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ABSTRACT

In underlay coexistence, secondary users (SUs) attempt to keep
their interference to the primary users (PUs) under a threshold.
Due to the absence of cooperation from the PUs, there exists much
uncertainty at the SUs in terms of channel state information (CSI).
An effective approach to cope such uncertainty is to introduce
occasional interference threshold violation by the SUs, as long as
such occasional violation can be tolerated by the PUs. This paper
exploits this idea through a chance constrained programming (CCP)
formulation, where the knowledge of uncertain CSI is limited to
only the first and second order statistics rather than its complete
distribution information. Our main contribution is the introduction
of a novel and powerful technique, called Exact Conic Reformulation
(ECR), to reformulate the intractable chance constraints. ECR guar-
antees an equivalent reformulation for linear chance constraints
into deterministic conic constraints and does not suffer from the lim-
itations associated with the state-of-the-art approach — Bernstein
Approximation. Simulation results confirm that ECR offers signif-
icant performance improvement over Bernstein Approximation
in uncorrelated channels and a competitive solution in correlated
channels (where Bernstein Approximation is no longer applicable).
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1 INTRODUCTION

Underlay coexistence is a key technique to improve spectrum ef-
ficiency by allowing simultaneous transmission of primary and
secondary users (PUs and SUs) on the same spectrum [15]. The
SUs must carefully control their transmission powers so that their
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interference to each PU is under a threshold. An important fea-
ture (benefit) of underlay is that it does not require any coopera-
tion (involving any hardware/software change) from the PUs to
achieve coexistence, as the burden of successful coexistence with
the PUs solely rests upon the SUs. Such feature is especially at-
tractive for incremental deployment of new secondary networks
over existing communication infrastructure, often referred to as
primary networks. Due to this benefit, underlay coexistence has
attracted many active efforts from the research community (see,
e.g. [2, 10, 21, 23, 29)).

However, such benefits pose significant challenge for the SUs.
Due to the absence of cooperation (feedback) from the PUs, accu-
rate estimation of Channel State Information (CSI) is impossible.
With such uncertainty in CSI, how to ensure the SUs limit their
interference to the PUs under a threshold is a challenging problem.
On the other hand, in many situations, we notice that occasional
violations of interference threshold are not fatal to the PUs. First, to
certain extent, the inherent channel coding is capable of recovering
original transmitted symbols in the presence of interference [7].
Second, for applications such as video streaming and audio calls,
human perception is quite tolerable to occasional errors (distor-
tions) and there are numerous techniques to mitigate their impacts
[28, 34].

Existing approaches to address CSI uncertainty can be classified
into three categories: stochastic programming, worst-case optimiza-
tion and Chance Constrained Programming (CCP). Under stochastic
programming, Random Variables (RVs) such as channel gains are as-
sumed to have known distributions. For example, in [8], the wireless
channel is assumed to have log-normal shadowing and Nakagami
small-scale fading while in [32], it is assumed to have Rayleigh
fading. However, in reality, many channels do not follow these sim-
plified models and a blind assumption of these models could lead to
misleading results (either overly optimistic or conservative). Even
if we had accurate probability distributions for the RVs, the corre-
sponding optimization problem could be extremely complicated,
depending on the structure of the distributions.

Under worst-case optimization, the uncertainties are assumed to
have some (known) upper and lower bounds and the constraints are
enforced using the worst cases to achieve robustness. For example,
in [37], the authors studied cognitive beamforming with a bounded
ellipsoid for RVs (channel gains). In [30], the authors relaxed the
interference constraint in underlay scenario to a linear constraint
by defining a maximum estimation error. It is well known that
such worst-case optimization is usually conservative with overly
pessimistic performance. Further, many channel models are either
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unbounded (e.g. Rayleigh fading) or an accurate estimation of the
bounded set is difficult.

The third approach, chance constrained programming (CCP) [6],
is a relatively new approach to address uncertainty in spectrum
sharing [22, 24, 26, 31, 33]. In contrast to stochastic programming
and worst-case optimization, CCP can be applied with any available
knowledge of the unknown RVs, such as estimated mean, covari-
ance and symmetricity, etc. To address uncertainty, CCP allows
certain constraints to be violated and employs a control parameter
called risk level to keep the violation probability below a limit. In
this way, CCP explores a unique trade-off between performance
objective and occasional constraint violations.

However, a major challenge in CCP is that chance constraints are
usually mathematically intractable. A critical step in solving CCP
is, therefore, to reformulate (substitute) the chance constraints with
deterministic constraints and by doing so, to convert the CCP into
a tractable optimization problem. The most primitive methods date
back to Chebyshev and Markov inequalities, both of which intro-
duce high relaxation errors [12, 17]. The state-of-the-art approach
to perform this substitution (see, e.g., [22, 24, 26, 31, 33]) is the so-
called Bernstein Approximation [27]. It performs such substitution
by treating each RV separately (assuming they are independent
and bounded) and solving an additional optimization problem for
each RV to obtain the parameters used in the derived deterministic
constraints. However, we find that there are a number of serious
limitations with Bernstein Approximation. First, Bernstein Approx-
imation explicitly requires that the RVs to be independent from
each other. But this assumption does not always hold as correla-
tions among uncertain RVs (e.g., CSI of sub-channels) are common
and should be considered. Second, the performance of Bernstein
Approximation depends heavily on the knowledge of the bound-
aries of uncertain RVs [27], which is hard to obtain in many cases.
Finally, due to its generic nature, Bernstein Approximation does not
explore the unique structure of linear CCP. As a consequence, its
result tends to be rather conservative, as shown in our simulation
results in Section 6.

