. The results are shown

in Fig. 2(d). As expected, the achievable objectives under all three

solutions increase with higher interference threshold I . But our
solution remains the best among three. The relative improvement

from our our solution over Bernstein is from 13% to 50%. We omit

the detailed discussion in this case study since the results are similar.

(ii) The setting with three PUs We test the setting with three PUs,

located at (50, 0), (−45, 5) and (−25,−35). In general, we can assign

each PU with different interference thresholds Ij and different risk

levels ϵj . Without loss of generality, we choose the interference

thresholds for 3 PUs as 3×10
−7

mW, 4×10
−7

mW and 2×10
−7

mW
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Figure 3: Performance of our solution as a function of risk
level ϵ with three PUs

respectively. The risk levels ϵj of three PUs are the same ranging

from 0.01 to 0.5. This configuration is sufficient enough to validate

our proposed solution. The results are summarized in Fig. 3.

As is shown in Fig. 3, our solution outperforms the one with Bern-

stein Approximation with up to 30% improvement (when ϵ = 0.05).

Our solution achieves 4.3 bps/Hz while the one with Bernstein

Approximation only obtains 3.5 bps/Hz when ϵ = 0.5. We also note

that the objective value is less than that of single PU scenario in

Fig. 2(a). This is reasonable since the intersection of three second

order cones inevitably shrinks the optimization space. Similar re-

sults with Fig. 2 (actual threshold violation probability and objective

value with different thresholds Ij ) are obtained under this setting

so we omit these results.

6.2.2 Stressful scenario when SUs are closer to the PU. To show

the robustness of our solution and the conservativeness of Bernstein

Approximation, we generate a more stressful network topology

where all the SUs in the picocell are closer to the PU. The coordi-

nates of six SUs are (20.79,−21.49), (17.86,−24.49), (32.16, 14.79),

(30.65, 5.08), (24.90,−15.41) and (34.21,−5.52). Their correspond-

ing weights are 0.19, 0.13, 0.26, 0.12, 0.20 and 0.10. We consider one

PU located at (50, 0) with interference threshold I = 3 × 10
−7

mW.

Under this circumstance, the channel gains from the SUs to the

PU are larger and thus strict power control on the SUs should be

exercised. Fig. 4 shows the results under this circumstance.

Since the SUs are closer to the PU, they must further lower their

transmission powers and consequently, the spectrum efficiency

is lower compared with that from randomly distributed SUs. In
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Figure 4: Performance of our solution as a function of risk
level ϵ in stressful scenario
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Figure 5: Performance of our solution as a function of risk
level ϵ with different channel models

Fig. 4(a), we find that Bernstein Approximation has even lower

spectrum efficiency compared with worst-case optimization when

ϵ = 0.01 due to its conservativeness. On the contrary, our solu-

tion obtains the highest spectrum efficiency for all risk levels. In

fact, our solution has 60% improvement compared with Bernstein

Approximation when ϵ is 0.05 as shown in Fig. 4(b).

6.3 The Case of Independent Channels with
Rician Fading and Nakagami Fading

To show that our solution is applicable for all channel distributions,

we test our solution with other wireless channel models using the

topology in Section 6.2.1 with one PU located at (50, 0). We employ

the method described in Section 6.2 and our solution only requires

the knowledge of mean and covariance regardless of the channel

distributions. To be specific, we employ the small-scale fading from

the SUs to the PU with Nakagami fading and Rician fading in

comparison with Rayleigh fading described above. The channels

from the SUs to the pico BS are still based on Rayleigh fading.

Since the channel models are unbounded and no truncation method

for Bernstein Approximation regarding these channel models was

proposed, we will only focus on our solution. The results are shown

in Fig. 5.

To understand the results in Fig. 5, we need to back up some

knowledge of wireless channel models. Nakagami fading is a gen-

eral model for wireless channel and employs a parameter called

"Nakagami-m" to adjust the seriousness of fading [14]. Both Rayleigh
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Figure 6: Performance of our solution as a function of risk
level ϵ in correlated channels

fading and Rician fading can be characterized as special cases of

Nakagami fading and we can calculated the "Nakagami-m" parame-

ter accordingly. The six channel models we employed in Fig. 5 have

the Nakagami-m parameters as 0.75, 2, 4, 2.78, 5.76, 1. It is shown

in Fig. 5 that a smaller Nakagami-m leads to a lower spectrum effi-

ciency even though the channels from the SUs to the pico BS are the

same. This can be explained from the reformulated constraints (21)

from ECR. Given the same mean, a small "Nakagami-m" generates a

higher covariance and consequently we have a smaller optimization

space that leads to a worse performance.

It is clearly verified in Fig 5(b) that our solution meets the thresh-

old violation requirement (smaller than risk level ϵ) in all of the sim-

ulated channel models and thus our solution is applicable though

we don’t have the exact distribution knowledge. Moreover, we see

the gap between risk level ϵ and actual threshold violation still

exists because none of the tested channel models is a worst-case

distribution. All of these results are consistent with our discussion

of ECR in Section 4.

6.4 The Case of Correlated Channels with
Rayleigh Fading

Since Bernstein Approximation explicitly requires independent

channels and is no longer applicable under correlated channels, we

will only show the results from our solution.

The topology and number of RBs are the same as those from

Section 6.3. The channels are based on ITU pass loss model and

Rayleigh fading and we also perform 200 simulation runs using

the same method in Section 6.2. We consider both low correlation

and high correlation settings. For the setting with low correlation,

the correlation coefficient between adjacent RBs is set to 0.5 (i.e.,

L = 1, r = 34). For the setting with high correlation case, the

correlation coefficient among all RBs from the same SU is set to 0.5

(i.e., L = 11, r = 72). We set the interference threshold I = 3 × 10
−7

mW. Our results are depicted in Fig. 6.

As shown in Fig. 6(a), for the same risk level, when correlation

increases, the performance of our objective (spectrum efficiency) de-

creases. Fig. 6(b) shows the actual threshold violation probability as

a function of risk level ϵ . Here, we see that when the channels have

high correlation, our solution tends to be conservative with lower

actual threshold violation probability. This is because the original

optimization space is smaller and our chosen of r j contributes to
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more relaxation errors as well. To the best of our knowledge, our

solution to CCP is the first work that shows results with correlated

channels in underlay coexistence.

7 CONCLUSIONS
In this paper, we studied underlay coexistence where occasional vi-

olation of interference threshold by SUs is allowed. We formulated

the problem as a CCP and use a risk level to control the threshold

violation probability. Our formulation only requires the first and

second order statistics of the uncertain channel gains. For the CCP

problem, we introduce a novel technique called Exact Conic Refor-
mulation (ECR) that transforms the intractable chance constraints

into equivalent second order cones. We show that the proposed

ECR overcomes the limitations of the state-of-the-art Bernstein Ap-

proximation in terms of conservative performance and assumptions

for random variables. Through extensive performance evaluation,

we show that: (i) for uncorrelated channels, our proposed solu-

tion outperforms Bernstein Approximation by up-to 60 % (30% on

average) in spectrum efficiency; (ii) for correlated channels, our

proposed solution offers a competitive solution while Bernstein

Approximation is no longer applicable.
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