In this paper, we study an underlay coexistence scenario where
the PUs do not offer feedback to the SUs. Our goal is to maximize
spectrum efficiency of picocells while keeping SUs’ occasional inter-
ference threshold violation within a small probability. This scenario,
in its simpler form (with one PU), was studied in [22, 31] follow-
ing the Bernstein Approximation. In this paper, we introduce a
novel technique called Exact Conic Reformulation (ECR) to address
the underlying CCP. The proposed ECR allows us to handle more
practical and general problem settings and to achieve better per-
formance when compared to Bernstein Approximation. The main
contributions of this paper are summarized as follows:

o To address channel uncertainty in underlay coexistence, we
employ CCP but only rely on the first and second order sta-
tistics of the uncertain channel gains, which can be readily
estimated and are quite accurate. By allowing occasional vi-
olation of interference threshold and keeping such violation
under a target probability, we are able to exploit an optimal
trade-off between spectrum efficiency and interference to
the PUs.
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o To reformulate the intractable chance constraints, we intro-
duce ECR to offer mathematically exact conic reformulation
and overcome the key limitations in the state-of-the-art ap-
proach (Bernstein Approximation). To the best of our knowl-
edge, this is the first paper that has successfully addressed
the limitations of Bernstein Approximation when it is used
to study CCP problems in wireless networking and spectrum
sharing in particular.

e We show that our solution (predicated on ECR) achieves
higher spectrum efficiency when channel gains are indepen-
dent and Bernstein Approximation is applicable. Specifically,
our solution outperforms Bernstein Approximation by up to
60% (30% on average) higher spectrum efficiency. In the cor-
related scenario where Bernstein Approximation is no longer
applicable, our proposed approach can still guarantee the
violation probability while maximizing spectrum efficiency
for the SUs.

e Our proposed approach is able to reap the full benefits of
CCP in both general and practical settings thanks to our
novel ECR technique. Through extensive simulations, we
demonstrate the effectiveness of our approach under differ-
ent settings of interference thresholds and channel models.

We organize this paper as follows. In Section 2, we introduce the
system model and in Section 3, we formulate our problem. In Sec-
tion 4, we present the novel ECR technique for CCP. In Section 5, we
present the solution to the equivalent (reformulated) deterministic
optimization problem. In Section 6, we present simulation results.
Section 7 concludes the paper.

2 SYSTEM MODEL

Consider several picocells residing within a macrocell as shown in
Fig. 1. An example of such scenario is that each picocell is installed
as a set-up box inside a residential unit [4, 9]. Users connected with
the macro base station (BS) are called PUs while users connected
to the pico BSs are called SUs. We assume each picocell can use
only a fraction of the spectrum allocated to the macrocell. To avoid
the inter-cell interference between neighboring picocells, we as-
sume adjacent picocells use different frequency bands (as shown
in different colors of footprint in Fig. 1). This scheme is known as
"fractional frequency reuse" in the literature [5, 11, 20].

In the underlay coexistence paradigm [15], the PUs are unaware
of the presence of the SUs. The SUs take the sole responsibility of
keeping their transmissions not to disrupt the normal operation of
nearby PUs. Since the uplink problem (transmission from multiple
SUs to the pico BS in a picocell) is harder than the downlink problem
(only the pico BS in a picocell is transmitting), we focus on the
(harder) uplink problem in this paper.

To keep the interference from the SUs to the PUs under control,
each SU performs channel sensing before transmission. During
channel sensing, a SU estimates both the channel conditions (for its
own transmission') as well as those of nearby active PUs based on
known signals (e.g., pilots) and channel reciprocity property [36].
Then the pico BSs will collect these CSI from the SUs through a
dedicated control channel and find optimal solution for scheduling

IFor instance, a SU may send pilots to its connected pico BS for uplink channel training.
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Figure 1: Network topology: multiple picocells within a
macrocell.

(in spectrum and/or time) and power control. The goal is to maxi-
mize spectrum efficiency while keeping the aggregate interference
from the SUs to each nearby PU below a threshold (see Fig. 1). The
optimal solution for scheduling and power control will be sent to
the SUs by the pico BSs and then the SUs can execute their uplink
transmission based on this solution. Since neighboring picocells
operate independently on non-overlapping frequency bands, we
only need to study our problem in one picocell.

Consider one picocell (the lower portion of Fig. 1) with several
nearby PUs. To control the aggregate interference to each PU, the
CSI from the SUs to each PU is needed. Since there is no feedback
from the PUs to the SUs, the SUs can only estimate CSI to the PUs
unilaterally based on known signals from the PUs (e.g., pilot signal
to the macro BS) and channel reciprocity property. As a result,
channel gains from the SUs to the PUs, the key component for
controlling the transmission powers of the SUs, can be characterized
as RVs at best, rather than deterministic values. To differentiate
different PUs, a SU can exploit the orthogonality in pilots as well as
location techniques based on existing spectrum sensing algorithms
[13, 35].

In our setting, we assume the PUs can tolerate occasional thresh-
old violation as long as the probability of such violation is small.
For practical purpose, such occasional violation is tolerable, as
discussed in Section 1. As we shall see in the next section, such
tolerance can be formulated as chance constraints under CCP.

3 MATHEMATICAL MODELING AND
FORMULATION
We are interested in maximizing spectrum efficiency for the SUs in

a picocell while keeping their violation of interference threshold
to each nearby PU under a target small probability. Denote N as
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the number of SUs in the picocell and J as the number of nearby
PUs. Suppose the transmission bandwidth in the picocell is further
divided into M sub-channels. Following cellular terminology, we
call each sub-channel over one transmission time interval (TTI) as
a resource block (RB). Due to multipath, channel gains vary over
time and differ among different sub-channels (with perhaps some
level of correlation).

For each TTI, a scheduling algorithm needs to allocate the avail-
able RBs among the SUs for uplink transmission. A popular sched-
uling objective is to achieve long-term proportional fair (PF) among
SUs’ throughput [25]. This is equivalent to maximizing a weighted
sum of throughput in each TTI, with the weight of each SU being
updated at the beginning of each TTI based on their long-term data
rates. This is equivalent to assuming that the weights are given for
the current TTI and we need to maximize the weighted sum rate
for all SUs in the picocell.

Denote x'™ as a binary variable to indicate whether SU i will

iB
transmit to the pico BS on RB m, i.e.,

m 1 if SU i will transmit to the pico BS on RB m,
Xip = {0

Under single user Orthogonal Frequency-Division Multiple Ac-
cess (OFDMA), each RB can be assigned to at most one SU. We

have
Z xp <1
ieN
where M is the set {1,2,--- , M}.
Denote p!7, as the transmission power from SU i to the pico BS
on RB m. Denote P73#* as the maximum power when SU i transmits
to the pico BS over all RBs. Then we have

(ieN, meM), (3)

1)

otherwise.

(me M), 2)

m m pmax
0 <pip < x;pPip

and
D1 P < PIX (ieN), )
meM
where N = {1,2,---, N}. Constraints (4) represent the internal
power control due to the SUs’ equipment.
Assume each RB occupies the same bandwidth, which we nor-
malize to 1 unit. Denote ¢} as SU i’s normalized capacity to the
pico BS on RB m (w.r.t. normalized RB bandwidth). Then we have:

ciy = log, (1 + hiLplE) ieN, meM), (5)
m

where h7 is the overall channel gain of SU i toward the pico BS on
RB m, including both interference from the macro BS and thermal
noise at the pico BS.

Denote 91";‘1 as the channel gain from SU i to PU j on RB m and
I; as the interference threshold for PU j (j € 7). Under CCP, the
aggregate interference from the SUs to PU j is allowed to occa-
sionally violate I; but must be below a target (small) probability.
This behavior, in its complementary form, can be formulated by
the following chance constraints:

P{ZZgQ}’pQ’éSIj}Zl—ej Ged), (6

ieNmeM

where J = {1,2,---,]J}. P{-} denotes the probability function
and ¢; is called risk level. Note that proper power control at the
SUs is the key to meet these chance constraints. This risk level
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€j could vary over a wide range (e.g, 0.01 to 0.5) depending on
the application of PU j. A higher €; means a larger tolerance to
violation of interference threshold (and corresponding to a larger
optimization space) and hence higher spectrum efficiency.

Per our earlier discussion, in (6), channel gains g;;.l’s are mod-
eled as RVs with unknown distributions. In this paper, we assume
their mean and covariance can be obtained via online estimation.
Specifically, whenever the SUs overhear the signals transmitted by
PU j, the SUs can estimate the channel condition in current TTI
based on channel reciprocity. But for those TTIs that PU j is silent,
the channel state information becomes quickly outdated. However,
the estimated mean and covariance are relatively time-invariant
and remain valid. It is reasonable to assume such statistics are up-
to-date at the SUs through continuous tracking of the mean and
covariance over time. Thus, it is more prudent and practical to use
the first and second order statistics (mean and covariance) when
modeling RVs gg."s for our problem.

Denote w; as the weight of SU i in current TTIL Then our problem
can be formulated as follows:

(P1)  max Z Z wicl

*iBPiB N meM
s.t. RB allocations (2)
Transmission powers (3)
Internal power control (4)
Calculations of capacity (5)
External power control (6)

x]g €{0,1},p/p 2 0

Clearly, the main challenge in this optimization problem lies in
chance constraints (6). Although we have the first and second order
statistics of gg?’s, we do not have the knowledge of their distribu-

tions.? For the same first and second order statistics, there are an
infinite number of corresponding distributions. Since it is impossi-
ble to enumerate all possible distributions for constraints (6), P1 is
intractable.

4 A NOVEL REFORMULATION OF CHANCE
CONSTRAINTS

In this section, we present a novel approach to perform exact refor-
mulation of (6) as second-order cones. By Exact Conic Reformulation
(ECR), we mean that the newly derived deterministic constraints
(with tractable conic formulations) are mathematically equivalent
to the original chance constraints. We show that for the worst-case
distribution, the supremum of threshold violation probability is ex-
actly the risk level €, while for all other distributions, the threshold
violation probability is smaller than €; [3]. In addition, the derived
deterministic constraints belong to second order cones which are
guaranteed to be convex.

Since the J chance constraints in (6) are independent from each
other, we can perform ECR for each chance constraint w.r.t. PU j.

2Even if we had knowledge of the exact distributions, it remains unclear if problem
P1 could be solved. This would heavily depend on the underlying probability density
functions.
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For ease of exposition, we rewrite the j-th constraint in (6) as
T
P{gjp>1j}S6j, (7)

where superscript T denotes transposition. p is a MN X 1 column
vector, i.e.,

— [pl M 1 M 1 M 1T
P=[p1p Vg Pope Py P PN o (8)
which represents MN transmission powers from the SUs (over all
RBs). gj is a MN x 1 random column vector given as

T
1 M 1 M 1 M
g = [ob ot ottt o)

which represents MN random channel gains from the SUs (over all
RBs) to PU j.

Denote EJ- (a MN x1 column vector) and R; (a MN X MN matrix)
as the mean and covariance matrix of gj, i.e., gj ~ (EJ-, Rj). Since
constraint (7) is satisfied for g; under all distributions with g; ~
(Ej, R;), we have

sup P{ngp > Ij} <€, (10)
gj”@ij.i)
where "sup" is taken over all distributions for g; with mean g; and
covariance R;.

Denote & as a scalar RV defined as &; = ngp - ngp It is easy
to see that ; has mean 0 and variance pTij, ie, & ~ (0, pTij).
For ease of exposition, denote ¢; as ¢; = I; — ngp With &; and ¢;,
we can rewrite (7) as following

sup  P{&>¢j} <e. (11)
&~(0,p"R;p)

To perform an exact reformulation of chance constraint (11),
we need to derive a closed form expression for the supremum of
violation probability where £; can take any form of distribution
with mean 0 and variance pTij. Then we can upper bound this
closed form expression by ;. Since this closed form expression has
no randomness, we have a deterministic constraint on the decision
variables in p.

To derive a closed form expression for the "sup” in (11), we need
to find the worst-case distribution of ¢; that maximizes the violation
probability P{£; > ¢;}. This is not a trivial problem, as the worst-
case distribution of ; may take any form. As a start, we present
the following lemma to shrink the searching space of all forms of
distributions.

LEMMA 1. For any distribution of &; (denote f(u) as its probability
density function) and a given interval [a, b],ab < 0, there exists a
discrete RV that has two elements at 0 and ¢ € [a,b],c # 0 with
probabilities Py and P. respectively, such that®

b

/ fwdu =P + Py (Probability) , (12a)
b

/ uf(u)du = cP. (Mean) , (12b)
b

/ u? f(u)du = %P, (Variance) . (12¢)

3Here we use the notation of a closed interval, but a or b can be infinite.
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Proof Sketch. Obviously, P¢, Py and ¢ can be solved based on the
three equations in (12). Specifically, c and P, can be solved based
on (12b) and (12c). Then Py can be obtained from (12a) and P.. It
is easy to verify that Py and P, are valid probabilities (i.e. Py >
0,P; > 0,Py + P, < 1). Further, we can show that ¢ € [a,b],c # 0
based on the relation between mean cP, and variance c2P,.

Lemma 1 states that this newly constructed discrete RV preserves
probability, mean and variance in [a, b] with no influence on other
intervals since 0 € [a,b],c € [a,b]. Based on Lemma 1, we are
able to explore some properties associated with the worst-case
distribution, as stated in Property 1.

PRrOPERTY 1. (Worst-case Distribution of &;) The worst-case
distribution of &; has the following properties:

(1)Ifpj <0, then P{¢; < ¢} =0,

(2)Ifpj = 0, then P{&; > ®;} = 0, for all ®j > ¢;.

ProoF. Our proof is based on contradictions.
(1) When ¢; < 0, suppose §j’ is a worst-case distribution but

P{{] < ¢j} > 0, then the violation probability P{{; > ¢;} =
1- P{fj < ¢;} must be smaller than 1. However, consider the
following discrete distribution of ¢;:

¢j} 4p"R;p

P === —,
{Sz’ 2} apRjp +¢7

ple - 2Rp| ¢
’ ¢ 4pTRjp +¢7
Obviously, the above distribution is valid and the violation prob-

ability P{£; > ¢;} = 1. It is larger than the violation probability
from & j’ which contradicts the assumption that & J’ is the worst-

(13)

case distribution. Therefore, any worst-case distribution of £; has
probability 0 in interval (—co, ¢;], i.e., P{&; < ¢j} = 0.

(2) When ¢; > 0, suppose ¢ j' is a worst-case distribution but has
an positive element at b’ > ¢; with probability Pj,*. We can con-
struct another distribution that has an element at b with probability
P} such that

bV >b> ¢j’Pb > be . (14)

Based on Lemma 1, such distribution always exists with neces-
sary changes in interval (—co, ¢;] to maintain the first and second
order statistics. Consequently, the violation probability becomes
higher, which contradicts the assumption that & j' is the worst-
case distribution. Thus, the worst-case distribution of ¢; when
$;j > 0 only has one element that is sufficiently close to ¢; as all
of the possibilities of £; in interval (¢;, +0) are pushed to ¢}, i.e.,
P{gj >(I)j} =0, for all ®; > ¢;. O

Under Property 1, there may still exist many forms for the worst-
case distribution, i.e., we may have many worst case distributions.
However, these worst-case distributions all share the same closed
form expression for the supremum of violation probability. More-
over, Lemma 1 shows that for the purpose of deriving closed form
expression of the supremum in (11), we only need to consider a
discrete distribution with a small number of elements. Therefore,
we have the following result.

4This conclusion also holds for continuous RV by discretization.
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LEMMA 2. A closed form expression for the supremum of violation
probability is given by:

1 ¢j<0,

p'R;p (15)

sup  P{§ > ¢} = 420,
¢7 +pTR;p

&~(0.p™R;p)

Proor. Consider the following two cases.

Case 1. If ¢; < 0, the distribution in (13) already achieves the
supremum at 1, which is a trivial case.

Case 2.If ¢; > 0, based on Property 1, any worst-case distribu-
tion only has one element in interval (¢;, +c0) at b approaching
¢; with probability Pp. In terms of the other interval (oo, ¢;], it
can be characterized by two discrete elements at a < 0 and 0 with
probabilities P, and Py respectively based on Lemma 1. This con-
version from a worst-case distribution to a three-element discrete
distribution preserves the violation probability P{£; > ¢;}, which
is calculated as

P& > i3 =Py - (16)
We can derive the closed form supremum by the following opti-
mization problem

sup Py,
P4,Pp,Po,a,b
st. Pg+Po+Pp=1
aPq +bPp =0 (17)

a’P, + bZ]P’b = pTij
Pa,Po,Pp > 0,a <0,b> ¢j

The optimization problem in (17) is easy to solve since there are
only five decision variables. The optimal objective (supremum of
. . s . TR-p
violation probability) is —F—2E—.
P ) ¢3+p"R;p
Combining the above two cases, we have the results in (15).
[m]

We now need to ensure the closed from expression for the supre-
mum of violation probability is upper bounded by ¢; as in (11).
Based on Lemma 2, since 1 > ¢, the case with ¢; < 0 is infeasible.
So we only need to consider the case when ¢; > 0. That is, chance
constraint (11) can be replaced by the following two constraints.

$; =0 (18a)
T
R.
| L (18b)
¢; +Pp Rjp
Rewrite (18b) as

e

— . p"Rjp < ¢% . (19)
J

Taking the square root of both sides in (19) and considering (18a),

we have
1—-¢€;
e VPR < g (20)
J

Note that (20) has already considered the non-negativity of ¢;
in (18a). Substituting ¢; = I; — ngp into (20), we have the following

main result.
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TueOREM 1. (ECR) With respect to the decision variables in p,
chance constraints (6) are equivalent to the following second order
cones

1—¢€j _
L\JPTRpp+EP <L (ed). (21)

€j

This is our Exact Conic Reformulation for chance constraints (6)
where "exact” means that the supremum of violation probability
equals to €;. Constraints (21) are deterministic constraints since
the random interference channel gains gZ.”s are eliminated and the
mean gj and covariance matrix R; are given constants.

Compared with state-of-the-art approach (Bernstein Approxi-
mation [22, 24, 26, 27, 31, 33]), ECR has no requirements for the
RVs in terms of their independence and boundaries. Therefore, it
is more general than Bernstein Approximation for linear chance
constraints.

Replacing (6) by (21) in P1, we have a deterministic maximization
problem stated as

(P2) max Z Z wic;%
*iBPiB jeN meM
s.t. Constraints (2) — (5)
External power control from ECR (21)

x[p €{0,1},pip 2 0

5 SOLVING THE DETERMINISTIC
OPTIMIZATION PROBLEM

P2 is a Mixed-Integer Non-Linear Program (MINLP), which is NP-
hard in general. The main difficulties reside in the two nonlinear
terms in constraints (5) and (21). In this section, we show how to
linearlize them.

5.1 Logarithm Functions

In (5), we have logarithm functions in calculations of capacity. We
propose to employ one convex hull to relax each logarithm term
log,(1 + hippl) [18]. Since we have a maximization problem, we
only need to consider the series of linear constraints to upper bound
the convex hull.

For each log term log, (1 + h{;pl), we break the interval for p[
(ie. [0, P5™]) into K equal-length sub-intervals, each with length

max

2~ Then we can upper bound the log function log,(1 + h7ppT)
with K + 1 linear functions as follows:

cm < 1 —Kh;%p;% +1In(1 + iFi5” - KhiPis
B~ In2 |K+ khi PRax K K + khi P
(k=0,1,--- ,K,ie Nyme M)
(22)

Constraints (22) are linear with ¢, and p[ as variables. Clearly,
the larger the K, the tighter the linear relaxation. In our numerical
results in Section 6, we set K = 50 and the relaxation errors are
already smaller than 0.1%.
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5.2 Second Order Cones

Constraints (21) from ECR are second order cones. Since R; is the
covariance matrix of gj, it is guaranteed to be positive semi-definite
and symmetric. To relax the non-linear terms pTij, we introduce
a constant matrix V; as the square root of R, i.e., Rj = V].TVJ-. V;
can easily be calculated based on Cholesky decomposition.

With V;, we can rewrite constraints (21) as

1—¢€; _
— VP (Vjp) + g p <
]

For any feasible p, denote r; (an integer) as an upper bound on
the number of non-zero elements in the column vector V;p. Since
p is an MN X 1 vector, the maximum value for rj is MN. For a
tighter relaxation, we propose to set r; (< MN) based on the sparse
structures of V; and p in our problem.

Recall p (i.e., [plg, -~ pMoplos- - oplh o ph M) D)
has at most M non-zero elements because each RB can only be al-
located to at most one SU. Further, V}, as the square root of the
covariance matrix Rj, is an MN X MN matrix. Since the channel
gains from different SUs to PU j are usually independent, V; is a
block diagonal matrix with the i-th block (denoted as V;;) corre-
sponding toSUi (i =1,---,N), ie,

Geg). (23

Vj = L : (24)
VN;j

Moreover, for SU i, the correlation between two RBs decreases
as they are further apart. Define L; as the maximum subcarrier
spacing that has correlations, meaning that each RB is correlated
with at most 2L; neighboring RBs. Then, each block V;; is a M X M
band matrix [16] that has the following form:

Vij =
oll ... 1(Lj+1)
Y g 2(L;+2)
21 22 . J
’Uij ’Ul.j ’Uij
M(M-L;) MM
vl] ... Ul]

(25)

Based on the sparsity of V; and p, we can set r; as the maximum

non-zero elements in V;p before solving p. Specifically, we consider
two cases to calculate r;:

(i) When M > 2L; + 1, denote r]’." as the number of non-zero

elements in V;p generated by p if pI7, > 0. rJT” is calculated (based

on m) by
m+ Lj ifm < Lj
r}nz (ZLj+l) iij‘FlSMSM-Lj . (26)
M-m+Lj+1 ifm>M-Lj+1
The three cases in (26) corresponds to the RBs in the left, middle
and right part of the picocell’s spectrum.

: fegd m m ,m . . ,m
Since onl‘y one transmission power p[ in {PlB’pZB’ PRgt
(the transmission powers on RB m for all SUs) is non-zero, we can
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setrj as

rjzz

meM

r]m :M(ZLJ'+1)—L]'(L]'+1) (27)

(ii) When M < 2L; + 1, rj can be set to rj = min{MN, M(2L; +
1) = Lj(L; + 1)} since MN is always an upper bound of r;.
Combining both case, we set r;j as
rj = min{MN, M(2L; + 1) — L;j(L; + 1)} (Gjed). (28)
Denote ||V;pl||e as the infinity norm of V;p. Based on the fact
that \/(V;p)T(V;p) <
ation of constraints (23):

VTillVjplleo, we have the following relax-

\/_lleplloo+g,p<Ij Ged). (29)

Constraints (29) are linear with the decision variables in p.
With the above linear relaxation, we have the following relaxed
optimization problem.

(P3) max_ Z Z WlCzB

iBPis ieNmeM
s.t. Constraints (2) — (4)

Linearly relaxed capacity constraints (22)

Linearly relaxed external power control (29)

x]p €{0,1},pp 20

P3 belongs to Mixed Integer Linear Programming (MILP), which
can be solved by commercial solvers such as CPLEX. For our prob-
lem size, the solution can be obtained on the order of second. For
real time implementation of MILP, one can employ a recent break-
through in real-time optimization based on GPU platform [19].

6 SIMULATION RESULTS

In this section, we conduct simulations to evaluate our proposed
solution predicated on ECR. For performance evaluation, we mainly
focus on spectrum efficiency (our objective value) and threshold
violation probability. Our numerical study covers general and prac-
tical settings in consideration of different risk levels, interference
thresholds and channel models.

6.1 Simulation Settings

For all topologies in the simulation study, we set the distance be-
tween the macro BS and the pico BS to 400 meters. The radius of
the picocell is set to 40 meters. The transmission power of macro
BS on each RB is set to 46 dBm and the thermal noise on each RB is
assumed to be 1 x 1077 mW. We assume each SU has a maximum
transmission power of 20 dBm across all RBs.

The channels are generated based on ITU path loss model and
small-scale fading. We consider two types of path loss models [1]
as following:

(i) The path loss for the macro BS follows the ITU free-space
path loss model as:

PL(dB) = 128.1 + 37.6 X log;((dmacro) » (30)
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where dmacro is the distance from the macro BS to the pico BS (in
kilometers).

(ii) The path loss from the SUs to nearby PUs and the pico BS
follows the ITU indoor path loss model given as

PL(dB) = 38 + 30 X log;o(dpico) » (31)

where dpic, is the distance from a SU to a nearby PU or the pico BS
(in m).

For small-scale fading, we consider Rayleigh, Rician, and Nak-
agami fadings as specified per discussion below.

6.2 The Case of Independent Channels with
Rayleigh Fading

We consider two types of network topology where the SUs are

randomly distributed in the picocell or closer to the PUs (a stressful

scenario). The channels are generated independently with Rayleigh

fading as the small-scale fading.

For comparison, we also include the results from Bernstein Ap-
proximation and worst-case optimization in the same figure. Worse-
case optimization uses the upper bounds of channel gains to remove
uncertainty and consequently the chance constraints (6) becomes
deterministic linear constraints. As for Bernstein Approximation,
since our channel model is unbounded, we employ the same trun-
cation method proposed in [22, 31] when the channel is Rayleigh
fading. Then the reformulated MINLP is solved directly by CPLEX
without any further relaxation.

In each specific topology, we perform 200 simulation runs and
the results presented in this section are the average objective val-
ues for P1 based on the feasible solution obtained from its relaxed
problem P3. For each simulation, we generate 10000 samples of
the channel gains from each SU to each PU. The first and second
order statistics from the 10000 samples are used in our solution.
The 10000 samples are also used when calculating the actual thresh-
old violation probability after the solution for each simulation is
obtained. All of the optimization problems are solved by CPLEX
using Branch & Cut for mixed-integer solution and the relative gap
is less than 1%.

6.2.1 Randomly distributed SUs inside the picocell. We test two
settings with one PU and three PUs separately. Six SUs are ran-
domly distributed in the picocell. Assuming the pico BS is at the
origin, the coordinates of SUs are (—10.67, —19.01), (32.47, —11.77),
(—0.23,8.90), (12.04, —5.03), (28.89, —10.00) and (—22.66, 5.34). The
corresponding weights of SUs are 0.22, 0.09, 0.09, 0.23, 0.19 and 0.18.
The coordinates and interference threshold I; for each PU are given
per discussion below. The number of RBs is set to 12 and remains
the same for the whole simulation study.

(i) The setting with one PU. We first consider the case with one
PU located at (50,0) with interference threshold I = 3 x 1077 mW.
Fig. 2 shows the performance of our solution as a function of risk
level € and interference threshold I. In Fig. 2(a), we find that the
objective value of our solution monotonically increases with the
risk level €. In particular, we achieve 2.92 bps/Hz with a risk level
of € = 0.01 and 5.09 bps/Hz with € = 0.5.
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Figure 2: Performance of our solution as a function of risk level € and interference threshold I with randomly distributed SUs

In Fig. 2(a), the objective value of worst-case optimization stays
the same since it does not involve any risk level. Clearly, the per-
formance of worst-case optimization is overly pessimistic due to
zero tolerance of interference threshold violation.

The performance of our solution against Bernstein Approxima-
tion is shown in both Fig. 2(a) and Fig. 2(b). In particular, in Fig. 2(a),
with a small risk level € = 0.01 (or 1%), the performance of Bern-
stein Approximation drops to 2.20 bps/Hz (almost the same with
the one from worst-case optimization) while our solution achieves
2.92 bps/Hz. In Fig. 2(b), we plot the ratio of the objective value
from our proposed solution over Bernstein Approximation. Our so-
lution can achieve between 15% to 42% improvement over Bernstein
Approximation.

Fig. 2(c) offers an in depth study of our solution and Bernstein
Approximation in terms of actual threshold violation probability
(i.e., percentage of samples where the interference threshold is ac-
tually violated). As shown in Fig. 2(c), the actual threshold violation
probability from Bernstein Approximation stays below 0.02 even
though the risk level is 0.5, which is unnecessarily conservative
and lose significant benefits of CCP. In comparison, our solution
violates the interference threshold with probability 0.14. Thus, our
solution can better achieve the desired benefits while keeping the
violation probability within the risk level.

Here the gap between actual threshold violation probability and
risk level € is because the channel model (ITU path loss and Rayleigh
fading) is not the worst-case distribution since it does not have the
properties in Property 1. Based on the discussion in Section 4, the
violation probability does not achieve the supremum and conse-
quently, a gap exists between the actual threshold violation proba-
bility and the risk level .

We also alter the interference threshold I from 1x10~7 mW to 5x
10~7 mW while keeping the risk level € = 0.1. The results are shown
in Fig. 2(d). As expected, the achievable objectives under all three
solutions increase with higher interference threshold I. But our
solution remains the best among three. The relative improvement
from our our solution over Bernstein is from 13% to 50%. We omit
the detailed discussion in this case study since the results are similar.

(ii) The setting with three PUs We test the setting with three PUs,
located at (50, 0), (—45,5) and (—25, —35). In general, we can assign
each PU with different interference thresholds I; and different risk
levels €;. Without loss of generality, we choose the interference
thresholds for 3PUs as 3x 1077 mW, 4x 10~/ mW and 2x 10~/ mW

_ 45 & 1.4
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Figure 3: Performance of our solution as a function of risk
level € with three PUs

respectively. The risk levels €; of three PUs are the same ranging
from 0.01 to 0.5. This configuration is sufficient enough to validate
our proposed solution. The results are summarized in Fig. 3.

As is shown in Fig. 3, our solution outperforms the one with Bern-
stein Approximation with up to 30% improvement (when € = 0.05).
Our solution achieves 4.3 bps/Hz while the one with Bernstein
Approximation only obtains 3.5 bps/Hz when € = 0.5. We also note
that the objective value is less than that of single PU scenario in
Fig. 2(a). This is reasonable since the intersection of three second
order cones inevitably shrinks the optimization space. Similar re-
sults with Fig. 2 (actual threshold violation probability and objective
value with different thresholds I;) are obtained under this setting
so we omit these results.

6.2.2  Stressful scenario when SUs are closer to the PU. To show
the robustness of our solution and the conservativeness of Bernstein
Approximation, we generate a more stressful network topology
where all the SUs in the picocell are closer to the PU. The coordi-
nates of six SUs are (20.79, —21.49), (17.86, —24.49), (32.16, 14.79),
(30.65,5.08),(24.90, —15.41) and (34.21, —5.52). Their correspond-
ing weights are 0.19, 0.13,0.26, 0.12, 0.20 and 0.10. We consider one
PU located at (50, 0) with interference threshold I = 3 x 10~/ mW.
Under this circumstance, the channel gains from the SUs to the
PU are larger and thus strict power control on the SUs should be
exercised. Fig. 4 shows the results under this circumstance.

Since the SUs are closer to the PU, they must further lower their
transmission powers and consequently, the spectrum efficiency
is lower compared with that from randomly distributed SUs. In
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level € with different channel models

Fig. 4(a), we find that Bernstein Approximation has even lower
spectrum efficiency compared with worst-case optimization when
€ = 0.01 due to its conservativeness. On the contrary, our solu-
tion obtains the highest spectrum efficiency for all risk levels. In
fact, our solution has 60% improvement compared with Bernstein
Approximation when € is 0.05 as shown in Fig. 4(b).

6.3 The Case of Independent Channels with
Rician Fading and Nakagami Fading

To show that our solution is applicable for all channel distributions,
we test our solution with other wireless channel models using the
topology in Section 6.2.1 with one PU located at (50, 0). We employ
the method described in Section 6.2 and our solution only requires
the knowledge of mean and covariance regardless of the channel
distributions. To be specific, we employ the small-scale fading from
the SUs to the PU with Nakagami fading and Rician fading in
comparison with Rayleigh fading described above. The channels
from the SUs to the pico BS are still based on Rayleigh fading.
Since the channel models are unbounded and no truncation method
for Bernstein Approximation regarding these channel models was
proposed, we will only focus on our solution. The results are shown
in Fig. 5.

To understand the results in Fig. 5, we need to back up some
knowledge of wireless channel models. Nakagami fading is a gen-
eral model for wireless channel and employs a parameter called
"Nakagami-m" to adjust the seriousness of fading [14]. Both Rayleigh
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Figure 6: Performance of our solution as a function of risk
level € in correlated channels

fading and Rician fading can be characterized as special cases of
Nakagami fading and we can calculated the "Nakagami-m" parame-
ter accordingly. The six channel models we employed in Fig. 5 have
the Nakagami-m parameters as 0.75, 2, 4, 2.78,5.76, 1. It is shown
in Fig. 5 that a smaller Nakagami-m leads to a lower spectrum effi-
ciency even though the channels from the SUs to the pico BS are the
same. This can be explained from the reformulated constraints (21)
from ECR. Given the same mean, a small "Nakagami-m" generates a
higher covariance and consequently we have a smaller optimization
space that leads to a worse performance.

It is clearly verified in Fig 5(b) that our solution meets the thresh-
old violation requirement (smaller than risk level €) in all of the sim-
ulated channel models and thus our solution is applicable though
we don’t have the exact distribution knowledge. Moreover, we see
the gap between risk level € and actual threshold violation still
exists because none of the tested channel models is a worst-case
distribution. All of these results are consistent with our discussion
of ECR in Section 4.

6.4 The Case of Correlated Channels with
Rayleigh Fading

Since Bernstein Approximation explicitly requires independent

channels and is no longer applicable under correlated channels, we

will only show the results from our solution.

The topology and number of RBs are the same as those from
Section 6.3. The channels are based on ITU pass loss model and
Rayleigh fading and we also perform 200 simulation runs using
the same method in Section 6.2. We consider both low correlation
and high correlation settings. For the setting with low correlation,
the correlation coefficient between adjacent RBs is set to 0.5 (i.e.,
L = 1,r = 34). For the setting with high correlation case, the
correlation coefficient among all RBs from the same SU is set to 0.5
(e, L = 11,r = 72). We set the interference threshold I = 3 x 1077
mW. Our results are depicted in Fig. 6.

As shown in Fig. 6(a), for the same risk level, when correlation
increases, the performance of our objective (spectrum efficiency) de-
creases. Fig. 6(b) shows the actual threshold violation probability as
a function of risk level €. Here, we see that when the channels have
high correlation, our solution tends to be conservative with lower
actual threshold violation probability. This is because the original
optimization space is smaller and our chosen of r; contributes to
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more relaxation errors as well. To the best of our knowledge, our
solution to CCP is the first work that shows results with correlated
channels in underlay coexistence.

7 CONCLUSIONS

In this paper, we studied underlay coexistence where occasional vi-
olation of interference threshold by SUs is allowed. We formulated
the problem as a CCP and use a risk level to control the threshold
violation probability. Our formulation only requires the first and
second order statistics of the uncertain channel gains. For the CCP
problem, we introduce a novel technique called Exact Conic Refor-
mulation (ECR) that transforms the intractable chance constraints
into equivalent second order cones. We show that the proposed
ECR overcomes the limitations of the state-of-the-art Bernstein Ap-
proximation in terms of conservative performance and assumptions
for random variables. Through extensive performance evaluation,
we show that: (i) for uncorrelated channels, our proposed solu-
tion outperforms Bernstein Approximation by up-to 60 % (30% on
average) in spectrum efficiencys; (ii) for correlated channels, our
proposed solution offers a competitive solution while Bernstein
Approximation is no longer applicable.
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